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Abstract

Recent advancement in large language mod-
els (LLMs) has offered a strong potential for
natural language systems to process informal
language. A representative form of informal
language is slang, used commonly in daily con-
versations and online social media. To date,
slang has not been comprehensively evaluated
in LLMs due partly to the absence of a care-
fully designed and publicly accessible bench-
mark. Using movie subtitles, we construct a
dataset that supports evaluation on a diverse
set of tasks pertaining to automatic process-
ing of slang. For both evaluation and finetun-
ing, we show the effectiveness of our dataset
on two core applications: 1) slang detection,
and 2) identification of regional and histori-
cal sources of slang from natural sentences.
We also show how our dataset can be used to
probe the output distributions of LLMs for in-
terpretive insights. We find that while LLMs
such as GPT-4 achieve good performance in
a zero-shot setting, smaller BERT-like models
finetuned on our dataset achieve comparable
performance. Furthermore, we show that our
dataset enables finetuning of LLMs such as
GPT-3.5 that achieve substantially better per-
formance than strong zero-shot baselines. Our
work offers a comprehensive evaluation and a
high-quality benchmark on English slang based
on the OpenSubtitles corpus, serving both as a
publicly accessible resource and a platform for
applying tools for informal language process-
ing.1

1 Introduction

Large language models (LLM) are the core en-
gines of widely used applications such as Chat-
GPT. While the technology is becoming increas-
ingly pervasive, it is important to understand its
abilities and limitations with input from diverse
forms of language use. Here, we focus on the

1Code and dataset available at: https://github.com/
amazon-science/slang-llm-benchmark

Figure 1: Overview of tasks used to probe knowledge
of slang in LLMs.

case of slang - a common type of informal lan-
guage that is ubiquitous across day-to-day conver-
sations (Mattiello, 2005; Eble, 2012). Figure 1 il-
lustrates the relevance of slang in natural language
processing (NLP). When describing a good jacket,
one can make different word choices such as ex-
cellent and blazing. Even though the intended
meaning is the same across both word choices,
we might expect a significant difference in per-
formance caused by an LLM’s lack of knowledge
about slang. Recent work in computational model-
ing of slang has suggested that pre-trained LLMs
assign much lower probabilities to slang compared
to their literal equivalents (Sun et al., 2021, 2022),
suggesting that models such as BERT (Devlin et al.,
2019) lack knowledge of slang.

Knowledge of slang in LLMs has important
implications beyond automated processing of in-
formal language. This is the case because the
use of slang explicitly reflects one’s social iden-
tity (Labov, 1972, 2006; Eble, 2012). For example,
the use of blazing to express ‘Something excellent’
emerges from the US whereas it expresses ‘Anger’
in the UK (Green, 2010). Previous work has shown
that the performance of NLP systems can substan-
tially differ across language generated by different
demographic groups stratified by age, gender, re-
gion, or ethnicity (Hovy and Søgaard, 2015; Hovy
and Spruit, 2016; Blodgett and O’Connor, 2017;
Tatman, 2017; Buolamwini and Gebru, 2018; Koe-
necke et al., 2020) and can potentially introduce
representational harm (Blodgett et al., 2020). Given
slang’s close ties with social identity, a competent
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language model may also accurately reveal a slang
user’s identity. While such information can be used
to improve NLP performance (Volkova et al., 2013;
Hovy, 2015), the use of slang may also lead to an
increased risk of personal information exposure.

Despite these important implications, LLMs
have not been rigorously evaluated across a wide
range of models on tasks pertaining to slang. The
main challenge lies in the lack of high-quality
datasets that are publically accessible. Furthermore,
existing dictionary-based data sources (e.g., Green,
2010) do not include useful meta-data such as the
literal paraphrase of a slang usage. For example,
having a pair of sentences as illustrated in Figure 1
where the only difference lies in the slang and its
paraphrase (blazing and excellent respectively) al-
lows us to probe the LLMs in a controlled setting.
To address these challenges, we collect a new pub-
lically accessible dataset of slang usages based on
the OpenSubtitles corpus (Lison and Tiedemann,
2016). Using this dataset, we systematically evalu-
ate the LLMs’ knowledge of slang, with a particular
focus on the widely adopted GPT models (Brown
et al., 2020; OpenAI, 2023).2 We show that while
the LLMs contain considerable knowledge about
slang, task-specific finetuning is still essential in
achieving state-of-the-art performance.

We focus on two core tasks for informal lan-
guage processing, illustrated in Figure 1. First, we
evaluate the extent to which LLMs can reliably
detect slang usages in natural sentences. Second,
we assess whether LLMs can be used to identify
regional-historical sources3 of slang via a text clas-
sification task. Finally, we examine the semantic
knowledge of slang in LLMs to understand the
differences in their representation of slang versus
conventional language use. Throughout our evalua-
tion, we also draw close attention to performance
discrepancies based on different demographic vari-
ables and discuss their implications toward fairness
and privacy.

We make the following contributions in this pa-
per: 1) A dataset containing thousands of human
annotated English slang usages in movie subtitles,

2We focus on GPT models but our evaluative framework
can be extended to evaluate other LLMs.

3Here, the source refers to the extra-linguistic contexts
associated with a particular slang usage. Although this would
naturally correlate with the origin of a slang (e.g., slang spe-
cific to a dialect), our task focuses on predicting the extra-
linguistic contexts associated with a particular slang usage and
examines whether the models contain knowledge about such
usage tendencies.

contributing a novel publically available bench-
mark of slang for evaluation and finetuning; 2)
A rigorous evaluation of large language models’
knowledge of slang, including important tasks such
as slang detection; 3) A discussion of the impli-
cations of such knowledge and how it may affect
fairness and privacy in NLP.

2 Related Work

2.1 Deep learning for slang

Previous work on automatic processing of slang
has successfully applied deep learning based tech-
niques to address tasks such as detection (Pei et al.,
2019), generation (Sun et al., 2019, 2021), inter-
pretation (Ni and Wang, 2017; Sun et al., 2022), as
well as predicting word formations (Kulkarni and
Wang, 2018; Wibowo et al., 2021) of slang. These
tasks are difficult partly due to slang’s low resource
nature. Our work investigates whether the large
scale training of LLMs such as GPT-4 can alleviate
this difficulty, and if so, whether GPT’s represen-
tations reflect semantic knowledge of slang that
has been injected in previous methods. We also
re-evaluate the slang detection task using modern
architectures and contribute the first publically ac-
cessible benchmark for slang detection.

