SLIDE: Reference-free Evaluation for Machine Translation using a Sliding
Document Window

Vikas Raunak and Matt Post and Tom Kocmi
Microsoft
Redmond, Washington, USA
{viraunak,mattpost, tom.kocmi}@microsoft.com

Abstract

Reference-based metrics that operate at the
sentence-level typically outperform quality es-
timation metrics, which have access only to
the source and system output. This is unsur-
prising, since references resolve ambiguities
that may be present in the source. In this pa-
per, we investigate whether additional source
context can effectively substitute for a refer-
ence. We present a metric named SLIDE
(SLIding Document Evaluator), which oper-
ates on blocks of sentences. SLIDE leverages
a moving window that slides over each docu-
ment in the test set, feeding each chunk of sen-
tences into an unmodified, off-the-shelf quality
estimation model. We find that SLIDE ob-
tains significantly higher pairwise system accu-
racy than its sentence-level baseline, in some
cases even eliminating the gap with reference-
base metrics. This suggests that source con-
text may provide the same information as a
human reference in disambiguating source am-
biguities. This finding is especially pertinent
for reference-free document-level evaluation,
wherein SLIDE could provide higher-quality
pairwise system assessments while only requir-
ing document boundary annotations.

1 Introduction

The prevailing approach for neural machine trans-
lation metrics is to work at the sentence-level,
constructing sequences of contextualized encoder
states from the source sentence, a reference transla-
tion, and a system output. The specific mechanics
vary by metric, but a general approach, employed
by COMET (Rei et al., 2020), is to pool these en-
codings into separate sentence-level embeddings,
concatenate them, and feed them into a regressor,
which is trained against human annotations. Qual-
ity Estimation (QE) approaches work similarly, but
do not have access to a reference translation.

QE metrics typically trail their reference-based
counterparts (Freitag et al., 2022), for obvious rea-
sons. The default evaluation setting for QE is at

the sentence-level. But just as there exist many lin-
guistic phenomena that cannot be translated with-
out context, these same phenomena also cannot
be properly evaluated in isolation. As an exam-
ple, consider the following English sentences with
context and their translations into German.

(1) a. I need my hat. Where is it?
b.  Ich brauche meinen Hut. Wo ist er?

Reference-based evaluation is aided by the fact that
the human translation, presumably produced in con-
text, resolves the ambiguity. QE approaches (oper-
ating at the sentence-level), on the other hand, can-
not correctly score this translation. There are many
other document-level phenomena that are also typ-
ically captured by references, many of which are
subtle and hard to measure (Maruf et al., 2019).

It therefore stands to reason that providing dis-
ambiguating context could be a useful extension
to (reference-free) QE metrics. In this work, we
are motivated by two related ideas to address this
gap: (i) neural metrics often make use of under-
lying language models trained on wider contexts,
which means there is no real impediment to feed-
ing them multiple sentences, and (ii) a sentence’s
evaluation will differ based on its order in a block
of sentences, so it may be helpful to evaluate each
sentence in multiple different contexts. We there-
fore experiment with a strided window approach
applied to COMET, whose underlying encoder is
InfoXLM (Lample and Conneau, 2019; Chi et al.,
2021), trained on wide contexts. We apply a fixed-
width sentence window and slide it across the docu-
ments within a test set, accumulating scores of each
chunk in normal COMET fashion. We experiment
with various windows and strides, and find that
COMET-QE employed in this fashion outperforms
its sentence-level reference-based counterparts in
many settings. We conclude that this simple exten-
sion to QE might be profitably engaged wherever
document boundary annotations are available.
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sentence

There is no city in the high-risk...
Iran's First Vice President...

"Today there is neither concern...

I see, may I have your eReader...

To find your eReader's software...
1)Go to your Home screen.

2)Tap the More icon at the bottom...
3)Tap Settings.

4)Tap Device information.

5)Beside 'Software version', you'll...
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Figure 1: SLIDE extraction for (w = 4,s = 2). The
solid green boxes denote extracted chunks, which are
then joined with a space and sent to COMET as a single
unit. The dashed red boxes denote partial documents:
a document that is too short (top), and a document re-
mainder (bottom).

2 The SLIDE Approach

Our main focus is the system ranking question as
posed in Kocmi et al. (2021): given two systems,
which one is the better one?

