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Abstract

Black-box few-shot text classification handles
text classification in limited data without ac-
cessing the parameters and gradients of lan-
guage models (LMs). Existing black-box op-
timization methods have demonstrated strong
few-shot learning capabilities. However, they
still require numerous LMs’ calls to search op-
timal prompts, thus resulting in overfitting per-
formance and increasing computational cost.
To address this issue, we present MuSKPrompt
(Multi-scale Knowledge Prompt for Mem-
ory Model), an efficient multi-scale knowledge
prompt-based memory model in black-box few-
shot text classification task. MuSKPrompt ex-
tracts instance-level and class-level knowledge
at different scales and stores them in mem-
ory banks during training. Then, it references
multi-scale memory banks to perform quick
inference on new samples via a novel scor-
ing module. MuSKPrompt achieves competi-
tive performance in limited data through multi-
scale instance-level and class-level knowledge.
Moreover, it realizes gradient-free optimiza-
tion with zero training parameters in the black-
box scenario. Experiments on different bench-
marks and parameter analysis demonstrate the
effectiveness and efficiency of MuSKPrompt
in black-box few-shot text classification tasks.

1 Introduction

Over the past few years, large language models
(LLMs) have achieved significant success (Radford
et al., 2019; Brown et al., 2020; Touvron et al.,
2023). Brown et al. (2020) propose in-context
learning (ICL), which aids LMs in adapting to
downstream tasks by providing a few context exam-
ples before the input. Due to its demonstrated good
performance, prompt-based learning has become
a popular method for low-resource adaptation of
LLMs to downstream tasks. However, ICL exhibits
significant instability, and its performance depends
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Method Number of Interpretable Non-
API calls Parametric

BBT 8000 % %

BBTv2 8000 % %

RLPrompt 1200 % %

kNN Prompting 1 " "

Ours <10 " "

Table 1: Comparison of BBT, BBTv2, RLPrompt, kNN
Prompting and MuSKPrompt Number of API calls, In-
terpretable and non-parametric. The calculation of API
call counts references BBT(Sun et al., 2022b).

on the selection of context examples (Liu et al.,
2022b). To that end, numerous studies have fo-
cused on optimizing continuous prompts (Liu et al.,
2022c; Gu et al., 2022), ensuring that most param-
eters of LLMs remain unchanged. However, they
are ineffective in certain situations where access
to internal parameters and gradients of LLMs is
restricted, a.k.a. the black-box scenario. Many
existing LLMs provide only APIs, thus making
gradient-based prompt learning challenging (Sun
et al., 2022b). Furthermore, deploying LLMs in
the black-box manner across various industries has
become a trending topic (Lu et al., 2023; Na et al.,
2023; Li et al., 2023).

Existing approaches (Sun et al., 2022b,a) em-
ploy gradient-free optimization methods to search
for optimal continuous prompts. RLPrompt (Deng
et al., 2022) and TEMPERA (Zhang et al., 2022a)
use reinforcement learning to find optimal discrete
prompts. However, these methods require many
queries to LMs, resulting in low computational
efficiency. PromptBoosting (Hou et al., 2023)
constructs numerous weak learners by pairing the
prompt pool generated by T5 with the output distri-
bution of the LMs and then integrates these weak
learners using the AdaBoost algorithm. It requires
a larger LMs to generate the prompt pool. To
this end, kNN Prompting (Xu et al., 2022a) in-
troduces a non-parametric memory module and
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achieves excellent performance in text classifica-
tion tasks. The memory module, storing knowledge
from downstream tasks, has demonstrated excellent
performance in text classification tasks. In Natural
Language Processing (NLP), memory models have
been applied to various tasks such as named entity
recognition and machine translation (Zhong et al.,
2022; Fang et al., 2023). However, the application
of memory models to few-shot classification in the
black-box scenario remains unexplored.

The term "multi-scale" in this paper is refer-
enced from previous works (Huang et al., 2023a;
Lei et al., 2023). Moreover, previous works (Liu
et al., 2022b; Min et al., 2022c) have demonstrated
that prompts composed of more examples can as-
sist LMs in learning deeper knowledge. Wang
et al. (2023) demonstrate that in shallow layers,
label words accumulate information from demon-
strations to form semantic representations, while
deep layers integrate information from these la-
bel words. Based on these insights, we propose
MuSKPrompt, a novel non-parametric memory-
augmentation method. Multi-scale prompts allow
LMs to extract deep and shallow instance-level and
class-level knowledge. We store this knowledge
in a memory bank and accomplish text classifica-
tion tasks through a scoring module. Experimen-
tal results demonstrate that MuSKPrompt achieves
competitive performance in few-shot text classifi-
cation tasks in the black-box scenario. Importantly,
because it doesn’t require training to find optimal
prompts, it simply stores instance-level knowledge
obtained through fewer than 10 API calls for each
instance, as shown in Table 1. Compared to RL-
Prompt, BBT, and BBTv2, our prompts are inter-
pretable, meaning prompts can be understood by
humans(Zhang et al., 2022a).

The contributions of this paper can be summa-
rized as follows:

• We propose a non-parametric memory model
structure with multiple scales, achieving com-
petitive performance with fewer than ten calls
to LMs.

