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Abstract
In this paper we present an exploratory research
on quantifying the impact that data distribution
has on the performance and evaluation of NLP
models. We propose an automated framework
that measures the data point distribution across
6 different dimensions: ambiguity, difficulty,
discriminability, length, noise, and perplexity.

We use disproportional stratified sampling to
measure how much the data distribution affects
absolute (Acc/F1) and relative (Rank) model
performance. We experiment on 2 different
datasets (SQUAD and MNLI) and test a total
of 135 different models (125 on SQUAD and
10 on MNLI). We demonstrate that without ex-
plicit control of the data distribution, standard
evaluation frameworks are inconsistent and un-
reliable. We find that the impact of the data is
statistically significant and is often larger than
the impact of changing the metric.

In a second set of experiments, we demonstrate
that the impact of data on evaluation is not just
observable, but also predictable. We propose
to use benchmark transparency as a method for
comparing datasets and quantifying the simi-
larity between them. We find that the “dataset
similarity vector” can be used to predict how
well a model generalizes out of distribution.

1 Introduction

With the growing popularity and widespread adop-
tion of end-to-end NLP solutions, more emphasis is
put on designing and maintaining high-quality eval-
uation frameworks (Wang et al., 2019; Srivastava
et al., 2023; Liang et al., 2023). The two key com-
ponents of model evaluation are data and metrics.
An extensive body of research explores the signifi-
cance of choosing appropriate metrics (Hossin and
Sulaiman, 2015) in various supervised tasks. In this
paper, we present BENCHMARK TRANSPARENCY:
an automated framework for quantifying the data
distribution and measuring the impact data can have
on model evaluation.

Figure 1: The impact of data distribution on model F1.
We report the δ in F1 caused by re-sampling the test set
across each dimension. We report the mean δ of 125
models on SQUAD. We include random baseline and
the impact of changing the “metric” from F1 to “exact”.

Figure 1 illustrates the variance of model per-
formance caused by different data dimensions in
the SQUAD dataset (Rajpurkar et al., 2016). To
put the results in perspective, we also include the
variance caused by uniform random re-sampling
and by changing the evaluation metric. It is evident
that all data features impact the evaluation more
than the random baseline and 4 out of the 6 features
are more impactful than changing the metric.

A change in F1 by 6 – 12 points is substantial
and statistically significant and puts in question the
validity of standard evaluation approaches. We ar-
gue that a reliable evaluation framework needs to
identify the factors in the environment that largely
affect the reported model performance. These fac-
tors must be quantified and explicitly incorporated
in the evaluation report. We propose BENCHMARK

TRANSPARENCY as a way to incorporate scalable
data-centric features in model evaluation and sub-
sequently measure and predict the impact of data
on reported model performance.
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Figure 2: Comparing datasets using benchmark transparency. We measure the data distribution and obtain a “dataset
similarity vector”. The vector can successfully predict the out-of-distribution change of model performance.

The complexity of linguistic tasks and the impor-
tance of data sampling has been discussed before
in isolated studies. Lack of sufficient data analysis
can lead to discrimination (Blodgett et al., 2020),
overestimation of model performance on challeng-
ing examples (Kiela et al., 2021; Kovatchev et al.,
2022), and can hide the errors of the model on par-
ticular phenomena (Kovatchev et al., 2019; Hossain
et al., 2020; Ribeiro et al., 2020).

We take a more holistic approach, focusing on
the overall impact of data on model evaluation. We
choose six data dimensions that can be measured
automatically: ambiguity, difficulty, discriminabil-
ity, length, noise, and perplexity. We pose two
research questions: 1) What is the observable
variance in model performance w.r.t. different data
dimensions; and 2) Can data distribution be used to
directly compare datasets and predict the variance
in model performance.

We experiment with two datasets: SQUAD and
MultiNLI (Williams et al., 2018) and evaluate a
total of 135 ML models (125 on SQUAD and 10 on
MNLI). For the first research question we use dis-
proportional stratified sampling to determine how
the absolute (F1/Accuracy) and relative (Ranking)
performance of models changes as a function of
the data. For the second research question, we split
SQUAD and MNLI by domain, using the avail-
able meta-data. We then appply BENCHMARK

TRANSPARENCY to directly compare the differ-
ent data splits (Figure 2) and use the resulting
“dataset similarity vector” to predict how model
performance will change when applied to unseen
out-of-distribution data. We demonstrate that:

• The data distribution has a measurable and sta-
tistically significant impact on both absolute
(F1/Accuracy) and relative (Ranking) perfor-
mance of models

• The variance in model OOD performance can
be predicted if we know the (difference be-

tween) source and target data distribution

• Our six data dimensions are (empirically) in-
dependent. They capture orthogonal aspects
of the data and have different impact

• There are global tendencies across all mod-
els, but there are also significant differences
between the individual models

Our findings emphasize the importance of data
curation and data sampling in the context of NLP
evaluation. Standard evaluation approaches rely on
uniform random sampling and make implicit as-
sumptions about the representativeness of the data.
We show the impact that these assumptions have
on evaluation outcomes, making evaluation incon-
sistent and opaque. We argue that the assumptions
about the data must be made explicit for improved
transparency, consistency, and reliability.

BENCHMARK TRANSPARENCY provides clear
benefits to various groups of stakeholders and
opens promising new lines of research. Incorporat-
ing data-centric features can increase the reliability
of evaluation, improve the use of NLP benchmarks,
and provide a more accurate approximation for
OOD model performance. For model developers,
the additional feedback on model performance can
be used to identify and address model blindspots.

