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Abstract

The permanence of online content combined
with the enhanced authorship identification
techniques calls for stronger computational
methods to protect the identity and privacy of
online authorship when needed, e.g., blind re-
views for scientific papers, anonymous online
reviews, or anonymous interactions in the men-
tal health forums. In this paper, we propose
an unsupervised inference-time approach to au-
thorship obfuscation to address the unique chal-
lenges of authorship obfuscation: lack of super-
vision data for diverse authorship and domains,
and the need for a sufficient level of revision
beyond simple paraphrasing to obfuscate the
authorship, all the while preserving the original
content and fluency.

We introduce JAMDEC, a user-controlled,
inference-time algorithm for authorship obfus-
cation that can be in principle applied to any
text and authorship. Our approach builds on
small language models such as GPT2-XL in
order to help avoid disclosing the original con-
tent to proprietary LLM’s APIs, while also re-
ducing the performance gap between small and
large language models via algorithmic enhance-
ment. The key idea behind our approach is to
boost the creative power of smaller language
models through constrained decoding, while
also allowing for user-specified controls and
flexibility. Experimental results demonstrate
that our approach based on GPT2-XL outper-
forms previous state-of-the-art methods based
on comparably small models, while perform-
ing competitively against GPT3.5 175B, a pro-
priety model that is two orders of magnitudes
larger.

1 Introduction

Authorship obfuscation, the task of rewriting a text
to protect the original writer’s identity, has become
increasingly important given the permanence of
online content combined with new enhanced au-
thorship attribution techniques (Bright et al., 2021;
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Figure 1: JAMDEC framework.

Altakrori et al., 2022). This task holds implica-
tions in various domains, including online privacy,
and blind review in academic research. However,
safeguarding an authorship style, while maintain-
ing the same content and grammatical fluency, is a
complex task.

Unlike other authorship-related tasks such as
paraphrasing or style transfer, authorship obfusca-
tion poses unique technical challenges due to its
different assumptions. For example, paraphrasing
involves rephrasing an original text, but can be
accomplished without altering the original style.
Conversely, for style transfer, the task requires a
predetermined target style. However, in the case of
authorship obfuscation, there is no fixed endpoint
style to guide the generation because the main goal
is the absence or avoidance of a particular style. In
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fact, it may involve incorporating multiple styles
or navigating a wide spectrum of possibilities to
achieve success.1

One approach to authorship obfuscation is to use
large language models, such as ChatGPT or GPT4.
However, these models require large computing
resources. Furthermore, if a user employs a method
based on proprietary LLMs that retain user data,
they are vulnerable to extra privacy threats or the
leakage of their original content. To mitigate these
risks, non-model or smaller closed model methods
are preferred.

Other previous approaches for authorship ob-
fuscation include the use of round-trip machine
translation (Keswani et al., 2016), strict rule-based
algorithms (Karadzhov et al., 2017), or iterative-
change algorithms (Mahmood et al., 2019a). How-
ever, these methods either do not lead to enough
modification (Keswani et al., 2016), diverge into
grammatically incorrect text due to the rigid rules
(Karadzhov et al., 2017), or require an additional
large-scale authorship corpus (Mahmood et al.,
2019a). Therefore, in comparison to modern LLMs,
we find a notable performance gap between previ-
ous methods developed for smaller models.

To overcome these limitations, we present
JAMDEC, a light-weight, user-controlled, unsuper-
vised inference time algorithm for authorship ob-
fuscation that can be used with any arbitrary text.
JAMDEC employs smaller base models such as
GPT2, which by themselves are too weak to pro-
duce accurate paraphrases, let alone obfuscation
(Jung et al., 2023). To overcome this weakness, we
frame the task as a constraint decoding problem,
where the constraint is given as lexical keywords
to include to control the content of the generation.
To identify these keywords automatically, we lever-
age likelihood scores from smaller models. Lastly,
since the decoded text is not guaranteed to be faith-
ful to the original text, we design a filtering step that
can be uniquely adjusted by the user. An overview
of JAMDEC three-stage framework can be found
in Figure 1. The name is inspired by Jambalaya,
the popular American Creole and Cajun rice dish
which is a mixture of meat, vegetables and spices.

We provide experimentation on two datasets,
scholarly articles and diary-style entries with a
range of three to ten authors. The results show that
JAMDEC performs better than state-of-the-art meth-

1A more detailed discussion on the differences between
these authorship-tasks can be found in Appendix F.

ods of similar size and comparable to significantly
larger language models in both automatic and hu-
man evaluations. In particular, we demonstrate
that JAMDEC is able to obfuscate, while simul-
taneously preserving the original content, which
previous methods cannot achieve. 2

2 Background on Authorship Obfuscation

Setup. Let A be a given set of authors. We con-
sider an original text yorig that was written by author
B ∈ A. The task of authorship obfuscation aims to
create a new text yobf which can not be identified as
written by author B. For evaluation, we consider a
classification model M(·) (also known as an author-
ship attribution models), which has been trained to
classify texts of each author in A. The aim is to
create a method f(·) such that M(f(yorig)) ̸= B.
Measure of a Successful Algorithm. Our goal
is to create an obfuscated version of the original
text that preserves the meaning and intent of the
original text, while making it difficult to attribute
the authorship to the original author. Following
past literature (Mahmood et al., 2019a; PAN2018;
Altakrori et al., 2022), we consider an obfuscation
method successful if the obfuscated text satisfies
the following three requirements:
• Style Concealment Analysis of the obfuscated

text does not reveal the original author. This
is usually measured using an authorship attribu-
tion model or a threat model (Mahmood et al.,
2019b).

• Content Preservation The content of the origi-
nal text is maintained. Metrics such as METEOR
(Lavie et al., 2004), and Natural Language Infer-
ence models (NLI) (Liu et al., 2022) can be used
to measure content overlap.

• Language Quality The obfuscated text is gram-
matically correct and natural sounding. Gram-
maticality of a text can be measured using a Cor-
pus of Linguistic Acceptability (CoLA) model
(Warstadt et al., 2019). Text fluency can be deter-
mined using human evaluation.

Inference-time Algorithms for Authorship Ob-
fuscation. To address this task, we propose using
an inference time algorithm that can obfuscate a
text on-the-fly, rather than training a model on a
specific author’s writing style. We choose to use
a decoding time algorithm over fine-tuning as it
offers several benefits, including more flexibility
in the generation and the ability to obfuscate text

2Code is available:https://github.com/jfisher52/JAMDecoding
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Method Mutant-X Paraphrase Machine Transl. Stylometric JAMDEC

Dataset Metric ENS RFC W/O Stylo W/ Stylo

Drop Rate (ENS) ⋆ -0.04 0.04 0.04 -0.03 0.11 0.11
Drop Rate (BertAA) 0.10 0.04 0.04 0.08 0.12 0.04 0.04
METEOR 0.80 0.81 0.55 0.69 0.80 0.62 0.62

AMT-3 NLI 0.60 0.61 0.62 0.75 0.50 0.75 0.81
CoLA 0.50 0.51 0.78 0.69 0.46 0.85 0.79
Task Score (ENS) ⋆ 0.36 0.48 0.49 0.31 0.57 0.57
Task Score (BertAA) 0.40 0.39 0.48 0.51 0.36 0.55 0.55

Drop Rate (ENS) ⋆ 0.08 0.20 0.20 0.23 0.10 0.13
Drop Rate (BertAA) 0.07 0.00 -0.06 0.07 0.04 0.14 0.14
METEOR 0.74 0.72 0.57 0.68 0.79 0.61 0.61

AMT-5 NLI 0.56 0.57 0.62 0.74 0.48 0.76 0.82
CoLA 0.51 0.55 0.77 0.69 0.46 0.85 0.79
Task Score (ENS) ⋆ 0.40 0.53 0.54 0.39 0.57 0.58
Task Score (BertAA) 0.38 0.37 0.44 0.50 0.33 0.58 0.58

Drop Rate (ENS) ⋆ 0.10 0.07 0.19 0.11 0.44 0.41
Drop Rate (BertAA) 0.03 0.04 -0.04 0.06 0.00 -0.03 -0.02
METEOR 0.84 0.86 0.54 0.66 0.81 0.60 0.61

AMT-10 NLI 0.61 0.64 0.61 0.73 0.45 0.79 0.79
CoLA 0.53 0.57 0.77 0.68 0.46 0.78 0.78
Task Score (ENS) ⋆ 0.44 0.48 0.53 0.34 0.67 0.66
Task Score (BertAA) 0.39 0.42 0.45 0.49 0.30 0.51 0.52

Drop Rate (ENS) ⋆ 0.28 0.31 0.18 0.03 0.03 0.03
Drop Rate (BertAA) 0.06 0.30 0.47 0.0 0.0 0.29 0.29
METEOR 0.79 0.59 0.44 0.58 0.82 0.53 0.52

BLOG-5 NLI 0.58 0.47 0 .49 0.65 0.75 0.68 0.68
CoLA 0.44 0.46 0.63 0.55 0.44 0.74 0.73
Task Score (ENS) ⋆ 0.40 0.47 0.46 0.41 0.48 0.48
Task Score (BertAA) 0.36 0.41 0.53 0.40 0.40 0.57 0.57

Drop Rate (ENS) ⋆ 0.13 0.35 0.30 0.21 0.23 0.32
Drop Rate (BertAA) 0.37 0.06 0.40 0.11 0.08 0.32 0.32
METEOR 0.55 0.85 0.43 0.61 0.82 0.54 0.53

BLOG-10 NLI 0.46 0.61 0.46 0.62 0.75 0.67 0.67
CoLA 0.47 0.45 0.62 0.54 0.41 0.74 0.74
Task Score (ENS) ⋆ 0.40 0.48 0.49 0.46 0.55 0.58
Task Score (BertAA) 0.43 0.37 0.49 0.42 0.41 0.58 0.58

Table 1: Results from the automatic evaluation for Mutant-X (using two internal classifiers; ENS and RFC), GPT3,
Paraphrasing, Machine Translation, Stylometric and JAMDEC (using two variation of filtering; with and without
stylometric-based obfuscator Stylo) across all datasets. The highest value is bolded and the second-highest value is
underlined. Methods that use the same evaluation classifier during obfuscation are excluded (⋆).

without access to a corpus of the author’s writing.
Our proposed algorithm draws inspiration from

various sources, including Diverse Beam Search
(Vijayakumar et al., 2016), Lexically Constrained
Decoding (Post and Vilar, 2018), and Neurologic
decoding (Lu et al., 2021).

3 JAMDEC

We present JAMDEC, which obfuscates any
text without any prior knowledge of the author.
JAMDEC is composed of three main steps: keyword
extraction, over-generation, and filtering, which

can be implemented on a sentence, paragraph, or
full document level.

3.1 Step 1: Keyword Extraction

First, we identify crucial keywords that encapsulate
the original text’s content, and later ensure its inclu-
sion in the generated obfuscated text to maintain
content preservation. We explore multiple keyword
extraction methods, including embedding-based
extraction and likelihood-based extraction.
Embedding-based method. KeyBERT is a popu-
lar method for keyword extraction (Grootendorst,
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2020), which uses BERT-embeddings and cosine
similarity to find the sub-phrases in a document
that are the most similar to the document itself.
Likelihood-based method. At a high level, we
select the top-k tokens with the lowest conditional
probabilities, as measured by a specific language
model, as keywords for a given sentence. Intu-
itively, these tokens represent content that a lan-
guage model might most struggle to generate accu-
rately. We experiment with both an auto-regressive
language model GPT2, and text-to-text language
model T5. For GPT2, we compute the likelihood
of each token conditioned on its previous content.
For T5, we leverage its fill-in-the-blank ability by
providing an input sentence with a specific token
masked. We then calculate the probability of T5
generating that particular token as the infill, which
serves as the likelihood of that token.

Since all the methods yield valid keywords in
practice (see Appendix A.3), we utilize them all
to generate numerous candidates for subsequent
filtering to achieve high-quality obfuscation.

3.2 Step 2: Over-Generating Candidate
Obfuscations

Next, we utilize the previously extracted keywords
and the left context of yorig to over-generate many
variations of yorig. We use m sentences occurring
before yorig as the left context to encourage fluid
generation. Our goal is to produce multiple genera-
tions constrained by the extracted keywords, ensur-
ing content similar to yorig. At the same time, we
aim to produce a variety of generations with diverse
authorship styles to achieve obfuscation effectively.
To achieve these seemingly opposing goals, we
merge two decoding techniques, Lexically Con-
strained Beam Search (Post and Vilar, 2018)and
Diverse Beam Search (Vijayakumar et al., 2016),
and refer to the combined approach as Constrained
Diverse Beam Search (CoDi-BS).
Constrained Diverse Beam Search. CoDi-BS
employs Constrained Beam Search (Co-BS) as the
base algorithm, but uses the scoring function from
Diverse Beam Search (Di-BS) instead of likeli-
hoods when iteratively selecting the top k candi-
dates from each bank. Its objective function can be
represented as:

argmax
w∈W

Pw(y|x) + λ1D(y, Y ) + λ2C(y)

where x is the sequence of previous tokens,
D(y, Y ) is a diversity term measuring the dissimi-
larity between the output sequence y and the set of

previously selected sequences Y within the beam,
C(y) is a constraint function quantifying the de-
gree to which the output sequence y satisfies the
constraints, λ1, λ2 are hyperparameters controlling
the weight of the diversity and constraint penalty,
and w ∈ W is the parameter vector. Intuitively,
CoDi-BS promotes candidates distinct from the
previously chosen ones, while also ensuring that
they satisfy a specific number of constraints. Ap-
pendix H has an overview of the CoDi-BS algo-
rithm and details of both Constraint and Diverse
Beam Search separately.