• We introduce multi-scale prompts that capture
deep and shallow knowledge from LMs.

• We design a memory bank that stores instance-
level and class-level knowledge at different
scales.

• We propose an effective scoring module syn-

thesizing knowledge from different scales and
levels.

2 Related Work

Prompt-Based learning With the scaling of lan-
guage models(Radford et al., 2019; Brown et al.,
2020), there are emergent capabilities for lan-
guage modeling in various tasks. GPT-3 demon-
strates remarkable few-shot learning capabilities,
efficiently performing downstream tasks through
a few in-context demonstrations (Brown et al.,
2020; Liu et al., 2022b; Dong et al., 2022). Subse-
quently, other forms of prompt-based learning have
emerged as new approaches to adapting pre-trained
language models for downstream tasks, becoming
a new paradigm in NLP (Liu et al., 2023). Op-
timization methods for continuous prompts treat
prompts as embeddings that can be optimized ef-
ficiently (Liu et al., 2022a). Prefix-tuning (Li and
Liang, 2021) inserts continuous prompt embed-
dings into each layer of LMs. P-tuning (Liu et al.,
2022c) utilizes a BiLSTM network to output con-
tinuous prompts embedding. PPT (Gu et al., 2022)
found that prompt-based fine-tuning is less effec-
tive in a few-shot learning setting, and initializing
the prompt with pre-trained prompts can achieve
superior performance.

Despite the effectiveness of the above methods in
achieving competitive performance with minimal
parameter updates, they need access to the gradi-
ent information inside LMs. Calculating gradients
requires significant computational overhead and
is not allowed in the black-box scenario. There-
fore, BBT (Sun et al., 2022b) and BBTv2 (Sun
et al., 2022a) employ the gradient-free CMA evo-
lution algorithm to optimize continuous prompts.
Clip-Tuning (Chai et al., 2022) adopts diverse sub-
networks to obtain a mixed reward and thus opti-
mize continuous prompts. Moreover, recent devel-
opments include optimization algorithms for dis-
crete prompts in the black-box scenario. BDPL
(Diao et al., 2022) adopts a variance-reduced pol-
icy gradient algorithm to estimate LMs gradients in
the categorical distribution of each discrete prompt,
achieving prompt tuning through reinforcement
learning. RLPrompt (Deng et al., 2022) optimizes
prompt tokens through reinforcement learning, us-
ing downstream task performance as a reward.
TEMPERA (Zhang et al., 2022a) employs rein-
forcement learning at the testing phase to optimize
various prompt components such as contextual ex-
amples and instructions. GrIPS (Prasad et al., 2023)
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performs discrete prompt editing at the phrase level
for prompt tuning. TreePrompt(Singh et al., 2023)
constructs a decision tree of prompts to adapt to
downstream tasks.

In-Context Learning With the success of ICL
(Dong et al., 2022; Chen et al., 2023; Zhang et al.,
2022b), investigating why ICL is suitable for LLMs
across various tasks has become a prominent re-
search topic. Recent work (Xu et al., 2022b; Liu
et al., 2022b; Yoo et al., 2022; Min et al., 2022c)
found that in-context demonstrations with differ-
ent numbers and permutations can influence the
model’s performance on downstream tasks exhibit-
ing significant instability and vulnerability. To
address this issue, Vote-k (Hongjin et al., 2022)
proposes to select diverse and representative con-
textual examples to achieve more robust and su-
perior performance. Self-adaptive ICL (Wu et al.,
2023) employs a TopK (Gao et al., 2021; Liu et al.,
2022b) selection module and a Minimal Descrip-
tion Length ranking module, aiming to select high-
quality contextual examples. Furthermore, to ex-
ploit the capabilities of LLMs in ICL, Min et al.
(2022b) and Chen et al. (2023) introduce meta-
learning, which enables LLMs to better adapt to
ICL settings. Zhao et al. (2021), Han et al. (2022)
and Min et al. (2022a) found significant label bias
in ICL, propose to calibrate the bias via either prob-
ing the bias or reversing the conditional prediction
formulation. Our work adopts contextual exam-
ples as prompts to enhance the few-shot learning
capability of LMs.

Memory Models Similar methods for construct-
ing memory modules have been proposed in the
fields of computer vision (Wu et al., 2018) and
NLP (Khandelwal et al., 2019; He et al., 2021; Shi
et al., 2022; Huang et al., 2023b; Fang et al., 2023).
RETROPROMPT (Chen et al., 2022) constructs
an open knowledge base, enabling the model to
retrieve relevant examples from the training corpus
as enhanced prompts. kNN prompting (Xu et al.,
2022a) introduces a retrieval mechanism in ICL,
addressing issues related to label bias and context
length limitations. Our approach falls into the cate-
gory of memory models. The main difference is the
use of a memory bank that stores class-level and
instance-level knowledge at multi-scale to guide
LMs during reasoning.

3 Problem Formulation

For notation, we define the training set in few-shot
learning as Dtrain = {xi, yi}K×|Y|

i=1 , where K repre-
sents the number of samples in the k-shot setting,
and |Y| denotes the number of classes in the task.
Context examples are sampled from Dtrain.

