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Abstract

We present a novel approach to automatically
synthesize “wayfinding instructions" for an em-
bodied robot agent. In contrast to prior ap-
proaches that are heavily reliant on human-
annotated datasets designed exclusively for spe-
cific simulation platforms, our algorithm uses
in-context learning to condition an LLM to
generate instructions using just a few refer-
ences. Using an LLM-based Visual Question
Answering strategy, we gather detailed infor-
mation about the environment which is used
by the LLM for instruction synthesis. We im-
plement our approach on multiple simulation
platforms including Matterport3D, AI Habitat
and ThreeDWorld, thereby demonstrating its
platform-agnostic nature. We subjectively eval-
uate our approach via a user study and observe
that 83.3% of users find the synthesized instruc-
tions accurately capture the details of the en-
vironment and show characteristics similar to
those of human-generated instructions. Further,
we conduct zero-shot navigation with multiple
approaches on the REVERIE dataset using the
generated instructions, and observe very close
correlation with the baseline on standard suc-
cess metrics (< 1% change in SR), quantifying
the viability of generated instructions in replac-
ing human-annotated data. We finally discuss
the applicability of our approach in enabling
a generalizable evaluation of embodied navi-
gation policies. To the best of our knowledge,
ours is the first LLM-driven approach capable
of generating “human-like" instructions in a
platform-agnostic manner, without training.

1 Introduction

In embodied navigation tasks, language is primar-
ily used to convey wayfinding instructions to an
agent operating in a simulation platform. These
instructions convey the path that the agent should
take to reach a target location. Generating these
instructions usually takes place in the form of creat-
ing datasets that require several human annotation

Figure 1: Overview: We use in-context learning with an
LLM to generate multiple styles of wayfinding instruc-
tions for embodied navigation. Given any environment,
we first gather a set of egocentric images along a path
(white arrows), and obtain spatial knowledge via Visual
Question Answering. We then condition an LLM on dif-
ferent styles of instructional language (coarse as well as
fine grained) via reference texts. The figure highlights
wayfinding instructions for this environment generated
without training on any datasets.

hours (Qi et al., 2020a; Anderson et al., 2018a;
Padmakumar et al., 2022). In addition, the current
datasets are exclusive to the embodied simulation
platform in which the agent operates, preventing
the transfer of instruction-following approaches
across platforms. For instance, an embodied agent
trained to follow instructions present in the R2R
(Anderson et al., 2018a) or REVERIE (Qi et al.,
2020a) datasets is limited to scenarios (object ar-
rangements and scene layouts) in the Matterport3D
(Chang et al., 2017; Ramakrishnan et al., 2021) en-
vironment, the most commonly used platform for
indoor datasets (Gu et al., 2022). The scenarios
themselves are also limited (around 90 real-world
scans). If its performance needs to be evaluated on
another simulation environment such as TDW (Gan
et al., 2020) or ProcTHOR (Deitke et al., 2022), the
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corresponding REVERIE or R2R-style instructions
simply do not exist, posing a major hurdle for re-
searchers conducting generalizability experiments
to assess the adaptability of their navigation models.
As such, to alleviate these issues, it is important
to design an approach for synthesizing wayfinding
instructions that are platform-agnostic, and is not
cumbersome to generate.

Some recent works have looked at synthesizing
instructions from input visual landmarks (Wang
et al., 2022b; Kurita and Cho, 2020; Tan et al.,
2019). These approaches however are not eas-
ily generalizable and require training a separate
model for each instruction dataset to infer synthetic
instructions. Moreover, they only focus on the
Matterport3D environment, as indoor instruction
datasets are scarce on other platforms.
Main Results: We present a novel approach to
synthesize wayfinding instructions for an embod-
ied robot agent. Figure 1 presents an overview of
our approach. Given a set of egocentric images cap-
tured from a simulator, we perform Visual Question
Answering to gather information about the scene,
and use this to condition an LLM with reference
texts to generate different styles of instructions.
The novel components of our work include:

• We present a novel platform-agnostic, non-
training based approach to synthesize wayfind-
ing instructions of multiple styles.

• We use the in-context learning capabilities of
LLMs to perform instruction synthesis in a
few-shot manner. Our method only requires
a few samples of reference wayfinding text to
produce human-like instructions in multiple
simulation platforms.

• We subjectively validate generated instruc-
tions across multiple simulation platforms via
a user study and infer that 83.3% of users find
the instructions accurately capture details of
the environment, and exhibit human-like char-
acteristics.