3.3 Step 3: Filtering Candidate Obfuscations
The filtering stage comprises multiple steps to re-
fine the pool of candidates from the previous stage,
ultimately choosing the most suitable obfuscation.
This step enables the user to have full control in
selecting generations based on any metric. In our
pipeline, we first filter based on an NLI (Natural
Language Inference) threshold, which evaluates the
coherence and content overlap between the genera-
tions and the original text. Next, we further filter
the remaining candidates based on a CoLA (Cor-
pus of Linguistic Acceptability) threshold, which
focuses on the grammatical correctness and lin-
guistic acceptability of the generations. Finally,
and optionally, taking into account any previous
knowledge of the author, we choose the ultimate
obfuscation to be the generation that deviates the
most from the original author’s style. In our ex-
periment, we do not assume any prior knowledge
of the authors to showcase the effectiveness of our
method in a more challenging situation.

4 EXPERIMENTS

We evaluate two versions of JAMDEC on two
benchmarks in distinct domains: scholarly pas-
sages and diary-style entries. For baselines, we con-
sider three state-of-the-art methods for authorship
obfuscation: Mutant-X (Mahmood et al., 2019a),
Round-Trip Translation (Keswani et al., 2016), and
Stylometric (Karadzhov et al., 2017), and a para-
phrasing method (Zhang et al., 2020). As a stronger
baseline, we also consider using zero-shot prompt-
ing of GPT3.5 175B which is orders of magnitude
larger (Brown et al., 2020). For further details, see
Appendix G and for access to the code see here.

4.1 Setup
Datasets. We used two datasets to evaluate
JAMDEC. The first is the Extended-Brennan-
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Figure 2: Highlighting the trade-offs between obfusca-
tion (Drop Rate (ENS)), content preservation (NLI), and
language quality (CoLA) of each method for the AMT-
10 and BLOG-10 datasets. The dotted line indicates the
trend through all methods.

Greenstadt (Brennan et al., 2012) which is a col-
lection of "scholarly" short ( 500-word) paragraphs
gathered from Amazon Mechanical Turk (AMT).
We use this dataset, which we refer to as AMT, to
produce three test datasets with 3, 5, and 10 au-
thors, with n = 27, 30, 49 texts respectively (AMT-
3, AMT-5, AMT-10).

The second dataset is the Blog Authorship cor-
pus (Schler et al., 2006), a collection of blogs
(diary-style entries) that were posted to blog.com.
Similarly, we use this dataset to construct two
datasets with 5 and 10 authors, with n = 72, 150
texts respectively (BLOG-5, BLOG-10).
JAMDEC Configuration. To promote diver-
sity of generated candidates, we employ all three
types of keyword extraction methods, (KeyBERT,
Likelihood-GPT2, and Likelihood-T5), and either
CoDi-BS or only CBS. We ran with a beam width
of 50. All other details can be found in Ap-
pendix G.

In the filtering stage, we occasionally find cases
where none of the generations passes either NLI
or CoLA filter. We consider two ways of handling
such cases – (1) JAMDEC, where we simply out-
put the original sentence, (2) JAMDEC + STYLO,
where we run a basic stylometric obfuscator on the
original sentence.3

3The detail of the basic stylometric obfuscator is provided
in Appendix G.2.3.

Method Generation

Original
The Ex. An ex holding a grudge can do a lot of damage in a 
short amount of time. He knows enough to open accounts in 
your name, and he has the motive to hurt you. 

Mutant-X
The Ex. An ex holding a bitterness able ought a lot of 
damage in a length quantity of time. He knows enough to 
ascend accounts in Your prefix, and he has the justifiable to 
impair You. 

Paraphrase
A lot of damage can be done In a short period of time. He 
knows how to open accounts In your name and he wants to 
hurt you.

Machine 
Translation

The former. An old man who holds a knife can make a lot 
of damage in a short time. He knows enough to open accounts 
in your name, and he has the reason to hurt you. 

Stylometric
 An ex holding, a grudge can do a lot inside damage in a 
brief amount in time, yet he knows enough to open accounts 
in your name, and he has the motive to hurt you.

JAMDEC

The Ex. When the ex is holding his grudge against the 
person who caused him lot of damage to his life, he is 
short sighted and will do anything in his power to get 
back at that person, no matter how much it will hurt the 
person he is trying to get revenge against. He knows 
enough to open accounts in your name, and he has the motive 
to hurt you. 

JAMDEC + 
Stylo

The Ex. When the ex is holding his grudge against the 
person who caused him lot of damage to his life, he is 
short sighted and will do anything in his power to get 
back at that person, no matter how much it will hurt the 
person he is trying to get revenge against. He believes 
enough to open accounts in your name, and he has the reason 
to hurt you.  

Figure 3: Qualitative examples of obfuscated text cre-
ated by each method. The sentences are taken from
the AMT-3 dataset. Changes to the original are outline
in blue (correct grammatically and in context) and red
(incorrect grammatically or out of context).

Baselines.4 We use the following baselines.
Stylometric Obfuscation: A stylometric obfus-

cation (Stylometric) proposed by Karadzhov et al.
(2017), calculates a suite of statistical features (e.g.
average number of words per sentence, word fre-
quency, etc.) that are indicative of style, then mod-
ifies the text such that these metrics align with an
"average" value, pre-calculated on a training set.

Mutant-X: Mutant-X (Mahmood et al., 2019a)
is a genetic algorithm which iteratively substitutes
words in the original text with the synonyms se-
lected by an internal classifier. Additionally, at ran-
dom iterations, it incorporates a "crossover" effect
that involves cutting two parent texts at a random
position and combining them to create two new
child texts. This method does require an additional
authorship corpus to train the internal classifier. For
consistency, we adopt the same features and archi-
tectures for the internal classifier (Ensemble and
Random Forest), as suggested in the subsequent
work by Haroon et al. (Haroon et al., 2021). For
more information on training these classifier mod-
els, reference Section 4.1. To accurately compare

4An additional baseline, Style Transfer, can be reviewed
in Appendix B.
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with all methods, we leave out any results from
Mutant-X where the internal classifier matches the
evaluation classifier, since we do not assume access
to the evaluation models during obfuscation.

Paraphrasing: Although paraphrasing has a
slightly different goal than authorship obfuscation,
we include the comparison for a thorough investi-
gation of all methods. We employ a state-of-the-art
paraphrasing model, PEGASUS Paraphrase (Zhang
et al., 2020; par) a PEGASUS model fine-tuned on
a self-supervised task for paraphrasing.

Round-Trip MT: Additionally, we consider a
baseline powered by round-trip translation, a popu-
lar approach for authorship obfuscation (Keswani
et al., 2016). We implement the approach us-
ing M2M100, a state-of-the-art translation model,
translation English text into German, then to
French, and finally back to English.

GPT3.5: Lastly, considering the significant
progress made in large language models, we
include a comparison with zero-shot prompted
GPT3.5 (text-davinci-003) (Brown et al., 2020).
We consider two approaches – sentence-level ob-
fuscation (obfuscating each sentence individually),
and paragraph-level obfuscation (obfuscating the
entire text as a whole). We note that prompt se-
lection is very important and tried to find the best
prompt for the task. The specific prompts utilized
for this purpose can be found in Appendix G. Due
to financial constraints, we limit this baseline to
AMT-3.

A time consumption analysis of these methods
can be found in Appendix E.

Method GPT3.5 JAMDEC

Metric Sentence Paragraph W/O Stylo W/ Stylo

Drop Rate (ENS) 0.23 0.23 0.11 0.11
Drop Rate (BertAA) 0.13 0.09 0.04 0.04
METEOR 0.33 0.41 0.62 0.62
NLI 0.77 0.73 0.75 0.81
CoLA 0.76 0.80 0.85 0.79
Task Score (ENS) 0.59 0.59 0.57 0.57
Task Score (BertAA) 0.55 0.54 0.55 0.55

Table 2: Results from the automatic evaluation for GPT3
and JAMDEC (using two variation of filtering; with and
without stylometric-based obfuscator Stylo) for AMT-
3. The highest value is bolded and the second-highest
value is underlined.

Automatic Evaluation. We evaluate all method
along the following three axes.

1. Style Concealment: In line with past work,
we use two authorship attribution models trained
on stylometric features for authorship verification.

The first employs Writeprints-static (Brennan et al.,
2012), a collection of lexical and syntactic features,
such as word length, average word count, and us-
age of function words, among others. Recognizing
that classification from one model may not trans-
fer effectively to all text (Mahmood et al., 2019a),
we adopt the ensemble attribution classifier (ENS)
methodology introduced by Haroon et al. (2021),
which comprises several attribute-based classifiers,
each utilizing different attributes, and leverages a
voting system for their aggregation. Since this has
been shown to give the most accurate classification
results (Haroon et al., 2021), we use ENS for both
the Mutant-X method and evaluation. We also train
a random forest classifier (RFC) as another internal
classifier for the Mutant-X method. Further details
on the training can be found in Appendix G.

Second, we use a more sophisticated architec-
ture by using BertAA model (Fabien et al., 2020),
a BERT fine-tuned specifically for authorship attri-
bution. 5

Using an authorship attribution model (either
ENS or BertAA), we calculate the Drop Rate or
the average drop in the percentage of obfuscated
text that were not identified as the true author com-
pared to the original text. This metric accounts
for any inaccuracy of the attribution models, see
Appendix G.2 for more information.

We note that adversarial threat model can be used
for further evaluation and comparison (Zhai et al.,
2022; Mahmood et al., 2020), therefore provide an
ablation study in Appendix C using this type of
evaluation.

2. Content Preservation: To maintain consis-
tency with previous studies, we compute the ME-
TEOR (Banerjee and Lavie, 2005) score between
the original and obfuscated text, which evaluates
token overlap (Mahmood et al., 2019a; Shetty et al.,
2018). However, we note that content semantics
can be preserved without direct token overlap by
the use of synonyms, therefore we also assess the
probability of entailment between the original and
obfuscated text using a natural language inference
(NLI) model called WANLI (Liu et al., 2022). We
will rely on NLI as the main component of content
overlap due to its flexibility in measuring content
preservation and coherence.

3. Language Quality: To measure language
quality, we employ a TextAttack (Morris et al.,

5A comparison of these authorship attribution models can
be found in Table 12.
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Figure 4: Human Evaluation on 102 random samples
from AMT-3. We include two versions of our method
with differing filtering stages (with and without Stylo).

2020), which fine-tunes RoBERTa (Liu et al., 2019)
on the Corpus of Linguistic Acceptability (CoLA)
(Warstadt et al., 2019). The CoLA dataset consists
of 10.6k sentences that have been linguistically
annotated to assess their grammatical correctness.

Overall Task Score: While each of the dimen-
sions above is crucial for the holistic evaluation
of author obfuscation system, we also aim to pro-
vide an aggregate of the scores into a single task
score. Therefore, we also define Task Score, an un-
weighted average of the Drop Rate (using ENS or
BertAA), NLI score, and CoLA score. We use the
mean of the dimension, as the task of authorship
obfuscation is deemed to be successful only if all
three goals are satisfied. 6:

Task Score =
Drop Rate + NLI + CoLA

3
.

Human Evaluation. On dataset AMT-3, we ad-
ditionally use human evaluations to validate our
automatic measures. We randomly select 102 short
passages (one to four sentences) from AMT-3 for
this evaluation. We employed Amazon Mechanical
Turk workers to read both the original and obfus-
cated text, and then asked a series of five questions
to be rated on a three-point likert scale.

6We also provide each scores individually in case the reader
prefers to weight a certain goal more heavily.

4.2 Main Results

JAMDEC has higher Task Score compared to
all task-specific methods and similar or better
to GPT3. In Table 1 and Table 2, we present the
results from the automatic evaluations. JAMDEC

(with or without Stylo) with 1.5B GPT2-XL has
the highest Task Scores for almost every dataset,
and only 2% lower BertAA Task Score than 175B
GPT3.5. Of note, is AMT-10, where it performs
more than 10% higher than almost all other meth-
ods on ENS and BertAA Task Score. This indi-
cates, that JAMDEC is successful in all three goals
of authorship obfuscation across different genre of
texts. Also, we observe that the two variations of
JAMDEC perform similarly across the datasets.
JAMDEC strikes a better balance between con-
tent preservation and author obfuscation. Fig-
ure 2 depicts the variability in the AMT-10 and
BLOG-10 datasets’ Drop Rate, NLI score, and
CoLA score. Preferably, a method should score
high in all metrics, resulting in a position in the
top right quadrant of each graph. However, we ob-
serve a clear trade-off for each of the task-specific
baselines. For example, in BLOG-10, the Para-
phrase method has an ENS Drop Rate 3% higher
than JAMDEC, but it also has a 12% lower CoLA
rate and 21% lower NLI, as seen by the orange
dots in the top left corner and center of the bottom
left and right graph. In contrast, we observe that
JAMDEC lies closely to the top right in each graph,
demonstrating its effectiveness in balancing the var-
ious objectives of authorship obfuscation. Other
datasets show similar results and can be viewed in
Appendix A.5.