Given a test sample {xtest, ytest} and context ex-
ample prompts, the probability produced by LMs
L over the vocabulary set can be represented as:

p(v | xtest) = L(v|P, π(xtest, ∗)) (1)

where π(·) denotes template-based transformations
(see Table 10 in Appendix §B for details), and v
represents the probability distribution over the vo-
cabulary set. The output distribution in this paper
represents logits generated by the model on place-
holders, so p ∈ R|V|×1 is a |V|-dimensional vector,
where |V| denotes the vocabulary size. We set Pi
to construct prompts containing i × |Y| context
examples:

Pi =π(x11, y
1
1)⊕ . . .⊕ π(x1i , y

1
i )⊕ . . .⊕

π(x
|Y|
1 , y

|Y|
1 ) . . .⊕ π(x

|Y|
i , y

|Y|
i ) (2)

where ⊕ denotes the concatenation operation, and
these context examples are selected from Dtrain.

4 Method

In this section, we introduce MuSKPrompt, a
framework that employs multi-scale prompts to
encapsulate knowledge, thereby guiding LMs to
excel in various few-shot text classification tasks
within the black-box scenario. The primary ob-
jective of MuSKPrompt is to extract knowledge at
both the class and instance levels from context ex-
amples across multiple scales. The non-parametric
memory bank stores this knowledge at multiple
scales and varying levels to enhance the diversity
of the knowledge base. Finally, the scoring module
utilizes this enriched few-shot knowledge to com-
plete classification tasks. As shown in Figure 1,
MuSKPrompt consists of the following modules.

4.1 Memory Bank for a Single Scale

We primarily discuss the construction process of
the memory bank at a single scale. This memory
bank is designed to store the output distributions of
LMs for all samples in the training set Dtrain (i.e.,
instance-level knowledge). For each sample xi
({xi, yi} ⊂ Dtrain), we concatenate it to the prompt
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Figure 1: Overview of MuSKPromt. LLMs are frozen and inaccessible to internal parameters and gradient
information. Knowledge is extracted using prompts of four different scales (m = 4), and stored in various datastores
constituting the memory bank. Pic represents the prompt at the i-th scale, where c denotes the number of examples
selected from each class. The bottom-left illustrates an example of a prompt with a scale size of 1.

Pc, where c indicates the number of context exam-
ples connected for each category. The prompt Pc
aids LMs in extracting instance-level knowledge
p(v | xi) for downstream tasks. Specifically, we
denote the memory bank asM, which contains key-
value pairs corresponding to the output representa-
tion ki and labels yi of each sample i.e., {ki, yi}.
The memory bankM stores instance-level knowl-
edge, with the value corresponding to the sample’s
label yi and the key representing instance-level
knowledge (Xu et al., 2022a):

ki = p(v | Pc, xi) (3)

The memory bank should not only store instance-
level knowledge but also class-level knowledge.
Instance-level knowledge contributes to under-
standing unique aspects of each example, such as
specific content and tone. Class-level knowledge
aids in comprehending common features within
the same category, such as overall themes and con-
cepts. Combining both facilitates more accurate
classification. Therefore, we introduce class-level
knowledge to the memory bank:

kcls
j =

∑|M|
i ki1(yi = j)

∑|M|
i 1(yi = j)

(4)

where j denotes the category, and |M| represents
the number of instance-level representations in the
memory bank at a single scale.

4.2 Multi-Scale Knowledge Memory Bank

The memory bank includes instance-level knowl-
edge and class-level knowledge through equations
(3) and (4). However, in few-shot settings, the
memory bank can store only limited knowledge due
to the scarcity of training samples. Additionally,
Cífka and Liutkus (2023) perceive that Prompts
with longer contexts are more likely to reveal infor-
mation about the target text that is not captured by
prompts with shorter contexts. Liu et al. (2022b)
and Min et al. (2022c) found that the prompt com-
posed of more examples can learn deeper knowl-
edge.

Inspired by this, we design multi-scale prompts
to aid LMs in extracting knowledge at deep and
shallow levels for constructing the memory bank.
We stratify and select as diverse examples as pos-
sible from each category to form the prompt at
different scales. We defineMm,i to represent the i-
th key-value pairs storing knowledge in the case of
prompt scale c for c ∈ {20, 21, . . . , 2m−1} (where
m denotes the scale dimension). The correspond-
ing key is defined as follows:

km,i = p(v | Pc, xi), s.t. c = 2m−1 (5)

Our approach increases the amount of knowledge
stored in the memory bank by a factor of m. Fur-
ther details are shown in Algorithm 1, as shown in
Appendix §6. Intuitively, it can be seen as a bank
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that enhances multi-scale diversity knowledge un-
der few-shot learning conditions. Context exam-
ples are arranged, making the computation efficient.
It is worth noting that the above method can also
be applicable to other memory models (Xu et al.,
2022a). We conduct a preliminary exploration in
Section §5.