• Finally, we evaluate the effectiveness of
our generated instructions on the REVERIE
vision-and-language navigation (VLN) task.
The performance of three zero-shot VLN ap-
proaches, evaluated using standard VLN suc-
cess metrics, was comparable to established
baselines, highlighting the efficacy and prac-
tical utility of LLM-generated instructions in
navigation tasks.

Figure 2: Extracting Spatial Knowledge: We use the
GPT-3.5-turbo along with BLIP to maximize knowledge
captured from an image, similar to ChatCaptioner (Zhu
et al., 2023). We notice that adding more detail to the
captions helps improve the quality the final instruction
by filtering out unnecessary information. More details
about this are in Appendix A.

In contrast to prior work which is limited to a single
simulation platform and instruction style, we use
in-context learning in LLMs to achieve instruction
synthesis of multiple styles on different embodied
simulation platforms, including Matterport3D, AI
Habitat and ThreeDWorld. Our evaluation both via
a user study and navigation performance indicates
that the synthesized instructions are sufficiently rep-
resentative of human-like texts for them to be used
as a scalable alternative for generating instructions
for embodied navigation tasks.

2 Approach

Our approach consists of two components. First,
we perform Visual Question Answering (VQA) on
egocentric images taken along an agent’s path in
a simulation environment. This gives us spatial
knowledge about the scene. Next, we combine this
spatial knowledge with a few reference wayfinding
instructions in an in-context learning (Liu et al.,
2023b) prompt to condition an LLM for synthesiz-
ing instructions that would lead the agent to the
target location.

2.1 Extracting Spatial Knowledge: LLM +
BLIP

Paths in simulated environments describe a navi-
gable route for an embodied agent to get from one
point to another. In our approach, given any em-
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Figure 3: Given any embodied simulator, we synthe-
size multiple styles of wayfinding instructions for agents.
Spatial knowledge is first mined from egocentric images
I captured using the LLM and BLIP. These captions
are fed into a prompt along with a few reference exam-
ples representing the desired instruction style. Finally,
the LLM is conditioned with this prompt to generate a
human-like instruction in the style of the reference text,
using the captioned information.

bodied simulator, we first generate random paths.
We then obtain a discrete set of egocentric images
I uniformly sampled on this path.

We then perform VQA on the images in I, to
gather information about the environmental arti-
facts on the path. Following a similar approach
presented in ChatCaptioner (Zhu et al., 2023), we
maximize the knowledge obtained from each im-
age by gathering insights via a conversation in a
Chain of Thought manner (Wei et al., 2022) be-
tween GPT-3.5 (OpenAI, 2020) and BLIP (Li et al.,
2023) (Figure 2). We notice that this gives us more
detailed descriptions of each image, improving the
quality of the generated instruction.

2.2 Synthesizing Wayfinding Instructions via
In-Context Learning

We condition GPT-3.5-turbo-instruct to generate
suitable wayfinding instructions for navigation.
Figure 3 illustrates this approach. Captions ob-
tained for images in I along with reference texts
providing context on the desired instruction style
are used to create a prompt for the LLM. We ex-
periment with reference instructions taken from
two datasets with contrasting styles; R2R (Ander-
son et al., 2018a), which has more detailed, fine-

grained human annotations, and REVERIE (Qi
et al., 2020a), which has instructions that are ab-
stract and coarse-grained.

We also observe that adding more information
about the instruction style itself helps further fine-
tune the outcome. For instance, in the REVERIE
dataset (Qi et al., 2020a), almost all instructions
end by describing a task with the target object
(‘turn the faucet’ for example). Adding this in-
formation as an additional constraint helps further
finetune the LLM output. More details about this
are provided in appendix A.

3 Evaluation & Results

In this section, we discuss our evaluation strategy
and present results.

3.1 Qualitative: User Study

We conduct a user study to evaluate the quality
of the generated instructions. Participants are first
shown a video of a random path taken from one of
3 different simulators (Matterport3D, AI Habitat,
ThreeDWorld). Using an instruction of either a
REVERIE or R2R style as reference they are asked
to come up with a stylistically similar instruction
for the video. We then show them the generated
instruction, and ask them a few questions about
correlation.

We infer that 83.3% of users believe that the
generated instruction captured details of the envi-
ronment to more than a decent level of accuracy,
and that a majority of 73.3% believed that the agent
could reach the target room by following the gen-
erated instruction. Further, 16.5% of participants
reported seeing ghost objects, indicating genera-
tion is sensitive to the captioning scheme. Con-
versely, 43.3% of participants believed the instruc-
tions were different from what they wrote. This
indicates that the vocabulary people use to describe
a path may significantly vary from the vocabulary
used in the generated instruction. This however is
not an indicator of instruction quality, as the dif-
ference is in alternate landmarks being used guide
the agent along the same path. This is further high-
lighted in the navigation results presented below.
More details are in Appendix B.2.