This is also supported by qualitative inspection,
where we notice poor grammar quality in obfus-
cated text produced by the task-specific methods,
which makes it easy to trick an automatic classifier,
however does not maintain the quality and content
of the original text. This was particularly relevant
in the BLOG datasets, which already contains in-
formal language that can be easily corrupted by
single word replacement methods. We provide a
qualitative example in Figure 3.
Human evaluations confirms that JAMDEC
maintains language quality while successfully
obfuscating. The outcomes of the human evalua-
tion of AMT-3 are shown in Figure 4. Similar to the
automatic evaluation, JAMDEC human evaluation
scores are 5%− 50% higher for Grammar and Flu-
ency, than most other method, including GPT3.5.
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For Content Preservation, JAMDEC performs on-
par with GPT3.5, while Machine Translation unsur-
prisingly scores the highest because it only tends to
slightly modify the original text, as shown in Fig-
ure 3. While we observe JAMDEC to be relatively
weak in Content Addition, we attribute this mainly
to the limitation of the human evaluation environ-
ment. Our approach involves utilizing a left context
in the beam search process, allowing the model to
consider information from earlier sentences when
generating subsequent ones. As a result, some gen-
erations incorporate data from earlier sentences.
However, the samples used for the human evalu-
ation were random short passages taken from the
whole text, making it possible for the workers to
perceive the information as an "addition" when it
was actually present earlier in the passage. How-
ever, despite this, we see that JAMDEC performs
better than all task-specific methods in Obfuscation
by at least 10%.

4.3 Ablation and Other Studies

We conduct ablation studies 7 on JAMDEC, to better
understand the contribution of each component.

JAMDEC performs better at authorship obfusca-
tion using CoDi-BS. We find that using CoDi-BS
leads to an overall increase in Drop Rate of ∼ 6%
and an increase in the number of sentences that
pass the base NLI and CoLA threshold of about
32%, with little change in NLI and CoLA score
compared to only using CBS.

JAMDEC + STYLO performs better in human
evals without the CoLA threshold. We run an
additional human evaluation with obfuscation cre-
ated using JAMDEC + STYLO but without a final
CoLA threshold. Without a final CoLA thresh-
old, all sentences transformed using Stylo were
used. It resulted in an overall increase in Obfusca-
tion of 0.09% compared to JAMDEC +Stylo with
a threshold, making it higher than all task-specific
methods. However, it did have a decrease of 0.15%
and 0.13% in Grammar and Fluency, respectively.

JAMDEC is competitive in respect to time con-
sumption. When optimized for time consumption,
JAMDEC outperforms all other baselines on Task
Score (BertAA) while maintaining a time consump-
tion less than the average of the baselines. A full
analysis can be found in Figure 10.

7Full details in Appendix A

5 Related Work

Stylometry. Stylometry, a field for statistically
analyzing variations in writing styles, has long been
used for authorship verification (Goodman et al.,
2007; Fox and Ehmoda, 2012; Jockers and Witten,
2010). Consequently, employing stylometry as a
means to assess writing style served as a logical
extension in the task of authorship obfuscation.
Stylometric Feature Approaches. Some ap-
proaches rely solely on stylometric features to
create general numerical-based rules for obfusca-
tion. For example, in a method submitted to the
PAN 2016 Author Masking Shared Task by Man-
soorizadeh et al. (2016), they substituted synonyms
for the most frequently used terms in a text. An-
other method, submitted to the same Shared Task
was from Karadzhov et al. (2017), was more com-
plex and used on a set of 500+ stylometric fea-
tures such as average amount of words, word fre-
quency, and punctuation. Based on these calculable
attributes, the approach adjusted the text to bring
the values closer to a pre-determined "average"
(derived from a large training corpus). These ap-
proaches are often simple to implement, require
no additional corpus, and may be used on any text.
However, the rigidity of these rules often lead to
incorrect grammar or non-fluent speech (Mahmood
et al., 2019a; Mihaylova et al., 2016).
Model Based Approaches. Other approaches in-
corporate more flexibility by utilizing deep learning
models. One of the most successful deep learning
methods is the Support Vector Machine combined
with Writeprint-Static(Brennan et al., 2012), which
uses a collection of 500+ stylistic features from
Writeprint (Abbasi and Chen, 2008) to construct a
Support Vector Machine (SVM) model for author-
ship detection. It then uses this classifier as a guide
in conjunction with a pattern disruption method.
This framework inspired additional methods, such
as Mutant-X (Mahmood et al., 2019a), a genetic
algorithm that utilizes an internal classifier to iter-
atively "mutate" a sentence. At first this method
used SVC or Random Forest architecture for the
internal classifiers, but in later works reported to
be more successful when an ensemble of classi-
fiers was used (Haroon et al., 2021). There has
also been work which used variational autoencoder
(VAE) network models to generate differentially
private obfuscations (Weggenmann et al., 2022).
This was done using probabilistic encoders to do
differentially private latent sampling.

1559



Another approach, which shares popularity with
the task of paraphrasing, is round-trip machine
translation using supervised language models. Ini-
tial implementations of this method relied on sta-
tistical machine translation techniques like Moses,
as demonstrated in Keswani et al. (2016). This
approach involved translating text from English to
German via French and then back to English. How-
ever, this method often produced nonsensical or
inaccurate content (Mihaylova et al., 2016). Fortu-
nately, with the advancement of machine transla-
tion models, we have seen a significant increase in
language quality (Altakrori et al., 2022).
Authorship Imitation Approach. Although au-
thorship imitation (or style transfer) is regarded as
a distinct, separate task from authorship obfusca-
tion, it can be used as an obfuscation strategy when
the author’s identity is known. For example, Shetty
et al. (2017) employ prior knowledge of the original
authors’ qualities such as age and gender to train a
GAN-based model to generate content in multiple
styles. For example, if the author is known to be
an adult, this method would rewrite the section in
a teenager’s tone. This strategy involves not only
knowledge of the original author, but also a target
style to shift to, making it a less general method for
obfuscation. Jones et al. (2022) also use a similar
approach by training GPT2 models to successfully
mimic blog or Twitter users to deceive authorship
attribution models.

6 Conclusion

In this work, we introduced JAMDEC, a novel ap-
proach to user-controlled, inference-time author-
ship obfuscation which utilizes only small, open-
source language models. This technique involves
three key stages: keyword extraction, constrained
diverse beam search, and filtering, offering users
fine-grained control over the process and yielding
personalized outcomes dependent on the user’s
needs. We showed experimentation on two di-
verse datasets, and demonstrated that JAMDEC out-
performed over existing state-of-the-art methods
in authorship obfuscation, while also showcasing
its competitive performance against significantly
larger models like GPT3.5. Our findings under-
score the promise of JAMDEC as an effective strat-
egy for authorship obfuscation, harnessing the ca-
pabilities of smaller, openly available models to
achieve results on par with their larger counter-
parts.

7 Limitations

JAMDEC has several limitations. First, for creation
of the obfuscation candidates, we employ genera-
tions from a pre-trained language model. These
models, however, have been known to add fac-
tually incorrect or hallucinatory information (Ji
et al., 2022). Despite the fact that we have content-
preserving filters, we have discovered that at times,
additional information can bypass these filters and
make it into the final obfuscation.

Second, our approach is based on producing
several candidates for each obfuscation. If the
approach is employed at the sentence-level and
the text is lengthy, it may take a long time to em-
ploy. Despite the fact that we demonstrated that
our method works similarly with fewer generations,
it is slower than traditional stylometric-based meth-
ods.

Lastly, the specific filtering techniques (e.g.,
NLI, CoLA) we used may carry biases into the
eventual obfuscated texts. For example, CoLA
might only be able to correctly filter standard, plain
English language, but might not be as stable in cer-
tain dialects, which may exacerbate social injustice,
e.g., correcting (whitewashing) African American
English dialect. Users of this authorship obfusca-
tion technique are strongly advised to examine the
method for their specific text genre before deploy-
ing to ensure proper intended use.

Although we present our method with only ben-
eficial use in mind, we acknowledge that the task
of authorship obfuscation can be potentially dan-
gerous in itself. First, it could be misused for
anonymizing people’s writing style for malicious
intents, e.g., spamming or making hateful com-
ments online without taking accountability for their
actions. Also, these techniques could pose the risk
of violating intellectual properties and rights when
the creative work of authors is obscured to lose
credits. We urge the user to think critically before
using these types of methods.

8 Acknolwedgement

This research is based upon work supported in
part by NSF DMS-2134012, DMS-2023166, CCF-
2019844, and the Office of the Director of National
Intelligence (ODNI)’s IARPA program via 2022-
22072200003. The views and conclusions con-
tained herein are those of the authors and should
not be interpreted as representing the official views
of ODNI, IARPA, or the U.S. Government.

1560



References
Pegasus paraphrase. https://huggingface.co/
tuner007/pegasus_paraphrase. Accessed: 2023-
10-15.

Ahmed Abbasi and Hsinchun Chen. 2008. Writeprints:
A stylometric approach to identity-level identification
and similarity detection in cyberspace. ACM Trans.
Inf. Syst., 26(2).

Malik Altakrori, Thomas Scialom, Benjamin C. M.
Fung, and Jackie Chi Kit Cheung. 2022. A mul-
tifaceted framework to evaluate evasion, content
preservation, and misattribution in authorship obfus-
cation techniques. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, pages 2391–2406, Abu Dhabi, United
Arab Emirates. Association for Computational Lin-
guistics.

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:
An automatic metric for MT evaluation with im-
proved correlation with human judgments. In Pro-
ceedings of the ACL Workshop on Intrinsic and Ex-
trinsic Evaluation Measures for Machine Transla-
tion and/or Summarization, pages 65–72, Ann Arbor,
Michigan. Association for Computational Linguis-
tics.

Michael Brennan, Sadia Afroz, and Rachel Greenstadt.
2012. Adversarial stylometry: Circumventing author-
ship recognition to preserve privacy and anonymity.
ACM Transactions on Information and System Secu-
rity (TISSEC), 15.

Laura F Bright, Hayoung Sally Lim, and Kelty Logan.
2021. “should i post or ghost?”: Examining how pri-
vacy concerns impact social media engagement in us
consumers. Psychology & marketing, 38(10):1712–
1722.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Shuguang Chen, Leonardo Neves, and Thamar Solorio.
2022. Style transfer as data augmentation: A case
study on named entity recognition. In Conference on
Empirical Methods in Natural Language Processing.

Maël Fabien, Esau Villatoro-Tello, Petr Motlicek, and
Shantipriya Parida. 2020. BertAA : BERT fine-
tuning for authorship attribution. In Proceedings

of the 17th International Conference on Natural Lan-
guage Processing (ICON), pages 127–137, Indian
Institute of Technology Patna, Patna, India. NLP As-
sociation of India (NLPAI).

Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi
Ma, Ahmed El-Kishky, Siddharth Goyal, Man-
deep Baines, Onur Celebi, Guillaume Wenzek,
Vishrav Chaudhary, Naman Goyal, Tom Birch, Vi-
taliy Liptchinsky, Sergey Edunov, Edouard Grave,
Michael Auli, and Armand Joulin. 2020. Be-
yond english-centric multilingual machine transla-
tion. arXiv preprint.

Neal P. Fox and Omran Ehmoda. 2012. Statistical sty-
lometrics and the marlowe-shakespeare authorship
debate.

Robert Goodman, Matthew Hahn, Madhuri Marella,
Christina Ojar, and Sandy Westcott. 2007. The use
of stylometry for email author identification: A feasi-
bility study. Proc. Student/Faculty Research Day.

Maarten Grootendorst. 2020. Keybert: Minimal key-
word extraction with bert.

Project Gutenberg. [link].

Muhammad Haroon, Muhammad Fareed Zaffar, Pad-
mini Srinivasan, and Zubair Shafiq. 2021. Avengers
ensemble! improving transferability of authorship
obfuscation. CoRR, abs/2109.07028.

Matthew Honnibal and Ines Montani. 2017. spaCy 2:
Natural language understanding with Bloom embed-
dings, convolutional neural networks and incremental
parsing. To appear.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan
Su, Yan Xu, Etsuko Ishii, Yejin Bang, Wenliang Dai,
Andrea Madotto, and Pascale Fung. 2022. Survey of
hallucination in natural language generation. ACM
Computing Surveys, 55:1 – 38.

Matthew L. Jockers and Daniela M. Witten. 2010. A
comparative study of machine learning methods for
authorship attribution. Literary and Linguistic Com-
puting, 25(2):215–223.

Keenan Jones, Jason R. C. Nurse, and Shujun Li. 2022.
Are you robert or roberta? deceiving online author-
ship attribution models using neural text generators.

Jaehun Jung, Peter West, Liwei Jiang, Faeze Brah-
man, Ximing Lu, Jillian R. Fisher, Taylor Sorensen,
and Yejin Choi. 2023. Impossible distillation:
from low-quality model to high-quality dataset &
model for summarization and paraphrasing. ArXiv,
abs/2305.16635.

Georgi Karadzhov, Tsvetomila Mihaylova, Yasen
Kiprov, Georgi Georgiev, Ivan Koychev, and Preslav
Nakov. 2017. The case for being average: A medi-
ocrity approach to style masking and author ob-
fuscation. International Conference of the Cross-
Language Evaluation Forum for European Lan-
guages, pages 173–185.