4.3 Non-Parametric Scoring Module
We introduce a completely non-parametric scoring
module. It guides LMs to calculate the score matrix
S for each category based on the different levels of
knowledge stored in the memory bank. For simplic-
ity, we first calculate S under a single-scale prompt
P1, corresponding to the memory bank denoted as
M1. Firstly, during the inference phase, for each
test sample xtest, we compute the output distribu-
tion ptest using equation (3). ptest and ki represent
output probabilities over the entire vocabulary, po-
tentially containing numerous other uninterpretable
pieces of information. For this reason, we propose
using the Kullback-Leibler (KL) divergence to mea-
sure the information difference between the two to
generate the corresponding scores. We utilize the
instance-level knowledge stored inM1 to compute
instance-level scores for xtest:

Dins
i =DKL(ptest||ki)

=

|V|∑

v=0

ptest(v|P1, xtest) log
ptest(v|P1, xtest)

p(v|P1, xi)
s.t. Dins ∈ R|M1|×1, ∀i ∈ [|M1|] (6)

Sins
j =

∑
i∈Topk(Dins) 1∑

i∈Topk(Dins)D
ins
i

s.t. yi = j (7)

where Topk(Dins) denotes the set of the top k val-
ues in Dins, and Sins ∈ R|Y|×1 represents scores
in different categories. Here, the score corresponds
to the reciprocal of the KL divergence.

Similarly, the formula for class-level scores for
the test sample is as equation:

Scls
j =

1

DKL(ptest||kcls
j )

(8)

Next, we combine the scores at both instance and
class levels with the following formula:

S = (1− λ)
Sins

∥Sins∥1
+ λ

Scls

∥Scls∥1
(9)

where λ denotes the weight of class-level knowl-
edge, and ∥S∥1 denotes the corresponding L1

norm. Adjusting the value of λ determines the de-
gree of attention given to class-level knowledge. Fi-
nally, we perform a weighted average of the scores
at different scales:

S =
m∑

i=0

di · Si (10)

where m indicates the number of different scales.
After obtaining the final score matrix S, we deter-
mine the predicted category of the test sample as
the category with the highest score:

ypred = argmax
yi∈[|Y|]

S (11)

5 Experiments

5.1 Datasets and Tasks
For comparability, we follow the same settings as
kNN Prompting (Xu et al., 2022a), including five
different random seeds and dataset splits. GPT-2
(Radford et al., 2019) model is our primary lan-
guage model in this study. Our main experiments
focus on few-shot learning across seven established
text classification datasets. These datasets include
SST-2 (Socher et al., 2013), MPQA (Wiebe et al.,
2005), CR (Hu and Liu, 2004), MR (Pang and
Lee, 2005), TREC (Voorhees and Tice, 2000), RTE
(Dagan et al., 2006), and SUBJ (Pang and Lee,
2004). Additionally, other experiments involve
four text classification datasets: AGNews (Zhang
et al., 2015), CB (Marneffe et al., 2019), MRPC
(Dolan and Brockett, 2005), and DBPedia (Zhang
et al., 2015). The statistical details of datasets can
be found in Table 8 in Appendix §6. For each
dataset, we design intuitive prompt templates (see
Table 10 in Appendix §6).

Our goal is to evaluate the performance of
MuSKPrompt in a few-shot setting within the
black-box scenario. We randomly extract k ex-
amples from each class of the original training set
to construct the k-shot training set Dtrain. For BBT
(Sun et al., 2022b), BBTv2 (Sun et al., 2022a) and
RLPrompt (Deng et al., 2022), prompts are selected
based on the best performance on the validation
set. Unlike them, our method does not require a
validation set as it does not involve parameter opti-
mization.
Backbone Models In our main experiments, we
choose the GPT2-XL as our backbone model for
two reasons: (1) Previous memory models (Xu
et al., 2022a) have used GPT2-XL as the backbone
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model, and knowledge-guided methods are more
effective on larger models. (2) Currently, LLMs
available in the black-box manner are mainly au-
toregressive.

5.2 Baselines
To comprehensively evaluate our method, we select
various types of baselines. We select the best black-
box optimization algorithms, such as BBT, BBTv2,
and RLPrompt as baselines. Furthermore, we in-
clude parameter-free ICL, calibration-enhanced
ICL, and the memory model kNN Prompting as
baselines. Baselines also include gradient-based
fine-tuning methods and recent tree-based prompt-
ing methods like TreePrompt. Implementation de-
tails of these baselines can be found in Appendix
§C. The overview of these methods is as follows:
(1) Fine-tuning represents standard fine-tuning of
GPT2-XL under few-shot settings. (2) BBT utilizes
the CMA evolution algorithm to optimize contin-
uous prompts. (3) BBTv2 improves the perfor-
mance of BBT by inserting continuous prompts in
front of each layer of LMs. (4) RLPrompt (Deng
et al., 2022) utilizes a smaller generative model,
distilGPT2, as the policy network. Subsequently, it
optimizes the policy network to discover the best
prompts through soft Q-learning (Guo et al., 2021).
(5) ICL uses a simple combination of examples as
prompts to guide model classification. (6) Noisy
Channel (Min et al., 2022a) represents ICL formu-
lated as the probability of computing inputs given
the condition of labels. (7) TreePrompt(Singh et al.,
2023) employs decision trees as a method to adapt
LMs to specific tasks without fine-tuning the model.
(8) kNN Prompting (Xu et al., 2022a) infers by stor-
ing representations of few-shot samples and using a
nearest neighbor algorithm. We reproduce all base-
line methods using official experimental settings
and hyper-parameters or adopt published results.
Some baselines (Zhang et al., 2022a; Hou et al.,
2023) are not included as their official implemen-
tations are unavailable, and the selected baselines
above are competitive.

