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Abstract

The task of scientific Natural Language Infer-
ence (NLI) involves predicting the semantic
relation between two sentences extracted
from research articles. This task was recently
proposed along with a new dataset called
SCINLI derived from papers published in the
computational linguistics domain. In this paper,
we aim to introduce diversity in the scientific
NLI task and present MSCINLI, a dataset con-
taining 132, 320 sentence pairs extracted from
five new scientific domains. The availability
of multiple domains makes it possible to study
domain shift for scientific NLI. We establish
strong baselines on MSCINLI by fine-tuning
Pre-trained Language Models (PLMs) and
prompting Large Language Models (LLMs).
The highest Macro F1 scores of PLM and LLM
baselines are 77.21% and 51.77%, respectively,
illustrating that MSCINLI is challenging for
both types of models. Furthermore, we show
that domain shift degrades the performance
of scientific NLI models which demonstrates
the diverse characteristics of different domains
in our dataset. Finally, we use both scientific
NLI datasets in an intermediate task transfer
learning setting and show that they can
improve the performance of downstream tasks
in the scientific domain. We make our dataset
and code available on Github.1

1 Introduction

Natural Language Inference (NLI) (Bowman
et al., 2015) or Textual Entailment is the task
of recognizing the semantic relation between
a pair of sentences where the first sentence is
called premise and the second sentence is called
hypothesis. Traditional NLI datasets such as SNLI
(Bowman et al., 2015), MNLI (Williams et al.,
2018a), SICK (Marelli et al., 2014), and ANLI
(Nie et al., 2019) classify the premise-hypothesis
pairs into one of three classes indicating whether

1https://github.com/msadat3/MSciNLI

the hypothesis entails, contradicts or is neutral to
the premise. These datasets have been used both as
a benchmark for Natural Language Understanding
(NLU) and to improve downstream tasks such as
fact verification (Martín et al., 2022) and fake news
detection (Sadeghi et al., 2022). In addition, they
have aided in the advancement of representation
learning (Conneau et al., 2017), transfer learning
(Pruksachatkun et al., 2020), and multi-task
learning (Liu et al., 2019a).

However, since the examples in these datasets
are derived from non-specialized domains, e.g., im-
age captions, they do not capture the unique linguis-
tic characteristics of different specialized domains
such as the scientific domain. More recently, Sadat
and Caragea (2022b) introduced the task of scien-
tific NLI along with the first dataset for this task
named SCINLI, which contains 107, 412 sentence
pairs extracted exclusively from scientific papers
related to computational linguistics published in
the ACL anthology (Bird et al., 2008; Radev et al.,
2009). To capture the inferences that frequently
occur in scientific text, Sadat and Caragea (2022b)
extended the three classes in traditional NLI to four
classes for scientific NLI—ENTAILMENT, REA-
SONING, CONTRASTING, and NEUTRAL. Since
its introduction, SCINLI has gained great inter-
est in the research community (Wang et al., 2022;
Deka et al., 2022; Wu et al., 2023).

Despite introducing a challenging task and en-
abling the exploration of NLI with scientific text,
SCINLI lacks the diversity to serve as a general
purpose scientific NLI benchmark because it is lim-
ited to a single domain (ACL). Moreover, due to
the unavailability of multiple domains, SCINLI is
not suitable for studying domain adaptation and
transfer learning on scientific NLI.

To this end, in this paper, we propose MSCINLI,
a scientific NLI dataset containing 132, 320 sen-
tence pairs extracted from papers published in five
different domains: “Hardware”, “Networks”, “Soft-
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ware & its Engineering”, “Security & Privacy”, and
“NeurIPS.” Similar to Sadat and Caragea (2022b),
we use a distant supervision method that exploits
the linking phrases between sentences in scientific
papers to construct a large training set and directly
use these potentially noisy sentence pairs during
training. For the test and development sets, we
manually annotate 4, 000 and 1, 000 examples, re-
spectively, to create high quality evaluation data
for scientific NLI.

We evaluate the difficulty of MSCINLI by ex-
perimenting with a BILSTM based model. We
then establish strong baselines on MSCINLI by a)
fine-tuning four transformer based Pre-trained Lan-
guage Models (PLMs): BERT (Devlin et al., 2019),
SCIBERT (Beltagy et al., 2019), ROBERTA (Liu
et al., 2019b) and XLNET (Yang et al., 2019); and
b) prompting two Large Language Models (LLMs)
in both zero-shot and few-shot settings: LLAMA-2
(Touvron et al., 2023), and MISTRAL (Jiang et al.,
2023). Furthermore, we provide a comprehen-
sive investigation into the robustness of scientific
NLI models by evaluating their performance un-
der domain-shift at test time. Finally, we explore
both SCINLI and MSCINLI in an intermediate
task transfer learning setting (Pruksachatkun et al.,
2020) to evaluate their usefulness in improving the
performance of other downstream tasks.

Our key findings are: a) MSCINLI is more chal-
lenging than SCINLI; b) the best performing PLM
baseline, which is based on ROBERTA, shows a
Macro F1 of 77.21% on MSCINLI indicating the
challenging nature of the task and a substantial
headroom for improvement; c) the best performing
LLM baseline with LLAMA-2 shows a Macro F1
of only 51.77% indicating that our dataset can be
used to benchmark the NLU and complex reason-
ing capabilities of powerful LLMs; d) domain-shift
at test time reduces the performance; and e) diver-
sity in the scientific NLI datasets helps toimprove
the performance of downstream tasks.

2 Related Work
Since the introduction of the NLI task, many
datasets derived from different data sources have
been made available. Datasets such as RTE (Dagan
et al., 2006) and SICK (Marelli et al., 2014) were
instrumental in the progress of NLI research in its
earlier days. However, the training set sizes of these
datasets are too small for large scale deep learning
modeling. SNLI (Bowman et al., 2015) was intro-
duced as a large dataset for NLI. SNLI contains

570K sentence pairs where premises are extracted
from image captions and human crowdworkers
were employed to write the hypotheses and assign
the labels. While SNLI is significantly larger than
all other prior datasets, due to the premises being
extracted from a single source, it lacks the diversity
to serve as a challenging and general purpose NLU
benchmark. Consequently, Williams et al. (2018b)
introduced MNLI containing 433K sentence pairs
where the premises are extracted from a diverse
number of sources such as face-to-face conversa-
tions, travel guides, and the 9/11 event. Apart from
the premise sources, both SNLI and MNLI are
constructed in a similar fashion and are the most
popular NLI datasets in the recent years.

Other NLI datasets include QNLI (Wang et al.,
2018)—derived from the SQuaD (Rajpurkar et al.,
2016) question-answering dataset; XNLI (Con-
neau et al., 2018)—a cross lingual evaluation cor-
pus derived by translating examples from MNLI;
ANLI (Nie et al., 2020)—constructed in an iter-
ative adversarial fashion to reduce spurious pat-
terns where human annotators develop examples
that can cause the model to make errors in each
iteration; SCITAIL (Khot et al., 2018)—derived
from a school level science question-answer cor-
pus in which the sentence pairs are classified into
two classes: entailment or not-entailment. These
datasets have also seen wide applications both
as NLU benchmarks and to improve other down-
stream NLP tasks. However, none of these datasets
contains sentences from scientific text that is found
in research articles. Moreover, the classes in
these datasets are not sufficient to study the inter-
sentence inferences and complexities that occur
frequently in scientific text.

Thus, to capture both the particularities in scien-
tific text and provide coverage to the frequently oc-
curring inter-sentence semantic relations, Sadat and
Caragea (2022b) introduced SCINLI. The sentence
pairs in SCINLI were extracted from papers pub-
lished in the ACL anthology (Radev et al., 2009)
using distant supervision based on different linking
phrases. Given that SCINLI was derived from a
single data source (ACL), it also lacks the neces-
sary diversity in the data. Therefore, with a similar
motivation behind constructing MNLI—to extend
SNLI to multiple domains, we propose MSCINLI,
the first diverse benchmark for scientific NLI, to
extend SCINLI to multiple domains. The avail-
ability of multiple domains in MSCINLI enables
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Domain First Sentence Second Sentence Class
NEURIPS A number of psychological studies have sug-

gested that our brains indeed perform causal
inference as an ideal observer (e.g., [10,
12–14]).

However, it has been challenging to come
up with a simple and biologically plausible
neural implementation for causal inference.

CONTRASTING

NETWORKS Researchers found out that the inhomogeneity
in the spatio-temporal distribution of the data
traffic leads to extremely insufficient utiliza-
tion of network resources.