1561

https://huggingface.co/tuner007/pegasus_paraphrase
https://huggingface.co/tuner007/pegasus_paraphrase
https://doi.org/10.1145/1344411.1344413
https://doi.org/10.1145/1344411.1344413
https://doi.org/10.1145/1344411.1344413
https://aclanthology.org/2022.emnlp-main.153
https://aclanthology.org/2022.emnlp-main.153
https://aclanthology.org/2022.emnlp-main.153
https://aclanthology.org/2022.emnlp-main.153
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://doi.org/10.1145/2382448.2382450
https://doi.org/10.1145/2382448.2382450
https://api.semanticscholar.org/CorpusID:252907820
https://api.semanticscholar.org/CorpusID:252907820
https://aclanthology.org/2020.icon-main.16
https://aclanthology.org/2020.icon-main.16
https://doi.org/10.5281/zenodo.4461265
https://doi.org/10.5281/zenodo.4461265
https://www.gutenberg.org/
https://arxiv.org/abs/2109.07028
https://arxiv.org/abs/2109.07028
https://arxiv.org/abs/2109.07028
https://doi.org/10.1093/llc/fqq001
https://doi.org/10.1093/llc/fqq001
https://doi.org/10.1093/llc/fqq001
http://arxiv.org/abs/2203.09813
http://arxiv.org/abs/2203.09813
https://api.semanticscholar.org/CorpusID:258947505
https://api.semanticscholar.org/CorpusID:258947505
https://api.semanticscholar.org/CorpusID:258947505


Yashwant Keswani, H. Trivedi, Parth Mehta, and Prasen-
jit Majumder. 2016. Author masking through trans-
lation. In Conference and Labs of the Evaluation
Forum.

Kalpesh Krishna, John Wieting, and Mohit Iyyer. 2020.
Reformulating unsupervised style transfer as para-
phrase generation. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 737–762, Online. Asso-
ciation for Computational Linguistics.

Alon Lavie, Kenji Sagae, and Shyamsundar Jayaraman.
2004. The significance of recall in automatic metrics
for MT evaluation. In Proceedings of the 6th Con-
ference of the Association for Machine Translation
in the Americas: Technical Papers, pages 134–143,
Washington, USA. Springer.

Wikipedia Frequency List. Wikipedia frequency list.

Alisa Liu, Swabha Swayamdipta, Noah A. Smith, and
Yejin Choi. 2022. WANLI: Worker and AI collabora-
tion for natural language inference dataset creation.
In Findings of the Association for Computational
Linguistics: EMNLP 2022, pages 6826–6847, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Zhi Liu. Reuter 5050 data set.

Zhi Liu. 2011. Reuter 50-50. UCI Machine Learning
Repository. DOI: https://doi.org/10.24432/C5DS42.

Ximing Lu, Peter West, Rowan Zellers, Ronan Le Bras,
Chandra Bhagavatula, and Yejin Choi. 2021. Neuro-
logic decoding: (un)supervised neural text generation
with predicate logic constraints. In Proceedings of
the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 4288–4299,
Online. Association for Computational Linguistics.

Asad Mahmood, Faizan Ahmad, Zubair Shafiq, Pad-
mini Srinivasan, and Fareed Zaffar. 2019a. A girl
has no name: Automated authorship obfuscation us-
ing mutant-x. Proceedings on Privacy Enhancing
Technologies, 2019(4):54–71.

Asad Mahmood, Faizan Ahmad, Zubair Shafiq, Pad-
mini Srinivasan, and Fareed Zaffar. 2019b. A girl
has no name: Automated authorship obfuscation us-
ing mutant-x. Proceedings on Privacy Enhancing
Technologies, 2019:54 – 71.

Asad Mahmood, Zubair Shafiq, and Padmini Srinivasan.
2020. A girl has a name: Detecting authorship obfus-
cation. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
2235–2245, Online. Association for Computational
Linguistics.

Muharram Mansoorizadeh, Taher Rahgooy, Mohammad
Aminian, and Mehdy Eskandari. 2016. Author ob-
fuscation using wordnet and language models. In
Conference and Labs of the Evaluation Forum.

Amazon Mechanical Turk. [link].

Tsvetomila Mihaylova, Georgi Karadzhov, Preslav
Nakov, Yasen Kiprov, Georgi Georgiev, and Ivan
Koychev. 2016. Su@ pan’2016: Author obfusca-
tion—notebook for pan at clef 2016.

John Morris, Eli Lifland, Jin Yong Yoo, Jake Grigsby,
Di Jin, and Yanjun Qi. 2020. Textattack: A frame-
work for adversarial attacks, data augmentation, and
adversarial training in nlp. In Proceedings of the
2020 Conference on Empirical Methods in Natu-
ral Language Processing: System Demonstrations,
pages 119–126.

PAN2016. Obfuscation evaluation 2016.

PAN2018. Obfuscation evaluation 2018.

Matt Post and David Vilar. 2018. Fast lexically con-
strained decoding with dynamic beam allocation for
neural machine translation. In North American Chap-
ter of the Association for Computational Linguistics.

Chen Qian, Ting He, and Ren Zhang. 2017. Deep learn-
ing based authorship identification.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Jonathan Schler, Moshe Koppel, Shlomo Argamon, and
James W Pennebaker. 2006. Effects of age and gen-
der on blogging. In AAAI spring symposium: Compu-
tational approaches to analyzing weblogs, volume 6,
pages 199–205.

Rakshith Shetty, Bernt Schiele, and Mario Fritz. 2017.
A4nt: Author attribute anonymity by adversarial
training of neural machine translation. In USENIX
Security Symposium.

Rakshith Shetty, Bernt Schiele, and Mario Fritz. 2018.
A4NT: Author attribute anonymity by adversarial
training of neural machine translation. In 27th
USENIX Security Symposium (USENIX Security 18),
pages 1633–1650, Baltimore, MD. USENIX Associ-
ation.

Maria Tikhonova, Elina Telesheva, Sergey Mirzoev,
Polina Tarantsova, Stanislav Petrov, and Alena
Fenogenova. 2021. Style transfer in nlp: a framework
and multilingual analysis with friends tv series. 2021
International Conference Engineering and Telecom-
munication (En&T), pages 1–6.

1562

https://doi.org/10.18653/v1/2020.emnlp-main.55
https://doi.org/10.18653/v1/2020.emnlp-main.55
https://link.springer.com/chapter/10.1007/978-3-540-30194-3_16
https://link.springer.com/chapter/10.1007/978-3-540-30194-3_16
https://en.wiktionary.org/wiki/Wiktionary:Frequency_lists/PG/2005/10/1001-2000
https://aclanthology.org/2022.findings-emnlp.508
https://aclanthology.org/2022.findings-emnlp.508
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/2021.naacl-main.339
https://doi.org/10.18653/v1/2021.naacl-main.339
https://doi.org/10.18653/v1/2021.naacl-main.339
https://api.semanticscholar.org/CorpusID:197621394
https://api.semanticscholar.org/CorpusID:197621394
https://api.semanticscholar.org/CorpusID:197621394
https://doi.org/10.18653/v1/2020.acl-main.203
https://doi.org/10.18653/v1/2020.acl-main.203
https://www.mturk.com
https://pan.webis.de/clef16/pan16-web/author-masking.html
https://pan.webis.de/clef18/pan18-web/author-obfuscation.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://www.usenix.org/conference/usenixsecurity18/presentation/shetty
https://www.usenix.org/conference/usenixsecurity18/presentation/shetty
https://api.semanticscholar.org/CorpusID:246291642
https://api.semanticscholar.org/CorpusID:246291642


Ewoenam Kwaku Tokpo and Toon Calders. 2022. Text
style transfer for bias mitigation using masked lan-
guage modeling. In North American Chapter of the
Association for Computational Linguistics.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models.

Ashwin K. Vijayakumar, Michael Cogswell, Ram-
prasaath R. Selvaraju, Qing Sun, Stefan Lee, David J.
Crandall, and Dhruv Batra. 2016. Diverse beam
search: Decoding diverse solutions from neural se-
quence models. CoRR, abs/1610.02424.

Yequan Wang, Jiawen Deng, Aixin Sun, and Xuying
Meng. 2023. Perplexity from plm is unreliable for
evaluating text quality.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bow-
man. 2019. Neural network acceptability judgments.
Transactions of the Association for Computational
Linguistics, 7:625–641.

Benjamin Weggenmann, Valentin Rublack, Michael An-
drejczuk, Justus Mattern, and Florian Kerschbaum.
2022. Dp-vae: Human-readable text anonymization
for online reviews with differentially private varia-
tional autoencoders. In Proceedings of the ACM Web
Conference 2022, WWW ’22, page 721–731, New
York, NY, USA. Association for Computing Machin-
ery.

Wanyue Zhai, Jonathan Rusert, Zubair Shafiq, and Pad-
mini Srinivasan. 2022. A girl has a name, and it’s ...
adversarial authorship attribution for deobfuscation.
ArXiv, abs/2203.11849.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Peter
Liu. 2020. PEGASUS: Pre-training with extracted
gap-sentences for abstractive summarization. In Pro-
ceedings of the 37th International Conference on
Machine Learning, volume 119 of Proceedings of
Machine Learning Research, pages 11328–11339.
PMLR.

1563

https://api.semanticscholar.org/CorpusID:246210255
https://api.semanticscholar.org/CorpusID:246210255
https://api.semanticscholar.org/CorpusID:246210255
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/1610.02424
http://arxiv.org/abs/1610.02424
http://arxiv.org/abs/1610.02424
http://arxiv.org/abs/2210.05892
http://arxiv.org/abs/2210.05892
https://doi.org/10.1162/tacl_a_00290
https://doi.org/10.1145/3485447.3512232
https://doi.org/10.1145/3485447.3512232
https://doi.org/10.1145/3485447.3512232
https://api.semanticscholar.org/CorpusID:247597137
https://api.semanticscholar.org/CorpusID:247597137
https://proceedings.mlr.press/v119/zhang20ae.html
https://proceedings.mlr.press/v119/zhang20ae.html


Table of Contents: Appendix
In the appendix, we provide the following additional materials:

Appendix A: Additional Experiments
• Appendix A.1: Impact of Diversity in Beam Search
• Appendix A.2: Human Evaluation without CoLA Threshold
• Appendix A.3: Comparing Keyword
• Appendix A.4: JAMDEC with Smaller Beam Width
• Appendix A.5: Comparison of all Automatic Evaluations
• Appendix A.6: Affect of NLI/CoLA Threshold on Performance
• Appendix A.7: Average Perplexity of Text

Appendix B: Style Transfer as Authorship Obfuscation Method
Appendix C: Adversarial Threat Model for Evaluation
Appendix D: Additional Qualitative Example for Comparison of Methods
Appendix E: Time Consumption Analysis
Appendix F: Compare Similar Authorship Tasks
Appendix G: Experimentation Details
Appendix H: Algorithm for Constrained Diverse Beam Search CoDi-BS

1564



A Additional Experiments

A.1 Impact of Combining Diverse Beam
Search with Constrained Beam Search

In order to explore the impact of combining Di-
verse Beam Search (Vijayakumar et al., 2016) and
Constrained Beam Search (Post and Vilar, 2018)
for authorship obfuscation, we calculated the auto-
matic evaluation metrics on generations produced
using JAMDEC with and without the Diverse Beam
Search for the AMT datasets. Results are shown in
Table 3. On average, there is about an 6% increase
in the Drop Rate, as well as an average 32% in-
crease in generations that pass the NLI and CoLA
thresholds, with little change to the NLI and CoLA
scores. As expected, adding the diversity penality
successfully encourages a higher diversity of gen-
erations between beams resulting in a more diverse
pool of generation candidates.

A.2 Human Evaluation for JAMDEC +Stylo
without CoLA Threshold

We ran an additional human evaluation on a
third variant of JAMDEC, which is identical to
JAMDEC +Stylo except it does not include the
final CoLA threshold on sentences produced us-
ing the stylometric-based obfuscation method.
Without this final threshold, each sentence obfus-
cated using the stylometric-based method was in-
cluded in the final text, meaning all sentences of
the text were changed and no original text was
used. For simplicity, we distinguish these methods
as JAMDEC +Stylo+W/Threshold and JAMDEC

+Stylo+W/O_Threshold. Figure 5 compares these
results to the results shown earlier in Section 4.
We observe an overall increase in Obfuscation of
9% compared to JAMDEC +Stylo+W/Threshold,
making it higher than all task-specific methods (but
still slightly below JAMDEC). However, it did have
a decrease of 15% and 13% in Grammar and Flu-
ency, respectively. The obfuscated text in JAMDEC

+Stylo+W/O_Threshold only differs from JAMDEC

+Stylo+W/Threshold for sentences that were al-
tered by the stylometric-based obfuscation method
but did not pass the CoLA threshold. Therefore,
it logically follows that including these sentences
leads to a decrease in Grammar and Fluency. It also
follows that these changes would add to a slight
increase in obfuscation, compared to text which
includes some of the original sentences.