Our approach scales well as it uses simple proxy
models to assign data features. It also generalizes to
two different NLP tasks: text classification (MNLI)
and extractive question answering (SQUAD).

2 Related Work

The increased complexity and lack of interpretabil-
ity of end-to-end neural models makes the design
of robust and exhaustive evaluation frameworks a
key issue in NLP. Large-scale benchmarks such as
GLUE (Wang et al., 2018), Super-GLUE (Wang
et al., 2019), Big-Bench (Srivastava et al., 2023),
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and HELM (Liang et al., 2023) have been created
to address that gap.

However, existing datasets and evaluation pro-
cedures still have issues and limitations. Imbal-
anced data can lead to issues with bias and fair-
ness (Chang et al., 2019; Blodgett et al., 2020;
Thompson et al., 2021). State-of-the-art models
often perform poorly on adversarially generated in-
put (Glockner et al., 2018; Wallace et al., 2019;
Kiela et al., 2021). Some benchmarks can be
solved using heuristics and spurious correlations
(Poliak et al., 2018; McCoy et al., 2019). Mod-
els often underperform on linguistic phenomena
such as negation (Hossain et al., 2020), conjunc-
tion (Saha et al., 2020), or coreference (Kovatchev
et al., 2022). However standard benchmarks are
often ill equipped to capture detailed nuances of
model performance (Kovatchev et al., 2018).

Popular benchmarks typically rely on uniform
random sampling and statistical aggregation, which
can hide model blind-spots on under-represented
populations and phenomena. Various strategies
have been proposed to improve the evaluation and
explicitly identify and address the limitations of
the models. Mitchell et al. (2021) discuss dif-
ferent metrics that can be used to quantify the
bias and fairness of models. The large multi-task
benchmarks (Wang et al., 2019; Srivastava et al.,
2023) rely on testing a single model across multiple
tasks. Datasets designed to test one or more con-
crete phenomena (Kovatchev et al., 2018; Hossain
et al., 2020; Saha et al., 2020; Kovatchev and Taulé,
2022) can be used for diagnostics, and Ribeiro et al.
(2020) propose an approach for unit-testing NLP
models based on predefined capabilities. Kiela
et al. (2021) suggest the use of “beat the machine”
human-in-the-loop approach to gather datasets with
increasing difficulty (Kovatchev et al., 2022).

More recently, approaches for automatic dataset
analysis grow in popularity. Swayamdipta et al.
(2020) analyze the process of model learning and
identify patterns in the training set. Rodriguez et al.
(2021) use evaluation approaches borrowed from
the educational domain to improve relative model
ranking. Ethayarajh et al. (2022) propose a measure
for dataset “difficulty” based on information theory.

While promising, many of the existing ap-
proaches for dataset analysis have limited scope
and scalability. Some of them are not directly ap-
plicable for measuring absolute or relative model
performance. We combine and improve existing
data-centric techniques and propose new ones with

the goal of designing a framework for data-centric
and data-informed evaluation of NLP models.

3 Benchmark Transparency

In this paper, we adopt the popular claim that
evaluation instances are qualitatively different (Ro-
driguez et al., 2021). For example, some instances
are more frequent and popular than others, some
are more difficult for humans or models, and some
are more useful for distinguishing between strong
and weak models. Instances can also come from
different domains and can refer to different sub-
populations.

Evaluation frameworks in NLP typically ignore
the differences between instances and treat them
equally. They rely on Uniform Random Sampling
and make the implicit assumption that the result-
ing dataset is representative for the task. In the
cases when differences in the data are made ex-
plicit, it is often done across a single axis, such as
target demographics (Blodgett et al., 2020).

In this paper, we want to quantify the qualitative
differences between data instances across multi-
ple (independent) dimensions. We aim to exter-
nalize the implicit data assumptions and present
an explicit analysis of the data distribution. The
objectives of this process that we call benchmark
transparency are twofold: 1) to better understand
and compare the content of datasets; and 2) to pro-
vide a “dataset representation” that can be used to
objectively measure the impact of data on model
evaluation. We propose to use six data dimensions:

Ambiguity Ambiguous examples are “instances
whose true class probabilities fluctuate frequently
during training” (Swayamdipta et al., 2020). Note
that in our framework ambiguous examples express
high variability with respect to the model. They are
not necessarily ambiguous to a human. To calculate
ambiguity, we adapt the code from (Swayamdipta
et al., 2020) for extractive QA and use a BERT-base
model to score SQUAD and MNLI.

Difficulty Intuitively, some instances are more
difficult than others and processing them requires
different capabilities and world knowledge. To
measure instance-level difficulty, we adapt Point-
wise V-information (PVI) (Ethayarajh et al., 2022)
for extractive QA. For each of the two datasets, we
train two BERT-large models. The first model is
trained normally, using the full input and the gold
label. The second model is trained on the gold la-
bels but without input (MNLI) or with partial input
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(a) SQUAD (b) MultiNLI

Figure 3: Normalized data distribution of all six dimensions for SQUAD and MultiNLI

(SQUAD). We obtain PVI by comparing the label
probabilities of the two models.

Discriminability The concept comes from the
domain of education. In Item Response Theory
(IRT) (Rodriguez et al., 2021) “discriminability”
indicates how useful an instance can be in differen-
tiating between models with varying ability. The
underlying idea is that instances where models of
different ability disagree are more important for
evaluation than instances where the models make
the same prediction. For SQUAD, we use the im-
plementation and data of Rodriguez et al. (2021).
For MNLI, we use the implementation of Lalor and
Rodriguez (2023) and analyze the data ourselves.