Thus, it is important to fundamentally under-
stand this distribution to help us make better
resource planning or introduce new manage-
ment tools such as time-dependent pricing to
reduce the congestion.

REASONING

HARDWARE Scaling PCM in deep sub-micron regime faces
non-negligible inter-cell thermal interference
during programming, referred to as write dis-
turbance (WD) phenomenon.

That is, the heat generated for writing one
cell may disseminate beyond this cell and
disturb the resistance states of its neighbor-
ing cells.

ENTAILMENT

SECURITY
& PRIVACY

Following Google’s best practices for devel-
oping secure apps, the password database is
saved in the app data folder, which should be
accessible only to the app itself.

this defines a hierarchical relationship be-
tween domains where the bounded domain
cannot have more permissions than its bound-
ing domain (the parent).

NEUTRAL

SOFTWARE
& ITS ENGI-
NEERING

If the delete operation is complex, then it ad-
vances to the discovery mode after which it
will advance to the cleanup mode.

On the other hand, if it is simple, then it
directly advances to the cleanup mode (and
skips the discovery mode).

CONTRASTING

Table 1: Examples of sentence pairs from MSCINLI extracted from different domains. The linking phrases at the beginning of
the second sentence (strikethrough text in the table) are deleted after extracting the sentence pairs and assigning the labels.

the evaluation of the models’ generalization ability
under domain shift.

Recently, LLMs have demonstrated near human
performance in many NLP tasks including NLI. For
example, Zhong et al. (2023) reported that Chat-
GPT2 shows a zero-shot accuracy of 88% on RTE
and 89.3% on the matched test set of MNLI. Thus,
developing benchmark tasks and datasets which are
challenging for even powerful LLMs is paramount.
While the primary goal of our dataset is to introduce
diversity in scientific NLI, because of the complex
reasoning and inference required to predict the se-
mantic relation between a pair of sentences from
scientific text, it can serve as a challenging bench-
mark even for powerful LLMs.

3 MSciNLI: A Multi-Domain Scientific
NLI Benchmark

In this section, we describe the data sources for
MSCINLI, its construction process and statistics.
3.1 Data Sources
We derive MSCINLI from the papers published
in four categories of the ACM digital library3 —
‘Hardware’, ‘Networks’, ‘Software and its Engi-
neering’, ‘Security and Privacy’ and the papers pub-
lished in the NeurIPS4 conference. Table 1 shows
examples of sentence pairs extracted from our five
domains. Further details on our data sources (e.g.,
publication years of the papers) are available in
Appendix A.1.

2https://chat.openai.com/
3https://dl.acm.org/
4https://papers.nips.cc/

3.2 Data Extraction and Automatic Distant
Supervision Labeling

We closely follow the data extraction and automatic
labeling procedure based on distant supervision
proposed by Sadat and Caragea (2022b). Specif-
ically, we use linking phrases between sentences
(e.g., “Therefore”, “Thus”, “In contrast”, etc.) to
automatically annotate a large (potentially noisy)
training set with the NLI relations. The complete
list of linking phrases and their mapping to the
NLI relations are presented in Appendix A.2. The
procedure is detailed below.

For the ENTAILMENT, CONTRASTING, and
REASONING classes, we extract adjacent sentence
pairs from the papers collected from our five do-
mains such that the second sentence starts with a
linking phrase. For each extracted sentence pair,
the relation corresponding to the linking phrase at
the beginning of the second sentence is assigned
as its class label. For example, if the second sen-
tence starts with ‘Therefore’ or ‘Consequently’, the
example is labeled as REASONING. Note that the
linking phrase is removed from the second sentence
after assigning the label to prevent the models from
predicting the label by simply learning a superficial
correlation between the linking phrase and the label
and without actually learning the semantic relation.

For the NEUTRAL class, we construct the sen-
tence pairs by extracting both sentences in the pair
from the same paper using three approaches as fol-
lows: a) two random sentences that do not begin
with any linking phrase are paired together; b) a
random sentence which does not begin with any
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#Examples #Words ‘S’ parser Word

Domain Train Dev Test Prem. Hyp. Prem. Hyp. Overlap Agrmt.

SCINLI (ACL) 101,412 2,000 4,000 27.38 25.93 96.8% 96.7% 30.06% 85.8%

HARDWARE 25,464 200 800 26.10 24.59 94.3% 94.5% 30.52% 84.6%
NETWORKS 25,464 200 800 26.37 25.01 93.9% 93.7% 30.17% 90.5%
SOFTWARE & ITS ENGINEERING 25,464 200 800 25.80 24.51 93.9% 94.1% 29.83% 86.5%
SECURITY & PRIVACY 25,464 200 800 26.14 24.50 94.0% 94.2% 29.91% 90.4%
NEURIPS 25,464 200 800 29.80 29.66 96.0% 95.1% 31.04% 88.5%

MSCINLI Overall 127,320 1,000 4,000 26.84 25.85 94.4% 94.3% 30.29% 88.0%

Table 2: Comparison of key statistics of MSCINLI with SCINLI.

linking phrase is chosen as the first sentence and is
paired with the second sentence of a random pair
that belongs to one of the other three classes; c) a
random sentence which does not begin with any
linking phrase is chosen as the second sentence and
is paired with the first sentence of a random pair
that belongs to one of the other three classes.

After extracting the sentence pairs for all four
classes, we randomly split them at paper level into
train, test and development sets (to ensure that the
sentence pairs extracted from a certain paper end
up in a single set). We directly use the automati-
cally annotated examples for training the models.
However, our use of distant supervision during the
construction of the training set may introduce label
noise when the relation between a pair of sentences
is not accurately captured by the linking phrase.
Therefore, to ensure a realistic evaluation, we em-
ploy human annotators to manually annotate the
sentence pairs in the test and dev sets with one of
the four scientific NLI relations as described below.

3.3 Multi-domain Scientific NLI Test and
Development Set Creation

Three expert annotators (see Appendix A.3 for
more details about the annotators and the instruc-
tions) are employed to annotate the test and dev
sets of MSCINLI. Specifically, a random subset
(balanced over the classes) of sentence pairs from
the test and dev sets are given to the three anno-
tators who are instructed to annotate their labels
(the relation between the sentences) based only on
the context available in the two sentences in each
example. If the annotators are unable to determine
the label based on the two sentences of a pair, they
mark it as unclear. We assign a gold label to each
example based on the majority vote from the an-
notators. In rare cases (≈ 3%) where there is no
consensus among the annotators for an example,
we do not assign a gold label. The examples for
which there is a match between the gold label and

the automatically assigned label (based on linking
phrases) are included in their respective split and
the rest are filtered out.

For each domain, we continue sampling random
subsets (without replacement) of examples and
manually annotate them until we have at least 800
clean examples (200 from each class) in the test set
and 200 clean examples (50 from each class) in the
dev set. In total, we annotate 6, 992 examples (all
domains combined), among which 6, 153 have an
agreement between the gold label and the automati-
cally assigned label. That is, the overall agreement
rate for MSCINLI is 88.0%. Moreover, we find
a Fleiss-k score of 70.51% for MSCINLI indicat-
ing substantial agreement among the annotators
(Landis and Koch, 1977).

Data Balancing To ensure equal representation,
the number of examples per class in each domain
are downsampled to a size of 200 and 50 in the test
and dev set, respectively. Consequently, we end up
with a combined (over the domains) test and dev
sets of 4000 and 1000 examples, respectively (bal-
anced over the classes and domains). We balance
the training set by using a similar procedure.

3.4 Data Statistics
We show a comparison of key statistics of our
dataset with the SCINLI dataset in Table 2.
Dataset Size We can see that the total num-
ber of examples (<premise, hypothesis> pairs) in
MSCINLI is higher than that in SCINLI, the only
NLI dataset over scientific text. Moreover, each
domain in MSCINLI has a large number of exam-
ples in the training set which enables exploration
of NLI in-domain as well as across domains.

Sentence Parses Similar to SCINLI, we use the
Stanford PCFG Parser (3.5.2) (Klein and Manning,
2003) to parse the sentences in our dataset. We
can see in Table 2 that ≈ 94% of the sentences
in MSCINLI have an ‘S’ root showing that most
sentences in our dataset are syntactically complete.
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Token Overlap The percentage of word over-
lap between the premise and hypothesis in each
pair in MSCINLI is also low and close to that of
SCINLI as shown in Table 2. Thus, like SCINLI,
our MSCINLI dataset is also less vulnerable to
surface level lexical cues.