The task is to score system output over a test
set, comprising multiple documents. We define a
window size, w, specifying how many sentences
to include as input, and a stride, s<w, defining
how many sentences to advance the window. For
a given (w, s) setting, the window is placed at the
beginning of the document covering w sentences,
and the chunk is sent to COMET as a single input.
The window is then incremented by s sentences
and a new value computed. This proceeds over all
documents in a test set. This is depicted in Figure 1.

There are a few edge cases that must be consid-
ered, both pertaining to situations where we cannot
fill a full window:

e Documents smaller than w. Windows are con-
strained by document boundaries. If a doc-
ument is smaller than the window, we must
therefore decide whether to include it.

* Document remainder. If a document length
d is not evenly divisible by w — s, there will
be a document remainder at the end of the
document of size (d mod w — s).

In our initial experiments, we ignore both types
of partial documents, i.e., throwing them away, as
if they didn’t exist in order to evaluate only on
chunks with appropriate context available. We will
return to this question in Section A.1 to consider
alternatives to throwing away partial documents.

Judgement Style ‘ Lang-Pairs ‘ System Pairs
MQM | 3 | 274
DA+SQM | 13 | 564

Table 1: Data used in the evaluation (Freitag et al., 2022)

Finally, we accumulate the scores from all
chunks in a test set, and return their average as
the system-level score. We call our metric SLIDE,
for SLIding Document Evaluator.

3 Experiments

3.1 Evaluation Settings

Our experiments will explore the performance of
various SLIDE approaches against the WMT22
metric evaluation task (Freitag et al., 2022). These
tasks gathered human rankings of system outputs
using different methods of collecting those human
judgments: MQM and DA+SQM (Kocmi et al.,
2022). The human scores induce a ranking of all
system outputs, for each language pair. The N
scored system outputs are collected into a set of
(g ) pairwise system comparisons across all lan-
guage pairs, considering pairs from each set of
systems per language pair in isolation. Metrics are
then scored based on their ability to correctly pre-
dict the better system in each pair. Table 1 contains
information about the data used in the evaluation.

Our key evaluation metric is the pairwise system-
level accuracy (Kocmi et al., 2021), a percentage
of pairwise system pairs that a metric correctly
distinguishes. We experiment with the following
SLIDE settings:

e Window values 1<w<10 and strides of
1<s<w.

* Multiple state-of-the-art QE models (COMET-
QE-20 and COMET-QE-22). Further, in addi-
tion to QE models, we also look at a reference-
based metric, COMET22.!

* Incorporating partial documents (§ A.1).

3.2 Results

Figure 2 contains a heatmap depicting pairwise
system-level accuracies for each (w, s) value for
three models on the MQM task (en-de, en-ru, and
zh-en). The first two are QE20 and QE22, as de-
fined above. We also include the reference-based

'COMET model wmt 22 -comet-da.
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Figure 2: Plot of window vs. stride accuracies for QE20, QE22, and ® COMET22 models on the WMT22 MQM task
(en-de, en-ru, and zh-en). Neither COMET20-QE nor the reference-based ® COMET?22 sees much improvement

from adding context, but the QE22 model does.

®COMET?222 model.> A number of trends emerge.
The QE20 does not fair well at all with context,
with very few points in the grid even improving
over the sentence-level baseline (point (1,1)) at
all, and not in any consistent fashion. We see the
same thing for model ® COMET?22, corroborating
the finding of Deutsch et al. (2023), as well as our
hypothesis that source context may be redundant
with the reference.

With the QE22 model, however, the results show
a clear trend. Adding context helps significantly;
the worst points in the grid (8-8 and 2-2) improve
by 3.3 points over the no-context baseline. Perfor-
mance seems to rise as more context is added, al-
though once too much context is used, the points be-
gin to decrease again. Within a particular window
(row), it does not seem to matter too much which
stride is used, particularly with window sizes 6-8.
Further, we hypothesize that the purported large
gains based on the utilization of source context
is not visible in QE20 owing to the lack of cross-
attention in its architecture, which strongly sug-
gests that it is not able to leverage the fine-grained
source context, which is demonstrably exploited
through better modeling of longer-range dependen-
cies in the cross-attention based QE22 model.

Comparing chunked (w = s) vs. overlapped
(w > s) values, we also see no particular pattern.
Increasing the context size (up to some point) mat-
ters, but overlapping the document chunks neither
helps nor hurts, on average.