Length We introduce length as a non-trivial
baseline to determine the degree to which simple
quantifiable dimensions of the data can affect the
evaluation outcome. We count the number of to-
kens in the context (SQUAD) or the sum of tokens
in the premise and the hypothesis (MNLI).

(Label) Noise While “ambiguity” measures the
inconsistency of model predictions, “noise” mea-
sures the inconsistency of annotator labels (see
Baan et al. (2024) for discussion). Both datasets
include individual annotator labels. We experiment
with using reverse inter-annotator agreement di-
rectly or training a model to predict noise.

Perplexity Perplexity measures the likelihood of
a text sequence, given a (neural) language model.
Intuitively, some examples are more likely to ap-
pear in a context. We link perplexity to the collo-
quial notions of frequency and popularity, which
may be important to various stakeholders. We use
a pretrained GPT2-large model to measure the per-
plexity of a question given a context (SQUAD) and
of a hypothesis given a premise (MNLI).

3.1 Measuring Data Distribution
A key property of the 6 data dimensions is that they
assign a continuous value to every instance in the
dataset1. We can then directly measure the distri-
bution of the features and their inter-correlations.

Figure 3 visualises the distribution of all features
for SQUAD and MNLI. We can observe differ-
ences between the individual distributions within
each dataset and also between the two datasets.
These results indicate that the data profile of the
two datasets is different and we cannot draw triv-
ial conclusions. Despite some visual similarities
between the distributions, we found no statistical
correlation between the features in either dataset.

Our approach for quantitative data analysis has
several practical advantages:

• scalable: The process is automated and re-
quires little human supervision. The features
are extracted using simple models, relatively
small by today’s standards. As such the analy-
sis is inexpensive and scales with data size.

• task-agnostic: We apply BENCHMARK

TRANSPARENCY to two different supervised
tasks: NLI and Extractive QA. The method
can be adapted to most supervised tasks.

• multi-dimensional: the features that we use
are non-correlated and we argue that they mea-
sure different aspects of the data.

4 Data Impact on Evaluation

The evaluation frameworks of ML and NLP typi-
cally report two types of model performance: 1) ab-

1See Appendix A for formulas and implementation details.
The data and code are available at: https://github.com/
venelink/benchmark_transparency
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(a) SQUAD (b) MultiNLI

Figure 4: Impact of different data features on model performance (F1) for SQUAD and MultiNLI. On each sub-figure
we plot the aggregated change in F1 of all different models (colored shape) as we increase the feature intensity (e.g.,
as instances become more difficult). The gray region represents the expected random variance at p < 0.05.

solute performance (i.e.: “How well can we expect
a model to perform on unseen data”) and 2) rela-
tive performance (i.e.: ”How good is each model
compared to the alternatives?”). In this section,
we quantify the impact of data distribution on both
types of model performance. We use disproportion-
ate stratified data sampling and statistical analysis
to address our first research question RQ1: ”What
is the observable variance in model performance
w.r.t. different data dimensions?”.

Disproportionate stratified data sampling For
each of the 6 dimensions, we sub-sample the origi-
nal data to obtain 10 test sets with strictly increas-
ing feature intensity. For example, “Len_0” con-
tains the 10% shortest examples, and any instance
in “Len_2” is longer than any instance in “Len_1".
We then perform model evaluation on each new
test set. As the model parameters and evaluation
metrics remain fixed, any difference in model per-
formance can be attributed to the data distribution.

Expected random variance To put the results in
perspective and to calculate the statistical signifi-
cance of any observed change in reported perfor-
mance we introduce “expected random variance”
baseline. We randomly sample 200 test sets with
size equal to 10% of the original data. We test the
models on all 200 “random” sets and use bootstrap-
ping to determine the two-tailed p < 0.05 thresholds
for change in absolute or relative performance. The
random baseline allows us to filter any fluctuations
due to noise or to reducing the test size2.

Evaluated models For SQUAD, there are pub-
licly available instance-level predictions of over

2See Appendix B for implementation details on stratified
sampling and calculating statistical significance.

100 different models3. We use that data as-is to
calculate absolute and relative model performance
without having to re-train the models. We use the
data from 125 submissions, with performance be-
tween 77 and 92 F1. For MNLI, we implement and
evaluate 10 different models4.

4.1 (In-)Consistency of Absolute Performance

The absolute model performance is measured with
metrics such as Accuracy and F1 and is an approx-
imation of how well the model would generalize
to unseen examples. In academic research, the
emphasis is often on model ranking, and absolute
performance can be overlooked. However in practi-
cal applications, the ability to reliably predict how
well a model would perform on new data is critical.

In Figure 4 we visualize the change in model
F1 in the two datasets. The x-axis corresponds to
feature intensity: moving from left to right, we plot
the performance of models on input with increas-
ing feature intensity (e.g., instances with higher
difficulty). The solid line is the mean F1 score of
all models and the colored shade around the line
corresponds to standard deviation of model score.
The gray region represents the expected random
variance around the mean at p < 0.05.

Looking at the plots, we can observe that for
Ambiguity, Difficulty, Discriminability, and Label
Noise, the F1 score of models changes substantially
as a function of the data distribution. This is true for
both SQUAD and MNLI. Anecdotally, we can also
observe score patterns: the increase of difficulty
and label noise leads to a reduced performance,
models struggle with instances with low ambiguity

3https://rajpurkar.github.io/SQuAD-explorer/
4See Appendix C for the list of all models and the imple-

mentation details (hyperparameters, hardware, and cost).
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and perform well on highly discriminable exam-
ples. For length and perplexity, the range of model
variance mostly overlaps with the expected ran-
dom variance. The anectotal analysis is similar
for both datasets, although there are discrepancies.
For SQUAD, the impact of discriminability does
not follow a clear direction and perplexity does not
fully overlap with random variance.