4 MSCINLI Evaluation

Our main experiments for evaluating MSCINLI
consists of three stages. First, we evaluate its dif-
ficulty by experimenting with a BiLSTM model
(§4.1). Next, we establish strong baselines on
MSCINLI with four Pre-trained Language Models
(PLMs) and two Large Language Models (LLMs),
and compare them with human performance (§4.2).
Finally, we analyze our best performing baseline
by investigating its performance when it is fine-
tuned on various subsets of the training set and
its performance under domain shift (§4.3). Our
implementation details are given in Appendix B.
Additional experiments on the impact of dataset
size and diversity in model training; performance
of another LLM; spurious correlations (Gururan-
gan et al., 2018); and class-wise performances of
the baselines are shown in Appendix C.

4.1 Difficulty Evaluation

BiLSTM Model The architecture of this model
(described in Appendix B) is similar to the BiL-
STM model adopted by Williams et al. (2018a).
We can see a comparison of the performance of
this model on MSCINLI and SCINLI in Table 3.
We observe the following:

MSCINLI is more challenging than SCINLI.
We can see that the Macro F1 of the BiLSTM
model for SCINLI is 61.12% whereas it is only
54.40% for MSCINLI (the model is trained on the
combined MSCINLI training set). These results
indicate that MSCINLI presents a broader range of
challenges for the model compared with SCINLI,
making the scientific NLI task more difficult.

4.2 Baselines

Here, we describe the baseline models for
MSCINLI and discuss their performance.

4.2.1 PLM Baselines
We fine-tune the base variants of the following
PLMs on the combined MSCINLI training set:
BERT (Devlin et al., 2019); SCIBERT (Beltagy
et al., 2019); (c) ROBERTA (Liu et al., 2019b);

Dataset F1 Acc

SCINLI (ACL) 61.12 61.32
MSCINLI
xxx-Hardware 53.61 53.87
xxx-Networks 54.78 54.95
xxx-Software & its Engineering 51.96 52.20
xxx-Security & Privacy 52.18 52.62
xxx-NeurIPS 59.19 59.41
xxx-Overall 54.40 54.61

Table 3: The Macro F1 (%) and Accuracy (%) of the BiLSTM
model on SCINLI and MSCINLI.

and (d) XLNET (Yang et al., 2019). We run each
experiment with the PLM baselines three times
with different random seeds and report the average
and standard deviation of their domain-wise and
overall Macro F1 scores in Table 4. Our findings
are described below.

Domain specific pre-training helps improve the
performance. We can see that SCIBERT shows
a better performance than BERT in all domains.
Note that SCIBERT does not address any weak-
nesses of BERT and is trained using the same pro-
cedure as BERT, except SCIBERT exclusively
uses scientific text for pre-training whereas BERT
is trained on the BookCorpus and Wikipedia. Thus,
pre-training on scientific documents helps improve
the performance of scientific NLI.

“Robust” pre-training leads to better perfor-
mance. Both ROBERTA and XLNET are de-
signed to address different weaknesses of BERT.
ROBERTA focuses on optimizing the model in a
more robust manner during pre-training while XL-
NET aims at incorporating auto-regressive nature of
natural language without removing bi-directional
context. Both of these models substantially outper-
form BERT in all domains and ROBERTA consis-
tently outperforms XLNET. We can also observe
that ROBERTA leads to even better performance
compared with SciBERT in most cases.

4.2.2 LLM Baselines

We experiment with two LLMs as baselines for our
dataset: (a) LLAMA-2 (Touvron et al., 2023) and
(b) MISTRAL (Jiang et al., 2023). More specifi-
cally, we use the Llama-2-13b-chat-hf and Mistral-
7B-Instruct-v0.1 variants of LLAMA-2 and MIS-
TRAL, containing 13 billion and 7 billion parame-
ters, respectively. Both of these models are chosen
because of their success in many NLP tasks that re-
quire complex reasoning and problem solving (e.g.,
the MMLU benchmark (Hendrycks et al., 2021)).

1614



MODEL HARDWARE NETWORKS SWE SECURITY NEURIPS OVERALL

BERT 72.89± 0.1 74.10± 1.3 71.37± 0.3 72.38± 2.5 75.46± 0.8 73.24± 0.8
SCIBERT 75.91± 0.1 76.51± 0.5 75.28± 1.1 75.94± 0.4 78.78± 0.1 76.48± 0.4
XLNET 75.59± 0.5 75.25± 0.1 73.98± 0.6 75.09± 0.8 77.64± 1.0 75.51± 0.3

ROBERTA 77.79$ ± 0.2 75.45± 1.5 77.10# ± 0.7 77.71$ ± 0.2 78.04± 0.8 77.21# ± 0.3

Table 4: Macro F1 scores (%) of the PLM baselines on different domains. Here, SWE: Software & its Engineering and
SECURITY: Security & Privacy. # and $ indicate statistically significant improvement by ROBERTA over XLNET and over
both SCIBERT and XLNET, respectively according to a paired t-test with p < 0.05. Best performance is shown in bold, and
second best is underlined.

MODEL PROMPT HARDWARE NETWORKS SWE SECURITY NEURIPS OVERALL

LLAMA-2 PROMPT - 1zs 20.31 21.34 19.77 21.36 18.92 20.41
PROMPT - 2zs 18.23 20.60 21.26 19.87 17.62 19.53
PROMPT - 3zs 30.27 32.64 30.49 30.16 27.58 30.36
PROMPT - 1fs 24.42 26.69 27.75 28.84 22.98 26.21
PROMPT - 2fs 37.49 38.27 34.25 36.32 35.26 36.39
PROMPT - 3fs 53.41 51.38 50.54 52.75 50.38 51.77

MISTRAL PROMPT - 1zs 21.72 21.48 19.87 22.77 21.36 21.43
PROMPT - 2zs 34.54 32.95 32.5 33.51 34.71 33.66
PROMPT - 3zs 34.64 33.68 34.14 36.00 34.78 35.00
PROMPT - 1fs 48.21 42.50 45.68 44.40 45.98 45.49
PROMPT - 2fs 39.83 38.71 35.45 36.70 36.30 37.55
PROMPT - 3fs 30.75 31.17 31.23 34.38 21.92 30.23

Table 5: Macro F1 scores (%) of the LLM baselines on different domains. Here, SWE: Software & its Engineering and
SECURITY: Security & Privacy. Best performance is shown in bold, and second best is underlined.

We construct 3 multiple-choice question tem-
plates for the scientific NLI task to be used for
prompting the LLMs:

• PROMPT - 1: this prompt asks the LLMs to
predict the class given a sentence pair with the
four class names as the choices.

• PROMPT - 2: to provide further context to
the LLMs about the scientific NLI task, this
prompt first defines the scientific NLI classes
and then poses the question to predict the class
with the class names as the choices.

• PROMPT - 3: instead of providing the defi-
nitions of the classes first and then asking a
question with the class names as the choices,
this prompt directly uses the class definitions
as the choices.

The three prompt templates can be seen in Ap-
pendix D. We evaluate the performance of the
LLMs in two settings: a) zero-shot: no input-output
exemplars are shown to the model; b) few-shot:
four input-human-annotated output exemplars (one
for each class) are pre-pended to the prompt to eval-
uate the LLMs’ in-context learning (Brown et al.,
2020) ability for scientific NLI. The zero-shot and
few-shot versions of each prompt i is denoted as
PROMPT - izs, and PROMPT - ifs, respectively.

We employ a greedy decoding strategy for all of
our LLM based experiments and report the domain-

wise and the overall Macro F1 scores of each ex-
periment in Table 5. We find the following:

LLAMA-2 performs better than MISTRAL. We
can see that LLAMA-2 with PROMPT - 3fs shows
the best performance among all of our LLMs with
a Macro F1 of 51.77%. This is 6.28% higher than
the best performance shown by MISTRAL with
PROMPT - 1fs. Thus, LLAMA-2 with its 13B pa-
rameters has more complex reasoning capability
compared to MISTRAL with its 7B parameters.

Using class-definitions as choices in the prompt
and the few-shot prompt variants improve the
performance. We can see that the performance
of both LLMs are generally better when we use
PROMPT - 3. This indicates that using the class
definitions as the potential choices in the multiple-
choice question is more suitable for the models,
resulting in better performance. We can also see
that the few-shot variants of the prompts generally
outperform their zero-shot counterparts. Thus, both
LLMs are capable of in-context learning and pro-
viding few examples can boost their performance.