3.2 Quantitative: Embodied Navigation

Our evaluation setup is simple. We first implement
a zero-shot navigation scheme using the original
instructions provided in REVERIE, a popular VLN
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Approach
Original Generated (Central) Generated (Panoramic)

SR ↑ OSR ↑ SPL ↑ SR ↑ OSR ↑ SPL ↑ SR ↑ OSR ↑ SPL ↑
Clip-Nav 6.57 28.68 0.06 5.98 26.69 0.05 5.57 26.09 0.05

Seq-CLIPNav 14.92 24.46 0.15 13.94 21.51 0.14 11.35 23.10 0.13
GLIP-Nav 16.87 32.56 0.18 16.32 33.23 0.18 14.18 29.87 0.15

Results: We evaluate zero-shot VLN models by replacing REVERIE’s human-annotated instructions with instruc-
tions generated by our approach. Notice the similar performance on each VLN model across all metrics. There
is a noticeable drop in using panoramic frames over central frames, and this could be attributed to condensing
copious amounts of scene information into a single sentence (See Appendix B.3.2). We can positively infer from
the minimal difference in SR, OSR, and SPL values that our approach can generate instructions that can indeed
serve as a good replacement to human-annotated data.

dataset. We then replace the original instructions
with instructions generated by our approach, and
run the navigation scheme again. A similar perfor-
mance would indicate that the generated instruc-
tions can indeed serve as a replacement to human-
annotated data.

REVERIE is based on the Matterport3D simula-
tor, which contains real-world captures of house-
hold environments. We look at 3 zero-shot VLN
approaches - 1) CLIP-Nav (Dorbala et al., 2022),
which uses CLIP (Radford et al., 2021) to ground
target instructions to a scene to drive the agent’s
navigation policy, 2) Seq-CLIP-Nav, an extension
of this approach that also performs backtracking
(see Appendix B.3), and 3) GLIP-Nav, which we
introduce as a GLIP (Li* et al., 2022) based vari-
ant of Seq-CLIP-Nav. More details about these
approaches are in Appendix B.3.

As Matterport3D provides panoramic images,
we consider two possibilities for extracting spa-
tial knowledge (see Appendix B.3.2); The Cen-
tral Caption, where only the images in the direc-
tion of the agent’s heading are captioned, and the
Panoramic Caption, where the entire panorama
(4 images) is captioned and summarized to obtain
an instruction.
Experiment Details: We employ 3 standard VLN
evaluation metrics (Zhao et al., 2021) to measure
performance across each navigation approach - 1)
SR, which is the Success Rate determining when
the agent has successfully reached the target loca-
tion; 2) OSR, the Oracle Success Rate, for when
the agent successfully reached the target location
once, but overshot and stopped elsewhere, and
3) SPL, which measures efficiency of Success
weighted by Path Length. The results table com-
pares the performance of the generated instructions
with the original ones on the zero-shot VLN ap-
proaches.

We make the following key inferences -

Automated Instruction Generation: A key obser-
vation is that embodied agents equipped with LLM-
generated instructions perform almost equally well
compared to when they are provided with human
annotated instruction. This has practical implica-
tions for researchers working on embodied navi-
gation, where such instruction data is limited and
hard to annotate. Creating large-scale instruction
datasets is challenging, often needing simulator-
specific annotation tools, which cannot be easily
transferred. To this end, our study presents a good
alternative in leveraging off-the-shelf LLMs as a
wayfinding instruction generation tool.
Central vs. Panoramic Captions in MP3D: We
observe that the performance of the central cap-
tion approach is generally higher than that of the
panoramic caption approach. We believe this to be
due to instruction quality being affected by two rea-
sons — 1) Captioning each image of the panorama
and summarizing it leads to excess information at
each step and 2) The central caption approach im-
plicitly contains the information in the heading of
the target, leading to more direct instructions.
Cross-Platform Scalability: Our approach is
platform-agnostic, and can be applied to generate
instructions across embodied simulation platforms,
whether they are discrete, continuous, photoreal-
istic, or not. The user study validates this, where
users across simulator types believed that the gen-
erated instructions captured details of the environ-
ment and could lead the agent to the target location.
We believe that the embodied navigation commu-
nity can significantly benefit from this, enabling
researchers to conduct cross-platform generalizabil-
ity experiments without relying on the availability
of platform-specific human-annotated data.
Improved Instruction Quality: We notice that
human-annotated instructions in REVERIE some-
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times tend to be unnatural and lacking in terms
of sentence construction. As these annotations are
crowdsourced, this can be attributed to human error.
It is often in these cases that the embodied agent
fails to reach it’s target location, due to poor anno-
tation leading to inferior grounding scores. LLM-
generated instructions on the other hand are almost
always well structured, containing specific objects
and waypoints leading up to a target location; a di-
rect consequence of our prompting strategy. Some
of these cases are discussed in appendix B.3.3.