Statistical Significance of Performance Variance
The plots in Figure 4 indicate that the different data
features have a meaningful and substantial impact
on model performance, however, to quantify the
impact, we perform the statistical tests described
in Section 4 and Appendix B.

Feature SQUAD MNLI

F1 σ
% δ

p < .05
F1 σ

% δ
p < .05

Ambiguity 8.3 68% 4.9 68%
Difficulty 12.5 92% 21.0 95%
Discr. 10.6 91% 7.4 88%
Length 1.8 22% 1.8 31%
Noise 6.6 66% 7.7 87%
Perplexity 2.9 33% 1.5 17%
Random 1.2 5% 1.0 5%
Metric 2.8 n/a 0.1 n/a

Table 1: Impact of data sampling on individual models.
We report the standard deviation of F1 w.r.t. different
features and the % of F1 scores that are significantly
different from expected random variance.

Table 1 presents the experimental results. The σ
is the aggregated standard deviation of F1 across
the 10 tests and indicates the expected magnitude
of the impact that each data dimension has on the
evaluation. For example, if two datasets DA and
DB have a significant difference in the distribution
w.r.t. data noise, the performance of an NLI model
MNLI is expected to change by 7.7 F1. The statis-
tical significance column reports the percentage of
scores (for all models on all data splits) that are sig-
nificantly different from random fluctuations. We
can interpret that column as the likelihood that the
F1 score of MNLI on DA and DB will differ sig-
nificantly. We include two baselines - the impact
of random re-sampling and the impact of changing
the evaluation metric. For SQUAD we show the
difference between using F1 or “exact” mataching
as a distance metric. For MNLI we compare using
Accuracy and F1 as evaluation metric.

The quantitative evaluation confirms the intu-

ition from the visualisation. Difficulty, Discrim-
inability, Ambiguity, and Noise have a significant
impact on model performance across both datasets.
Distribution shifts w.r.t. Length and Perpexity are
less impactful. The overall tendencies are shared
among both datasets, but there are also individual
differences. Perplexity is much more important for
SQUAD, while Noise is as important as Discrim-
inability for MNLI. For the models that we tested
on MNLI, we found no difference when changing
the metric from Accuracy to micro or macro F1.

Overall, we can conclude that the models are
much more sensitive to changes in the data than
they are to changes in the metrics. Considering the
high % of statistically significant score changes,
we argue that without explicitly considering data
features, standard evaluation frameworks are incon-
sistent and unreliable. A performance variance σ
of over 6 points questions the validity of the per-
formance report and its ability to correctly predict
how well a model would generalize to unseen data.

4.2 (In-)Consistency of Model Ranking

In academic research, ranking is the more popular
evaluation criteria, as it is directly linked to achiev-
ing “state of the art” on popular benchmarks. To
measure the impact of data distribution on rela-
tive model performance, we test the consistency of
model ranking on different data samples. First, we
obtain the full model ranking on 200 random sub-
samples. Then we use bootstrapping and Kendall’s
Tau to determine the “expected random variance of
ranking” and the p < .05 thresholds for statistical
significance. Finally, for each data dimension, we
obtain 10 different ranking on sub-samples with in-
creasing feature intensity and calculate the portion
of the 10 rankings that are significantly different5.

Table 2 shows the results of the statistical test
for ranking. We can observe that the change in
ranking does not have a one-to-one correspondence
with the change in absolute performance. There
are some common trends, such as the importance
of Difficulty and Discriminability, but also ranking-
specific tendencies. For example, we can see that
Noise is the most impactful feature w.r.t. ranking
on SQUAD and is much more important than Am-
biguity. With respect to F1 score, the impact of
Noise and Ambiguity was comparable. We also
note large difference between the two datasets and
hypothesize that the smaller number of models that

5See Appendix B for the detailed testing procedure.
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Rankings with τ at p<.05
SQUAD MNLI

Ambiguity 3/10 0/10
Difficulty 7/10 7/10
Discriminability 7/10 4/10
Length 2/10 0/10
Noise 9/10 1/10
Perplexity 1/10 0/10
Random 0.5/10 0.5/10

Table 2: Impact of data sampling on model ranking. For
each data dimension we report the number of data sam-
ples where the overall ranking is significantly different.

we tested on MNLI (10) makes the ranking more
robust. Overall we find that the data distribution
has less impact on ranking than it has on absolute
performance. Nevertheless, the results for Diffi-
culty, Discriminability, and Data Noise indicate
clear inconsistencies in standard evaluation.

5 Predicting Changes in Performance

In Section 4 we demonstrated the inconsistency of
evaluation frameworks caused by changes in the
data distribution. With the aim of designing reli-
able evaluation frameworks, we want to go further
and use BENCHMARK TRANSPARENCY to predict
the changes of model performance as a function of
the distribution shift. This will allow NLP practi-
tioners to directly incorporate data features in the
benchmark design and in the evaluation metrics. It
will also provide a more accurate approximation
for model generalizability to unseen data.