Recently, mechanisms underlie both language
variation (Lucy and Bamman, 2021; Sun and Xu,
2022) and semantic change (Keidar et al., 2022)
in slang have been extensively studied, with many
important features attributed to demographic vari-
ables such as age and community membership. We
extend this line of work by probing recent large
language models for knowledge of slang’s demo-
graphic source.

2.2 Probing knowledge in LLMs

The popularity of deep learning methods in NLP
has prompted much work on analyzing the lin-
guistic knowledge learned by neural networks (Be-
linkov and Glass, 2019; Rogers et al., 2020; Be-
linkov, 2022). More recent work has probed LLMs
on their knowledge of non-standard language such
as metaphors (Aghazadeh et al., 2022; Liu et al.,
2022; Wicke, 2023) and linguistic anomalies (Li
et al., 2021).

Two prominent frameworks have been intro-
duced to operationalize probing. First, the behav-
ioral probing method that assesses differences in
behavior of a language model given two similar
inputs, where a few tokens of interest differ (e.g.,
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Dataset
Slang detection and probing Slang source identification Publically

accessibleSlang-containing Non-slang Word-level Community of Time of
sentences sentences paraphases emergence emergence

Urban Dictionary ! % % % % !

The Online Slang ! % ! % % %
Dictionary (OSD)

Green’s Dictionary ! % % ! ! %
of Slang (GDoS)

Reddit Glossaries % % % ! % !
(Lucy and Bamman, 2021)

Indonesian Colloquialism % % ! % % !
(Wibowo et al., 2021)

OpenSubtitles-Slang ! ! ! ! ! !
(OpenSub-Slang)

Table 1: Summary of datasets for slang in NLP and the availability of important features for a comprehensive
benchmark. We contribute a new resource (OpenSub-Slang) that captures all desirable features.

Linzen et al., 2016). For example, one can measure
the differences in LM scores between alternative
words excellent and blazing given the same context
“Good choice, that jacket is excellent/blazing”. An-
other widely adopted probing framework involves
the training of probing classifiers (Belinkov, 2022)
that append a fine-tuned classification layer to the
LM. Instead of finetuning the entire model and
strive for the highest accuracy, the probing classi-
fiers evaluate knowledge in a model’s representa-
tions by freezing all pre-trained weights. One such
popular probing method is edge probing (Tenney
et al., 2019), in which representations over all to-
kens in appropriate spans of text are aggregated to
predict a label. The resulting accuracy of classifica-
tion indicates the level of knowledge a model has
acquired with respect to the probing task.

We apply behavioral probing to examine an
LLM’s confidence in predicting slang usage by
comparing LM probabilities of corresponding slang
and literal tokens in the same usage context. We
apply edge probing in slang detection and slang
source identification to analyze an LLM’s knowl-
edge of slang’s usage and demographic identity.

3 Data

3.1 Limitations of existing resources of slang

Recent interest in NLP for slang has resulted in
a good collection of large-scale datasets for slang.
Although resources such as the Urban Dictionary
are large in scale, the quality of data can be
quite poor (Swerdfeger, 2012). Meanwhile, au-
thoritative sources such as the Green’s Dictionary
of Slang (Green, 2010) cannot be publically dis-
tributed due to copyright restrictions.

The existing datasets are often specified in dictio-
nary format where each entry corresponds to a pair
of word and definition sentence. Many datasets
include additional features (summarized in Table 1)
such as the usage context of a slang term (e.g., the
sentence ‘Good choice, that jacket is blazing’ is a
usage context containing the slang blazing), demo-
graphic sources such as the community and time of
emergence, and word-level literal paraphrases of
the slang (e.g., excellent is a literal paraphrase of
blazing). These additional features are often desir-
able in model evaluation: The usage contexts are
important because they allow the slang usages to be
embedded in natural sentences; the demographic
sources allow us to analyze how regional-historical
variation affects performance; finally, literal para-
phrases of the slang allow us to test our models
against comparable literal baselines.

Previously, Ni and Wang (2017) released a sub-
set of Urban Dictionary data that contains 982,281
entries with associated context sentences. While
sentence-level paraphrases of informal language
have been collected in previous work (Xu et al.,
2013; Dey et al., 2016; Wibowo et al., 2020; Aji
et al., 2021), few exists at word-level. Wibowo et al.
(2021) collected a set of word-level literal-to-slang
paraphrases in Indonesian but no usage context sen-
tences were provided. Sun et al. (2022) manually
annotated a small subset of 102 sentences from the
Online Slang Dictionary (OSD) with literal para-
phrases of the slang word that fit into the context
sentence. The existing datasets offer a large pool
of examples for training but none captures all desir-
able features at a sufficient scale. To address this
limitation, we contribute a new benchmark dataset
of slang usages from movie subtitles that capture
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all useful features.

3.2 OpenSub-Slang dataset

We contribute a new dataset based on movie sub-
titles from the OpenSubtitles4 corpus (Lison and
Tiedemann, 2016) that captures all of usage context
sentences, demographic information including the
region (US or UK) and the year to which the cor-
responding movie was produced, and word-level
literal paraphrases for all slang terms. We choose
to construct a dataset based on OpenSubtitles be-
cause movie subtitles contain utterances that better
reflect natural conversations, diversifying existing
dictionary-based resources containing example us-
age sentences that are specifically selected to con-
vey the meaning of a slang. Also, metadata asso-
ciated with the movies allow us to easily obtain
demographic information about the slang usages.
Finally, the multilingual nature of OpenSubtitles
offers potential for multilingual extension in the fu-
ture, where current NLP research on slang focuses
primarily on English.

We sample 100 English movies from the Open-
Subtitles corpus partitioned evenly across the re-
gions of US and UK. We annotate randomly sam-
pled sentences on Amazon Mechanical Turk with
three annotators per sentence. This results in 7,488
sentences containing slang (3,583 unique terms),
of which 2,256 sentences have at least 2/3 anno-
tators agreeing on the exact slang term. Out of
the 2,256 sentences, we further annotate them to
include definition sentences and literal paraphrases.
After manual inspection followed by the removal of
nonsensical annotations, we obtain 836 sentences
with definitions and paraphrases. Detailed annota-
tion procedures can be found in Appendix A.

Alongside the slang containing sentences, we
also contribute a set of 17,512 movie subtitle sen-
tences that have been agreed by all annotators to
not contain slang. This allows us to build a robust
evaluation benchmark for slang detection. Previous
evaluations such as Pei et al. (2019) combine slang
containing sentences from slang dictionaries with
negative samples heuristically drawn from news
corpora. This approach, however, may jeopardize
sentence-level detection evaluation as the model
can rely on dataset-specific features instead of de-
tecting slang. By having annotated negative sen-
tences from the same data source, we can evaluate
slang detection in a more controlled setting where

4http://www.opensubtitles.org/

the models can no longer rely on dataset-specific
features to make predictions.