5.3 Implementation Details
Experiments are conducted on a single NVIDIA
RTX A6000 GPU using PyTorch (Paszke et al.,
2019). This section provides a brief overview of
the main hyper-parameters for our method. For our
approach, we set the weight for class-level scores
as λ = 0.5 and for instance-level scores as (1− λ).
We choose the number of scales as four by default,

considering that GPT-2 XL can handle a maximum
text sequence length of 1024 tokens (on RTE and
TREC datasets, we set the number of scales as
3). To emphasize the effectiveness of multi-scale
knowledge, we do not learn weights for different
scale knowledge but simply average them.

5.4 Results

Overall Comparison We present the results of
few-shot text classification in Table 2. Our method
outperforms all baselines on average performance
across seven datasets. Moreover, we achieve the
best performance on five datasets, except for the
RTE dataset and the TREC dataset. Notably, our
method achieves these results without training any
parameters, demonstrating its high computational
efficiency. Additionally, our method makes fewer
than ten calls to LMs in Table 1. This further high-
lights our approach’s robust few-shot learning ca-
pability in the black-box scenario. Compared to
BBT, BBTv2, and RLPrompt, our prompts are in-
terpretable. kNN Prompting also requires no pa-
rameter training and achieves competitive perfor-
mance. Our method outperforms kNN Prompt-
ing by 5 points on average performance across
seven datasets. Our method also exhibits better
robustness. This suggests that, in the black-box
scenario, our method achieves better performance
and demonstrates more stability. Moreover, our
method does not rely on validation set tuning to
select the best results.

To further evaluate the effectiveness of our ap-
proach, we also include GPT2-XL fine-tuning as a
comparison. Our method performs less than fine-
tuning on the SUBJ, RTE, and TREC datasets. Our
method primarily guides LMs in text classifica-
tion tasks through the memory of downstream task
knowledge, and the intrinsic capabilities of LMs
determine its upper limit. Because the memory
model without parameter optimization lacks in-
depth exploration of the deep capabilities of LMs,
or the intrinsic capabilities of GPT2-XL are still
insufficient. Our method may be relatively disad-
vantaged in challenging NLI tasks, such as RTE.
However, the average performance of our method
outperforms fine-tuning by 8.9 points in few-shot
classification tasks. Moreover, our method shows
greater robustness on all seven datasets than fine-
tuning. Interestingly, on some seeds of the SST-2
and CR datasets, our method’s performance on a
16-shot training set is close to or even higher than

1748



Method Trainable SST2 MPQA CR SUBJ MR RTE TREC AVG
Params acc acc acc acc acc acc acc acc

Fine-tuning 1.5B 59.9(10.8) 65.4(2.9) 73.0(10.7) 88.9(2.5) 74.5(5.2) 52.6(3.0) 79.8(5.9) 70.6

BBT 25K 76.6(4.5) 78.5(1.6) 82.7(1.4) 72.9(3.6) 76.6(4.3) 51.6(2.2) 38.8(8.8) 68.2
BBTv2 1.2M 89.5(1.3) 84.1(1.4) 85.8(1.9) 80.1(1.9) 82.1(3.1) 51.0(4.6) 48.3(4.9) 74.4
RLPrompt 3M 75.2(3.3) 62.3(5.6) 72.5(7.4) 75.6(4.1) 66.5(14.0) 50.9(2.6) 50.6(3.0) 64.8

ICL 0 67.7(10.8) 77.6(7.6) 73.3(11.9) 75.5(11.4) 61.8(5.6) 53.0(1.7) 52.0(5.1) 65.8
Noisy Channel 0 84.4(10.8) 70.4(6.2) 83.7(3.3) 62.4(7.2) 79.6(2.7) 52.5(4.8) 54.2(7.8) 69.6
TreePrompt - 83.6 83.9 80.6 76.2 78.8 54.9 72.8 75.8
kNN Prompting 0 88.8(2.1) 68.2(7.6) 80.1(4.7) 80.9(4.0) 84.8(2.7) 51.2(5.4) 67.7(4.9) 74.5
Ours 0 90.2(0.8) 84.4(1.9) 89.4(1.1) 83.6(1.2) 87.0(1.5) 52.3(1.9) 69.6(4.1) 79.5

Table 2: Overall comparison on various 16-shot text classification tasks. All methods use GPT2-XL as the backbone
model for a fair comparison. We report the average performance and standard deviation across five random seeds(Xu
et al., 2022a). In each track, the best results are highlighted in bold, and the second-best results are marked with
underlines.

the final performance of fine-tuning on the entire
training dataset.