Dataset Metric W/ Diversity W/O Diversity

AMT-3 Drop Rate (ENS) 0.11 0.01
Drop Rate (BertAA) 0.04 0.08
NLI 0.75 0.87
CoLA 0.85 0.86
Average Gen. 0.52 0.16

AMT-5 Drop Rate (ENS) 0.10 0.10
Drop Rate (BertAA) 0.14 0.01
NLI 0.76 0.87
CoLA 0.85 0.87
Average Gen. 0.48 0.16

AMT-10 Drop Rate (ENS) 0.44 0.25
Drop Rate (BertAA) -0.03 0.00
NLI 0.79 0.85
CoLA 0.78 0.85
Average Gen. 0.47 0.18

Table 3: The results of the Drop Rate, NLI, and CoLA
scores using JAMDEC with the same parameters both
with and without including a diversity penalty with Con-
strained Beam Search. We also present the average
generations that pass the NLI/CoLA threshold ("Aver-
age Gen.") for each method.
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Figure 5: Human Evaluation on 102 random samples
from AMT-3. We include two versions of JAMDEC
+Stylo, the original that uses a final CoLA threshold
(JAMDEC +Stylo+W/_Threshold) and one that does not
use this threshold (JAMDEC +Stylo+W/O_Threshold).

A.3 Comparing Keyword Extractors: Word
Embedding Methods vs. Likelihood
Methods

In Section 3 we introduced a new framework for
keyword extraction which uses likelihoods of next
token prediction from language models instead of
word embeddings. Using this framework, we devel-
oped two keyword extraction methods; one using
T5 and infilling (Likelihood-T5), and the other us-
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Figure 6: Comparing the obfuscation (Drop Rate - ENS and BertAA), content preservation (NLI), and language
quality (CoLA) using each keyword extraction method individually (KeyBERT, Likelihood-T5, Likelihood-GPT2,
and all three together (All) for AMT-3, AMT-5, and AMT-10.

ing GPT2 with an autoregressive (left to right) gen-
eration (Likelihood-GPT2). We hypothesized that
these likelihood-based keyword extraction meth-
ods would highlight keywords that would increase
the ability of a downstream model to generate text
that preserves the original meaning. In Figure 6
we show the results of the automatic evaluations of
authorship obfuscation using generations created
either with only KeyBERT, only Likelihood-T5,
only Likelihood-GPT2, or all three (as we did in
our experiments). For AMT-3 and AMT-5, the
likelihood-based keyword extraction have higher
overall evaluations’ metrics than the embedding-
based (KeyBERT). However, in AMT-10, the Key-
BERT performs on average ∼ 10% higher than
both the likelihood method in Drop Rate (ENS),
but is on average 6% lower in NLI. Overall, the
combined method (using all three keyword extrac-
tion) has the highest Drop Rate overall and lowest
number of original sentences used. Examples of
keywords selected by each method can be reviewed
in Table 4.

Original Sentence "I stated that the body needs a specific amount of time to
transfer calcium from locations in the body to the fracture."

Keyword Extractor Keywords

KeyBERT ["stated", "body", "needs", "specific", "time", "transfer", "calcium"]

Likelihood-T5 ["that", "the", "body", "of", "time", "to", "from", "location"]

Likelihood-GPT2 ["stated", "needs", "of", "transfer", "calcium"]

Table 4: Examples of keywords extracted by each
method; KeyBERT, Likelihood-T5, and Likelihood-
GPT2.

A.4 JAMDEC with Smaller Beam Widths
(Less Generations)

We repeated the AMT-3 experiment using a
lightweight JAMDEC with a smaller beam width
(20) and discovered that it performs slightly better
on almost all metrics than JAMDEC with a larger
beam width (50) (results in Table 5). This appeared

Metric JAMDEC JAMDEC (Lightweight)

Drop Rate (ENS) 0.11 0.12
Drop Rate (BertAA) 0.04 0.04
METEOR 0.62 0.78
NLI 0.81 0.82
CoLA 0.79 0.83
Average Gen. 0.63 0.42
Task Score (ENS) 0.57 0.59
Task Score (BertAA) 0.55 0.56

Table 5: The results of the automatic evaluation
scores for AMT-3 using JAMDEC with different beam
widths/generations per beam search (50 vs. 20). We also
present the average generations that pass the NLI/CoLA
threshold ("Average Gen.") for each method.

odd at first, until we looked at the quantity of sen-
tences that had generations which passed the NLI
and CoLA filter. When we reduce the beam width
(and hence the number of overall generations pro-
duced), we find a significant decrease in the number
of generations that pass the thresholds. For exam-
ple, in the lightweight version (beam width = 20),
only 20% of the generations pass the threshold, im-
plying that 80% of the sentences reverted to the
original sentence. Although changing only 20%
of the sentences is sufficient to trick the classifiers
(seen in the almost matching Drop Rate), it may
not be sufficient in human-evaluation.

A.5 Drop Rate vs. NLI vs. CoLA for All
Methods

A successful authorship obfuscation method should
score high in Drop Rate, NLI, and CoLA, however
we observe that the current methods tend to have
a trade-off in their abilities. To further analyze
this tradeoff, in Figure 7 we graph the Drop Rate
(ENS) versus the NLI and CoLA separately for
all datasets. Using our definition of a successful
method, we want to have a method that lies in
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the top right of both graphs. We observe that for
both datasets (AMT and BLOG), authors 3 and
10, JAMDEC has both a higher Drop Rate and a
high NLI and CoLA compared to all other small
model methods. However, we do see it perform a
bit worse for the 5 authors datasets, where Machine
Translation is a bit higher in Drop Rate and close
in NLI.

A.6 Comparing Drop Rate, NLI, and CoLA
for JAMDEC as the NLI/CoLA
Thresholds Change

JAMDEC is designed to be user-adaptive, having
flexible hyperparameters that can adjust to the
needs of the specific task. Two of these hyper-
parameters are the base NLI and CoLA thresholds
used in the filtering stage. We experimented with
scaling these hyperparameters from 0.2 to 0.8, us-
ing the JAMDEC +Stylo method. For simplicity, we
make the NLI and CoLA threshold equal in each
experimentation, and use a constant final CoLA
threshold of 0.7. Figure 8 shows the results for
the AMT datasets. In general, as we increase the
NLI and CoLA Thresholds (making it harder for
generation candidates to pass) we see an obvious
increase in NLI of ∼ 15%, a steady score of CoLA,
and a mixed result for the Drop Rate depending
on the number of authors. In fact, we see a slight
increase in both Drop Rates for AMT-3 and a slight
decrease in AMT-5 and AMT-10. Since the number
of original sentences used increases as the threshold
increases (higher thresholds means less generations
pass the thresholds), we would expect Drop Rate
to decrease (as it did for AMT-3). Therefore, this
behavior (especially by ENS) is an indication that it
might be relying on an artifact for its classification.
This encourages the use of human evaluation as
added evaluation for this task.

A.7 Perplexity of Generations
In our main experimentation we do not use perplex-
ity and instead use the CoLA score. The reason we
opted for CoLA over perplexity is that it has a fixed
range [0, 1] and can therefore be compared across
text length, topic, and style type (formal/informal).
Due to the unbounded nature of perplexity, it is
an unreliable metric to use by itself (Wang et al.,
2023).

However, want to provide these metrics. We
have used a Llama2-7B model (Touvron et al.,
2023) to calculate perplexity over a text (normal-
ized to the length of text). We choose Llama2-7B

since it is from a different family of models used
in our experimentation, to reduce any model archi-
tecture bias. Then, we calculate the ratio of the
perplexity of the obfuscated text to the perplexity
of the original (human) text. Again, we use this
ratio to have a standard comparison across methods.
Results can be seen in Table 6. Similar to CoLA,
we see that JAMBDEC outperforms over all other
methods on perplexity (ratio closes to 1) on almost
all datasets.

B Style Transfer as Authorship
Obfuscation Method

As we mentioned, the task of style transfer mainly
differs from the task of authorship obfuscation by
its goal of a specific, fixed target style. For this
reason, there seems to be many subclasses of style
transfer tasks center on a specific aspect of style
(specific authors, such as characters from the TV
show Friends (Tikhonova et al., 2021), aspect of
authors, such as gender (Tokpo and Calders, 2022),
formality of style (Chen et al., 2022), etc.). This
makes it hard to be a main baseline for authorship
obfuscation, as there is not a specific, unbiased
method or target style to choose. However, we still
were curious how it would compare to JAMDEC.
Therefore, we have included an additional experi-
mentation which compares two targeted styles with
JAMDEC on the task of authorship obfuscation.

We use the Style Transfer via Paraphrasing or
STRAP, a clever method which first employs para-
phrasing using one LLM finetuned on a supervised
paraphrasing task and then applies a specific style
using another LLM finetuned on the specific style
(Krishna et al., 2020). We use two types of target
styles; Shakespeare and Formal writing. The re-
sults are shown in Table 7. Here we observe that
JAMDEC consistently achieves a higher Drop Rate
while better preserving content and maintaining flu-
ency. Notice that comparing fluency using the style
transfer baseline to Shakespearean style might not
be entirely fair, as Old English has different gram-
mar rules. This highlights the limitations of using
the style transfer method for authorship obfusca-
tion, given the lack of a specific, unbiased target
style to select.

C Threat Model as Evaluation

In our main evaluation, we use simple authorship at-
tribution models, which do not have knowledge of
obfuscations. However, current work in authorship
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Dataset Method Original Perplexity Predicted Perplexity Ratio
Mutant-X (ENS) 8.25 29.52 3.77
Mutant-X (SVC) 8.25 27.6 3.56
Paraphrase 8.25 9.8 1.23
Machine Translation 8.25 12.93 1.64

AMT-3 Stylometric 8.25 24.17 2.95
JAMDEC (w/o stylo) 8.25 7.29 0.92
JAMDEC (w stylo) 8.25 8.05 1.02
GPT3 (Sentence) 8.25 13.3 1.7
GPT3 (Paragraph) 8.25 9.96 1.23
Mutant-X (ENS) 8.42 285.92 34.08
Mutant-X (SVC) 8.42 923.09 117.55
Paraphrase 8.42 11.95 1.49

AMT-5 Machine Translation 8.42 13.41 1.66
Stylometric 8.42 25.81 3.09
JAMDEC (w/o stylo) 8.42 7.3 0.9
JAMDEC (w stylo) 8.42 37.56 4.44
Mutant-X (ENS) 9.07 25.96 3.08
Mutant-X (SVC) 9.07 23.51 2.77
Paraphrase 9.07 10.02 1.2

AMT-10 Machine Translation 9.07 15.16 1.79
Stylometric 9.07 26.24 2.88
JAMDEC (w/o stylo) 9.07 7.52 0.9
JAMDEC (w stylo) 9.07 34.65 3.86
Mutant-X (ENS) 22.82 89.53 5.24
Mutant-X (SVC) 22.82 55.04 3.73
Paraphrase 22.82 22.27 1.39

BLOG-5 Machine Translation 22.82 42.08 2.73
Stylometric 22.82 47.18 2.5
JAMDEC (w/o stylo) 22.82 23.79 1.7
JAMDEC (w stylo) 22.82 24.44 1.75
Mutant-X (ENS) 19.55 452.56 32.25
Mutant-X (SVC) 19.55 47.82 3.58
Paraphrase 19.55 20.82 1.8

BLOG-10 Machine Translation 19.55 42.93 3.16
Stylometric 19.55 45.63 2.74
JAMDEC (w/o stylo) 19.55 19.17 1.4
JAMDEC (w stylo) 19.55 19.72 1.44

Table 6: Perplexity of Experiments in main text. The ratio closes to 1 (better fluency) is bolded and the second best
is italized.
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Figure 7: Highlighting the tradeoff between obfuscation (Drop Rate (ENS)), content preservation (NLI), and
language quality (CoLA) of each method for all datasets. The dotted line indicates the trend through all methods.
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Figure 8: Highlighting the change in obfuscation (Drop Rate - ENS and BertAA), content preservation (NLI), and
language quality (CoLA) for the JAMDEC +Stylo method as we increase the NLI/CoLA threshold for AMT-3.

attribution has shown that the use of adversarial
threat models (models that are trained with obfus-
cation) can better evade the attacks of authorship
obfuscation (Zhai et al., 2022). Therefore, we in-
clude evaluation using stronger threat models on
the AMT-3 dataset.

Table 8 shows results of evaluation of all meth-
ods using two threat models. The first, Threat
Model (Orig + Obf), is trained using both the origi-
nal text and the obfuscated text from all methods
shown. The second, Threat Model (Obf), is only
trained using the same obfuscated text but no orig-
inal text. It has been shown in previous works
that threat models trained only on obfuscated text
have higher accuracy (Zhai et al., 2022), which

is also seen in the models we train. Using these
models, we see that JAMDEC has the highest Drop
Rate under the first thread model and third highest
under the second thread model. However, as men-
tioned before, the Drop Rate is only one criterion
for the task evaluation of authorship obfuscation. It
should be noted, that Mutant-X and Machine Trans-
lation (which are the only method which scores
much higher than JAMDEC under the second threat
model) scores much lower in language quality and
content preservation than JAMDEC, as shown in
Table 1.
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Dataset Metric Shakespeare Formal JAMDEC

AMT-3 Drop Rate (ENS) 0.0 0.0 0.11
Drop Rate (BertAA) 0.04 0.04 0.04
NLI 0.19 0.25 0.75
CoLA 0.47 0.69 0.85

AMT-5 Drop Rate (ENS) 0.20 0.20 0.13
Drop Rate (BertAA) -0.06 -0.06 0.14
NLI 0.23 0.26 0.76
CoLA 0.49 0.69 0.85

AMT-10 Drop Rate(ENS) 0.33 0.23 0.41
Drop Rate (BertAA) -0.02 -.04 -0.02
NLI 0.19 0.26 0.79
CoLA 0.47 0.67 0.78

Table 7: Results from the automatic evaluation for JAMDEC and style transfer methods on AMT dataset.