4 Experiments

4.1 Models

We perform all experiments on three BERT-
like models: BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), and XLNet (Yang
et al., 2019) using the pre-trained bert-large-cased,
roberta-large, and xlnet-large-cased models re-
spectively from the transformers library (Wolf et al.,
2020). We also evaluate a series of GPT models ac-
cessed via the OpenAI API, including GPT-3 (text-
davinci-002), GPT-3.5 (gpt-3.5-turbo-0613), and
the latest version of GPT-4 (gpt-4-1106-preview).
Whenever applicable, we also apply finetuning on
the same GPT-3.5 model, the newest model to
which the authors have finetuning access for.5 For
model interpretation, we obtain GPT-3 embeddings
using text-similarity-davinci-001.

4.2 Slang detection

We first ask whether large language models can be
used to detect slang’s presence in natural sentences.
Previous work has found that slang usages have
salient features such as Part-of-Speech shifts that
are uncommon in literal word usage (Pei et al.,
2019). A model that encodes knowledge about
such characteristics should thus be able to detect
slang usages in natural sentences. To evaluate this,
we perform edge probing on two slang detection
tasks for three BERT-like masked language models:
BERT, RoBERTa, and XLNet. In addition, we
evaluate the GPT models in both zero-shot and
fine-tuned settings. We probe GPT in both a zero-
shot setting to evaluate its inherent knowledge and
also a fine-tuned variant that has seen the same
training examples as the BERT-like models.

Task. Given a set of sentences, we evaluate slang
detection at both sentence-level and word-level:

(S1) Good choice, that jacket is blazing.

(S2) Good choice, that jacket is excellent.

In the sentences above, S1 contains a slang usage
from the word blazing and no slang is used in S2.

5Finetuning for GPT-3.5 is completed using a blackbox
API provided by OpenAI. Although it is commonly believed
that OpenAI does not perturb all model weights during fine-
tuning, the authors do not have direct access to GPT-3.5 to
verify the exact training scheme being used.
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(a) Sentence-Level detection
Model P R F1
BERT 80.1 83.3 81.6
RoBERTa 81.3 87.5 84.2
XL-Net 67.5 64.3 64.6
GPT-3 zero-shot 90.0 74.4 81.4
GPT-3.5 zero-shot 87.5 80.8 84.0
GPT-4 zero-shot 88.2 80.9 84.4
GPT-3.5 finetuned 84.3 96.8 90.1

(b) Word-Level detection
Model P R F1
BERT 75.5 62.5 68.3
RoBERTa 74.9 68.2 71.4
XL-Net 62.4 43.3 51.0
GPT-3 zero-shot 49.2 59.9 54.0
GPT-3.5 zero-shot 57.6 73.2 64.5
GPT-4 zero-shot 60.4 68.2 64.1
GPT-3.5 finetuned 74.5 81.3 77.8

Table 2: Slang detection results of LLMs shown in
precision (P), recall (R), and F1 Scores (F1).

For sentence-level detection, binary classification
will be performed to determine whether a slang
usage exists within the sentence. For example, S1
containing blazing will be a positive example while
S2 with excellent will be a negative example. In
word-level detection, we perform a sequence tag-
ging task to identify the specific words that are
slang. In the example above, the word blazing in S1
should be labeled as slang while all other words in
both sentences should have the null label. Detailed
experiment setup can be found in Appendix B.2

Results. We evaluate slang detection on sen-
tences from the OpenSubtitles-Slang dataset. Ta-
ble 2 shows the results of both sentence-level and
word-level slang detection. We observe that for
both tasks, BERT and RoBERTa have much bet-
ter performance than XLNet on slang detection.
While the fine-tuned version of GPT-3.5 performs
substantially better than the BERT-like models, the
fine-tuned BERT and RoBERTa models can still
perform comparably or better than the zero-shot
GPT models although having much less parame-
ters. For word-level detection, we observe that the
GPT models often have difficulty conforming to
sequence labeling instructions without finetuning,
resulting in low precision. Overall, we find that
GPT models to encode more relevant knowledge
that allows the detection of slang’s presence but
finetuning is nevertheless essential in achieving
good performance.

We also partition the test set by region, which
yields 234 sentences from the US and 340 sen-

Figure 2: Slang detection performance by region.

Figure 3: Significance level of the regional discrepan-
cies in slang detection performance at both the word-
level and the sentence-level. We perform a one-sided
test to evaluate whether detection performance on UK
slang is indeed significantly better than that of US slang.

tences from the UK. Figure 2 shows model per-
formance discrepancies between these two regions.
We find a consistent trend that slang usages from
the UK are being detected more frequently than
those from the US, except for the zero-shot GPT-3
models on word-level detection. To account for
the small sample size, we perform permutation
tests (permuting the region labels) to evaluate the
significance of the observed discrepancies. Fig-
ure 3 shows the statistical significance of our find-
ings after 20,000 randomized permutation trials for
each condition. Overall, we observe that the per-
formance discrepancy in stronger GPT models to
be more prominent but not much more than those
in smaller BERT-like models.

4.3 Slang source identification

We directly probe large language models’ knowl-
edge in identifying a slang’s demographic identity.
Given that slang is highly reflective of a user’s
social identity (Labov, 1972, 2006; Eble, 2012),
we expect better-performing models to gain such
knowledge. We evaluate the extent of such knowl-
edge by probing a text classification task.

Task. Given a sentence containing a slang usage,
we ask the model to classify its source (e.g. region
and age). For example, the following sentences
should be classified into US as supposed to UK:
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(a) OpenSubtitles-Slang - Region

(b) Green’s Dictionary of Slang - Region

(c) Green’s Dictionary of Slang - Age

Figure 4: Classification performance on slang source
identification tasks.

(S1) Good choice, that jacket is blazing.

(S2) Good choice, that jacket is [MASK].

(S3) Good [MASK], that jacket is blazing.

We compare the classification performance with
sentences containing slang (S1) and corresponding
sentences with the slang term masked out (S2). We
also include another control task by masking out
a random content word in the sentence other than
the slang word (S3). For models that use slang
as a salient feature to identify demographics, we
expect masking out the slang to result in much in-
ferior performance but the performance should not
deteriorate as much when masking out a random
word.