Data Efficiency for MuSKPrompt To illustrate
the data efficiency of our method, we compare
the performance of MuSKPrompt with fine-tuning
across different-sized training sets. Additionally,
we include the performance of other baselines un-
der a 16-shot setting. As shown in Figure 2, it is ev-
ident that our method achieves competitive perfor-
mance on the SST-2 dataset while utilizing merely
one thirty-two percent of the data required for fine-
tuning. Similarly, on the MR dataset, our method
demonstrates an eightfold increase in data utiliza-
tion efficiency compared to fine-tuning. On the
CR dataset, we approach the best performance of
fine-tuning using only (64× |Y|) training samples.
Furthermore, we notice an abnormal performance
drop in the fine-tuning method when the training
set size reaches 512-shot for the CR dataset. The
CR dataset has a maximum of 368 samples for one
category, and we attribute this anomaly to the class
imbalance in the CR dataset. Class imbalance leads
to fine-tuning overfitting on the majority class, re-
sulting in decreased performance. It is worth noting
that our method not only eliminates the need for
parameter optimization but also alleviates the issue
of class imbalance. For more detailed results, refer
to Figure 3 in Appendix §D.

Effect of Model Scale It has been demonstrated
that LMs with larger parameter sizes possess
stronger capabilities (Kaplan et al., 2020; Wei et al.,
2022). The performance of our method is posi-
tively correlated with the intrinsic capabilities of
the backbone model. To validate this, we con-
duct experiments using GPT-2 models of different

GPT2 Params SST-2 CR MRPC TREC

124M 59.1 70.6 48.0 56.6
355M 72.3 83.4 51.7 62.5
744M 85.8 88.1 59.5 69.2
1.5B 90.2 89.4 66.0 69.6

Table 3: Results of MuSKPrompt in the 16-shot setting
across different scales of GPT-2.

sizes, i.e., GPT2-SMALL, GPT-MEDIUM, GPT2-
LARGE, and GPT2-XL, corresponding to 124M,
335M, 744M, and 1.5B parameters. As shown
in Table 3, in few-shot text classification tasks,
MuSKPrompt performs better with larger LMs than
smaller ones. Additionally, MuSKPrompt gains
more benefits on larger LMs when the parameter
size is relatively small.
Effect of Multi-Scale Prompt It has demon-
strated that prompts with more examples can help
LMs learn deeper knowledge, and vice versa (Liu
et al., 2022b; Min et al., 2022c). To validate that
prompts of different scales enable the model to
learn knowledge at different depth levels, we com-
pare our method with multiple prompts of the same
scale. Table 4 shows a clear advantage of multi-
scale prompts. It confirms that LMs learn com-
plementary deep and shallow knowledge based
on prompts of different scales. As our method’s
performance depends on stored knowledge, multi-
level class-level and instance-level knowledge con-
tributes to guiding LMs for better classification.

To further investigate the role of the multi-scale
knowledge bank, we incorporate it into the previous
kNN Prompting method. The results are shown in
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(a) Performance on SST-2 (b) Performance on CR (c) Performance on MR

Figure 2: Data efficiency for MuSKPrompt. We compare the data efficiency of MuSKPrompt with fine-tuning in
few-shot learning, and report the performance of MuSKPrompt and fine-tuning in different training set sizes.

Method SST-2 CR TREC MRPC

Multi-prompt-2 88.2(1.3) 88.4(1.4) 69.0(3.6) 56.9(13.8)

Multi-prompt-3 89.1(1.7) 89.1(2.0) 65.5(4.3) 49.4(10.7)

Multi-prompt-4 89.1(3.2) 89.0(2.2) 66.0(4.0) 59.6(4.7)

MuSKPrompt 90.2(0.8) 89.4(1.1) 69.6(4.1) 66.0(7.3)

Table 4: Performance of multi-scale prompts and mul-
tiple prompts of the same scale in the 16-shot setting.
Multi-prompt-m indicates that the number of examples
under each prompt is (|Y| ×m).

Table 5, demonstrating that the multi-scale knowl-
edge bank not only enhances the effectiveness of
our method but also improves the performance of
other memory models such as kNN Prompting.

Method SST-2 MPQA CR RTE

kNN Prompting 88.8 68.2 80.1 51.2
w/ MSP 89.8 82.4 88.8 52.3

MuSKPrompt(w/o MSP) 89.5 80.6 87.5 50.8
MuSKPrompt 90.2 84.4 89.4 52.3

Table 5: Performance in the 16-shot setting. "w/ MSP"
denotes the inclusion of multi-scale prompts, while "w/o
MSP" denotes the removal of multi-scale prompts.

Effect of the Scale Dimension In our main exper-
iments, we default the scale dimension to 4, with-
out learning different weights for each scale. Intu-
itively, a greater number of different scales bring
more complementary deep and shallow knowledge.
However, considering the limitations of the maxi-
mum sequence length for GPT-2XL input and the
few-shot learning setting, the maximum value for
the scale dimension m is set to 4. As shown in
Table 6, a larger scale dimension achieves more
significant performance improvements. Moreover,
the benefits of increasing the scale dimension are
more significant when the task is more challenging
such as on the MRPC task.