4 Discussion: Evaluating Generalizability
of Embodied Navigation Policies

The overarching motive of our work is to construct
a generalist navigation agent that performs con-
sistently irrespective of the environment that it is
present in. Current approaches to solve this task are
limited to evaluation on human-annotated datasets
created specifically for a particular simulator, be it
MP3D (Chang et al., 2017), AI Habitat (Ramakr-
ishnan et al., 2021), RoboThor (Kolve et al., 2017)
etc.. While some methods claim generalizability
(Park and Kim, 2023), they back their claims by
showing improved performance on unseen subsets
of a dataset on the same simulator, rather than mea-
suring performance across simulators. For a true
measure of generalizability, we believe it is nec-
essary to measure the navigation performance of
agents that aren’t bounded to a particular dataset.

In this direction, our approach solves a crucial
data procurement problem in providing a simple
method to generate human-like instructions across
simulation platforms. In doing so, we empower
resource-constrained researchers to create their
own datasets for generalizable experiments on their
navigation models; therein presenting the true nov-
elty of our work.

Current datasets cover a wide range of language-
guided navigation scenarios, ranging from initial-
instruction based guidance (fine and coarse-
grained) to oracle and dialogue based navigation
that provide verbal human assistance (Gu et al.,
2022). There also exist several outdoor datasets in-
cluding Touchdown (Chen et al., 2019), Talk2Nav
(Vasudevan et al., 2021) and StreetNav (Jain et al.,
2023), where the beyond the instruction, the struc-
ture and semantics of the scene are drastically dif-
ferent from indoors. To account for the diversity
and measure true generalizability, we propose in-
tegrating our scheme for synthesis to measure the

robustness of navigation policies in two ways as
follows:-

• Cross-Platform Generalizability: In the first
experiment, we gather a set of instruction-
path pairs across simulators to train a cross-
platform model for a generalist navigation
agent. Consistent performance on each sim-
ulator present in the dataset during inference
would indicate that the navigation policy is
globally robust with low bias towards a spe-
cific simulator.

• Intra-Platform Generalizability: In the sec-
ond experiment, we measure the agent’s per-
formance within different generated datasets
on the same simulator. Unlike data augmen-
tation approaches in the past (Li et al., 2022)
that seek to improve the agent’s performance
with generated instruction-path data, our ob-
jective is measure consistency in performance
across multiple instruction-path “datasets”
generated in the same environment. This con-
sistency would indicate that the navigation
policy is locally robust, with low bias towards
a specific type of scene or region within the
simulator.

A generalist navigation agent would have a pol-
icy that is both globally and locally robust. Our
approach paves the way to measure this robustness
for a fair evaluation of state-of-the-art embodied
navigation policies.

5 Conclusion

We present a simple, cross-platform approach to
synthesize multiple styles of wayfinding instruc-
tions for embodied navigation. Our approach re-
quires no training and instead utilizes an LLM
with in-context learning to produce instructions
across multiple simulation platforms. We verify
the quality of the instructions generated both via
a user study and by evaluating zero-shot VLN per-
formance. From these evaluations, we positively
infer that our LLM-generated instructions are a
good replacement to human-annotated ones, and
further, that our approach provides for a scalable
and accessible solution for creating wayfinding in-
structions. We finally touch upon how our approach
can be used for measuring the key quality of robust-
ness while evaluating language-guided navigation
policies; a defining metric to evaluate a generalist
navigation agent.
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6 Limitations and Future Work