Results. Figure 4 shows the source identification
results on both OpenSubtitles-Slang and Green’s
Dictionary of Slang for region and age. Overall, we
observe that the zero-shot GPT-3 model perform
comparably with the BERT-like models and the
GPT-4 model is consistently better at predicting de-
mographics compared to earlier models. Although

the finetuned GPT-3.5 model achieves the best ac-
curacies across all experiments, the performance is
not much better compared to zero-shot GPT-4 when
predicting region, whereas finetuning drastically
improves the accuracy in age prediction. Further-
more, we observe that GPT-3 shows a consistent
trend in using slang as a salient feature in predict-
ing demographic identity, indicated by much lower
classification accuracies when the slang terms are
removed, while the accuracy loss is often not as
pronounced when masking out a random word. We
also observe this trend in newer generations of GPT
models, though it is less pronounced compared to
GPT-3. This behavior is generally not observed in
the BERT-like models.

In the BERT-like models, we make two observa-
tions suggesting that these models lack the ability
to link slang usages to user demographics. First, the
source identification performance decreases when
a slang term is masked out, and it experiences a
similar decrease when a random word is masked
out. This observation suggests that decrease in
model performance is tied to removal of words
but not specifically to slang usages. Second, the
source identification performance improves after a
slang term is removed. Here, it is plausible that the
BERT-like models do not faithfully capture slang
meaning. With slang terms removed, the models
may become more certain about the underlying
meaning conveyed by a sentence. In both cases, we
do not find conclusive evidence that the BERT-like
models are able to make connections between slang
and the source of a sentence.

4.4 Model interpretation

We perform interpretive analysis to examine
whether large language models have gained struc-
tural semantic knowledge about slang through large
scale training. We do so by first comparing the us-
age probabilities of slang and their corresponding
literal paraphrase tokens. Here, high model proba-
bilities on slang tokens reflect a model’s confidence
in predicting the slang term to be used within the
specified linguistic context, thus having good distri-
butional semantic knowledge of a slang’s meaning.
We also analyze sentence embeddings generated
by the LLMs on conventional and slang dictionary
senses to examine whether geometry of the underly-
ing representation space reflects structural semantic
knowledge of slang.
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Task. Given a sentence containing slang, we ex-
amine a model’s predictive confidence in a slang
usage by measuring the LM probability associated
with the slang word. If a literal paraphrase of the
word is available, we compare the probability of
the slang word with its literal counterpart:

(S1) Good choice, that jacket is blazing.

(S2) Good choice, that jacket is excellent.

For the example sentences above, we measure lan-
guage model probabilities assigned to both the
slang word blazing and the literal word excellent
given the exact preceding context. Detailed experi-
ment setup can be found in Appendix B.4

Metrics. We report two metrics to compare an
LLM’s predictive confidence in slang usages rela-
tive to their literal counterparts. Let Si denote the
language model probability assigned to the slang
word in the i’th sentence and similarly Li for the lit-
eral word’s probability. The mean ratio compares
the aggregate probability mass assigned to each
word type over a sample of sentences:

rmean =

∑
i Si∑
i Li

(1)

Here, we aggregate over probabilities for each
type instead of individual ratios to avoid over-
emphasizing outlier slang that the model is either
very confident or very impoverished on. For indi-
vidual ratios between two word types, we report
the median ratio to downplay the effect of outliers.
A value above 1 means that more slang words have
higher probabilities than their literal paraphrases:

rmedian = mediani
Si

Li
(2)

Results. Figure 5 summarizes the results for sen-
tences from OpenSubtitles-Slang. We observe that
for all of BERT, RoBERTa, and GPT-3,6 the mod-
els have much higher median ratio than mean ratios,
suggesting that these models are confident on many
of the slang terms in the dataset but impoverished
on a select subset with much higher probabilities
assigned to the paraphrases. In absolute terms,
GPT-3 also assigns much higher probability scores
to slang terms compared to the BERT-like models.

6We only perform analysis on GPT-3 because OpenAI no
longer provides token probabilities (on prompted words) and
embeddings for newer generation GPT models.

Figure 5: Likelihood ratios between samples of corre-
sponding slang and literal tokens.

Figure 6: Median ratios across sentences from different
regions.

Model OSD GDoS UD
fastText 0.35 ± 0.033 0.30 ± 0.010 0.31 ± 0.037
SBERT 0.32 ± 0.033 0.32 ± 0.010 0.28 ± 0.034
GPT-3 0.31 ± 0.032 0.31 ± 0.011 0.30 ± 0.035

Table 3: Normalized ranks (between 0 and 1, lower is
better) of a word’s slang definition embedding towards
its conventional definition embedding over entries in
The Online Slang Dictionary (OSD), Green’s Dictio-
nary of Slang (GDoS) and Urban Dictionary (UD). We
compare the embeddings produced by GPT-3 against
those computed in Sun et al. (2021) using fastText (Bo-
janowski et al., 2017) and Sentence-BERT (SBERT;
Reimers and Gurevych, 2019).

Next, we examine performance discrepancy by
partitioning the data based on its region. This re-
sults in 59 sentence pairs from the US and 161
sentence pairs from the UK. Results from Figure 6
show that all models evaluated are much more con-
fident in generating US slang compared to UK
slang. GPT-3, however, has substantially less dis-
crepancy in performance between the two regions
due to it being more confident in UK slang. We also
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Example 1 Example 2
Sentences * We can’t keep doing this sh⋆t, Charlie. * * Knock it off. *

Look, I don’t know what I said to you in there that You’d kill to be in his place.
got you so pissed off but I’m sorry, Charlie, all right?
* All right. * * - Okay b⋆tch, I’m ready. *

Slang pissed kill
Literal paraphrase angry agree
Definition sentence Annoyed; anger. To agree with someone or about something.
Region US US

Model scores BERT RoBERTa GPT-3 BERT RoBERTa GPT-3
Detection 0.697 0.811 0.393 0.644 0.134 0.621
Source identification 0.491 0.436 0.762 0.873 0.710 0.879
Model confidence 0.035 0.057 1.567 9.654 0.170 3.120

Table 4: Example entries and their corresponding model scores from BERT, RoBERTa, and zero-shot GPT-3
respectively. Asterisks indicate extra context sentences not seen by the model.

measure absolute probabilities assigned to slang to-
kens in context sentences extracted from Green’s
Dictionary of Slang entries. By stratifying across
different age groups and regions, we observe that
the systems are much less confident on contempo-
rary slang and only within this group that UK slang
tends to receive much lower scores than US slang.
Details results can be found in Appendix C.