Dataset Similarity Vector To predict the change
in model performance across datasets and data sam-
ples, we need to be able to quantitatively compare
different data distributions. We do that by obtain-
ing a “dataset similarity vector”. We calculate the
Standardized Mean Difference (SMD) across each
of the six dimensions. SMD is defined as follows:

SMD = x̄1−x̄2√
(s21+s22)/2

Where x̄1 and x̄2 are the mean values of the
distributions with respect to a particular feature and
s1 and s2 are the standard deviations of that feature.
When comparing two datasets DA and DB , we
obtain the “dataset similarity vector” by measuring
the data distribution and calculating SMD across
all six data dimensions.

Using SMD to predict change in performance
Our second research question is RQ2: “Can
data distribution be used to directly compare
datasets and predict the variance in model per-
formance?”. More formally, we want to learn a
function FAB(Score, Diff) which takes as an in-
put: 1) the performance of model M on dataset DA

(Score); and 2) the difference between datasets DA

and DB (Diff). The function makes a prediction
about the performance of M on dataset DB .

Obtaining different data samples SQUAD and
MNLI have explicitly annotated each example with
its source domain. We use this information to cre-
ate different data-samples grouped by data source
(henceforth “topic”). Each of these samples repre-
sents a different domain and a different naturally
occurring data distribution. Figure 5 shows the
average absolute SMD between each "topic" sub-
sample and the full dataset for SQUAD. The three
dotted lines shows the average SMD between the
full dataset and random uniform samples at size 5%
(5), 10% (3.5), and 20% (2.1) and the full dataset. It
is evident that that BENCHMARK TRANSPARENCY

exhibits in-distribution consistency and out-of-
distribution sensitivity. This means that we can
approximate the full data distribution by using a
small sample of in-domain data. At the same time,
the data dimensions are able to capture the naturally
occurring distribution shifts between independent
out-of-domain samples.

Figure 5: The average SMD between the full SQUAD
dataset and different subsets by topic. Dotted lines – the
average SMD between SQUAD and random uniform
sub-samples of itself at size 5%, 10%, and 20%.

Obtaining train and test sets We use the follow-
ing procedure to obtain the data for our experiment:

1. Calculate the absolute performance P(Mi,Dt)
of all models Mi on all “topic” datasets Dt

2. Select source datasets DA and target datasets
DB . For SQUAD, we use the “full” dataset
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as a source and all the “topic” datasets as a
target. For MNLI, due to the small number
of topics (5) and models (10), we make all
possible source–target pairings.

3. Calculate the “dataset similarity vector”
Sim(DA,DB) for every source–target pair

4. Create individual instances in the format :
<x = (P(Mi,DA), Sim(DA,DB));
y = (P(Mi,DB)>

We then split the data into train and test. We ran-
domly select source–target pairs and all instances
associated with that pairings are used for testing.
For SQUAD, we select 5 pairings (out of 34), for
MNLI we select 1 (out of 5). We re-run the ex-
periments 5 times with different train-test splits to
reduce the impact of the sampling strategy.

Predicting model’s OOD performance We train
a Linear Regression model on our data as it can pro-
vide a direct interpretation of the importance of the
different dimensions. We evaluate the performance
using two different measures: Mean Absolute Dis-
tance (MAD) and R2 Score. As a baseline, we
predict that the performance of the model will be
unaffected, that is P(Mi,DA) = P(Mi,DB). The
baseline corresponds to the standard random uni-
form sampling assumption, where we measure the
generalizability on an in-domain sub-sample.

Mean Absolute Distance
Model SQUAD MNLI
Transparency 4.1 0.9
Baseline 5.9 2.1

R2 Score
Model SQUAD MNLI
Transparency 0.49 0.92
Baseline 0.21 0.59

Table 3: MAD (lower is better) and R2 (higher is better)
of using BENCHMARK TRANSPARENCY to predict OOD
performance compared to a uniform sampling baseline

Table 3 presents the results of the experiment.
For both datasets using the “dataset similarity vec-
tor” reduces the MAD error and increases the R2
score. These results indicate that the information
about the data distribution can be used for predict-
ing OOD model performance even with a simple
metric such as SMD and a simple model like LR.
The OOD prediction works better on MNLI than

on SQUAD both in terms of absolute values and in
improvement over the baseline.

SQUAD MNLI
Ambiguity 0.29 0.23
Difficulty 0.88 1.00
Discr. 0.10 0.34
Length 0.05 0.06
Noise 1.00 0.16
Perplexity 0.29 0.18

Table 4: Feature importance in OOD prediction

Table 4 shows the importance of the individual
dimensions when predicting the change in model
performance. These are the weights of the Linear
Regression after applying a standard scaler to the
SMD across each dimension and then dividing the
weights by the maximum value for visualisation
purposes. Similar to the observations we made
in Section 4.1, the most important data feature is
Difficulty. Noise and Ambiguity are also important
for both datasets. Length is of little importance and
Discriminability and Perplexity are only impactful
for one of the datasets.

The experiments in this section further validate
our choice of data dimensions and indicates that
BENCHMARK TRANSPARENCY can be used to im-
prove the reliability of evaluation. The data distri-
bution within the same data sample is stable, and
when the data distribution shifts in an OOD setting,
we can use the dataset similarity vector to antici-
pate the change in absolute model performance.