While our approach is platform-agnostic, the qual-
ity of the generated instructions is very sensitive
to the individual modules that drive our scheme.
Poor spatial knowledge extracted from performing
VQA would directly affect the quality of the cap-
tion. In some preliminary experiments, we notice
this behavior on some images taken from the Vir-
tualHome (Puig et al., 2018) embodied simulator,
which has non-photorealistic environments. Using
LLaVA (Liu et al., 2023a) for VQA seems to create
ghost objects and artifacts when asked to describe
a scene leading to poor instructions. In contrast, it
performs well with real world images taken from
Matterport3D. We believe this poor performance
might be because large captioning models such as
LLaVA are trained on an abundance of real world
data, and may contain fewer if not any simulation
or non-photorealistic images. Secondly, during the
synthesis stage, we present the LLM with examples
from the instruction style that we wish to obtain.
The generated instructions can sometimes contain
the direct words or language used in these reference
examples. As such, we believe it is necessary to
explicitly specify in the prompt that the LLM uses
only the captions and not the reference texts for
generation. In the future, we intend to use our ap-
proach to implement a generalist navigation agent
and study its performance in terms of consistency
across various embodied simulation platforms.

7 Ethics Statement

Equipping embodied agent with LLM-generated in-
structions to perform navigational tasks is a step to-
wards cohesive human-robot collaboration. While
the end goal is to make such systems fault-tolerant
and error-free, we may not want an agent to per-
form certain actions that it is unsure of. However,
currently there seems to be a gap in the language
interpretation capabilities of the agent especially in
complex scenarios.
Our user study protocol was approved by Institu-
tional Review Board and we do not collect, share or
store any personal information of the participants.
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A In-Context Learning Strategies

In this section, we discuss some strategies we em-
ploy to get the best possible wayfinding instruction.
A prompt template is presented to the LLM as -

"A robot agent at home sees a sequence
of egocentric images with the following
frame descriptions.
Frame 0: <Caption 1>
Frame 1: <Caption 2>
...
Frame n: <Caption n>
Reference Texts: [’Go to ...’, ’Move past
...’, Walk ahead ... ]
Write an concise instruction in the style
of the Reference Texts that would get the
robot from Frame 0 to Frame n.
<Additional constraints on the instruc-
tion style>"

Each caption in this template is obtained using
the LLM + BLIP strategy outlined in section 2.1.

A.1 Influence of LLM + BLIP

An example egocentric image sequence of a path
taken in the TDW simulator (Gan et al., 2020) is
shown in figure 4. Using the LLM + BLIP approach
discussed in section 2.1, we get the following cap-
tions for each image in 4.

1. The image depicts a computer screen showing
a colorful video of a man that is being dis-
played on a television. There is also a chair
visible in the image besides the television.

2. The image contains a small chair made of
fabric, in colors of red, white and gray. There
is another object present in the image, but it
is not clear what it is.

3. The image is of a living room with brown fur-
niture and no decorations on the walls. There
are no people present in the living room.

4. The image depicts a room with a gray couch
located against a wall. There is a small televi-
sion mounted on the wall.

5. The image features a computer screen display-
ing a website, with a couch visible in the back-
ground. A plant is placed on a table next to
the computer. No other objects are visible on
the table.

Passing these Frame descriptions to the prompt
in A gives us a REVERIE-like instruction as,

Go to the living room, then move to the
room with the gray couch and turn off
the television mounted on the wall.

and R2R-like instruction as,

Go from the computer screen to the chair,
then past the object in the background
and into the living room. Walk past the
blue furniture and turn right towards the
gray couch. Finally, stop in front of the
table with the plant and view the website
on the computer screen.

Notice the level of detail added by insights that
LLM gathers by conversing with BLIP. This inturn
gives more information for GPT-3.5-Turbo-Instruct
to use for generating a final instruction from the
frames.

Figure 7: LLM + BLIP: Notice the initial BLIP caption
mentions a television in the image, even when it is not
present. When the LLM asks for the presence of elec-
tronic items in the room, BLIP answers no, which leads
to the refined caption preventing misinformation.

We also experiment with using only BLIP cap-
tions with object and room queries, without the
LLM. The REVERIE-like instruction in this case
looks like,

Go to the living room on level 0 and turn
off the television by the couch and the
table.

and the R2R-like instruction is,
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Figure 4: Egocentric Image Sequence from a path in ThreeDWorld (Gan et al., 2020)

Figure 5: Egocentric Image Sequence from a path in AI Habitat (Ramakrishnan et al., 2021)

Figure 6: Egocentric Image Sequence from a path in Matterport3D (Chang et al., 2017)

Start in the kitchen and go up the stairs
on the left. Turn right at the top of the
stairs and then go past the round table
and chairs and stairs. Keep walking until
you see the two small tables on the rug
and then turn left. Go down the hallway
keeping the wall on your left and stop
in front of the door on your right with
the treadmill. Turn left and you will see
the living room with a computer screen
containing a picture of a couch and a
table.