Interestingly, we observe a reverse trend in dis-
crepancy compared to the case in slang detection.
Specifically, being less confident, in terms of prob-
ability, on UK slang terms makes it easier for the
models to detect them. Indeed, we observe that US
slang terms are often assigned higher probability
scores than their literal counterparts, suggesting
that slang usages from the US have been seen more
frequently in the training data and the models use
frequency as a salient feature to characterize slang.

Analysis. We look at text embeddings produced
by GPT-3 to examine whether they encode seman-
tic knowledge of slang. We adopt the benchmark
proposed by Sun et al. (2021) that compares sen-
tence embeddings of definition sentences. In this
evaluation, the embedding of a slang definition
is taken as an anchor and its semantic distances
toward conventional definitions of words are com-
puted. The distances are then ranked among all
words in the lexicon and we expect the groundtruth
word to receive a good rank. As an example, for
blazing that can be used as slang to express ‘some-
thing excellent’, we expect the slang definition to
be semantically close to the conventional defini-
tion of blazing - ‘burning brightly’ compared to
definitions of other words in the lexicon. Sun et al.
(2021, 2022) showed that this metric reflects the se-
mantic knowledge of slang encoded in a model and
is directly tied to performance in slang generation
and interpretation. Table 3 shows the results of this

evaluation. While GPT-3 shows better performance
on slang than the BERT-like models on extrinsic
tasks, we do not observe any significant difference
in the underlying geometry of the representations.
This gives further evidence that GPT-3’s source of
knowledge comes from frequent instances of slang
usage seen during training and simply treats them
as additional “conventional” senses. It has yet been
able to (or decided not to) encode any structural
knowledge of slang into its representations.

Examples. We find two entries with definition
and paraphrase annotation that appear in the test
set for both slang detection and source identifica-
tion. For each example, we show the respective
model performances in Table 4. We show results
for the best performing BERT-like model BERT
and RoBERTA, as well as the zero-shot version
of GPT-3 where probability scores are available.
For the classification based tasks, we report each
model’s confidence on the true label (i.e. P (True
label)). For model confidence, we report the ratio
between the LM scores of the slang word and its
literal paraphrase (i.e. Si/Li). For BERT-likes, we
report the normalized probabilities from the final
classification layer. For GPT-3, we use the top-5
probabilities assigned to the response token by the
OpenAI API. We then sum and normalize all token
probabilities that correspond to one of the classes.

We observe that although GPT-3 reliably identi-
fies and assigns high probabilities to both slang
usages, it still failed to detect the slang pissed
in Example 1. We find this trend to be consis-
tent for slang detection test examples that have
paraphrase annotations (32 examples) where neg-
ative correlations exist between model confidence
scores and detection probability for all of BERT
(r = −0.433), RoBERTa (r = −0.458), and GPT-
3 (r = −0.220). This is consistent with our earlier
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finding where all models tend to consider less fre-
quent usages as slang. We perform a similar exper-
iment on source identification examples (21 exam-
ples) and find the correlations to be much weaker
(BERT: r = 0.020, RoBERTa: r = −0.121, GPT-
3: r = 0.276), although GPT-3 tend to better iden-
tify a slang’s region when it has high confidence.

5 Conclusion

We offered a comprehensive investigation of slang
knowledge in large language models. We show that
larger GPT models are more knowledgeable about
slang compared to BERT-like models in 1) better
detecting slang in natural sentences, 2) more accu-
rately identifying the regional source and time pe-
riod of slang usages, and 3) better predicting slang
usages relative to their literal counterparts. Despite
the superiority of GPT in these slang processing
tasks, we did not find evidence that it represents or
encodes slang as a special form of language. It is
conceivable that GPT has learned to process slang
by treating slang usages as rare meanings of words
expressed in appropriate linguistic contexts.

In the identification of region and age of slang us-
ages, we observed that all models tend to perform
poorly on slang from the UK (compared to US
slang) and more contemporary slang (compared to
historical slang), likely due to impoverished train-
ing data. However, we found that GPT models are
no more biased compared to earlier BERT-based
models and that it shows comparable discrepancy
in processing slang across regions. Additionally,
we observed that GPT models contain good knowl-
edge about the demographic identities of a slang
usage in context. This capability may have impli-
cations for privacy in many scenarios (e.g., auto-
matic data annotation), and users should be aware
of the increased risk of identity exposure when
using slang in LLM-based applications.

We have provided the first comprehensive prob-
ing analysis of large language models on knowl-
edge of slang and have contributed an open bench-
mark dataset to facilitate future efforts in evaluating
and improving large language models on informal
language processing.

Limitations

In our work, the sets of comparable experiments
we can perform have been limited by lack of di-
rect access to GPT models. Finetuning of GPT-3.5,
for example, is completed using a blackbox API

provided by OpenAI while newer models such as
GPT-4 are not available for finetuning. Although
it is commonly believed that OpenAI does not per-
turb all model weights during finetuning, the au-
thors do not have direct access to GPT-3.5 to verify
the exact training scheme being used. This may
cause inconsistency in the experiment setup involv-
ing finetuned models. Also, the lack of access to
internal layers of GPT hinders the comparison of in-
termediate representations in LLMs. For example,
we can only analyze probability values from GPT-
3 as OpenAI no longer provides access to those
values in newer generation models like GPT-3.5
and GPT-4. Finally, the auto-regressive nature of
GPT necessitates the comparison with the BERT-
like masked language models in an auto-regressive
setup. Although approaches such as Donahue et al.
(2020) have been proposed to enhance GPT-2 to
consider bidirectional context, we cannot apply
such methods to GPT given the limited access.

We also acknowledge that our work is limited
to studying slang in English and is restricted to
specific demographic stratum (region and age). We
hope that the evaluation framework proposed in
this work would enable future work to extend the
evaluation towards more varied demographics and
languages. We selected OpenSubtitles to build our
dataset because of its potential in extending the
existing evaluation into a multilingual benchmark.
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annotators that “this HIT contains language use
that may be offensive or upsetting.”. If the anno-
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All potentially offensive sentences shown in the
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models (BERT, RoBERTa, and XLNet) using an
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and 12 GB of VRAM available to the authors. All
GPT model experiments are executed via OpenAI’s
official API and cost $77.22 USD in API credits.

We have written permissions to use both The
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A Data Collection Procedures

We sample 100 English movies from the Open-
Subtitles corpus for an even distribution across the
regions of US and UK, where we identify the re-
gion by querying a movie’s region of production
on IMDb7. For each region, we randomly shuffle
the list of corresponding movies represented in the
OpenSubtitles corpus that are produced after the
year 2000 and iterate through the list until we have
50 movies. For each movie, the authors manually
inspect the corresponding IMDb meta-data to en-
sure that the movie has a realistic setting in the
appropriate region (i.e. US or UK) and that the plot
is set after year 1980 to avoid antiquated slang. In
addition, we ensure that each selected movie would
have sufficient sentences by filtering out all movies
with less than 500 subtitle lines. As a result, the
most common genre tags are drama, comedy, crime
and romance. A complete list of movie meta-data
can be found in Table 5 and Table 6.