6 Discussion and Conclusions

In this paper we emphasize and quantify the impor-
tance of data in NLP evaluation. There are various
popular ways of calculating model performance:
Precision, Recall, F1, Accuraccy, and AUROC
for absolute performance; global ranking, pairwise
“duels” (Liang et al., 2023), or complex statistical
models (Rodriguez et al., 2021) for ranking. We
argue that the specifics of the test data are no less
important than the choice of adequate distance and
aggregation metrics. The effect that data has on
model performance is, no doubt, known intuitively
by most researchers. However, to the best of our
knowledge, this is the first systematic and multi-
dimensional approach towards quantifying data dis-
tribution and measuring its impact on evaluation
across multiple tasks and models.
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Benchmark transparency We proposed a frame-
work for quantifying and comparing the data dis-
tribution of datasets for supervised NLP prob-
lems. We applied our framework to two differ-
ent datasets, designed for different tasks: SQUAD
and MultiNLI. We observed that the difference in
data distribution significantly affect both absolute
and relative model performance. Our findings are
consistent across both datasets and multiple mod-
els. We concluded that the observed variance is
a property of the data, rather than of the mod-
els. We further demonstrated that BENCHMARK

TRANSPARENCY is not just a tool for data analysis,
but can be used to successfully predict the changes
in model performance out-of-distribution.

Choice and importance of data features In this
paper we proposed six different data dimensions:
ambiguity, difficulty, discriminability, length, noise,
and perplexity. Our objective was to provide a
framework for automated and scalable quantifica-
tion of data distribution across multiple dimensions.
Our experiments indicated that the metrics are em-
pirically independent and impact the model perfor-
mance in a different way. The data features can be
extracted at a low computational cost as they typ-
ically require simple proxy models. The data dis-
tribution is relatively consistent within the dataset,
which means that it can be approximated by sam-
pling only a portion of the data. Our choice of data
features was empirical rather than theoretical and
is non-exhaustive. We encourage the community
to experiment with more data features and with
alternative ways for calculating the existing ones.

Reliable evaluation for NLP A high quality eval-
uation frameworks need to be reliable. They need
to consider and control all factors that significantly
and systematically impact the evaluation outcome.
Testing and reporting complementary results us-
ing different metrics is a standard practice in NLP.
However data centric approaches to evaluation are
less popular. We have demonstrated that data distri-
bution is key factor in model performance and via
BENCHMARK TRANSPARENCY, we have provided
the community with a tool for quantifying, condi-
tioning on, and controlling the data distribution6.

Error analysis and model improvement A data-
informed evaluation can also benefit model devel-
opers by providing a detailed performance profile

6All of our code and data are available at https://github.
com/venelink/benchmark_transparency

Figure 6: Comparison of two models with identical F1
on the full SQUAD dataset. Each sub-figure shows the
difference (in F1) between the two models on datasets
with varying feature intensity.

with strengths and potential blindspots of the mod-
els. Figure 6 compares two of the best performing
models on SQUAD. On the full dataset, the two
models achieve the same score at 90 F1. We used
BENCHMARK TRANSPARENCY and evaluated the
two models on data splits with increasing feature
intensity as described in Section 4. We then cal-
culated the difference in F1 between the models
on each split. We can see that despite having iden-
tical performance on the full dataset, the models
make qualitatively different predictions and have
different performance profile. Anecdotally, one of
the models seems to excel at easy examples, while
the other performs better on hard ones. This infor-
mation can be important when determining which
model to deploy in production or where to focus
on model improvement.

Future work As a future work, we plan to use
the data dimensions to design dynamic benchmarks
that can be adapted to stakeholder needs and se-
lect examples dynamically based on model perfor-
mance. We are also exploring the possibility of
using the data distribution to guide model training
and the development of data-centric loss functions
and optimization strategies.
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7 Limitations

Our approach and data dimensions are task- and
language-agnostic. However, the formal definitions
of each each data dimension can be task specific
and may be non-trivial. For many of the dimen-
sions, we had to perform an adaptation of formal
definitions designed for classification to Extractive
QA. Our choice of how to define different dimen-
sions is one of many possibilities and is based on
empirical evidences and discussions between the
authors. Alternative definitions of dimensions (e.g.,
difficulty or popularity) may yield different results.

The data dimensions that we use are designed
for scalability and use basic transformer models
(BERT, GPT2) to reduce the training time and cost.
Prior work has shown that features extracted using
BERT correlate strongly with features extracted
using state-of-the-art models. Our experimental re-
sults confirm the applicability of basic transformer
models for the purpose of data analysis. Never-
theless, since the data is based off a single model,
it may contain model-specific biases. For a prac-
tical implementation, we suggest aggregating the
score from two or more models. Furthermore, for
particular domains, it may be better to pick a do-
main specific implementation of a model (e.g. GPT
trained on biomedical text). We keep our imple-
mentation general.

The data dimension of “discriminability” is the
only one that does not scale very well with size, as
it requires multiple models being trained and tested
on the same data. It can be calculated for popular,
publicly available benchmarks such as SQUAD,
but is use on less popular and/or private datasets
may be more computationally expensive.
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A Obtaining Data Features

This appendix presents detailed information on the
implementation of the different data-centric fea-
tures and the decision process behind them.

Ambiguity For ambiguity, we adopt the defini-
tion from Swayamdipta et al. (2020): “instances
whose true class probabilities fluctuate frequently
during training (high variability), and are hence am-
biguous for the model”. To obtain the variability,
we:

1. Finetune a BERT-large model for 10 epochs.
At every epoch we predict the instances in the
validation set, keeping the class probabilities

2. Take the probabilities of the correct answer at
each epoch and store them in a vector called
“conf”

3. For each val instance we calculate the vari-
ability following the original implementation:
np.sqrt (
np.var(conf) +
np.var(conf) * np.var(conf) / (len(conf)-1)
)

The original implementation is only for text clas-
sification, but we extend it to Extractive QA with
reasonable adjustments.

For text classification (MNLI) we use the class
probabilities as they are generated by the softmax
at the last classification layer.