Scientific NLI is highly challenging for state-of-
the-art LLMs Despite the promising few-shot
performance, based on the results in Table 5, it
is evident that the task of scientific NLI is highly
challenging even for powerful LLMs. Therefore,
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Method Macro F1 Accuracy

ROBERTA 77.21± 0.30 77.42± 0.30
LLAMA-2 51.77± 0.00 51.10± 0.00
HUMAN - E (EST.) 89.33± 1.18 89.10± 1.10
HUMAN - NE (EST.) 79.78± 4.43 79.49± 4.84

Table 6: Comparison of estimated human expert and non-
expert performances with ROBERTA and LLAMA-2 (with
PROMPT - 3) on the MSCINLI test set. Here, E: expert, NE:
non-expert.

our dataset along with SCINLI can serve as a chal-
lenging evaluation benchmark for LLMs.

4.2.3 Human Performance
We hire three expert annotators (with relevant
domain-specific background) and three non-expert
annotators (with no background in any of the five
domains) to evaluate the human performance on
MSCINLI. Note that these expert and non-expert
annotators are not involved in our dataset construc-
tion process (see Appendix A.3 for more details).
Following other popular benchmarks (e.g., SUPER-
GLUE (Wang et al., 2019)), we estimate the human
performance by re-annotating a small randomly
sampled subset of our test set. Each example in the
subset is re-annotated by 3 expert and 3 non-expert
annotators following the same data annotation pro-
cedure described in Section 3.3. We report the
average and the standard deviation of the expert
and non-expert performances (Macro F1) on this
subset, and compare them with the best performing
PLM baseline, ROBERTA, and the best perform-
ing LLM baseline, LLAMA-2 with PROMPT - 3fs

in Table 6. Our findings are described below:

Experts outperform non-experts, and a substan-
tial gap exists between model performance and
human expert performance. As expected, ex-
pert annotators with the relevant domain-specific
knowledge substantially outperform the non-expert
annotators. Despite the lower performance by the
non-experts (compared with experts), we can see
that they still outperform our baselines. Further-
more, the performance by the experts is signifi-
cantly higher than both ROBERTA and LLAMA-2.
Therefore, there is a substantial headroom for im-
proving the models’ performance which can foster
future research on scientific NLI.

4.3 Analysis
In this section, first, we diagnose the MSCINLI
training set by fine-tuning separate models us-
ing different training subsets selected by perform-
ing data cartography (Swayamdipta et al., 2020)

Data Subset Macro F1 Accuracy

100% 77.21± 0.30 77.42± 0.30
33% easy-to-learn 73.71∗ ± 1.40 73.74∗ ± 1.43
33% hard-to-learn 34.11∗ ± 5.65 37.99∗ ± 1.53
33% ambiguous 75.65∗ ± 0.27 75.57∗ ± 0.26
100%− top 25% hard 76.60± 0.65 76.64± 0.66
100%− top 5% hard 77.47± 0.23 77.44± 0.28

Table 7: The Macro F1 (%) and Accuracy (%) of ROBERTA
fine-tuned on different subsets of MSCINLI training set. ∗

indicates a statistically significant difference with the perfor-
mance of the model trained on 100% data according to a
paired t-test with p < 0.05.

(§4.3.1). Next, we study the model behavior un-
der domain shift at test time (§4.3.2). Finally,
we perform cross-dataset experiments where we
analyze the performance of models fine-tuned
on SCINLI, MSCINLI, and their combination
(§4.3.3). We choose our best performing baseline
model, ROBERTA for these experiments.

4.3.1 Data Cartography Experiments
We perform a data cartography of MSCINLI to
characterize each example in the training set using
two metrics — confidence and variability. Based
on this characterization, inspired by (Swayamdipta
et al., 2020), first, we fine-tune three different
ROBERTA models using the following subsets of
the training set: 1) 33% easy-to-learn — exam-
ples with high confidence; 2) 33% hard-to-learn
— examples with low confidence; 3) 33% ambigu-
ous — examples with high variability (the detailed
method used for selecting these subsets of train-
ing examples is available in Appendix E). In ad-
dition, to further understand the effect of hard-to-
learn examples in model training, we fine-tune two
other models using the full training set minus — 1)
top 25% hard-to-learn (25% examples with lowest
confidence) and 2) top 5% hard-to-learn examples
(5% examples with lowest confidence), denoted
as ‘100%− top 25% hard’, and ‘100%− top 5%
hard’, respectively. The results are shown in Table
7. We find the following.

Ambiguous examples yield stronger models
while the full training set yields better perfor-
mance. We can see that the model fine-tuned on
the 33% ambiguous examples shows the best per-
formance among the 33% subsets. Therefore, ‘am-
biguousness’ in the training examples helps train
stronger scientific NLI models. Despite the strong
performance shown by 33% ambiguous, its Macro
F1 is still lower than the 100% of the training set.
Furthermore, although 33% hard-to-learn shows a
poor performance (34.11% in Macro F1), remov-
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Train
Test HARDWARE NETWORKS SWE SECURITY NEURIPS ACL

HARDWARE 74.93± 1.4 73.11± 1.2 74.24± 0.2 72.98± 2.3 73.97± 0.7 72.40± 0.8
NETWORKS 75.04± 1.3 73.31± 1.7 73.29± 0.5 73.44± 1.0 74.61± 1.1 72.72± 1.0
SWE 73.60± 1.1 71.25± 0.8 74.44± 0.5 73.24± 1.4 75.31± 1.4 73.06± 1.8
SECURITY 72.69± 2.5 70.94± 1.8 74.14± 1.7 74.45± 2.5 73.12± 1.6 72.85± 1.3
NEURIPS 73.64± 0.8 71.94± 1.1 71.76± 1.2 71.62± 0.8 76.02± 1.1 74.15± 0.8
ACL - SMALL 74.29± 0.1 71.81± 0.8 73.44± 1.4 73.38± 1.1 74.95± 1.9 75.30± 0.5

Table 8: ID and OOD Macro F1 (%) of ROBERTA models trained on different domains. ID performance is shown in gray.
Here, SWE: SOFTWARE & ITS ENGINEERING and SECURITY: SECURITY & PRIVACY.

Tr
Te SciNLI MSciNLI MSciNLI+

SCINLI 78.08 75.19 76.63
MSCINLI 76.74 77.21 76.95
MSCINLI+ (S) 77.78 77.37 77.54
MSCINLI+ 79.48 78.07 78.76

Table 9: Macro F1 scores of cross dataset experiments with
ROBERTA. Here, Tr: Train, Te: Test.

ing a percentage of them (e.g., 25%, and 5% in
the bottom block of Table 7) from the 100% of the
training set does not result in any statistically sig-
nificant difference in performance compared with
100%. Therefore, all examples in the training set
are useful for training the most optimal model.

4.3.2 Out-of-domain Experiments
Here, we train ROBERTA on one domain and test
it on another domain (out-of-domain) and contrast
it with the ROBERTA trained and tested on the
same domain (in-domain). In addition to the five
domains in MSCINLI, we also experiment with
the ACL domain from SCINLI. For a fair com-
parison with the other domains, we downsample
the training set from SCINLI to the same size as
that of the other domains and denote it as ACL -
SMALL. Both in-domain (ID) and out-of-domain
(OOD) results are shown in Table 8. Our findings
are described below:

The domain shift reduces the performance. In
general, for each domain, the ID model shows a
higher performance than their OOD counterparts
(see each column in Table 8). For example, the
model fine-tuned on the NEURIPS training set
shows a Macro F1 of 76.02% when it is tested
on NEURIPS as well. The performance sees a de-
cline when the models trained on other domains are
tested on NEURIPS (e.g., 74.61% with the NET-
WORKS model). This indicates that the sentence
pairs in each domain exhibit unique linguistic char-
acteristics which are better captured by a model
trained on in-domain data.

4.3.3 Cross-dataset Experiments
For the cross-dataset experiments, we train four
separate ROBERTA models on: 1) SCINLI, 2)
MSCINLI, 3) MSCINLI+ (S) - a combination of
MSCINLI and ACL - SMALL, and 4) MSCINLI+
- a combination of MSCINLI and SCINLI. All
four models are then evaluated using the separate
SCINLI and MSCINLI test sets, and their combi-
nation i.e., the MSCINLI+ test set. The results are
reported in Table 9. We also evaluate the models
on the domain-wise test sets, and general domain
NLI datasets, and report the results in Appendix F.

Diverse training data leads to robust models.
The performance sees a decline for both SCINLI
and MSCINLI under ‘dataset-shift.’ However, the
model fine-tuned with SCINLI shows a higher
drop in performance compared with the model
fine-tuned with MSCINLI in the out-of-dataset
setting. Specifically, the out-of-dataset Macro F1
of the model fine-tuned with SCINLI (when it is
tested on MSCINLI) drops by 2.02% from the in-
dataset performance of MSCINLI (77.21%). In
contrast, the out-of-dataset Macro F1 of the model
fine-tuned with MSCINLI (when it is tested on
SCINLI) drops by only 1.34% from the in-dataset
performance of SCINLI (78.08%). This indicates
that the diversity in the data can train more robust
scientific NLI models with stronger generalization
capabilities.