For each movie, we randomly sample 250 sen-
tences for annotation on Amazon Mechanical
Turk8. We restrict the set of annotators to native
English speakers who live in the corresponding re-
gion of the movie (i.e. US or UK). We first ask
annotators to detect sentences containing slang us-
age and identify the exact slang terms. To define
what is considered slang, we provide all annota-
tors with 5 positive examples containing slang and
5 negative examples that closely resemble slang
usage. Table 7 shows these examples. We obtain
these examples from a small scale pilot study and
manually verify that all positive examples have
exact definition matches in Green’s Dictionary of
Slang while all slang-like words in the negative
sentences do not have corresponding entries in the
dictionary. For each annotation, the preceding and
succeeding sentences in the movie scripts are also
shown to the annotators for contextual awareness
but they are only asked to find slang in the main
sentence. For each sentence, we ask 3 annotators
to perform the same task. Overall, 7,488 sentences
are flagged by at least one annotator as containing
slang (3,583 unique terms), with 1,844 and 412
sentences flagged by two or all three annotators
respectively. We adopt a majority vote scheme and
only consider sentences with at least 2 annotators

7https://www.imdb.com/
8We opted for random sampling instead of first detecting

slang using language models as it would introduce a selection
bias to our evaluation

agreeing but include all sentences and annotator
confidence scores in the dataset for future users.

For the 885 sentences with at least 2/3 annotator
agreement, we further annotate these sentences by
asking one additional annotator to give a definition
sentence and a literal paraphrase of the slang. The
annotators were directed to both Green’s Dictio-
nary of Slang and Urban Dictionary for reference,
in this order of preference, and asked to cite a URL
for the definition if possible. We manually inspect
the annotator responses and remove all that are
nonsensical (e.g. writing down the same definition
sentence for all slang in a batch). After remov-
ing such responses, we obtain 836 sentences with
366 unique slang terms that have both a definition
sentence and a literal paraphrase.

During annotation, the annotators were not told
about the specific year of release and were asked
to annotate the slang solely based on its usage and
the corresponding references from slang dictionar-
ies. We do not specify the year during annotation
because annotators will likely not have the neces-
sary expertise to differentiate multiple meanings of
slang across several time periods.

B Experiment Setup

B.1 Probing classifiers

We implement BERT, RoBERTa, and XLNet clas-
sifiers using the transformers library (Wolf et al.,
2020) released by Huggingface. For each model,
we use the corresponding sequence classification
classes for sentence-level detection and source iden-
tification, and token classification classes for word-
level detection. For all models, we only train
weights for the classification layers that are not
part of pre-training, except for BERT where we re-
train weights for the final pooling layer. We do this
to ensure consistency across all models because
only BERT has a pre-trained pooling layer used for
its next-sentence prediction objective while such a
layer does not exist in pre-trained RoBERTa and
XLNet. we train each model for 10 epochs and
repeat the experiment 20 times with different ran-
dom initializations. We use Adam (Kingma and
Ba, 2015) with a learning rate of 0.001. Parameters
from the training epoch with the highest validation
performance is saved for testing.

For GPT-3.5 finetuning, We train each model
once using the same set of training and validation
data used to train the BERT-like models and train
the model for four epochs using OpenAI’s API
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OpenSubtitles ID Year Region Genres

54446 2000 USA Adventure, Comedy, Drama
135737 2000 USA Action, Crime, Thriller
145382 2000 USA Drama, Romance
185218 2001 USA Crime, Drama, Romance
186160 2004 USA Comedy, Sport
241730 2005 USA Comedy, Drama
3151540 2007 USA Drama
3279503 2008 USA Crime, Mystery, Thriller
3372842 2000 USA Action, Adventure, Drama
3468388 2007 USA Crime, Drama
3546395 2009 USA Drama
3558591 2005 USA Comedy, Romance
3562517 2009 USA Comedy, Fantasy, Romance
3618044 2009 USA Comedy, Drama
3692182 2009 USA Crime, Drama, Thriller
3877824 2009 USA Horror, Thriller
3967329 2010 USA Drama
4109374 2010 USA Comedy, Drama, Romance
4185464 2011 USA Crime, Drama
4218973 2011 USA Crime, Drama, Horror
4473014 2011 USA Drama, Mystery, Romance
4574956 2011 USA Comedy
4728198 2001 USA Drama
4744540 2012 USA Drama, Sport
4953583 2013 USA Action, Crime, Thriller
5036434 2012 USA Drama
5166024 2013 USA Adventure, Comedy, Drama
5178727 2010 USA Comedy, Drama
5340423 2013 USA Comedy, Drama, Romance
5450161 2013 USA Comedy, Drama, Romance
5536320 2014 USA Biography, Crime, Drama
5653079 2012 USA Comedy, Drama, Romance
5697912 2012 USA Comedy, Drama, Romance
5791518 2014 USA Comedy, Romance
5836657 2014 USA Comedy, Romance
5838045 2014 USA Sci-Fi, Thriller
5860680 2014 USA Drama, Romance, Sci-Fi
5891414 2014 USA Action, Crime, Thriller
5905224 2012 USA Comedy, Romance
5922900 2012 USA Comedy, Horror, Sci-Fi
5974299 2014 USA Comedy, Drama, Romance
5987878 2006 USA Comedy, Romance
6173232 2014 USA Documentary, Music, Sport
6185084 2015 USA Comedy
6249260 2014 USA Comedy, Musical
6377252 2009 USA Action, Crime, Thriller
6406429 2001 USA Drama, Music
6441036 2013 USA Drama, Family, Fantasy
6692456 2016 USA Crime, Drama, Mystery
6801883 2014 USA Crime, Drama, Mystery

Table 5: Meta-data for all US movies used in constructing OpenSubtitles-Slang.

interface using default parameters with a batch size
of 20.

B.2 Slang detection
We use entries from the OpenSub-Slang dataset
with an annotator confidence score of 2 or above
for positive examples. We use all sentences in
which exact one copy of the exact slang identified
by the annotators can be found. After filtering,
we have 1,913 slang containing sentences. From
the set of 17,512 movie subtitle sentences where
all 3 annotators labeled as not containing slang,

we randomly sample 1,913 sentences to construct
a balanced sample. We split the data into 80, 5,
15 percent partitions for training, validation and
testing respectively.