While the REVERIE-like instruction is still us-
able, notice the R2R-like instruction tends to be
nonsensical with ghost objects such as stairs and
treadmill in the caption. It also contains bad di-
rections. We observe this phenomenon in multiple
cases, and Figure 7 showcases how the conversa-
tion with the LLM improves the initial captions to
remove ghost objects and prevent misinformation.

Thus, we infer that using an LLM with BLIP
to provide more detail about the environment is
important when it comes to finally generating more
meaningful instructions.

A.2 Empirical Information on Instruction
Styles

We utilize factual knowledge about R2R and
REVERIE instruction styles to finetune the LLM
prompt.

A.2.1 Additional Constraints for R2R

Upon inspection, we observe that R2R instructions
are usually 2 or more sentences long, attributed to
longer path lengths. Further, in the R2R paper, the
authors mention that they ask annotators to “write
directions so that a smart robot can find the goal
location after starting from the same start location",
and are told that it is not necessary to follow the
path, but only to reach the goal. We incorporate
this information to append our prompt:-

“Write directions so a smart robot can
find the final frame after starting from
the same starting frame. You do not have
to use information in the frames, and just
need to reach the goal location."

A.2.2 Additional Constraints for REVERIE

REVERIE instructions are concise, and talk only
about the goal location. Clip-Nav (Dorbala et al.,
2022) studies REVERIE in detail and empirically
deduces that most instructions can be broken down
into navigation and activity components, with the
conjunction and between them. We utilize this
information to add the following to our prompt:-

"The instruction must be a single sen-
tence long, ending with a task related to
an object in the final frame, and must be
less than 20 words."

267



B Evaluation Details

B.1 Simulator Implementations

We implement our approach on 3 different simula-
tion platforms, namely AI Habitat (Ramakrishnan
et al., 2021), Matterport3D (Chang et al., 2017)
and ThreeDWorld (TDW) (Gan et al., 2020). Ego-
centric image sequences for these simulators are
presented in Figure 4, Figure 5 and Figure 6 re-
spectively. Depending on the type of simulator,
we revise our strategy for extracting sequences as
listed below -

• Environments in the Matterport3D simulator
are taken from real world scenes and provide
fully connected graphs whose nodes represent
360 panoramas. Given two nodes from the
connected graph, we compute a path between
them as a sequence of nodes. To compute
captions, we either consider the central frame
or the entire panorama (described in Appendix
B.3.2). The path contains discrete “hops" of in
the form of images, which gives us our image
sequence.

• AI Habitat has continuous 3D reconstruc-
tions of real world household environments.
To obtain a path, we first sample two naviga-
ble points in the environment and compute the
shortest distance between them. Then, to ob-
tain a discrete sequence of images, we sample
images at a uniform interval along the path.

• TDW is a photorealistic simulator that is ca-
pable of procedurally generating new envi-
ronments. We make use of this simulator to
test the robustness of our approach in non-real
world environments. We obtain our image
sequence in the same manner as AI Habitat.

For the user study, we sample 100 paths of vary-
ing lengths from each of these simulators, randomly
choosing from environments they offer. We then
use our approach on these paths to generate instruc-
tions in a platform-agnostic manner.

B.2 Qualitative Analysis - User Study Details

Each user is presented with a random image se-
quence chosen from a bank of sequences gathered
from the 3 different environments. This allows
for us to evaluate the generated instruction across
multiple platforms. We observe a consistent per-
formance across simulators, leading us to establish

the platform-agnostic nature of our instruction syn-
thesizer.

Our study was aimed at quantifying the usability
of generated instructions in guiding an embodied
agent in the environment. In this direction, we first
presented the user with video of an egocentric im-
age sequence chosen from a random simulation
platform. After being shown examples of fine or
coarse grained instructions, the users were asked to
provide an instruction describing the robot’s path in
that style. Finally, the participant is shown the syn-
thesized instruction for the same sequence and is
asked comparative questions highlighted in figure
below.

Our User Study. The participant is asked questions on
the quality of the generated instructions and about how
much it compares with the instruction that they wrote.

Each question aims to tackle a different com-
parative perspective. The first question seeks to
find out if the generated instructions are similar
to what the user has written down. The second
question asks if the generated instructions accu-
rately capture details of the environment. The third
queries about the robustness of generation by ask-
ing if the participant has noticed any ghost objects
or artifacts. Finally, we ask if the user thinks an
embodied agent could reach the target location by
following the generated instruction.