Next, we situate some of these results against
leading metrics and other metrics of interest from

2As a service to the reader, we annotate reference-using
models with ®.
3COMET model wmt 22-comet-da

the WMT?22 task in Table 2.* We include the best
variant of SLIDE, the worst variant, and, in a nod
towards model selection, the best variant with a
stride of 1. Here, we can see that SLIDE pro-
pels quality estimation up the chart, where it even
competes with reference-based versions of the un-
derlying evaluators. In particular, SLIDE (6, 6)
outperforms ® COMET22, and a number of vari-
ants are at the same level as ® COMET20. While
these results don’t answer the difficult question of
model selection, the trends empirically validate our
key hypothesis (that source-based context could
substitute for the reference in evaluation). We note
again that even the worst SLIDE model is already
quite an improvement over the baseline.

3.3 Analysis & Further Experiments

We note that it is not obvious that adding context to
sentences might improve metric performance when
one considers that the machine translation systems
being compared are all sentence-based translations.
Any information that is newly available for the eval-
uator would therefore not have been available to the
underlying translation engine. As a result, the im-
provements the metric is picking up on must come
from the new sources included in the evaluation.
We further experiment with the QE22 model with
different variants of SLIDE in Appendix A.

4 Related Work

The vast majority of work in machine translation
metrics is focused on sentence-level evaluation. At

*We observe that the public model release of COMETKiwi,
wmt22-cometkiwi-da, performs notably worse than the
one submitted to the WMT22 task. From private correspon-
dence with the authors, we learned that that the model entered
into the shared task was an ensemble.
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Metric MQM DA+SQM
® metricx_x1_DA_2019 0.865 0.850
® metricx_xx1_MQM_2020 | 0.850 0.861
® BLEURT-20 0.847 0.827
® metricx_xI_MQM_2020 | 0.843 0.859
SLIDE(6,6) 0.843 0.838
® COMET-22 0.839 0.839
SLIDE(7,1) 0.839 0.814
® COMET-20 0.836 0.823
® Doc-COMET(2) 0.836
® UniTE 0.828 0.847
® MS-COMET-22 0.828 0.830
® UniTE-ref 0.818 0.838
® MATESE 0.810
SLIDE(2,1) 0.807 0.825
® YiSi-1 0.792 0.782
COMETKiwi (WMT-22) | 0.788 0.832
Doc-COMET(2) 0.737 0.810
COMETKiwi (Public) 0.770 0.816
® chrF 0.734 0.758
® BLEU 0.708 0.704

Table 2: Pairwise system accuracy against the WMT22-
MQM annotations. Metrics that use a reference are
marked with ®. Our entries are of the form SLIDE
(w, s). We have retained many other WMT22 scores for
comparison purposes.

a high level, it is useful to distinguish two uses of
context for machine translation evaluation.

In the first setting, contextualized metrics are
designed to test document-translation capabilities
of a model. Chief among these are contrastive test
sets, in which a model is tested in its ability to rank
good translations from bad ones in a contextualized
manner (Miiller et al., 2018; Bawden et al., 2018;
Voita et al., 2019; Lopes et al., 2020). Other ap-
proaches have employed test-time NLP tool chains
to target and reward correct prediction of discourse
phenomena (Jiang et al., 2022; Fernandes et al.,
2023).

In the second setting, metrics make use of con-
text to provide or refine their model of what makes
a good translation. This is useful even for rank-
ing sentence-based translation systems. The first
such system may be DocCOMET (Vernikos et al.,
2022), which used context to modify the encod-
ings of sentences, but then removed that con-
text before invoking COMET’s classifier. They
looked at both reference-based and QE metrics,
and evaluated on Pearson’s correlation against hu-

man scores. Context-COMET (Hendy et al., 2023)
took an approach similar to that described here, but
was not evaluated at all. More recently, Deutsch
et al. (2023) showed that paragraph-level evalua-
tion works just as well for reference-based metrics,
even with underlying metrics trained in a sentence-
level fashion. However, they did not experiment
with reference-less metrics (the quality estimation
task).

Our approach here fits within this second setting.
In contrast to this prior work, our approach requires
no changes to the underlying codebase, is evaluated
on pairwise system-level accuracy, and focuses on
the quality estimation task, where context is the
most promising.