Combining the datasets yields the best perfor-
mance. The best performance for both datasets
and their combination is seen when the model is
fine-tuned on MSCINLI+. Therefore, fine-tuning
the model on a larger training set containing di-
verse examples yields better performance. We
can see that the models trained on MSCINLI+ (S)
show a lower performance than those trained on
MSCINLI+. This is because MSCINLI+ (S) is
smaller in size than MSCINLI+. However, due
to the additional diversity introduced by the ACL
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Intermediate training data

Dataset None MSciNLI+ (MLM) MNLI SciNLI MSciNLI+

SCIHTC 52.59 48.95 51.83 51.83 53.47
PAPER FIELD 73.66 73.46 73.64 73.61 74.09
ACL-ARC 69.57 63.95 59.73 68.52 73.04

Table 10: Macro F1 (%) of ROBERTA with intermediate task transfer using different NLI datasets.

domain, MSCINLI+ (S) consistently outperforms
MSCINLI. Thus, the benefit of combining the
datasets holds for MSCINLI+ (S) as well.

5 Scientific NLI as an Intermediate Task
Research (Martín et al., 2022; Sadeghi et al., 2022)
has shown that traditional NLI datasets (e.g., SNLI,
MNLI) can aid in improving the performance of
downstream NLP tasks. While the SCINLI dataset
has already been used to improve sentence repre-
sentation (Deka et al., 2022), it was used in con-
junction with the traditional NLI datasets. In this
section, we investigate whether the scientific NLI
datasets by themselves can aid in improving the per-
formance of downstream tasks in an intermediate
task transfer setting (Pruksachatkun et al., 2020).

To this end, first, a ROBERTA model (out-of-the-
box pre-trained with a dynamic MLM objective)
is fine-tuned on the downstream tasks. Next, we
perform intermediate training of four separate out-
of-the-box ROBERTA models with the following
approaches before fine-tuning them on the down-
stream tasks: 1) with a self-supervised dynamic
MLM objective (with no information of the NLI
classes) on MSCINLI+; 2) with a supervised NLI
objective using MNLI; 3) with a supervised scien-
tific NLI objective using SCINLI; 4) with a super-
vised scientific NLI objective using MSCINLI+.

We experiment with the following downstream
tasks: SCIHTC (Sadat and Caragea, 2022a), PA-
PER FIELD (Beltagy et al., 2019), and ACL-ARC
(Jurgens et al., 2018). SCIHTC and PAPER FIELD

are topic classification datasets for scientific papers
and ACL-ARC is a citation intent classification
dataset. Details on these tasks and their labels are
in Appendix G. The results for each downstream
task are presented in Table 10. We find that:

Scientific NLI can aid in improving the per-
formance of downstream tasks. As we can
see from the table, intermediate training with
an unsupervised MLM objective on MSCINLI+
(MSciNLI+ (MLM) in the table) fails to improve
the performance of the downstream tasks over the
models which are fine-tuned without any interme-

diate training. In contrast, supervised intermediate
training on MSCINLI+ improves the performance
of all datasets over all other models. This indicates
that training a model further on the scientific NLI
task can learn better and more relevant represen-
tations for the downstream tasks in the scientific
domain. We can also see that supervised intermedi-
ate training on MNLI fails to show improvement
for any of the downstream tasks. This illustrates the
need for NLI datasets capturing the unique linguis-
tic properties of scientific text (e.g., SCINLI and
MSCINLI) in order to improve the performance
of downstream tasks in this domain. Furthermore,
we observe that intermediate training with a sci-
entific NLI objective only using SCINLI fails to
improve the performance of the downstream tasks.
Therefore, while intermediate training with a sci-
entific NLI objective can aid in improving the per-
formance of downstream tasks, the diversity in the
data is essential.

6 Conclusion & Future Directions

We introduce a diverse scientific NLI benchmark,
MSCINLI derived from five scientific domains.
We show that MSCINLI is more difficult to clas-
sify than the only other related dataset, SCINLI.
We establish strong baselines on MSCINLI and
find that our dataset is challenging for both PLMs
and powerful LLMs. Furthermore, we provide a
comprehensive investigation into the performance
of scientific NLI models under domain-shift at test
time and their usage in downstream NLP tasks. In
the future, we will develop methods to improve the
construction of prompts that enable better reason-
ing and inference capabilities of LLMs.
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Limitations

From our experiments, we can see that the perfor-
mance of the LLMs is low (best performing Macro
F1 is 51.77%) on MSCINLI, which shows a lot of
room for future improvement. The design of the
prompts have a high impact on the performance
as we can see from the results, thus, further explo-
ration of other prompting strategies can potentially
improve the performance further. In the future, we
will focus on the design of other prompts to boost
the performance of LLMs in scientific NLI.
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Class Linking Phrases

CONTRASTING ‘However’, ‘On the other hand’, ‘In
contrast’, ‘On the contrary’

REASONING ‘Therefore’, ‘Thus’, ‘Consequently’,
‘As a result’, ‘As a consequence’,
‘From here, we can infer’

ENTAILMENT ‘Specifically’, ‘Precisely’, ‘In particu-
lar’, ‘Particularly’, ‘That is’, ‘In other
words’

Table 11: Linking phrases used to extract sentence pairs
and their corresponding classes.

A Additional Dataset Details

A.1 More Details about Data Sources
To construct our dataset, for all five domains, we
choose papers published after the year 2000. In
particular, the sentence pairs for the training set
of NEURIPS are extracted from papers published
between 2000 and 2018 and the test and develop-
ment sets are derived from the papers published in
2019. The training sets for the four ACM domains—
HARDWARE, NETWORKS, SOFTWARE & ITS EN-
GINEERING, and SECURITY & PRIVACY are con-
structed from the papers published between 2000
and 2014. The sentence pairs extracted from the
papers published between 2015 and 2017 are used
to create the test and development sets for each
domain.

A.2 List of Linking Phrases
To construct MSCINLI, we use the same list of
linking phrases and their corresponding classes as
SCINLI. Table 11 shows the linking phrases and
their classes.

A.3 Details about Annotators and Annotation
Instructions

In this section, we provide the details about the
annotators we hired for constructing the test and
development sets of MSCINLI (§A.3.1), and for
evaluating the human performance (§A.3.2).

A.3.1 Annotators for constructing the test and
development sets.

For constructing the MSCINLI development and
test sets (in Section 3.3), we hired 7 computer sci-
ence undergraduate students as research interns at
our institution who were compensated in an hourly
basis by $15/hour. Each annotator was trained with
several pilot iterations before they started the final
annotations for constructing the dataset. Moreover,

out of the 7 students that we initially hired, only
3 were selected as the final annotators based on
their performance during training to ensure a high
quality of labels in our dataset.

The training phase of the students consists of 3
iterations. At each iteration, all 7 students were
given a pilot batch and were instructed to predict
the label based on the two sentences in each sam-
ple. We provide feedback to all students at the end
of each iteration. In addition to the hired students,
an author of this paper also annotated the exam-
ples in the third training iteration. 3 students were
then selected as the final annotators who have the
top three agreement rates with the author (79.3%,
78.6%, 75.8%). Once the annotators are trained,
they start the final annotations to create the bench-
mark evaluation set of MSCINLI.

Note that the annotators are instructed to label
each pair of sentences based on the four scientific
NLI relations and not based on what could be a
possibly good linking phrase between them. This
annotation instruction ensures that the scientific
NLI task formulation remains the same as the tradi-
tional NLI task—predicting the semantic relation
between a pair of sentences.

A.3.2 Annotators for evaluating human
performance.

For evaluating the human performance on
MSCINLI (in Section 4.2.3), we hire expert as well
as non-expert annotators via a crowd-sourcing plat-
form called COGITO.5 We ensured that none of the
annotators for evaluating the human performance is
involved with the construction of MSCINLI at any
capacity. We distinguish between the expert and
non-expert annotators based on whether they have
the relevant background on the scientific domains
in MSCINLI. Both sets of annotators are trained
in the same fashion as the annotators who helped
construct the test and development sets (described
in the previous paragraphs). Both expert and non-
expert annotators are paid at a rate of $0.6/sample.

A.4 Class-wise Agreement Rate

The total number of annotated examples while con-
structing the test and development sets (in Section
3.3) for each class and the agreement rate between
the gold label and the automatically assigned label
based on linking phrases can be seen in Table 12.