Out of a total of 30 participants, 83.3% believed
the instruction captured details of the environment
to a more than decent level of accuracy. A major-
ity (73.3%) of these users also believed that the
agent could reach the target room by following
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the generated instruction. A lower percentage of
participants (16.5%) reported seeing ghost objects,
which indicates either that some people may have
missed objects in the video, or that the generated
instruction is sensitive to the captioning scheme.

Conversely, 43.3% of participants believed that
the instructions generated were either very differ-
ent from what they wrote, or had minor overlaps.
We can infer from this that the vocabulary people
use to describe a path may significantly vary from
the generated instruction. However, this does not
necessarily mean that the agent would not be able
to follow the generated instruction to reach the tar-
get location, as it would use alternate references or
landmarks to get there.

Our study was determined exempt by our institu-
tion’s IRB. All of the participants voluntarily chose
to participate in it.

B.3 Quantitative Study - Zero-Shot Embodied
Navigation

B.3.1 Dataset and Navigation Setup Details

We run navigation experiments on the REVERIE
dataset, which tackles vision-and-language navi-
gation (VLN) using coarse-grained instructions.
Instructions in REVERIE have been human-
annotated, where the annotator is asked to write
a high-level instruction describing how to get to the
target location after being shown a path in the Mat-
terport3D environment. Each path is discrete, i.e.,
it consists of a set of panoramic images or nodes
along which the agent “hops". The nodes inturn
consist of 4 views covering a 360 degree view of
the agent.

We consider a generalizable, zero-shot case,
where the agent is dropped in an environment that
it has no knowledge of, and is given an instruction
that it must follow to get to a target location. This
setting is in line with our ultimate goal of develop-
ing a generalist embodied navigation agent, which
is able to function without any supervision in an
unseen environment. We opt to use the unseen
validation split of the REVERIE dataset for evalu-
ation, which contains environments that the agent
would not see in the training split. It contains 504
paths, which was deemed sufficient for showcasing
zero-shot navigation prowess using the generated
instructions.

CLIP-Nav (Dorbala et al., 2022) uses CLIP to
make grounding decisions for navigation. The in-
struction is first broken down into a Navigation

Component (NC) and an Activity Component (AC).
The NC contains information about getting to the
target location, while the AC containing the activity
that the agent is expected to perform is disregarded.
The NC is further broken down into noun phrases
using GPT-3.5-turbo, which are then grounded us-
ing CLIP with each of the 4 images captured by the
agent from its panoramic view. The agent takes the
direction of the highest CLIP grounding score.
Seq-CLIP-Nav extends this to incorporate back-
tracking. Backtracking refers to when the agent
falls back or “backtracks" a few nodes when it de-
termines that it has taken the wrong path.

We also ablate with GLIP-Nav, a variant of Seq-
CLIP-Nav we introduce, where CLIP is replaced
with GLIP (Li* et al., 2022) for obtaining ground-
ing scores.

B.3.2 Matterport3D: Frame Selection
REVERIE provides a set of panoramic images
taken from Matterport3D that forms a path cor-
responding to each instruction. The annotator is
provided with this whole panoramic view at each
step. To incorporate our generation approach here,
we consider two variations.

Central Caption: We hypothesize that the cen-
tral frame contains the most immediate and critical
information required for the embodied agent to per-
form its next set of actions. To this end, we caption
only the central frames (i.e., the image in the di-
rection of the agent’s heading) of the entire path
sequence to generate the instruction.

Panoramic Caption: Here we caption each im-
age of the entire panorama (4 frames), and summa-
rize the individual captions using the LLM. We per-
form this over the entire path sequence to generate
the instruction. Although the panoramic sequence
contains more semantic information over the single
(central) frame, note that each instruction is only a
single sentence, and compressing all the informa-
tion of a scene (be it the target or an image along
the path) is non-trivial, if the instruction has to be
of a suitable length.

During the panoramic-frame case, we use the
LLM to summarize the set of captions obtained 4
90 degree views around the agent. Each caption in
this set is obtained using the LLM + BLIP approach
discussed in section 2.1. The prompt for this is -

"I see a panoramic view with the follow-
ing descriptions.
North: <Caption 1>
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East: <Caption 2>
South: <Caption 3>
West: <Caption 4>
Summarize these descriptions into a
single description using less than 20
words."

B.3.3 Inferences on Generated Instructions
In addition to the results presented in section 3.2,
we also measure the average pairwise cosine simi-
larity using MiniLM-V6 (Reimers and Gurevych,
2019) between the human-annotated instructions
and the generated instructions.