5 Conclusion and Future Work

Incorporating context into COMET-QE provides
critical information that appears to help the metric
better adjudicate the difference between systems.
Even just a single sentence of context drastically
improves the ability of the model to discriminate
between systems. The method works well even
though the scores are accumulated over groups of
sentences, which is different from the sentence-
level manner in which COMET is trained, and even
when the accumulated scores come from overlap-
ping blocks. The results here required no change
to the underlying sentence-based evaluators, and
in that sense come for free, so long as document
boundary annotations are available. We therefore
recommend that source context be included with
any neural quality estimation metric. An interest-
ing further evaluation would throw some document-
context translation engines into the mix; we spec-
ulate that contextualized quality estimation (like
that provided by SLIDE) should help discriminate
those systems too.

6 Limitations

In order to leverage the quality-estimation evalu-
ation benefits from SLIDE, document boundaries
must be available on the source sentences. Even
though this is a benign requirement in most cases,
this is a strict limitation on the application of
SLIDE in cases where the document boundary an-
notations are unavailable.
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A Further SLIDE Experiments

In order to further test the hypothesis that source-
based context could substitute for the reference in
evaluation, we experiment with two more variants
of the SLIDE approach.

A.1 Partial windows
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Figure 3: Percentage of original-document sentences
that are dropped when partial documents are ignored.

The main approach only builds full window sizes.
This means that two types of sentences are ex-
cluded: (i) those occurring in test set documents
that are shorter than the window size, and (ii) those
for which w — s does not evenly divide the doc-
ument length. Examples of each of those cases
are depicted in Figure 1. Further, Figure 3 lists
the percentage of sentences that are left out under
the default chunking strategy that omits these two
types.

We construct an experiment that includes these
partials. Documents smaller than the window size
are included as a complete document, and remain-

w | en-de en-ru zh-en
1 0 0 0
2 0 0 0.2
3 0 0 1.1
4 0.1 0.1 4.5
5 1.0 0.6 102
6 6.2 57 195
71 139 139 305
8| 243 242 433
91 319 313 553
10| 383 383 64.1

Table 3: Percentage of chunks with a tokenized length
> 512, which means they will be cropped by the under-
lying InfoXLLM model (Chi et al., 2021; Goyal et al.,
2021).

ders are added as as partial chunk. The resulting
heatmap for QE22 is depicted in Figure 4 (a).

A problem with blindly incorporating these par-
tials is that they are not properly weighted; in pro-
ducing the document-level score, all chunks are
averaged with a uniform weight. It stands to rea-
son that smaller chunks should contribute less to
the overall score, proportional to their sentence
length. Figure 4 (b) adjusts for this, upweighting
each chunk by multiplying its score by the number
of sentences it contains, prior to averaging.

Comparing to the middle figure from Figure 2,
we see a notable drop in system-level accuracy
for both plots relative to the only-full-window ap-
proach of SLIDE. Both systems, however, con-
tinue to improve over the original, context-less
QE22 model. We also see that that weighting the
partials helps mitigate the problem.

A.2 Variable chunking

The problem of partial chunks is not the only design
choice when instantiating SLIDE. Another choice
has to deal with managing the maximum token
length of the underlying model used by COMET,
InfoXLM. COMET-Kiwi (the QE22 model) en-
codes the entire input as as single string (Rei et al.,
2022), instead of separately encoding the source
and the system output. This raises the chance that
we will hit the maximum token length. In fact,
this is the case. Table 3 lists the percentage of in-
put chunks that rise above the maximum encoding
length.

We therefore further experiment with a general
solution that will address both the issue of partial
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Figure 4: Heatmaps of MQM accuracy difference relative to Figure 2(b) for SLIDE when all partials are incorporated.
In (a), they are treated as equal chunks when producing the document-level score; in (b), the score of each chunk is
upweighted based on the number of sentences it contains. Both variants improve over context-less QE22, but are
generally worse than SLIDE ¢

document chunks and truncation. Our approach
is to retain the notion of a window and a stride,
with sentences as atomic units. However, the win-
dow now specifies a maximum number of tokens.
For a given token-based window size wy, we add
(source, system) sentence pairs so long as the num-
ber of tokens in the sentence pairs does not exceed
wy. The stride parameter remains purely sentence-
based. To produce the system-level score, we use
the sentence-based weighting approach, that multi-
ples each chunk score by the number of sentences
in that chunk, prior to averaging.

Unfortunately, this token based chunking ap-
proach failed to produce a consistent gain. Setting
a maximum window size of 500 and greedily build-
ing chunks as large as possible produced an MQM
score of 0.818, considerably lower than the SLIDE
results in Table 2.
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