Method Threat Model (Orig + Obf) Threat Model (Obf)

Mutant-X (ENS) 0.0 0.03
Mutant-X (RFC) 0.0 0.00
Paraphrase 0.0 -0.03
Machine Transl. 0.4 0.00
Stylometric 0.00 -0.07
JAMDEC 0.04 -0.03
Accuracy
Train 1.0 1.0
Test 0.93 0.96

Table 8: Drop Rate for JAMDEC and other baseline
methods on AMT-3 dataset. The threat models are used
to assess the Drop Rate (average obfuscated text).

D Additional Example of Obfusction

In Figure 9 we include a second qualitative com-
parison of JAMDEC and the other baseline meth-
ods. We notice that the obfuscated text produced
by baseline methods like Mutant-X, Paraphrase,
and Machine Translation has much lower language
quality compared to JAMDEC. Such low-quality
text might make it easier to deceive an automatic
classifier, but it fails to meet the other objectives of
authorship obfuscation: preserving the quality and
content of the original text. We also observe that
Paraphrase and Machine Translation make only mi-
nor modifications to the original text. While this
aids content preservation, it’s ineffective for author-
ship concealment.

Also, we provide a few examples of GPT3.5
generation in Table 9, with the first being the same
examples from Figure 9 in our paper. From qual-
itative analysis, we found that most generations
from GPT3.5 fell within two techniques: paraphras-
ing and stylometric (mainly replacing words with

Method Generation

Original
The Ex. An ex holding a grudge can do a lot of damage in a 
short amount of time. He knows enough to open accounts in 
your name, and he has the motive to hurt you. 

Mutant-X
The Ex. An ex holding a bitterness able ought a lot of 
damage in a length quantity of time. He knows enough to 
ascend accounts in Your prefix, and he has the justifiable to 
impair You. 

Paraphrase
A lot of damage can be done In a short period of time. He 
knows how to open accounts In your name and he wants to 
hurt you.

Machine 
Translation

The former. An old man who holds a knife can make a lot 
of damage in a short time. He knows enough to open accounts 
in your name, and he has the reason to hurt you. 

Stylometric
 An ex holding, a grudge can do a lot inside damage in a 
brief amount in time, yet he knows enough to open accounts 
in your name, and he has the motive to hurt you.

JAMDEC

The Ex. When the ex is holding his grudge against the 
person who caused him lot of damage to his life, he is 
short sighted and will do anything in his power to get 
back at that person, no matter how much it will hurt the 
person he is trying to get revenge against. He knows 
enough to open accounts in your name, and he has the motive 
to hurt you. 

JAMDEC + 
Stylo

The Ex. When the ex is holding his grudge against the 
person who caused him lot of damage to his life, he is 
short sighted and will do anything in his power to get 
back at that person, no matter how much it will hurt the 
person he is trying to get revenge against. He believes 
enough to open accounts in your name, and he has the reason 
to hurt you.  

Figure 9: Qualitative examples of obfuscated text cre-
ated by each method. The sentences are taken from the
AMT-3 dataset. Changes to the original are outline in
blue (correct grammatically and in context) and red
(incorrect grammatically or in context).

synonyms). Either the generation was a short de-
scription (lacking some content preservation) or it
was minimally changed (only swapping out a few
words). There were also a handful of generations
which provided incorrect paraphrasing (changed
meaning of sentence extremely - see example).
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Original Text GPT3.5 Generation Category of Generation
Though several attempts were made
to found agricultural outposts with
white settlers in the interior, these were
largely failures. The oppressive tropi-
cal climate and hostile African neigh-
bors made life difficult for settlers,
many of whom lacked agricultural ex-
perience or expertise.

Several attempts at establishing agricul-
tural settlements with white settlers in
the interior were attempted, yet were
mostly unsuccessful. Settlers in the op-
pressive tropical climate and with hos-
tile African neighbors found life to be a
challenging experience, especially with
many lacking any agricultural knowl-
edge.

Stylometric

Another issue is the added levels of
coordination that occur when work-
ing with multiple aid groups to ensure
healthcare service coverage.

An additional problem is the extra
layers of organization that transpire
when collaborating with numerous re-
lief agencies to guarantee health care
assistance.

Stylometric

The FBI databases contain tens of thou-
sands of records from car-rental com-
panies, hotels, and national department
stores.

The databases of the Federal Bureau of
Investigation include a plethora of files
from car-rental establishments, hotels,
and national chain stores.

Paraphrasing (missing con-
tent)

In Angola however, black Africans
never made up less than 95% of the
population, so the demographic situa-
tion there (and in the other Portuguese
colonies) was never the same as it was
in Brazil.

In Angola, African-descended individu-
als always constituted in excess of 95%
of the populace, thus differentiating
the demographic make-up of the Por-
tuguese colonies from that of Brazil.

Incorrect Meaning

Table 9: Example of generations from GPT3.5 and the category of obfuscation method used.

E Time Consumption Analysis

We include a comparison of time consumption
across the different obfuscation method. However,
we recognize that there is a significant trade-off be-
tween time consumption and performance. There-
fore, we provide, Figure 10 which clearly illustrates
this trade-off.

In this analysis we showcase alter aspects of
JAMDEC, beam width and generations parameters,
which severely affect time consumption. First, we
experiment with various beam width of 50, 20, and
10. We observe that when we reduce the beam size,
the time consumption decreases significantly, yet
the performance remains similar. Second, we ex-
perimented with using all parameter combinations
versus using only the best parameter to generate
candidates for filtering. Surprisingly, by using only
the best parameter to generate a small candidate
set which cuts the runtime by approximately five
times, we achieve performance that’s comparable
to or even better than using all parameter com-
binations to produce a large candidate set. Both
ablations showcase the efficiency and effective-

ness of JAMDEC. Additionally, when compared to
other baselines, the best configuration of JAMDEC

achieves significantly better performance with a
comparable run-time. This further confirms the
effectiveness and practicality of JAMDEC for real-
world applications.
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Figure 10: Comparison of time consumption (hours)
and performance (Task Score - BertAA). We compare
JAMDEC (using all parameters of generations) and
JAMDEC _Best (using the best combination of genera-
tion parameters) to all other baseline methods.
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F Compare Similar Authorship Tasks

Here, we would like to further discuss the criti-
cal difference between seemingly similar language
tasks: authorship obfuscation, paraphrasing and
style transfer. Table 10 provides a visual illustra-
tion of the differences in the tasks.

Paraphrasing The main objectives of paraphras-
ing is to rephrase text to enhance clarity. Hence,
paraphrasing can often lead to small edits that stay
within the same authorship style, making it ineffec-
tive for concealing the author’s identity. We further
validate the incompetence of paraphrasing meth-
ods for authorship obfuscation empirically through
both quantitative and qualitative analysis as shown
in Table 1, Figure 3 and Figure 9.

Style Transfer Style transfer assumes a distinct
target style whereas authorship obfuscation as-
sumes lack of distinct style. Specifically, while
style transfer has a fixed target style as a priori, au-
thorship obfuscation requires a dynamically chang-
ing output style depending on the particular input
text to obfuscate. This makes it challenging to use
style transfer techniques for authorship obfusca-
tion, as it’s hard to assume a specific target corpus
representing the proper output style for obfuscation.
We further confirm the incompetence of style trans-
fer methods empirically through quantitative and
qualitative analysis as shown in Table 7 and Figure
9. In addition, using style transfer techniques for
authorship obfuscation raises ethical concerns. The
intention of authorship obfuscation is to safeguard
the author’s identity, avoiding the imitation or de-
ceptive portrayal of an individual. Using style trans-
fer to mimic another author could unintentionally
blur the boundary between preserving anonymity
and indulging in deceitful behavior.

G Experimental Details

In this section we provide full details of the ex-
perimentation used in this paper. We start with
the dataset in Appendix G.1, method implementa-
tions and hyperparameter choices for each method
in Appendix G.2, and evaluation methodology in
Appendix G.3.

G.1 Data
AMT- Formal Articles. The dataset, the Extended-
Brennan-Greenstadt (Brennan et al., 2012), con-
tains collections of short (∼ 500-words) scholarly
text that were gathered from Amazon Mechanical

Turk (AMT). These articles were collected using
very strict guidelines which required the writing
to be clear (free of citations, urls, headings, etc.),
true to the author’s writing style, relevant to the
topic, and the correct length. These qualities were
then reviewed by the researchers after submission
for quality assurance. More information about the
data collection can be reviewed in Brennan et al.
(2012). We used the same three test sets as Mah-
mood et al. (2019a), which were a collection of 3,
5, and 10 authors with 27, 30, and 49 texts respec-
tively (AMT-3, AMT-5, AMT-10). Each author
wrote about the same topic throughout the differ-
ent text. Examples of the author’s topics included
identity theft, and Portuguese slavery in Africa. An
example of a passage can be seen in Table 11.
BLOG- Informal Articles. The second dataset,
the Blog Authorship (Schler et al., 2006), contains
a collection of blog entries that were posted to
blog.com in 2004. The original dataset contains
over 680k post from 19k individual authors, with
an average of 7,250 words per author. Each author
tends to write about similar topics and styles, rang-
ing from dairy style entries to fan-fiction. Similar
to the test sets used by Mahmood et al. (2019a), we
created two datasets with a collection of 5, and 10
authors with 72, and 150 texts respectively (BLOG-
5, BLOG-10). An example of a passage can be
seen in Table 11.

G.2 Method Implementation

The method implementation and hyperparameters
for each method used in our experimentation are
detailed below.

G.2.1 Baselines
Stylometric Obfuscation. We employ the
Stylometric Obfuscation method proposed by
Karadzhov et al. (Karadzhov et al., 2017) in the
PAN-2016 Author Masking Shared Task competi-
tion (PAN2016). This method calculates metrics
for 12 features that are indicative of style, then
modifies the text, so these metrics align with an
"average" value. The "averages" were calculated
using a combination of training sets including the
PAN-2016 Author Obfuscation task (PAN2016)
and public domain books from Project Gutenberg
(Gutenberg) Examples of the metrics this method
uses include the average number of words per sen-
tence, word frequency, and the use of uppercase
letters. Changes employed include actions such
as sentence splitting and merging, substitution of
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Task Preserve All Content Preserve Tone Change in Style Target Style
Authorship Obf. ✓ ✓ ✓ ✗

Paraphrase ✗ ✓ ✗ ✗

Style Transfer ✓ ✓ ✓ ✓

Table 10: Comparison between the task of authorship obfuscation, paraphrasing and style transfer.

words with synonyms, and alterations in spelling.
For a full list of metrics and proposed changes,
see the (Karadzhov et al., 2017). To further en-
hance the obfuscation process, the method intro-
duces "noise" by modifying words that differ be-
tween English and British English and introducing
additional functional words. We make no changes
to the hyperparameters used in the original method.

Mutant-X. Mutant-X (Mahmood et al., 2019a) is
a genetic algorithm guided by an internal author-
ship classifier, which is trained using a deep learn-
ing architecture. This method requires a separate
authorship corpus to train the internal classifier.
The approach follows an iterative process wherein
the text undergoes "mutation" by randomly replac-
ing words based on their semantic similarity. Ad-
ditionally, at random iterations, it incorporates a
"crossover" effect that involves cutting two parent
texts at a random position and combining them to
create two new child texts.

In order to train the internal classifiers, we adopt
the same features and architectures (Random Forest
Classifier, Support Vector Classifier and Ensemble
Classifier), as suggested in the subsequent work by
Haroon et al. (2021). The features come from the
Writeprints-Static (Brennan et al., 2012) which is a
set of 500+ lexical and syntactic features such as
total words, percentage of digits, and special char-
acter occurrences taken from the full set Writeprint
(Abbasi and Chen, 2008). For the Random Forest
(RFC) we used 50 trees in the forest and all fea-
tures, and for the Support Vector Classifier (SVC)
we use a linear kernel with all the features. How-
ever, as was explored in Haroon et al. (2021), a
single classifier may not be the best indication of
authorship classification since it could be relying on
artifacts to make its decision. Therefore, they intro-
duced the idea of using an "ensemble" of classifiers
(ENS) which are trained on different collections
of features and vote on the final classification. We
used an ensemble of 10 SVC classifiers which were
trained on 30 randomly selected features. A "soft"
voting system (averaging probabilities instead of
classes) was used to choose the final obfuscation.

However, we only show results with an internal
classifier of RFC or ENS for the internal classifiers.
The sample size, train accuracy, and test accuracy
of these models can be reviewed in Table 12.
Paraphrasing. For the paraphrasing baseline, we
employ a state-of-the-art paraphrasing model, PE-
GASUS Paraphrase (Zhang et al., 2020; par) a PE-
GASUS model fine-tuned on a self-supervised task
for paraphrasing.
Machine Translation. Inspired by the work of
Keswani et al. (Keswani et al., 2016), we imple-
mented a similar approach using machine transla-
tion from English to German, then to French, and
finally back to English. Keswani et al. empha-
sized the importance of using a machine translation
model that does not rely on English as an interme-
diate step. This means that when translating from
German to French, the model should go directly
from German to French, without translating via En-
glish. In their paper, they did not provide the code
for this method, so we created our own implemen-
tation using the M2M100 translation model (Fan
et al., 2020) with 418M parameters.