We evaluate three finetuned BERT-like mod-
els: BERT, RoBERTa, XLNet along with GPT-
3, GPT-3.5, and GPT-4. We evaluate each GPT
model’s zero-shot performance with prompting
alone. For GPT-3.5, we also consider a finetuned
variant trained with the same data as the BERT-like
models.
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OpenSubtitles ID Year Region Genres

3120452 2006 UK Comedy, Drama, Romance
3121411 2006 UK Crime, Drama, Thriller
3179568 2006 UK Crime, Drama
3320486 2008 UK Comedy, Drama, Romance
3345059 2008 UK Crime, Drama
3357285 2007 UK Drama, Romance
3472293 2009 UK Crime, Drama, Mystery
3552835 2008 UK Crime, Drama, Horror
3564173 2008 UK Drama
3666051 2009 UK Action, Crime, Drama
3670999 2010 UK Biography, Drama, Music
3807079 2005 UK Comedy, Crime
4030209 2003 UK Documentary, Music
4107485 2010 UK Comedy, Thriller
4136037 2010 UK Biography, Documentary, Drama
4177060 2009 UK Action, Crime, Drama
4204063 2009 UK Comedy, Drama, Romance
4259257 2010 UK Comedy, Drama
4398890 2011 UK Action, Thriller
4471635 2010 UK Crime, Drama, Thriller
4527521 2012 UK Crime, Thriller
4629499 2012 UK Crime
4640913 2011 UK Comedy, Drama, Music
4683078 2012 UK Drama, Sport
4864547 2012 UK Crime, Drama, Mystery
4938516 2009 UK Mystery, Thriller
4987950 2011 UK Drama
5052284 2002 UK Crime, Drama, Mystery
5145968 2012 UK Horror, Mystery
5151994 2008 UK Action, Biography, Crime
5167828 2001 UK Drama, Mystery, Thriller
5204705 2012 UK Crime, Drama, Thriller
5461631 2003 UK Comedy, Drama, Romance
5510712 2013 UK Action
5623414 2013 UK Comedy, Music
5681039 2004 UK Comedy, Crime, Drama
5742017 2010 UK Action, Crime, Drama
5778643 2013 UK Documentary, Sport
5814259 2014 UK Drama, Musical, Romance
5837569 2002 UK Horror, Thriller
6010762 2012 UK Crime, Drama
6107374 2010 UK Comedy, Drama
6224678 2014 UK Thriller
6237485 2014 UK Drama
6244263 2014 UK Thriller
6338678 2008 UK Drama, Romance, Thriller
6782316 2009 UK Biography, Drama, Sport
6910409 2014 UK Comedy, Drama
6997754 2012 UK Action, Crime, Drama
7039857 2016 UK Comedy

Table 6: Meta-data for all UK movies used in constructing OpenSubtitles-Slang.

For sequence tagging in word-level detection, we
apply the BIO tagging scheme to all words. During
training, we also mark subword units with inside
tokens when slang words are split into tokens. Dur-
ing evaluation, however, we only consider whole
words splitted by white space to ensure a consis-
tent evaluation metric across models with different
tokenization schemes.

For GPT models, we evaluate zero-shot perfor-
mance by prompting the task instruction along with
the input sentence. For sentence-level detection,

we use the prompt:

»> Is there a slang in the following sentence?
Answer only ’Yes’ or ’No’.

»> Sentence: [A SENTENCE IN THE DATA]

»> Answer:

Similarly for word-level detection, we use the
prompt:

»> Identify slang in the following sentence. If a
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[Positive Examples]
Example 1 * We’re hitting pause after this. *

We get pinched, remember whose idea this was, okay?
* Be ready on Friday. *

Example 2 * Now, if it were up to me and they gave me two minutes and a wet towel I would personally
tasphyxiate his half-wit so we could string you up on a federal M1 and end this story with a bag
on your head and a paralyzing agent running through your veins. *
This isn’t f⋆cking townie hopscotch anymore, Doug.
* Be ready on Friday. *

Example 3 * I can’t do any more time, Dougy. *
So if we get jammed up we’re holding court on the street.
* [KNOCKING] *

Example 4 * She really loves you, I can tell. *
Good news for you is you have an alibi for the Cambridge job.
* The good news for me is I bet you know something about it. *

Example 5 * What do you call a guy who grows up with a group of people, gets to know their secrets
because they trust him, and then turns around and use those secrets against them, put those
people in prison? *
You’d call him a rat, right?
* You know what I call him? *

[Negative Examples]
Example 1 * Any clues? *

Any leads?
* Anything like that? *

Example 2 * With assault rifles. *
You f⋆cking dummies shot a guard.
* Now you’re like a half-off sale at Big and Tall. *

Example 3 * Coughlin, Kristina. *
She had a kid with her.
* The mother’s at Mass General. *

Example 4 * Do me a favor. *
The weight of this thing pack a parachute at least.
* You know the funniest thing about being in prison? *

Example 5 * [SHYNE CRYING] *
I know you’d rather see a rope around my neck!
* You’re getting the f⋆ck out of here. *

Table 7: Positive and negative annotations examples shown to annotators prior to annotation. Candidate slang
terms are italicized. Sentences marked by asterisks indicate extra context sentences that the annotators are asked to
consider but not to make annotations on.

slang has been found, output the slang only. If
no slang has been found, answer ’[No slang]’.

»> Sentence: [A SENTENCE IN THE DATA]

»> Answer:

For GPT-3.5 and GPT-4 under OpenAI’s chat
framework, we use the default system message
“You are a helpful assistant.” for all prompts.

We mimic sequence labeling by searching for
the resulting text span in the input sentence. When
a match can be found, we set the appropriate be-
ginning and inside labels for the detected span. We
set the maximum number of generated tokens to
be 1 and 20 for sentence-level and word-level de-

tection respectively and set temperature to 0 for
deterministic generation.

For finetuning GPT-3.5, we use ’0’ and ’1’ as bi-
nary labels for sentence-level detection. For word-
level detection, we use the slang term as specified
by the annotators.

B.3 Slang source identification

We perform region identification on sentences from
OpenSub-Slang with at least 2/3 annotator agree-
ment, keeping those in which exact one copy of
the slang can be found. We sample the sentences
to construct an even sample of US and UK sen-
tences which results in 1242 sentences for eval-
uation. We apply the same sampling scheme to
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sentences from the Green’s Dictionary of slang for
region and age identification. We obtain a sample
of 6,096 sentences evenly partitioned across US
and UK, as well as 4,008 sentences uniformly parti-
tioned across six decades. We split all data samples
into 80, 5, 15 percent partitions for training, valida-
tion and testing respectively. To determine whether
a word is a content word, we refer to the set of En-
glish stop words in NLTK (Bird and Loper, 2004).