5https://www.cogitotech.com/
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Class #Annotated Agreement

Contrasting 1748 92.9%
Reasoning 1748 83.1%
Entailment 1748 79.2%
Neutral 1748 96.7%
Overall 6992 88.0%

Table 12: Number of manually annotated examples and the
agreement rate between the gold labels and automatically
assigned labels for each class.

A.5 Difference/Closeness of the Domains

We quantify the differences/closeness of the do-
mains in MSCINLI and the computational linguis-
tic domain from SCINLI as the pairwise cosine
similarities of the probability distributions of the
RoBERTa-base6 vocabulary over each domain. The
cosine similarities are reported in Table 13. We
can see that the first four domains in the Table
show a high similarity among them. Recall that
the sentence pairs for all of these four domains are
extracted from papers published in the ACM dig-
ital library. The high cosine similarities illustrate
that the writing style and the vocabulary used in
these domains are similar. In contrast, the cosine
similarity of NEURIPS is the lowest with all other
four domains in MSCINLI. Therefore, the vocabu-
lary and the writing style in the papers published
in NEURIPS differs substantially from the other
four domains. Furthermore, it can be seen that the
similarity between ACL and the five domains in
MSCINLI is low, which illustrates that our dataset
indeed diversifies the task of scientific NLI.

B Implementation Details

All of our experiments are implemented using Py-
Torch.7 The details are provided below.

BILSTM baseline Two separate BiLSTM layers
are used to get the sentence level representations
of the two sentences in each pair. The token em-
beddings of each sentence are sent through the re-
spective BiLSTM layer and then the output hidden
states are averaged to get the sentence level rep-
resentations. The context vector Sc is derived by
concatenating the sentence level representations,
their element-wise multiplication and difference.
Sc is projected with a weight matrix W ∈ Rd×4

by using a linear layer with softmax to predict the
class.

6https://huggingface.co/roberta-base
7https://pytorch.org/

HW NW SWE SEC NIPS ACL

HW 1
NW 0.94 1
SWE 0.95 0.95 1
SEC 0.93 0.96 0.97 1
NIPS 0.70 0.63 0.63 0.61 1
ACL 0.76 0.69 0.71 0.68 0.81 1

Table 13: Pair-wise cosine similarities of the probability
distributions of the vocabulary of RoBERTa-base over domain-
wise training sets. Here, HW:HARDWARE, NW:NETWORKS,
SWE: SOFTWARE & ITS ENGINEERING., SEC: SECURITY
& PRIVACY, NIPS: NEURIPS, and ACL: data from SCINLI.

Each BiLSTM layer is equipped with 300D
Glove (Pennington et al., 2014) embeddings which
are allowed to be updated during training. The
hidden state size for both BiLSTM layers is set at
300. The models are trained for 30 epochs with
early stopping where we set the patience to be 10.
The Macro F1 of the development score in every
epoch is used as the stopping criteria. We use a
cross-entropy loss and Adam optimizer (Kingma
and Ba, 2014) to optimize the model parameters.
The min-batch size and learning rate are set at 64
and 0.001, respectively.

PLM baselines The details of our pre-trained
models are described as follows: (a) BERT (De-
vlin et al., 2019) - pre-trained by masked lan-
guage modeling (MLM) and Next Sentence Predic-
tion (NSP) objectives on BookCorpus (Zhu et al.,
2015) and Wikipedia; (b) SCIBERT (Beltagy
et al., 2019) - pre-trained using the same objec-
tives as BERT but using scientific text exclusively
as the pre-training data; (c) ROBERTA (Liu et al.,
2019b) - an extension of BERT which uses a varia-
tion of MLM where different words are masked in
each epoch dynamically (unlike static masking in
standard MLM). It is also trained on larger amount
of text, larger mini-batch size and larger number of
epochs compared to BERT; and (d) XLNET (Yang
et al., 2019) - pre-trained with a “Permutation Lan-
guage Modeling” objective instead of MLM to pro-
vide bi-directional context to the model while being
auto-regressive.

For these PLM baselines, the two sentences in
each example are concatenated with a [SEP] to-
ken between them to be used as the input and the
hidden representation embedded in the [CLS] to-
ken is then projected with a weight matrix W ∈
Rd×4. Finally, we use softmax on the projected
representation to get the probability distribution
over the four classes. The class with the maximum
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HARDWARE NETWORKS SWE SECURITY NEURIPS OVERALL

DOMAIN-WISE
xBERT 68.63± 1.4 67.69± 1.3 65.75± 0.8 67.04± 2.9 70.48± 1.6 -
xSCIBERT 72.76± 0.9 72.97± 1.4 72.43± 0.8 72.45± 1.4 76.14± 0.5 -
xXLNET 72.88± 0.6 68.85± 2.2 71.52± 2.1 71.60± 0.8 72.96± 0.8 -
xROBERTA 74.93± 1.4 73.31± 1.7 74.44∗ ± 0.5 74.45± 2.2 76.02# ± 1.1 -

MERGED - SMALL
xBERT 69.36± 0.5 68.08± 1.3 66.61± 0.1 67.66± 1.4 71.62± 0.1 68.67± 0.3
xSCIBERT 72.95± 0.3 72.88± 1.1 72.66± 0.2 72.37± 1.5 74.96± 1.6 73.17± 0.7
xXLNET 72.87± 1.7 71.03± 1.8 72.21± 1.7 70.90± 0.8 73.45± 0.7 71.96± 1.2
xROBERTA 75.06∗ ± 0.7 73.20± 1.1 74.49∗ ± 0.4 73.73# ± 1.1 75.75± 1.6 74.47± 0.8

MERGED - LARGE
xBERT 72.89± 0.1 74.10± 1.3 71.37± 0.3 72.38± 2.5 75.46± 0.8 73.24± 0.8
xSCIBERT 75.91± 0.1 76.51± 0.5 75.28± 1.1 75.94± 0.4 78.78± 0.1 76.48± 0.4
xXLNET 75.59± 0.5 75.25± 0.1 73.98± 0.6 75.09± 0.8 77.64± 1.0 75.51± 0.3

xROBERTA 77.79$ ± 0.2 75.45± 1.5 77.10# ± 0.7 77.71$ ± 0.2 78.04± 0.8 77.21# ± 0.3

Table 14: Macro F1 scores (%) of our PLM baselines on different domains trained in different settings. Here, SWE: Software
& its Engineering and SECURITY: Security & Privacy. All MERGED - SMALL scores are statistically indistinguishable from
their DOMAIN-WISE counterparts according to a paired t-test with p < 0.05. All MERGED-LARGE scores show statistically
significant improvement over MERGED-SMALL. ∗, #, $ indicate statistically significant improvement by ROBERTA over
SCIBERT, XLNET, and both SCIBERT and XLNET, respectively.

probability is predicted as the label for each input
pair.

Each PLM baseline is fine-tuned for 10 epochs
with early stopping using the huggingface8 library.
The patience for early stopping is set at 2. The
learning rate and the mini-batch size is set at 2e−5,
and 64, respectively. We use a cross-entropy loss
and Adam optimizer (Kingma and Ba, 2014) to
optimize the model parameters.

LLM baselines We make use of the prompt tem-
plates described in Section 4.2.2 to construct the
inputs to the LLM baselines. Similar to the PLM
baselines, we conduct our experiments for LLM
baselines using the huggingface library. We em-
ploy a greedy decoding strategy with a maximum
generated token count to be 40. Generally, instead
of only providing the answer to our multiple-choice
question, the LLMs generates a more verbose re-
sponse with the answer contained in it. We man-
ually examine the responses for each prompt by
each LLM and develop scripts to extract the correct
answer with rule-based approaches.

Computational Cost The BiLSTM and PLM ex-
periments are conducted on a single NVIDIA RTX
A5000 GPU. The BiLSTM model was trained in
≈ 30 minutes. The time needed to fine-tune each
PLM baseline on the full MSCINLI training set
using a single GPU is ≈ 2 hours. The inference by
the LLM baselines is conducted using two NVIDIA

8https://huggingface.co

RTX A5000 GPUs and it took ≈ 3 hours on aver-
age for each experiment.