Method SST-2 MR CR MRPC

MuSKPrompt-2 87.1 84.0 84.7 46.7
MuSKPrompt-3 89.4 86.4 88.3 52.0
MuSKPrompt-4 90.2 87.0 89.4 66.0

Table 6: Performance of MuSKPrompt with different
scale dimensions in the 16-shot setting. MuSKPrompt-
m indicates the scale dimension is m.

Effect of Class-Level Knowledge We consis-
tently employ a fixed value of 0.5 for the class-level
weight, denoted as λ, without any tuning. Our ex-
periments aim to explore the impact of class-level
knowledge on performance. Class-level knowledge
demonstrates its significant impact in the few-shot
text classification tasks illustrated in Table 7.

Method SST-2 MR CR MPQA

MuSKPrompt(w/o cls) 89.8 86.4 89.1 82.0
MuSKPrompt 90.2 87.0 89.4 84.4

Table 7: Performance of the model on SST-2, MR, CR,
and MPQA datasets. "w/o cls" indicates without incor-
porating class-level knowledge.

6 Conclusion

In this paper, we present MuSKPrompt, a novel
memory-augmented framework. It does not re-
quire access to the internal information of LMs and
achieves remarkable performance with few-shot
training samples. MuSKPrompt acquires instance-
level and class-level knowledge of various depths
through multi-scale prompts. This knowledge is
then stored in a memory bank. The scoring module
efficiently performs classification tasks using the
stored knowledge, without training any parameters.
The significant improvements brought solely by
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memory knowledge will encourage future memory
model solutions for few-shot classification in the
black-box scenario.

Limitations

The limitations of this work are summarized as
follows: (1) We conducted experiments on 11 lan-
guage understanding tasks (including sentiment
analysis, natural language inference, and topic clas-
sification) using the GPT-2 backbone model. Al-
though MuSKPrompt achieved commendable re-
sults in the majority of these tasks, it did not show
a distinct advantage over full-model fine-tuning,
especially in challenging tasks like natural lan-
guage inference. This could be due to the lack
of parameter optimization in MuSKPrompt or the
inherent limitations in GPT-2 XL’s reasoning ca-
pabilities. Enhancing performance by efficiently
learning weight parameters might address this is-
sue. We leave the optimization of parameters in
the scoring module as future work. Furthermore,
exploring MuSKPrompt’s effectiveness in chain-of-
thought, generation tasks and Named Entity Recog-
nition remains an area to be investigated. (2) Ex-
periments demonstrate that relying solely on mem-
ory knowledge can yield competitive performance.
We hypothesize that improvements in knowledge
extraction prompts, such as hierarchical prompts,
could lead to further enhancements. This aspect is
reserved for future work.
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A Datasets

Dataset information is detailed in Table 8. For
fair comparison, the main experiments in this pa-
per adopt a 16-shot setting, where 16 samples are
drawn from each class.

B Templates

Regarding the use of templates, please refer to Ta-
ble 10 (adapted from Xu et al. (2022a) and (Lu
et al., 2022)). They are intuitively designed, and
the proposed methods should exhibit robustness
with respect to the template chosen.

C Implementation Details

For full model fine-tuning, the GPT-2 XL back-
bone model is loaded using the Huggingface trans-
formers library (Wolf et al., 2019). The hyper-
parameters set follow previous work (Xu et al.,
2022a), with a learning rate of 1e-5, batch size
of 16, and a training step of 125. For the RTE
dataset, we set the batch size to 8 to prevent out-of-
memory (OOM) issues. For RLPrompt (Deng et al.,
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Dataset |Y | Data split Task

SST-2 2 67k/256 sentiment
MPQA 2 8.6k/256 sentiment
CR 2 1.7k/256 sentiment
MR 2 8.6k/256 sentiment
TREC 6 5.5k/256 topic
RTE 2 2.5k/256 NLI
SUBJ 2 8k/256 subjectivity
AGNews 4 120k/256 topic
CB 3 250/56 NLI
MRPC 2 3.7k/256 paraphrase
DBPedia 14 500k/256 topic

Table 8: Details of datasets. The dataset split is adapted
from Lu et al. (2022) and Xu et al. (2022a).

2022), BBT (Sun et al., 2022b), and BBTv2 (Sun
et al., 2022a), we use their official implementations
with their default hyper-parameters. Notably, for
RLPrompt, due to its lower efficiency, we set its
training epochs to 1200 instead of 12000, as sug-
gested in (Hou et al., 2023). For other baselines, we
refer to the results reported in the papers on kNN
prompting(Xu et al., 2022a) and TreePrompt(Singh
et al., 2023).