GPT3.5 We include a comparison with zero-shot
prompting using GPT-3 (text-davinci-003, 175B)
3 (Brown et al., 2020) which has ∼ 175B parame-
ters. Our comparison involved prompting at both
the sentence-level, where each sentence was obfus-
cated individually, and the paragraph level, where
the entire text was obfuscated as a whole. We
prompted GPT-3 to generate two obfuscations for
each sentence/paragraph. Subsequently, for the
sentence-level obfuscation, we randomly combined
one generation from the two produced for each sen-
tence to create a single obfuscated paragraph. The
evaluations presented here represent the average
performance across these two generations. How-
ever, due to financial constraints, we limited our
GPT-3 obfuscation generation to AMT-3.

Below are the exact prompts used to generate
obfuscated text at the sentence and paragraph level.

Sentence-level:
"Provide two re-writes of the following sentence

so that the author’s style is obfuscated.
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Dataset Text Example
AMT In the 1990s Zaire served as the main supporter of UNITA, as South African and American support

for the organization dwindled. In 1997 a coup supported in part by the Angolan government
overthrew Mobutu, and Zaire was renamed the Democratic Republic of the Congo. Without the
aggressive Mobutu regime as a neighborhood, the situation in Angola stabilized and the MPLA
was finally able to crack down on internal dissent without being troubled with foreign intervention,
ending the civil war a few years later in 2002. Like most other Third World conflicts of the twentieth
century, the wars in Angola were heavily affected by the Cold War. In addition to the competition
between the US and the USSR, several other factors motivated the involvement of international
powers: the Sino-Soviet split, Third World solidarity against Western exploitation and imperialism,
and in the case of the US, Angola’s large oil reserves. The USSR was involved with the MPLA
from its foundation in the late-1950s. Starting in 1958, MPLA founding member Mario de Andrade
would travel to Moscow on a regular basis for various conferences and meetings. During these visits
the MPLA developed a relationship with the Soviets, securing funding and in 1961 the explicit
support of Soviet Premier Nikita Khrushchev, who stated that ‚"the patriots of Angola can be sure
that the sympathies of the peoples of the great Soviet Union are fully on their side." Many MPLA
leaders would go on to be educated in Moscow. The USSR chose to support the MPLA over rival
movements in Angola for a number of reasons. As a left-leaning Marxist movement that explicitly
condemned the imperial powers, the MPLA followed the same basic ideological principles as the
USSR. The UPA/FNLA was more ambiguous on this issue, receiving support from the US and
sometimes practicing anti-communist rhetoric. The MPLA was also not as focused on regional or
ethnic issues, as the predominately Bakongo UPA based in northern Angola was. The USSR also
practiced the policy of recognizing and supporting only one rebel movement within a conflict, a
policy not shared by all of its peers. Early Soviet support of the MPLA included food and clothing
as well as weapons and increased progressively during the course of the war from goods valued at
$25,000 in 1961 to $220,000 in 1973. Large scale Soviet assistance did not come until 1975 though.
In this year another foreign power would join the equation, with Cuba‚ shipment of two shiploads
of T-55 tanks and 500 military advisories. Though the Cubans and Soviets would work together
closely in Angola, early actions were not coordinated as is widely assumed. Cuba was not simply a
Soviet proxy but rather had its own agenda for being in Angola. As a Third World country with a
colonial past and communist government, Cuba wanted to sustain the global conflict against the
West and imperialism through spreading Marxist-Leninist revolution.

BLOG 7:05 a.m. Wednesday. Feeling pretty good today. My last couple hours of sleep were choppy, but I
went to bed so early I’m sure I got at least eight hours. Took half an actifed to counter the red wine,
and I didn’t drink enough water to counteract them both. Other than that, feeling good, and I’m
pleased with the amount I drank for Drinking Night. My new plan is to buy only red wine, and
buy only enough for the one drinking night. If I don’t have it around the house, I won’t drink it.
Because I am far too lazy and too self-conscious to go buy it. Therefore, this way I am not relying
on willpower, I’m setting up an environment where I can’t drink. I’m having a glass of water right
now, with my coffee. I don’t usually start until after breakfast, but I feel quite dehydrated. I’m
adjusting my estimates for the coffee with Benefiber, because I’m not putting an entire tablespoon
in. Maybe two-thirds that. Note: remember to buy an exercise ball to sit on while at the computer.
5:00 p.m. Had a nice little lunch with Daisy. Ate a veggie wrap and some fries, which I hope I am
estimating reasonably. It was a decent meal, but not entirely filling, so I had a little chicken when I
got home. Now I am finishing up my work emailing before vacation, trying to do my timesheet, etc.
My hip is still bothering me. I’m not happy about that, because it hurts when I walk, and I want to
do a lot of walking on vacation. I think the bellydancing may have caused the strain, and then the
gliding is exacerbating it. So perhaps it’s a good thing that I’ll be away from the glider for a couple
weeks. I can walk and swim for exercise, and perhaps that will work out the problem, whatever it is.

Table 11: Examples of text from both datasets used in the experimentation section; AMT and BLOG.
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Dataset Train Sample Size Test Sample Size ENS RFC BertAA

Train Acc. Test Acc. Train Acc. Test Acc. Train Acc. Test Acc.

AMT-3 36 27 1.0 0.93 1.0 0.93 1.0 0.93

AMT-5 60 30 1.0 0.93 1.0 0.87 1.0 0.87

AMT-10 120 49 1.0 0.82 1.0 0.69 1.0 0.57

BLOG-5 400 100 1.0 0.93 1.0 0.91 1.0 0.98

BLOG-10 800 150 0.96 0.84 1.0 0.83 1.0 0.95

Table 12: Train and test accuracy for the three classifiers used in the experimentation (ENS, RFC, and BertAA) for
each dataset (AMT-3, AMT-5, AMT-10, BLOG-5, BLOG-10). We also display the sample size for the training and
test set for each dataset.

Original Sentence: {original text}"
Paragraph-level:
"Provide two re-writes of the following para-

graph so that the author’s style is obfuscated.
Original Paragraph: {original text}"

G.2.2 JAMDEC

As described, JAMDEC has three distinct stages
(keyword extraction, over-generation, and filtering).
We also include a pre-processing step which pre-
pares the raw data for obfuscation. We outline the
hyperparameter values used in each section below.
Data Pre-Processing. We pre-process the raw text
before obfuscating. First, we divide each text into
paragraphs. We go through each sentence in each
paragraph and add it to a list yorig. We then group
all sentences in that same paragraph that appear
previously and store it in a new list xl. This results
in a list of original sentences yorig and left contexts
xl. If the sentences are the first in the paragraph,
we use the previous’s paragraphs last sentence as
the left context. For the first sentences of the text,
we use itself as the left context. Lastly, if a sentence
has less then 3 words we did not change it.
Keyword Extraction. We use three kinds of key-
word extraction; KeyBERT, Likelihood-T5 and
Likelihood-GPT2 as described in Section 4. For
KeyBERT we used unigrams and returned n/2 key-
words, where n was the length of the original sen-
tence. For Likelihood-T5, we used a T5-base (Raf-
fel et al., 2020) and for Likelihood-GPT2 we used
a GPT2-XL (1.5B) (Radford et al., 2019). For both
Likelihood-T5 and Likelihood-GPT2, we used a
likelihood threshold of 0.5, meaning any original
word whose next token probability was below 0.5
was kept as a keyword.

To further support creative and diverse genera-
tion, we include disjoint constraints which allow for
one of a list of constraints to be met. Using disjoint

constraints, we add both "like" words (same root
word with different tenses) and "similar" words
(synonyms) of the keywords. To do this, we start
by creating a static dictionary of word embedding.
For our experimentation, we used a list of 20K
most common English words (List) and convert
each word into the tokens using T5-base pretrained
model (Raffel et al., 2020). For more details on this
static dictionary see Appendix G.2.3. Then, to find
the top "similar" words, we used the cosine similar-
ity between the original keyword and each word in
the static dictionary and choose the top 4 with the
highest score. To find the top "like" words, we used
the Spacy package (Honnibal and Montani, 2017)
in Python to find the first 4 words in the static dic-
tionary with the same word lemma as the original
keyword. For our experimentation, we used three
versions of the keywords as constraints. We used
the original keywords, the original keywords with
the "like" words, and the original keywords with
the "like" and "similar" words.

Generation. For our experimentation, we used
Neurologic Constrained Beam Search (Lu et al.,
2021) and Diverse Beam Search (Vijayakumar
et al., 2016). The base model was GPT2-XL (1.5B)
For most of the experimentation (except for the
ablation study in Appendix A.4), we used a beam
width of 50 and a matching number of return se-
quences. The maximum length of the generation
was set to twice the largest input length in a batch.
The batches were grouped by input length, to keep
like max lengths. We also set the no repeat length
to 3-grams. For decoding within the beam search,
we ran each combination twice, once with sampling
decoding and another with greedy decoding. We
used a likelihood pruning factor of 0.4 and a con-
straint pruning factor of 0.6. For the constraints,
we used both ordered constraints (the constraint
must be met in a specific order) and unordered
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constraints. Lastly, we employed early stopping,
which will stop a beam search early if candidates
are not better than the current candidates. When di-
versity was employed, we used a diversity penalty
of 5, 000. Hyperparameters were selected based
on experimentation on Reuter 50-50 (Liu, 2011),
which is a sub-sample of newswire articles pro-
duced by Reuters in 1996 - 1997 which have at least
one subtopic of class corporate/industrial. This is a
common baseline used for authorship verification
(Qian et al., 2017).

In summary, we ran generations for each sen-
tence using the following combinations of meth-
ods:

• Decoding Method: Sampling, Greedy
• Type of Constraints: Original, Original + Like,

Original + Like + Similar
• Ordered Constraint: True, False
• Diversity in Pre-Processing: True, False

Filtering. For our experimentation, we ran two
different filtering techniques. Each method starts
with a base NLI and CoLA threshold. Due to the
lack of an evaluation set, all hyperparameters were
selected using a grid search on the smallest dataset
of each kind (AMT-3 and BLOG-5). In some cases,
we find that none of the generated candidates passes
both the NLI and CoLA filter. To process such
cases, we consider two variants of our method:
(1) JAMDEC, where we simply output the origi-
nal sentence as output, and (2) JAMDEC + Stylo,
where we run a basic stylometric-based obfusca-
tor on the original sentence and then use a second
CoLA threshold for this altered sentence. The basic
stylometric-based obfuscator is explained in detail
below in Appendix G.2.3. If the altered sentence
does not pass the filer than the original sentence
is used. A full list of hyperparameters for each
method can be viwed in Table 13. We also provide
the average percentage of sentences that passed the
basic NLI/CoLA thresholds and the second CoLA
threshold that is used in JAMDEC + Stylo in Ta-
ble 14.

G.2.3 Our Stylometric-Based Obfuscator
Set-Up. We consider the original prompt (sen-
tence) x which is composed of words x1, ..., xn.
Before decoding, we "freeze“ all tokens that corre-
spond to function words. Function words are gram-
matical words that serve as connectors or structure
indicators in a sentence, rather than conveying lexi-
cal meaning. Therefore, we only consider changing
context words such as nouns, adjective, and verbs.

Dataset Hyperparameter JAMDEC JAMDEC + Stylo
AMT Base NLI Thresholds 0.30 0.40

Base CoLA Threshold 0.30 0.40
Second CoLA Threshold - 0.70

BLOG Base NLI Thresholds 0.10 0.10
Base CoLA Threshold 0.10 0.10
Second CoLA Threshold - 0.70

Table 13: Hyperparameters for the filtering stage of the
experiments using JAMDEC with and without the sty-
lometry decoding (+ Stylo); AMT and BLOG datasets

.

A difficult aspect of a word-changing method is
choosing which words are truly equivalent to the
original word. For our method, we consider new
words as replacements based on the following:

1. Similarity to the original word St

2. Grammatical correctness of new sentence Gt

Using these two metrics, we created a 3-step
method for identifying and changing certain words
of a sentence. The pipeline can be viewed in Figure
11 and is described in detail below.

 = Similarity Score* +  CoLa Score* Zbase

Cosine Similarity (top k) 
• Limit to same tense 

(verbs)

• Limit to matching 

    singular/plural  (nouns)

• Averages scores for the 

same word

CoLA  
• Set threshold

Create Dictionary of Embeddings 
1. Top 20K most common 

English words

2. Convert to T5 tokens

3. Get word embedding


If >1 token, then average 
embeddings

Original 
word

Find top k 
similar 
words

Find CoLA 
for each 

top k word

Combine 
similarity 
score and 

CoLA

Pipeline:
Convert 
to token

Sample 
new 
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Figure 11: A visual representation of the pipeline used
for the stylometric-based obfuscation method used in
JAMDEC +Stylo.

Step1: Word Embeddings Dictionary We start
by creating a new static dictionary of word em-
bedding, depending on the base model. For our
experimentation, we use a list of 20K most com-
mon English words (List) and convert each word
into tokens using T5-base (220M) pretrained model
(Raffel et al., 2020). Then, using these matched
tokens, we extracted their corresponding word em-
bedding vectors (weights in the last attention layer).
If a word matched to multiple T5 tokens, then we
averaged their corresponding word embedding vec-
tors. This resulted in a static word embedding dic-
tionary D of vectors d1, ..., d20K , where di ∈ R|V |,
where, V is the length of the T5 vocabulary.
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Dataset JAMDEC JAMDEC + Stylo
AMT-3 Pass Base Thresholds 0.52 0.63

Pass Second CoLA Threshold - 0.15
Original Sent. Used 0.48 0.22

AMT-5 Pass Base NLI Threshold 0.52 0.64
Base Pass CoLA Threshold - 0.16
Original Sent. Used 0.48 0.20

AMT-10 Pass Base NLI Threshold 0.53 0.60
Base Pass CoLA Threshold - 0.13
Original Sent. Used 0.47 0.27

BLOG-5 Pass Base NLI Threshold 0.57 0.64
Base Pass CoLA Threshold - 0.07
Original Sent. Used 0.43 0.29

BLOG-10 Pass Base NLI Threshold 0.60 0.67
Base Pass CoLA Threshold - 0.06
Original Sent. Used 0.4 0.27

Table 14: Breakdown of average number of sentences that pass both the base thresholds (NLI and CoLA), the
second CoLA threshold (only used for JAMDEC + Stylo), and the average original sentences used for each dataset.