We evaluate GPT-3’s zero-shot performance on
slang source identification by promoting the sen-
tence:

»> The following text is most likely produced in
which region? Answer only ’US’ or ’UK’.

»> Text: [A SENTENCE IN THE DATA]

»> Region:

Similarly, we use the following prompt for age
identification:

»> Classify The following text into one of the
following decades based on the language
use. Possible answers include ’1950’, ’1960’,
’1970’, ’1980’, ’1990’, or ’2000’. Answer in
one word.

»> Text: [A SENTENCE IN THE DATA]

»> Decade:

Similar to the slang detection prompts, we use the
default system message “You are a helpful assis-
tant.” for all GPT-3.5 and GPT-4 prompts.

We set the maximum number of generated to-
kens to be 1 for all slang source identification tasks
and set temperature to 0 for deterministic genera-
tion.

We finetune GPT-3.5 using the same set of train-
ing and validation data used to train the BERT-like
models. We use the same labels as in the zero-shot
prompts as the target labels. This includes {US,
UK} for regional identification and {1950, 1960,
1970, 1980, 1990, 2000+} for age identification.

B.4 Probing model confidence
We use slang-containing sentences from OpenSub-
Slang with a confidence score of 2 or above. We
use entries where both the slang word and its para-
phrase tokenize into single tokens by all models9.

9We observe that all models have the tendency to assign
much higher probabilities to subword tokens, regardless of
whether they are part of slang or literal tokens. See Ap-
pendix D for a detailed analysis

Since all GPT models are autoregressive language
models, we truncate all tokens after the slang word
for fair comparison and remove all sentences in
which the slang appears at the beginning. After
pre-processing, we obtain 220 sentence pairs from
OpenSub-Slang. This includes 59 sentence pairs
from US movies and 161 from UK movies.

B.5 Preprocessing Green’s Dictionary of
Slang

For each definition entry in Green’s Dictionary of
Slang (GDoS), we automatically extract usable us-
age context sentences from the entry’s correspond-
ing list of citations. For each citation, we apply a
simple heuristic to extract potential example sen-
tences by matching all text followed by a series of
numeric characters and a column (e.g. “212:”). For
all extracted sentences, we ensure that the slang
word can be found in the sentence after tokeniz-
ing by whitespace. This results in 33,181 entries
with example sentences attached with a total of
99,181 example sentences. From the citation in
which an example sentence was extracted from, we
associate the corresponding date and region tags of
the citation with the example sentence.

C Slang Token Probabilities over Time
and Region

We measure the language model probabilities as-
signed to slang tokens for entries in Green’s Dic-
tionary of Slang (GDoS). We use a similar task
setup as described in Section 4.4. However, since
GDoS does not contain any literal paraphrases for
the slang tokens, we only measure the absolute
probabilities assigned to slang tokens. Here, we
focus on how the models perform differently over
different sets of slang usages stratified across both
time and region.

We consider all example sentences in which the
corresponding slang word can be represented using
a single token by all models. Furthermore, we only
consider sentences with a region tag of US or UK
and a date tag after the year of 1950. This results
in 5,052 sentences in total, with 3,617 sentences
from the US and 1,435 from the UK. Of the 5,052
sentences, we have 1,285, 1,431, 859, 615, 564 sen-
tences from each decade respectively from 1950s
to 1990s and 298 sentences from the year 2000 and
onwards.

Figure 7 shows the result over different time pe-
riods and Figure 8 over different regions. Overall,
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(a) Time - All

(b) Time - US

(c) Time - UK

Figure 7: Mean LM probabilities over slang tokens in
sentences across different time periods.

we observe consistent performance across differ-
ent time periods and regions from all models. One
exception to this is that for both BERT, RoBERTa,
and GPT-3 the probabilities drop significantly for
contemporary slang usages recorded after 1980.
This is especially noticeable for slang usages from
the UK. We postulate that the models likely make
very little distinction for older slang from both re-
gions, but for newer ones the models are exposed
to slang usages from the US much more frequently
than ones from the UK. We also observe that GPT-
3 is a lot less confident on new slang usages from
after the year 2000. These findings are consistent
with our main results on the OpenSub-Slang dataset

(a) Region - All

(b) Region - Pre 1980

(c) Region - Post 1980

Figure 8: Mean LM probabilities over slang tokens in
sentences across different regions.

where all slang usages are extracted from movies
produced after the year 2000.

D Effect of Tokenization in Probing

In our experiments shown in Section 4.4 and Ap-
pendix C involving probing probabilities, we only
consider the subset of sentences in which both the
corresponding slang and literal paraphrase (if ap-
plicable) can be presented using a single token. We
perform this sampling procedure because we ob-
serve that all models tend to assign much higher
probabilities to subword tokens. That is, regardless
of whether a word is used as a slang or a literal
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(a) BERT
Tokenization Literal Slang

All Single 0.00017 4.24e-05
Slang: Single 0.208 1.81e-05
Literal: Multiple
Slang: Multiple 0.000118 0.252
Literal: Single

(b) RoBERTa
Tokenization Literal Slang

All Single 0.0146 0.00555
Slang: Single 0.265 0.00454
Literal: Multiple
Slang: Multiple 0.0111 0.29
Literal: Single

(c) XLNet
Tokenization Literal Slang

All Single 0.00163 0.000642
Slang: Single 0.118 0.00141
Literal: Multiple
Slang: Multiple 0.00484 0.0831
Literal: Single

(d) GPT-3
Tokenization Literal Slang

All Single 0.0293 0.014
Slang: Single 0.285 0.0125
Literal: Multiple
Slang: Multiple 0.0208 0.182
Literal: Single

Table 8: Mean language model likelihood scores of
slang and literal tokens under different tokenization con-
ditions. The first row in each table shows the probability
scores on sentences where both the slang and literal
tokens are tokenized into single tokens by all models.
The next two rows show results on sentences where the
individual model tokenizes one word type with multiple
tokens but uses a single token to represent the other.

paraphrase, words that comprise of subword tokens
always attain much higher probabilities. Table 8
shows probabilities on slang containing sentences
from OpenSub-Slang partitioned by tokenization.
This is problematic as the tokenization scheme is
dictating the magnitute of the probabilities over
distributional semantics. We thus control for this
confound by only considering sentences where all
words of interest can be tokenized into a single
token.
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