C Additional Results

C.1 Domain-wise vs Merged

In addition to fine-tuning on the combined
MSCINLI training set (127, 320 examples) in Sec-
tion 4.2.1, we experiment with the PLM base-
lines in two other settings: DOMAIN-WISE and
MERGED-SMALL (see the description of these set-
tings below) and compare their performance with
the model fine-tuned on the combined MSCINLI
training set denoted as MERGED-LARGE. The mo-
tivation behind these experiments is two-fold: a)
to understand the impact of diversity of examples
in model training (DOMAIN-WISE vs MERGED-
SMALL) (when the models are trained on data from
a single domain vs data from diverse domains—
but all being trained on the same training set size);
and b) to understand the impact of training set size
(MERGED-SMALL vs MERGED-LARGE). In the
DOMAIN-WISE setting, we train and evaluate sep-
arate models for each domain using the data from
the respective domain. For the MERGED-SMALL

setting, we randomly down-sample the training set
of each domain to 5092 examples (class-balanced)
before combining them to ensure that the total size
of the merged set MERGED-SMALL is similar to
the DOMAIN-WISE training set size (≈ 25, 464).
We combine the downsampled data from all do-
mains and train a single model using the merged
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MODEL CONTRASTING REASONING ENTAILMENT NEUTRAL MACRO AVE.

Precision
xROBERTA 74.24 74.61 76.38 85.46 77.67
xLLAMA-2 56.35 36.19 49.76 71.96 53.57
Recall
xROBERTA 87.93 67.36 74.63 79.36 77.32
xLLAMA-2 54.50 50.10 42.30 57.50 51.10
F1
xROBERTA 80.43 70.76 75.44 82.22 77.21
xLLAMA-2 55.41 42.03 45.72 63.92 51.77

Table 15: Class-wise precision (%), recall (%), F1 (%), and their macro averages (%) of our best performing PLM and LLM
baselines on MSCINLI.

data. This model is then evaluated on the test set
of each domain and the combined MSCINLI test
set. The MERGED-LARGE setting corresponds to
the combined training set of MSciNLI of 127, 320
examples.

We run each experiment three times and report
the average and standard deviation of the Macro F1
score of the models in the three settings in Table
14. We find the following:

Training models on diverse data is more optimal.
We can see that each model trained in the MERGED

- SMALL setting shows similar performance as their
DOMAIN-WISE counterparts. Moreover, in some
cases (e.g., for BERT for all domains, XLNET

for NEURIPS), the MERGED - SMALL models out-
perform the DOMAIN-WISE models. Recall that
the size of the MERGED-SMALL training set is the
same as each of the DOMAIN-WISE training sets.
Since we train separate models for each domain
in the DOMAIN-WISE setting, it is five times com-
putationally more expensive than the MERGED -
SMALL setting where a single model is trained for
all domains. Therefore, training a single model
on diverse data can reduce the computational cost
without compromising model performance result-
ing in a more optimal approach.

More data leads to better performance. Next
we compare the performance of the model fine-
tuned on MERGED-SMALL with its MERGED-
LARGE counterpart. The results show that
MERGED - LARGE models consistently outperform
the MERGED - SMALL models by a substantial
margin. Therefore, the performance on our dataset
improves with the the increase of dataset size.

C.2 Class-wise Performances

We evaluate the class-wise performance of our best
performing PLM baseline—ROBERTA trained on

the combined MSCINLI training set, and our
best performing LLM baseline—LLAMA-2 with
PROMPT - 3 in the few-shot setting. The results
are reported in Table 15.

As we can see, both models show a better perfor-
mance for the CONTRASTING and the NEUTRAL

classes, and they struggle more for the REASON-
ING, and ENTAILMENT classes. However, even
the CONTRASTING and the NEUTRAL classes are
still challenging for the models with substantial
headroom for improvement.

C.3 Another LLM Baseline - GPT-NEOX
In addition to the LLMs that we explore in Section
4.2, we also experiment with the GPT-NEOXT-
CHAT-BASE-20B9 variant of the GPT-NEOX
model. However, despite being much larger in size
than the LLAMA-2 and MISTRAL baselines (20
billion parameters vs 13B and 7B, respectively),
GPT-NEOX failed to show any promising perfor-
mance (for the same three prompts used in the pa-
per). We report the performance of these baselines
in Table 16. We can see that the best performance
for GPT-NEOX is shown by PROMPT - 1zs with an
overall Macro F1 of only 22.14%. Moreover, none
of the few-shot versions of the prompts shows any
meaningful performance for this model (10.00% in
Macro F1 with four labels in total means that the
model always predicts the same label). In our fu-
ture work, we will focus on the designing of other
prompts that can improve the performance of the
LLMs.

C.4 Only-Second-Sentence Baseline
To evaluate the degree of spurious correlations (Gu-
rurangan et al., 2018) that may exist in MSCINLI,
we experiment with only-second-sentence mod-
els. Specifically, we fine-tune both ROBERTA

9https://huggingface.co/
togethercomputer/GPT-NeoXT-Chat-Base-20B
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HARDWARE NETWORKS SWE SECURITY NEURIPS OVERALL

GPT-NEOXT-CHAT
xPROMPT - 1zs 17.84 19.17 20.19 18.04 16.99 18.49
xPROMPT - 2zs 20.48 18.28 20.67 21.62 27.56 22.14
xPROMPT - 3zs 12.69 15.30 13.63 13.90 14.66 14.12
xPROMPT - 1fs 10.00 10.00 10.00 10.00 10.00 10.00
xPROMPT - 2fs 10.00 10.00 10.00 10.00 10.00 10.00
xPROMPT - 3fs 10.00 10.00 10.00 10.00 10.00 10.00

Table 16: Macro F1 scores (%) of our GPT-NEOX baseline on different domains. Here, SWE: Software & its Engineering and
SECURITY: Security & Privacy.

SCINLI

Model F1 Acc

RoBERTa xxxBOTH SENTENCES 77.21 77.20
xxxONLY 2nd SENTENCE 52.55 53.55

SciBERT xxxBOTH SENTENCES 76.48 76.46
xxxONLY 2nd SENTENCE 53.14 53.65

Table 17: Performance comparison on MSCINLI when both
sentences are concatenated vs. when only second sentence is
used as the input.

and SCIBERT where only the second sentence is
used as the input. A comparison between the only-
second-sentence models and the models using both
sentences can be seen in Table 17. The results show
that the performance decreases by a large margin
when only the second sentence is used as the input.
Therefore, the amount of spurious correlation in
MSCINLI is smaller compared with other existing
NLI datasets (e.g., SNLI (Bowman et al., 2015))
and the models need to learn the semantic rela-
tion between the sentences in each pair in order to
perform well.

However, given that the performance of the
only-second-sentence models are much higher than
chance (25%), we believe there are still some de-
gree of spurious patterns in MSCINLI. In our fu-
ture work, we will explore methods to identify and
reduce the degree of spurious patterns in scientific
NLI.

D Prompts for LLMs

The zero-shot versions of the three prompt tem-
plates that we construct for LLMs can be seen in
Table 18. For the few-shot versions of the prompts,
we pre-pend four input-human annotated output ex-
emplars (one for each class) to each prompt. Note
that the <human> and <bot> tags in the prompts
in the Table are replaced with the relevant tags for
each LLM (e.g., [INST]).

E Training Dynamics Based Data
Selection

The easy/hard/ambiguous subsets of the training
data are selected based on their training dynam-
ics (Swayamdipta et al., 2020). Specifically, the
training dynamics of each example is defined in
the form of three metrics—confidence, variability,
and correctness during training a classifier. These
metrics are used to plot the examples in a data map
to perform a visual analysis. The aforementioned
three subsets of the training set are then selected
based on confidence and variability. In this section,
we define these metrics, perform a data cartography
of MSCINLI, and describe the method to select the
subsets used in Section 4.3.1.