For extractive question answering (SQUAD), we
obtain “class probabilities of the correct answer” by
multiplying the probability of the correct start token
by the probability of the correct end token and
normalize by the probability of all valid start/end
pairs. When applied to extractive QA in the format
of SQUADv2, we also account for the probability
of “no answer”.

Note that the original implementation of bench-
mark transparensy and ambiguity is focused on
“training dynamics”, so the algorithm is designed to
score training data rather than test data. However,
we extend the concept to scoring validation data
at each epoch (for both MNLI and SQUAD, our
data analysis is performed on the publicly available
validation data).

Difficulty For difficulty, we follow the implemen-
tation by Ethayarajh et al. (2022). To obtain PVI:

1. Finetune a BERT-large model for 3 epochs on
the train set

2. Finetune a BERT-large model with the same
hyperparameters as in 1), but the model re-
ceives empty string as input and is trained
only on the labels

3. For each instance in the dataset, calculate PVI
as the difference in the negative log probabili-
ties of the correct answer assigned by the two
models

The original implementation is only for text clas-
sification, so we adapt it for Extractive QA. In
extractive QA, the “label” is not one class from a
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closed set, but rather a sequence of tokens in the
input. Therefore we can’t feed empty input to the
model. To simulate “null” input, we feed only the
context, but withhold the question. We calculate
the probability of the answer in the same way as
with ambiguity.

Discriminability For SQUAD we don’t cal-
culate discriminability ourselves. We instead
use the implementation from Rodriguez et al.
(2021) available at https://www.pedro.ai/
leaderboard-acl2021. For MNLI, we use Py-
IRT (Lalor and Rodriguez, 2023) to calculate the
discriminability of the data using 10 different mod-
els, a standard 2pl model configuration and train
the IRT model for 100 epochs.

Length For SQUAD, we calculate the length of
the context as a number of tokens. For MNLI, we
calculate the sum of the lengths of the premise and
the hypothesis.

Label Noise We define “label noise” as inverse
inter-annotator agreement. We calculate the anno-
tator agreement (in [0,1] range) and then obtain
noise as (1 - agreement). Label noise of 0 corre-
sponds to 100% agreement, while label noise of 1
corresponds to 0% agreement.

For SQUAD, we calculate the pairwise agree-
ment between any 2 annotators in terms of F1 to-
ken overlap. We then aggregate across all pairs
to obtain annotator agreement for the pair. This
approach is inspired by the way models are eval-
uated in F1 setting. For MNLI, we calculate the
agreement as the number of annotators that select
the majority label.

We test two different ways of obtaining the noise
feature: in the “simple” setting we just take the
inverse agreement as it is. In the “machine learning”
setting, we train a distilbert-base model to predict
“inverse agreement” from the text input and we use
the prediction from the model.

For SQUAD, we experimented with both config-
urations, as the way we calculate agreement gives
a continuous distribution of noise. The results re-
ported in the paper for SQUAD are using the “sim-
ple” setting. For MNLI, the “simple” setting give
three discrete values (0.6, 0.8, and 1), which are
difficult to use directly. The results in the paper for
MNLI are using the “machine learning” setting.

Perplexity We calculate perplexity using a pre-
trained GPT2-large model. Calculating perplexity

on a single text is a straightforward task. Calculat-
ing perplexity on a task that involves pairs of text
(like Extractive QA or NLI) is non-trivial and to the
best of our knowledge has not been defined before.

We considered three variants of calculating the
perplexity: 1) we can calculate the perplexity of the
two text concatenated together; 2) we can calculate
the perplexity of only one of the text; 3) we can
calculate “conditional” by measuring the likelihood
of the question (or the hypothesis) given the context
(or the premise). We chose to implement the third
option, as we believe it makes the most sense in the
context of the tasks and the datasets.

Feature Scaling and Outliers For easier com-
parison and visualization, we scale all features to
[0–1] range, using MinMax linear scaler. We clip
the top and bottom 2% of the values to reduce the
impact of outliers to the scaled distributions.

Code Implementation and Data All scripts for
feature extraction, all stratified and random data
splits, and all experimental analysis and results
will be made available at https://github.com/
venelink/benchmark_transparency.

Computational Resources The data features
were calculated using a single Nvidia V100 or
A100 GPU. The total GPU time for all features
for both datasets was less than 48 hours.

B Stratified Sampling and Bootstrapping

Stratified Sampling To obtain the data samples
for each data dimension, we:

1. Obtain the values corresponding to 10th, 20th
... 90th percentile

2. Take all instances with feature value between
[0-10p]; [10p-20p]... [90p-1]

Note that we take 10 datasets of equal size rather
than taking datasets that correspond to 10% of the
scores (i.e., 0.1 in the scaled vesion of the fea-
tures). We decided to take percentile-based ap-
proach rather than value-based approach due to the
skewed distribution of values.