For the central-caption case, we get a score of
0.476, and for the panoramic-caption case, we get
0.433, on a scale of −1 to 1. From the overall
positive correlation, we can infer that the gener-
ated instructions tend to be similar to the human-
annotated ones on average. Some individual cases
of extreme difference are discussed below.

In a low cosine similarity example, consider

Human-Annotated: "Walk to the bot-
tom of the stairs leading to the level 1
hallway and find the bottommost stair"
Generated: "Move from bedroom to
kitchen, turn off faucet."
Similarity: 0.0850

Notice that the human-annotated instruction
presents a unique situation to the agent where it
is expected to find the bottommost stair. In con-
trast, the generated instruction asks the agent to
move to the kitchen, which is near the vicinity of
the staircase in this environment. While the cosine
similarity might be low, a generalist agent would
still be able to reach the target location with the
given instruction since it references other elements
(“the faucet" here) in the scene. Note that VLN
tasks deal with the agent reaching a target location,
and not with what it needs to do once it gets there.

In a high cosine-similarity example, consider,

Human-Annotated: "Go through the
nearest bedroom to the bathroom on the
first floor and turn on the faucet on the
rightmost"
Generated: "Go to the bedroom and
turn off faucet."
Similarity: 0.820

Observe that a high cosine similarity does not
necessarily mean that the generated instruction is

of good quality. In this example, notice that the hu-
man annotator asks the agent to enter the bathroom
after going through the bedroom to turn off the
faucet. The generated instruction however entirely
misses out on entering the bathroom, which would
cause an agent to incorrectly look for a faucet in
the bedroom.

These are however one-off cases; we observe
that most generated instructions tend to closely fol-
low or paraphrase human-annotations. For instance,
consider,

Human-Annotated: "Go to the bath-
room on level 1 and wipe off the faucet"
Generated: "Go to the wooden room on
level 1, turn off faucet in the bathroom."
Similarity: 0.885

Both these instructions ask the agent to go to the
bathroom on level 1 to execute a task.

C Related Work

C.1 Embodied Instruction Synthesis
Embodied or Vision-and-Language Navigation
deals with the problem of navigating an agent in
unseen photorealistic environments and adhering
to language instructions. These wayfinding in-
structions are usually human annotated as part of
datasets (Ku et al., 2020; Qi et al., 2020b; Anderson
et al., 2018b; Krantz et al., 2020), and can roughly
be categorized into coarse and fine-grained (Gu
et al., 2022) based on their level of detail. As these
datasets are exclusive to the environments that they
are created in, generalizing them to other new or
procedurally generated environments presents a
unique challenge. Most prior work on instructions
synthesis (Li et al., 2022) has mostly been tailored
toward data augmentation. (Wang et al., 2022a)
presents a counterfactual reasoning approach to
generate instructions, but ultimately requires the
model to be trained on the R2R (Anderson et al.,
2018a) dataset. (Wang et al., 2022b; Kamath et al.,
2023) present imitation learning models that are
trained on datasets, and use the augmented instruc-
tions to improve navigation performance. More
recently Wang et al. (2023) presents a navigation
agent which is able to not only execute human-
written navigation commands, but also provide
route descriptions to humans. These approaches
are limited to a few datasets and have cumbersome
training procedures. In contrast, our approach can
generalize over multiple styles of instructions, over
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multiple simulation platforms without requiring a
dataset.

C.2 LLMs for Embodied Robot Navigation
Vision-and-Language Navigation (VLN) has been
a popular task in Embodied AI, with several pre-
LLM era approaches using BERT features, such
as VLN-BERT (Hong et al., 2021; Zhang and Ko-
rdjamshidi, 2023), VilBERT (Lu et al., 2019), and
Airbert (Guhur et al., 2021). Recent work has used
LLMs being for this task (Huang et al., 2022a;
Zhou et al., 2023a), especially in a zero-shot set-
ting (Yu et al., 2023; Dorbala et al., 2022). While
(Shah et al., 2023) leverage GPT-3.5 (Brown et al.,
2020) to identify landmarks, (Zhou et al., 2023b)
and (Dorbala et al., 2023) use an LLM for common-
sense reasoning between objects and targets to fa-
cilitate navigation. With LLMs being increasingly
used in several embodied AI frameworks beyond
navigation (Mu et al., 2023; Huang et al., 2022b),
utilizing them for instruction generation allows for
easier integration and testing at a system level. Fi-
nally, March-in-Chat (MiC) (Qiao et al., 2023) can
talk to the LLM on the fly and plan the navigation
trajectory dynamically.
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