D Additional Results

Data Efficiency for MuSKPrompt We com-
pare the performance of MuSKPrompt with GPT-2
XL fine-tuning on larger data scales. The hyper-
parameters for model fine-tuning are set in accor-
dance with previous work (Xu et al., 2022a). We
set a learning rate of 1e − 5, with a batch size of
16, and training steps of 125, 250, or 500, respec-
tively for k ∈ {32, 64}, {128, 256}, {512, 1024}
(k denotes the number of samples selected from
each class.). To prevent OOM issues, the batch
size is adjusted to 8 for the AGNews, RTE, and
MRPC datasets. For the CB and SNLI datasets, the
batch size is adjusted to 4, and for the DBPedia
dataset, it is adjusted to 2. In the AGNews and CB
datasets, we also include baselines from BBT and
BBTv2. For the TREC dataset, all baselines except
Noisy Channel are included. As shown in Figure
3, our method exhibits higher data efficiency in
few-shot settings on the AGNews, MRPC, and DB-
Pedia datasets compared to full model fine-tuning.
Furthermore, the performance of our method im-
proves with increasing data scale across all datasets.

On the TREC and CB datasets, our results are rela-
tively weaker, as full model fine-tuning represents
the theoretical upper limit of our approach.
Effect of Model Scale To further demonstrate
the effectiveness of our method, we applied it to a
larger language model, OPT. As shown in Table 9,
results indicate that larger language models yield
better performance for our method. Furthermore,
our method outperforms the baseline method kNN
Prompting(Xu et al., 2022a) even in larger language
models.

Algorithm 1 Multi-Scale Knowledge Memory
Bank
Input: Language Model L,

Training set Dtrain,
The scale dimension m

Output: Memory bank {M}mi=1

1: Set up template-based transformation π(·).
2: for t = 1 to m do
3: Get number of context examples c = 2t−1

4: Stratified select diverse samples B =
{xi, yi}|Y|×c ∼ Dtrain

5: Get prompt Pc
Eq. (2)←−−−− B

6: for each {xi, yi} in Dtrain do
7: Get instance-level representation ki =

L(Pc, xi)
8: Update:Mt ← {ki, yi}
9: end for

10: Update:Mt
Eq. (4)←−−−− {kcls, cls}

11: end for
12: return Memory bank {M}mi=1
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(a) Performance on AGNews (b) Performance on CB (c) Performance on TREC

(d) Performance on MRPC (e) Performance on DBPedia

Figure 3: Data efficiency for MuSKPrompt on AGNews, CB, TREC, MRPC and DBPedia datasets.

Model Method SST2 CR MR AGNews RTE TREC

OPT-2.7B kNN Prompting 87.7 89.9 91.2 84.4 52.8 75.1
OPT-2.7B MuSKPrompt 93.4 91.8 91.7 86.3 53.5 75.4

OPT-6.7B kNN Prompting 92.7 91.0 91.8 83.0 55.2 71.2
OPT-6.7B MuSKPrompt 94.1 91.4 91.8 86.3 55.9 76.2

Table 9: Results of MuSKPrompt and kNN Prompting in the 16-shot setting across different scales of OPT.

1756



Dataset Template Label words

SST-2 Review: finds amusing juxtapositions that justify his exercise . negative, positive
Sentiment: positive
Review: the story and structure are well-honed .
Sentiment:

MPQA Review: with the help of the almighty god negative, positive
Sentiment: positive
Review: elevates its image in international society
Sentiment:

CR Review: 5 stars all the way ! . negative, positive
Sentiment: positive
Review: new cds almost always began skipping after a few plays .
Sentiment:

MR Review: dismally dull sci-fi comedy . negative, positive
Sentiment: negative
Review: enjoy it for what it is ; you can hate yourself later .
Sentiment:

TREC Question: What type of currency is used in China ? description, entity, expression,
Type: entity human, location, number
Question: What French province is cognac produced in ?
Type:

RTE premise: The death penalty is not a deterrent. fasle, true
hypothesis: Capital punishment is a deterrent to crime.
prediction: false
premise: Capital punishment acts as a deterrent.
hypothesis: Capital punishment is a deterrent to crime.
prediction:

SUBJ Input: a counterfeit 1000 tomin bank note is passed in a bazaar . subjective, objective
Type: objective
Input: the film is to be produced by jules , melina’s husband .
Type:

AGNews Input: SI.com. ST. LOUIS (Ticker) – The Cincinnati Reds continue to world, sports,
find new ways to lose to the St. Louis Cardinals.
Type: sports business, technology
Input: IBM Chips May Someday Heal Themselves. New technology applies
electrical fuses to help identify and repair faults.
Type:

CB premise: Clever. Klug means clever. Would you say that Abie was clever? false, true, neither
hypothesis: Abie was clever
prediction: neither
premise: A: Your turn. B: Okay. Uh, I don’t think they should abolish it.
hypothesis: they should abolish it
prediction:

MRPC premise: The notification was first reported Friday by MSNBC . no, yes
hypothesis: MSNBC.com first reported the CIA request on Friday .
prediction: yes
premise: Columbia broke up over Texas upon re-entry on Feb. 1 .
hypothesis: Columbia broke apart in the skies above Texas on Feb. 1 .
prediction:

DBPedia Input: Geoffrey D.Falksen (born July 31 1982) is an American steampunk writer. company, school, artist,
Type: artist athlete, politics, transportation,
Input: Arbach (Wildebach) is a river of North Rhine-Westphalia Germany. building, nature, village, animal,
Type: plant, album, film, book

Table 10: The template for ICL. These represent the minimum conditions, with only one demonstration example for
illustration.
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