For “data noise” in SQUAD, approximately 50%
of the instances had value of 0. To avoid having 5
datasets with the same data distribution, we put all
0-noise instances in one data sample and distributed
the remaining 50% in 9 smaller datasets.
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Algorithm 1 Calculating statistical significance of
F1 variance for feature-based data samples

procedure BOOTSTRAPF1(M,D)
▷ input: Model M; Dataset D of size n

for trial ti; i ∈ [0, 1 . . . 199] do
Di = RandomSample(D,size=n÷10)
F1i = Evaluate(M,Di)

F1all = [F10, F11 . . . F1199]
▷ Random variance of F1 for M

LBM = ScoreAtPerc(F1all,2.5)
UBM = ScoreAtPerc(F1all,97.5)

procedure F1Feat(M,D, LBM , UBM , c)
▷ c - data dimension (e.g., “Difficulty”)

[Dc0, Dc1 . . . Dc9] = FeatSample(D,c)
for Di in [Dc0, Dc1 . . . Dc9] do

F1i = Evaluate(M,Di)
if F1i < LBM OR F1i > UBM then

significant← significant + 1
significant← significant ÷ 10

Bootstrapping and Statistical Significance (F1)
We used bootstrapping to determine whether the
observed variance in F1 w.r.t. data distribution
is statistically significant. Bootstrapping is non-
parametric and avoids any assumptions about the
data distribution. Algorithm 1 demonstrates the
process for a single model M.

First, we determine the “expected random vari-
ance” in BOOTSTRAPF1. We randomly sample
200 test sets from the dataset D, each with size 10%
of D. We calculate the F1 score of M on all 200
random sets. To obtain the two-tailed statistical sig-
nificance w.r.t. the “expected random variance” we
calculate the values at 2.5 and 97.5 percentiles. Any
F1 score outside of the range [val(2.5) : val(97.5)]
is not generated by a random sampling with a prob-
ability p < 0.05.
F1Feat calculates the statistical significance of

F1 variance for a model M and a data dimension c.
First, we use stratified sampling to obtain 10 dataset
with increasing intensity of c. Then, we calculate
the F1 score of M on each of the 10 datasets and
compare the values to the “expected random vari-
ance”. We count the number of values (out of 10)
that are significantly different from random. This
indicates how sensitive is the model M to changes
in the distribution w.r.t. c. We also measure the
range of F1 (difference between best and worst
performance across the 10 test sets) and the stan-
dard deviation (σ) of F1 across the 10 test sets for

additional perspective on model consistency.
We repeat the process for all models, using the

same 200 random and 10 feature datasets and ag-
gregate the significance scores to obtain the effect
that each data dimension has on the F1 score of a
model.

Algorithm 2 Calculating statistical significance of
rank variance for feature-based data samples

procedure BOOTSTRAPRANK(Mall,D)
▷ Mall = [M0, M1 . . . M124]

for trial ti; i ∈ [0, 2 . . . 199] do
Di = RandomSample(D,size=n÷10)
[R0, R1 . . . R124] = EvalRank(Mall,Di)
KTi = KTau([R0, R1 . . . R124],Rref )

▷ Rref = mean rank from bootstrap

KTall = [KT0, KT1 . . . KT199]
▷ Random variance of ranking

LBkt = ScoreAtPerc(KTall,2.5)
UBkt = ScoreAtPerc(KTall,97.5)

procedure RankFeat(Mall,D, LBkt, UBkt, c)
[Dc0, Dc1 . . . Dc9] = FeatSample(D,c)
for Di in [Dc0, Dc1 . . . Dc9] do

[R0, R1 . . . R124] = EvalRank(Mall,Di)
KTi = KTau([R0, R1 . . . R124],Rref )
if KTi < LBkt OR KTi > UBkt then

significant← significant + 1

Bootstrapping and Stat. Significance (Rank)
We use bootstrapping to quantify the significance
of rank variance by looking at the consistency of
the ranking of all systems. The process is described
in Algorithm 2.

First, we determine “expected random variance
of ranking” in BOOTSTRAPRANK. For each of the
200 test sets we calculate the relative ranking of
all models and then compute the “rank distance”
w.r.t. the reference ranking Rref using Kendall’s
Tau. The reference ranking Rref is the mean rank
of each system across all random samples. We
calculate the 2.5 and 97.5 percentile of the 200
Kendall’s τ scores. Any ranking with a τ outside of
[val(2.5) : val(97.5)] is not generated by a random
sampling with a probability p < 0.05.
RankFeat calculates the statistical significance

of ranking variance for a data dimension c. We use
stratified sampling to obtain 10 disjointed datasets
with increasing intensity of c, calculate the model
ranking and compute the τ w.r.t. Rref . We count
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the number of datasets where the τ is significantly
different from the random.

C Models Used in Evaluation

For the experiments with SQUAD, we use publicly
available instance-level predictions from https://
rajpurkar.github.io/SQuAD-explorer/. We
download all model predictions and filter out mod-
els with F1 above 92 or below 77 to obtain a set
of 125 models. The filtering is for visualization
purposes and for reducing the impact of outliers.
We run the statistical significance tests on all mod-
els to ensure that the filtering does not impact the
reported results and the conclusions that we draw.

For MNLI, we used publicly available pretrained
and finetuned models with different architectures,
as available on the huggingface model repository.
The list of models that we used is as follows:

• Albert (TehranNLP/albert-base-v2-mnli)

• Bart-Large (facebook/bart-large-mnli)

• Bert-Base (TehranNLP/bert-base-cased-mnli)

• Deberta (MoritzLaurer/DeBERTa-v3-large-
mnli-fever-anli-ling-wanli)

• Distilbert (SEISHIN/distilbert-base-uncased-
finetuned-mnli)

• Distilroberta (boychaboy/MNLI_distilroberta-
base)

• Electra (TehranNLP/electra-base-mnli)

• Roberta-Base (TehranNLP-org/roberta-base-
mnli-2e-5-42)

• Roberta-Large (roberta-large-mnli)

• Xlnet (TehranNLP/xlnet-base-cased-mnli)

We use the models to score the MNLI-val-
matched set without further finetuning or modi-
fications. We used a Nvidia v100 GPU and the
process of inference took approximately 1 hour.
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