Step 2: Similar Words Next, we find the top k
similar words from D to the original word xt using
cosine similarity of the word embeddings. We only
consider verbs of the same tense and nouns that
match the singular or plural nature of the original
token xt. Let W be the set of words w1, ..., wk with
the highest similarity scores si. With this set R of
top-k similarity scores, s1, ..., sk, we create the
following similar score distribution St for original
word xt

St =

{
si−min(R)

max(R)−min(R) if wi ∈ W

0 otherwise.
(1)

Step 3: Grammar Scores Using the top k sim-
ilar words wi, ..., wk from the previous step, we
find each grammar score gi using a Roberta base
model (Liu et al., 2019) finetuned on the Corpus of
Linguistic Acceptability (CoLA) (Warstadt et al.,
2019; Morris et al., 2020), a large corpus which
contains 10.5K sentences annotated for grammar
acceptability by their original authors. We do this
by using the generated text x1, ..., xt−1 before xt,
and using the original text xt+1, ..., xn after the
generated text. For example, if the original text
was "I went to a big lake", and we have generated
"I walked to a" and are currently trying to find the
grammar score for "huge", we would use "I walked
to a [huge] lake" as input to the CoLa model. We
use the probability of the input being grammatically

acceptable as gi. We do this for each similar word,
resulting in a set Q of grammar scores g1, ..., gk.
Lastly, we impose a lower threshold δ, which we
set, so the grammar scores are guaranteed to be
high. This can be tuned for specific tasks. Similar
to the similarity scores, we construct a grammar
score distribution Gt for the original word xt as

St =

{
gi−min(Q)

max(Q)−min(Q) if wi ∈ W, gi > δ

0 otherwise.
(2)

Step 4: Word Selection Lastly, we combine the
similar score distribution St and grammar score
distribution Gt using the following equation,

Ft = αSt + βGt (3)

where α and β are hyperparameters controlling the
importance of similarity or grammatical acceptabil-
ity. We use sampling from the final distribution, Ft

to generate the word replacement. However, we
note that the original word is included in the top
k similarity and therefore could result in the final
generation. This method is repeated for each con-
text word from the original text. An example of
this method on text from the Reuter 50-50 dataset
(Liu) can be found in Table 15.

G.3 Evaluation Methodology and Other
Details

Automatic Evaluation. We used five automatic
evaluations; Drop Rate (ENS and BertAA) (Mah-
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Original Text Obfuscated Text
The site does not in-
clude the countries’ ac-
tual data – that may
come later – but it lists
contacts for obtaining
the information.

The site does not con-
tain the states’ real
files – that might
come later – but it
includes contacts for
obtaining the informa-
tion.

The International
Monetary Fund open
a site on the Internet
Thursday providing
information about the
types of economic
data available in 18
member countries.

The International
Monetary Fund
started a page on the
internet Thursday de-
livering advice about
the types of economic
records offered in 18
membership regions.

Senator Bob Kerrey
is preparing legislation
in an attempt to break
the deadlock over com-
puter encryption ex-
port policy, people fa-
miliar with the Sena-
torś plans said.

Senator Bob Kerrey is
preparing regulation in
an effort to crack the
deadlock over inter-
net encryption impor-
tation policy, people
acquainted with the
Senator’s plans said.

Table 15: Example of sentences obfuscated using our
basic stylometric-based obfuscator. On the left is the
original text and on the right is the obfuscated text. The
changes are show in bold.

mood et al., 2019a; Fabien et al., 2020), METEOR
(Banerjee and Lavie, 2005), NLI (Liu et al., 2022),
and CoLA (Warstadt et al., 2019). The Drop rate
is the average decrease in number of obfuscated
text which a classifier identified as the non-original
author compared to the original text. Two clas-
sification models were used to calculate the drop
rate, an ENS and BertAA model. The training of
ENS model is described in Appendix G.2.1 un-
der "Mutant-X" (Mahmood et al., 2019a). The
training for BertAA is described in (Fabien et al.,
2020). METEOR (Metric for Evaluation of Trans-
lation with Explicit ORdering) (Banerjee and Lavie,
2005) is a common baseline used in machine trans-
lation. It is calculated using the harmonic mean
of precision and recall using unigram matching
that ranges from 0 (no overlap) to 1 (exact over-
lap). Because it relies on exact token matching, it
is unideal for measuring paraphrases of text that
could have drastically different tokens but the same
meaning. We include the reporting of this metric
since it is heavily reported in the literature. How-

ever, we rather rely on another metric, NLI (Natu-
ral Language Inference) as an indicator of content
preservation. NLI is a task with aims to predict
if two text are "entailed", in other words if one
text is true then the other logically follows. We
used WANLI model (Liu et al., 2022) as our NLI
model and report the average highest NLI scores
for each sentence. Meaning, we take each sentence
in the obfuscated text and calculate the probability
of entailment, according to the WANLI model, with
each sentence in the original. We then choose the
highest entailment value. What is reported is the av-
erage of these maximum values for all text. Lastly,
we use a CoLA (Corpus for Linguistic Acceptabil-
ity) (Warstadt et al., 2019) model as a measure of
grammatical correctness. Given a text, the model
reports a probability of grammatical acceptance
(ranging from 0 to 1), we use the average of these
as the CoLA score.
Inter-rater Agreement. We decided to use two
different classifier models (ENS and BertAA) to
calculate the drop rate. Since these models use dif-
ferent architecture and different sets of features, we
wanted to report the inter-rater agreement between
them. We use Cohen’s kappa coefficient, which
measure the inter-rater reliability using a scale be-
tween [0.1], where 0 is completed disagreement
and 1 is complete agreement. This is thought to be
a more robust measure because it takes the proba-
bility of agreement by chance into consideration.
See Table 16 for the results.

G.4 Human Evaluation
All human evaluations were conducted on Ama-
zon Mechanical Turk (AMT) (Mechanical Turk).
The data for the human evaluations were randomly
selected from the passages in AMT-3. Each pas-
sage was separated into shorter sections ranging
from one to four sentences. Then n = 32, 35,
and 35 of these shorter sections were selected from
author "H", "PP", and "QQ" texts respectively (Au-
thor "H" has fewer passages overall than "PP" or
"QQ" and therefore had slightly less short texts
chosen for the human evaluation) for a total of 102
passages. The corresponding obfuscated text was
then matched for the following methods; Mutant-X
(ENS), Machine Translation, Stylometric, GPT3.5
(Sentence), JAMDEC, and JAMDEC + Stylo. For
each passage, the AMT worker was shown the orig-
inal and obfuscate passage side by side and ask the
following five questions.

1. Grammar: How grammatically correct is the
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Method Mutant-X GPT3 Paraph Machine Transl. Stylometric JAMDEC

Dataset Classifier ENS RFC Sentence Paragraph W/O Stylo W/ Stylo

ENS-RFC 0.19 0.27 0.72 0.59 0.83 0.82 0.77 0.66 0.67
AMT-3 ENS-BertAA 0.83 0.39 - - 0.89 0.65 0.58 0.77 0.77

BertAA-RFC 0.30 0.72 - - 0.83 0.65 0.78 0.89 0.89

ENS-RFC 026 0.33 - - 0.57 0.60 0.54 0.64 0.69
AMT-5 ENS-BertAA 0.09 0.29 - - 0.54 0.56 0.53 0.47 0.43

BertAA-RFC 0.44 0.11 - - 0.63 0.47 0.31 0.50 0.54

ENS-RFC .03 0.21 - - 0.45 0.39 0.57 0.39 0.35
AMT-10 ENS-BertAA 0.10 0.38 - - .56 0.34 0.48 0.29 0.36

BertAA-RFC 0.43 0.11 - - 0.52 0.34 0.38 0.37 0.35

Table 16: Inter-rater reliability score (Cohen kappa coefficient) between each classifier (RFC, ENS, and BertAA)
used for the AMT dataset.

rewritten text?
2. Fluency: How fluent (natural sounding) is the

rewritten text?
3. Content: How much content is preserved in

the rewritten text compared to the original
text?

4. Content: Is there new content added in the
rewritten text not in the original text?

5. Style: How similar is the style between the
rewritten text and the original text?

Each question was answered on a 3-point likert
scale (Perfect/Good, Fair, and Bad). Detailed in-
structions and examples were provided, see Fig-
ure 12. We compensate workers with the hourly
wage of 15. We used a few credential checks for
our Mechanical Turk workers. First, their HIT Ap-
proval Rate for all Request had to be greater than
97% and they had to be pre-approved based on
work they had done in other unrelated tasks from
our lab. Due to financial constraints, each sample
was rated by only one worker.
Software. We used Python 3.11.3, Pytorch 2.0.1
and HuggingFace Transformers 4.29.2.
Hardware. All experiments were run on NIVIDIA
A100 GPU’s with 80GB memory.
Time to Run Expereiments. Experimentation
time for the AMT datasets ranged from 8−72hours,
while time for the BLOG experimentation ranged
from 48− 168 hours.

H Constrained Diverse Beam Search
Algorithm and Extra Information

Algorithm 1 is the algorithms used in Constrained
Diverse Beam Search algorithm (CoDi-BS) pro-
posed in our paper. It combines Diverse and Lex-
ically Constrained Beam Search to provide a di-
verse candidate pool of generations that are also

constrained by provided keywords.

Algorithm 1 Constrained-Diverse-Beam-Search
(CoDi-BS)
Require: max length n, number of beams k, input

ids I , model M , constraints
DPP = Diverse-Preprocessing (algorithm 2)
CBS = Constrained Beam Search
Initialize: beams0 = I
for t = 0, ..., n− 1 do

logitst = M(beamst)
processed_logitst = DPP(k, logits)
beamst+1 = CBS(processed_logitst, con-

straints)
return beamsn

Diverse Beam Search. Traditional beam search
searches for an output sequence that maximizes the
conditional probability given the input. However,
beam search tends to produce similar or redun-
dant output sequences within a beam, resulting in
a lack of diversity. Diverse Beam Search (DBS)
(Vijayakumar et al., 2016) is a variation of beam
search, that encourages the selection of diverse se-
quences that are dissimilar to each other within
a beam. DBS achieves this by adding a diversity
penalty term to the beam search objective function,
which penalizes the selection of sequences that are
too similar to the ones already in the beam. Its
objective function can be represented as:

argmax
w∈W

Pw(y|x) + λD(y, Y )

where x is the sequence of previous tokens,
D(y, Y ) is a diversity term measuring the dissimi-
larity between the output sequence y and the set of
previously selected sequences Y within the beam,

1579



Algorithm 2 Diverse-Preprocessing (DPP)

Require: number of beams k, logit matrix (#
beams × vocab size) L, diversity penalization
term λ

1: bincount() = vector of frequency counts of vec-
tor

2: max() = maximum argument in vector along a
specific dimension (dim)

3: current_tokens = []
4: for i = 1, ..., k do
5: if i = 1 then
6: processed_logits = L[i, :]
7: else
8: previous_token_freq =
9: bincount(current_tokens)

10: processed_logits[i, :] = L[i, :]− λ pre-
vious_token_freq

11: if i < k then
12: current_tokens =
13: max(processed_logits[0 : i, :], dim = 1)
14: return processed_logits

λ is a hyperparameter controlling the weight of the
diversity term, and w ∈ W is the parameter vector.

The diversity penalty term can take many forms,
but one common approach is to use a measure of
dissimilarity such as Hamming distance or cosine
similarity. By promoting diversity, Diverse Beam
Search can generate more varied outputs.
Constrained Beam Search. Constrained Beam
Search (CBS) (Post and Vilar, 2018) is another
variant of beam search used to impose constraints
on the output sequences. CBS achieves this by
modifying the beam search objective function to
penalize candidates that violate the constraints. The
objective function for constrained beam search can
be represented as:

argmax
w∈W

Pw(y|x) + λC(y)

where C(y) is a constraint function quantifying
the degree to which the output sequence y satis-
fies linguistic or stylistic constraints, and λ is a
hyperparameter controlling the weight of the con-
straint function. We specifically use Lexically Con-
strained Beam Search where constraints are spe-
cific words or phrases that must be included in the
generated text. Concretely, while choosing can-
didates to fill in the beam, CBS first sorts candi-
dates into "banks" based on number of satisfied
constraints, and then selects the top k candidates

by iteratively visiting each bank and choosing those
with the highest likelihood until reaching k candi-
dates. In terms of authorship obfuscation, we find
that CBS effectively generates text closely resem-
bling the original content by enforcing keyword
inclusion, but fails to produce a variety of genera-
tions with diverse writing styles.
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(a) Instructions

 

(b) Task

Figure 12: Instructions and task for the human evaluation done through Amazon Mechanical Turk.
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