E.1 Metrics Definitions

The confidence of each example is defined as the
average of the probability predicted by a classifier
for its label over the training epochs. That is, for a
training example Xi and its label yi, the confidence
ci is calculated as follows:

ci =
1

E

E∑

e=1

p(yi|Xi, θ
e) (1)

Here, E is the number of training epochs, θe is
the model at epoch e and p is the probability of
the label given Xi and θe. The variability of each
example is defined as the standard deviation of the
predicted probability for its label over the training
epochs. More formally, the variability, vi of an
example Xi is calculated as:

vi =

√∑E
e=1(p(yi|Xi, θe)− ci)2

E
(2)

Finally, the fraction of the training epochs where
the classifier predicts the label of an example cor-
rectly is defined as its correctness.
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PROMPT - 1 <human>: Consider the following two sentences:
Sentence1: <sentence1>
Sentence2: <sentence2>
What is the semantic relation between Sentence1 and Sentence2? Choose from the following options:
1. Entailment, 2. Reasoning, 3. Contrasting, 4. Neutral.
<bot>:

PROMPT - 2 <human>: Consider the following class definitions of four semantic relations between a pair of
sentences.
Entailment: <definition of entailment>
Contrasting: <definition of contrasting>
Reasoning: <definition of reasoning>
Neutral: <definition of neutral>

Now consider the following two sentences:
Sentence1: <sentence1>
Sentence2: <sentence2>
Based on only the information available in these two sentences and the class definitions, answer
the following: What is the semantic relation between Sentence1 and Sentence2? Choose from the
following options: 1. Entailment, 2. Reasoning, 3. Contrasting, 4. Neutral.
<bot>:

PROMPT - 3 <human>: Consider the following two sentences:
Sentence1: <sentence1>
Sentence2: <sentence2>
Based on only the information available in these two sentences, which of the following options is
true?
a. Sentence1 generalizes, specifies or has an equivalent meaning with Sentence2.
b. Sentence1 presents the reason, cause, or condition for the result or conclusion made Sentence2.
c. Sentence2 mentions a comparison, criticism, juxtaposition, or a limitation of something said in
Sentence1.
d. Sentence1 and Sentence2 are independent.
<bot>:

Table 18: Prompt templates used for our experiments with LLMs. Here, <X> indicates a placeholder X which is replaced in the
actual prompts.

E.2 Data Plot
For creating the data plot, we fine-tune a
ROBERTA classifier on the combined MSCINLI
training set. While training, we record the prob-
ability distributions predicted by the classifier for
the training examples over the four labels in each
epoch. We then calculate the confidence, vari-
ability, and correctness of each example using the
recorded probability distributions and plot them in
the data map based on these calculated values. The
data plot can be seen in Figure 1.

We can see that the model shows a high cor-
rectness for the examples in the high confidence
region. Therefore, the examples in this region are
easy-to-learn for the model. On the other hand,
the plot shows that the correctness of the model’s
predictions is very low in the low confidence re-
gion of the map. Thus, the examples in this region
are hard-to-learn for the model. Since, by defini-
tion, the probability predicted by the model shows
a high fluctuation for the examples in the high vari-
ability region, they can be denoted as ambiguous
examples.

Based on these observations from the data map,

we select the various subsets from the full training
set as follows.

E.3 Data Subset Selection

We rank the full training set based on confidence in
a descending order and then select the top 33% ex-
amples as the 33% easy-to-learn subset. Similarly,
we rank the full training set based on confidence
in an ascending order and then select the top 33%
examples as the 33% hard-to-learn subset. The top
33% examples from a ranking based on the vari-
ability in a descending order is chosen as the top
33% ambiguous subset. For the ‘100%− top 25%
hard’ and ‘100%− top 5% hard’ subsets, we re-
move top 5% and 25% examples from the ranking
based on confidence in an ascending order, respec-
tively from the full training set.

F Additional Cross-dataset Experiments

F.1 Domain-wise Performance by
Cross-dataset Models

We can see the domain-wise performance of the
cross-dataset models described in Section 4.3.3 in
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Figure 1: Data cartography of MSCINLI. The colors and shapes indicate the correctness of each example.

Train
Test HARDWARE NETWORKS SWE SECURITY NEURIPS ACL

SCINLI 75.60± 0.8 72.71± 0.5 74.36± 0.3 75.00± 0.3 78.36± 1.0 78.08± 0.4
MSCINLI 77.79± 0.2 75.45± 1.5 77.10 ± 0.7 77.71± 0.2 78.04± 0.8 76.74± 0.5
MSCINLI+ 77.99 ± 0.4 77.48 ± 0.4 76.78± 1.1 78.08 ± 1.4 80.02 ± 1.4 79.48 ± 0.4

Table 19: Macro F1 scores (%) of the cross-dataset models based on ROBERTA on different domains. Here, SWE: Software &
its Engineering and SECURITY: Security & Privacy. Best scores are in bold.

Tr
Te SciNLI MSciNLI SciTail MNLI

SCINLI 86.03 81.43 51.62 53.63
MSCINLI 83.18 82.56 55.66 58.72
SCITAIL 48.64 48.86 91.19 73.42
MNLI 45.40 47.57 78.18 91.31

Table 20: Cross dataset performances (Macro F1 (%)) of
ROBERTA on different datasets in a 2-class setting.

Table 19. The results show that MSCINLI+ shows
a better performance on domain-level as well.

F.2 Out-of-dataset Performance on Regular
NLI datasets

To understand the effect of data diversity in the
performance of scientific NLI models on regular
NLI datasets, we perform a set of experiments
with RoBERTa where we train models on SciNLI,
MSciNLI, SciTail (Khot et al., 2018), and MNLI

(Williams et al., 2018a) and evaluate them on each
of the test sets of these datasets. Note that since the
test set of MNLI is not publicly available, we use
the development set as the test set and a randomly
sampled set of size 10, 000 as the development set.
Given that the NLI classes differ in these datasets,
we convert SCINLI, MSCINLI and MNLI into
2-class datasets. Specifically, we update the labels
of all non-entailment classes, i.e., contradiction and
neutral for MNLI and contrasting, reasoning, neu-
tral for SCINLI and MSCINLI to a class named
NOT-ENTAILMENT. We do not change any labels
in SCITAIL because it is already in a 2-class setting
using ENTAILMENT and NOT-ENTAILMENT as the
classes. The Macro F1 from these experiments are
in Table 20.

We can see that the model trained on MSCINLI
shows a substantially higher performance on both
MNLI, and SCITAIL compared to the model
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Dataset Classes

SCIHTC ‘General and reference’, ‘Hardware’, ‘Computer systems organization’, ‘Networks’, ‘Software and its
engineering’, ‘Theory of computation’, ‘Mathematics of computing’, ‘Information systems’, ‘Security
and privacy’, ‘Human-centered computing’, ‘Computing methodologies’, ‘Applied computing’, ‘Social
and professional topics’

PAPER FIELD ‘Geography’, ‘Politics’, ‘Economics’, ‘Business’, ‘Sociology’, ‘Medicine’, ‘Psychology’

ACL-ARC ‘Background’, ‘Extends’, ‘Uses’, ‘Motivation’, ‘Compare/Contrast’, ‘Future work’

Table 21: Downstream task datasets and their classes.

Dataset #Train #Test #Dev

SCIHTC 148, 928 18, 616 18, 616
PAPER FIELD 84, 000 22, 399 5, 599
ACL-ARC 1, 688 139 114

Table 22: Number of examples in downstream tasks.

trained with SCINLI. Therefore, training the mod-
els on diverse examples improves their reasoning
capabilities which results in a better performance
even for traditional NLI datasets. In our future
work, we will investigate how the models trained
on scientific NLI datasets behave when they are
tested on easy, ambiguous and hard-to-learn exam-
ples of the traditional NLI datasets.

G Details on Intermediate Task Transfer

G.1 Downstream Tasks - Dataset Details
The categories/class labels and the number of ex-
amples in each dataset for the downstream tasks in
our intermediate task transfer experiments can be
seen in Tables 21 and 22, respectively.

The details of each the downstream tasks that we
experiment with are as follows.

SciHTC (Sadat and Caragea, 2022a) A hier-
archical multi-label scientific topic classification
dataset containing 186K papers. While each pa-
per in SCIHTC is assigned multiple labels from
different levels of the hierarchy tree), we only con-
sider the level 1 flat categories which are 13 in total
(see Table 21) and train the model in a multi-class
(single label for each paper) setting.

Paper Field (Beltagy et al., 2019) A paper clas-
sification dataset containing 112K papers where
each paper is classified to different scientific fields.
The total number of paper classes in this dataset is
7 (see Table 21).

ACL-ARC (Jurgens et al., 2018) A citation in-
tent classification dataset where the intent behind
a citation made in a sentence in a scientific paper

needs to be predicted. The 6 classes in this dataset
can be seen in Table 21.

G.2 Experimental Details of Intermediate
Task Transfer Learning

In the intermediate task transfer setting, the
ROBERTA model is trained on the NLI datasets for
a single epoch (unlike the baselines). For the un-
supervised intermediate training with MLM, 15%
tokens are randomly masked and the model is also
trained for a single epoch. During the fine-tuning
step, only the RoBERTa layer is initialized from
the model from the intermediate training step. The
parameters for the output linear layer with softmax
activation is randomly initialized. The model is
then fine-tuned for the downstream tasks for multi-
ple epochs. Specifically, the models for SCIHTC,
and PAPER-FIELD are trained for 10 epochs. The
models for ACL-ARC are fine-tuned for a maxi-
mum of 20 epochs due to its small size. Similar
to our baselines, we employ early stopping with
patience 2 and Macro F1 score of the development
set as the stopping criteria.
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