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Abstract

Structured data, prevalent in tables, databases,
and knowledge graphs, poses a significant chal-
lenge in its representation. With the advent
of large language models (LLMs), there has
been a shift towards linearization-based meth-
ods, which process structured data as sequen-
tial token streams, diverging from approaches
that explicitly model structure, often as a graph.
Crucially, there remains a gap in our under-
standing of how these linearization-based meth-
ods handle structured data, which is inherently
non-linear. This work investigates the linear
handling of structured data in encoder-decoder
language models, specifically T5. Our find-
ings reveal the model’s ability to mimic human-
designed processes such as schema linking and
syntax prediction, indicating a deep, meaning-
ful learning of structure beyond simple token
sequencing. We also uncover insights into
the model’s internal mechanisms, including
the ego-centric nature of structure node encod-
ings and the potential for model compression
due to modality fusion redundancy. Overall,
this work sheds light on the inner workings of
linearization-based methods and could poten-
tially provide guidance for future research.

1 Introduction

Motivation. Natural Language Interfaces (NLIs)
to computer systems allow the use of every-
day language to interact with computer systems,
thus lowering technical barriers to advanced com-
puting functionality. Early systems such as
SHRDLU (Winograd, 1971) and LUNAR (Woods,
1973) saw limited success due to the limited lan-
guage processing capabilities of computer systems
at the time. After years of steady progress, the
strong language processing capabilities of large lan-
guage models (LLMs) have led to renewed interest
in NLIs such as the widely used ChatGPT (Brown
et al., 2020). Systems such as ChatGPT already
serve as robust NLIs. However, a critical challenge
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remains in applying the underlying models to spe-
cialized and personalized real-world scenarios. The
challenge stems from the need for the model to han-
dle “backend data” commonly stored in structured
formats such as proprietary databases, knowledge
graphs, or dialog states, including intents, slots,
and values. We refer to this task as structured data
representation (SDR)(Shao et al., 2022).

In this study, our primary focus is on a represen-
tative SDR task: text-to-SQL parsing (Zelle and
Mooney, 1996; Zettlemoyer and Collins, 2012).
This task automatically maps natural language
queries into SQL commands, thus eliminating or
at least reducing the need for programming knowl-
edge. For such a system to be broadly applicable, it
must be capable of adapting to new databases, en-
coding these databases together with user queries,
and predicting the corresponding SQL queries.

The Rise of Linearization-based Methods. Re-
cent approaches to text-to-SQL parsing and
other SDR tasks fall into two main categories:
linearization-based and structure-based meth-
ods (Lin et al., 2020; Scholak et al., 2021; Xie
et al., 2022). Structure-based approaches explic-
itly utilize the inherent structure in the data, often
representing it with a graph (Bogin et al., 2019;
Wang et al., 2020; Cao et al., 2021; Hui et al.,
2022). In contrast, linearization-based methods
treat structured data as a token sequence, processed
similarly to natural language sentences. The lat-
ter have gained traction due to their compatibility
with LLMs, which have demonstrated impressive
performance across various NLP benchmarks.

Open Problems and Our Contributions. SDR
tasks like text-to-SQL remain a challenging prob-
lem for LLMs, as they are not completely “solved”
by current models (Li et al., 2023). Towards shed-
ding light on ways forward, our main contribution
is a detailed exploration of the inner workings of a
former state-of-the-art (SOTA) text-to-SQL parser
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with T5 backbone (Scholak et al., 2021; Xie et al.,
2022). Our analytical approaches include prob-
ing classifiers (Kohn, 2015; Gupta et al., 2015;
Shi et al., 2016; Conneau et al., 2018), as well
as techniques that directly manipulate model in-
termediates, leveraging the recent causal tracing
method (Finlayson et al., 2021; Meng et al., 2022).
We find that despite their simplicity, linearization-
based methods can effectively represent structured
data. Specifically, we show that the prefix-tuned
T5 model preserves low-level textual details and
enhances understanding of node relationships in
structured data. We also show the ego-centric na-
ture of structure node encodings, which primarily
contain information relevant to the node itself. Ad-
ditionally, we uncover a duplicative robustness in
modality fusion, indicating potential avenues for
model compression. Our study also reveals the
model’s internal working pipeline, which aligns
with human-designed processes like schema link-
ing, syntax prediction, and node selection, suggest-
ing meaningful learning rather than reliance on
spurious correlations. The attention mechanism’s
role in modality fusion and the distinctive function-
alities of different layer ranges in the decoder are
also revealed. Overall, our research contributes to
our understanding of structured data representation
in encoder-decoder LLMs.

We opted not to analyze extremely large LMs
such as GPT-4, due to the high computational cost
of our analytical methods and the opaque nature
of their intermediate states. However, given the
competitive performance of the model we study,
coupled with its sequential input and autoregres-
sive output which are analogous to LLMs, we be-
lieve that our findings are general and applicable to
models in the same category.

2 Related Work

Structured Data Representation for Text-to-
SQL. From prior work, structure-based methods
include SchemaGNN (Bogin et al., 2019), RAT-
SQL (Wang et al., 2020), LGE-SQL (Cao et al.,
2021) and S?SQL (Hui et al., 2022). Linearization-
based methods have been widely studied, including
BRIDGE (Lin et al., 2020) and Picard (Scholak
et al., 2021). USKG (Xie et al., 2022), which pro-
poses a unified linearization method for all SDR
tasks, also falls under the category. Recently, LLMs
such as those behind ChatGPT also demonstrated
strong performance as a structure linearization-

based text-to-SQL method (Li et al., 2023).

Model Behavior Analysis and Interpretation.
Previous work include gradient-based methods
which check the importance of input features based
on their gradient, such as saliency maps (Simonyan
et al., 2013). For models reliant on attention mech-
anisms (Clark et al., 2019), analytical methods ex-
ist to examine the significance of individual in-
put units by evaluating attention weights. How-
ever, such analyses have faced skepticism in other
works (Serrano and Smith, 2019). An alternative
line of work is the probing classifier approach, in
which classifiers are trained on a model’s inter-
mediate representations to determine the existence
of specific information (Kohn, 2015; Gupta et al.,
2015; Shi et al., 2016; Ettinger et al., 2016; Adi
et al., 2016; Liu et al., 2019; Tenney et al., 2019;
Hewitt and Liang, 2019; Voita and Titov, 2020; Zhu
and Rudzicz, 2020; Pimentel et al., 2020; Ravichan-
der et al., 2021b). Though flexible and adaptable
to trace various information, probing tests may
present challenges in the interpretation or compari-
son of results (Ravichander et al., 2021a; Belinkov,
2022). A recent line of work involves causal anal-
ysis, wherein researchers manipulate the target in-
formation within the input and restore intermediate
outcomes to a clean state to verify the presence of
information (Finlayson et al., 2021; Meng et al.,
2022). Our analysis framework builds upon previ-
ous probing and causal analysis methods. However,
we have adapted and incorporated additional meth-
ods specifically to gain insights into tasks related
to structured data representation.

3 Preliminaries

The model we investigate in this work is T5-large,’
with prefix-tuning on the Spider dataset (Yu et al.,
2018; Xie et al., 2022). The model is a standard
encoder-decoder Transformer architecture.> The
encoder has two modules per layer: self-attention
and linear multilayer perceptron (MLP). A de-
coder layer has three modules: self-attention, cross-
attention, and MLP. To work as a text-to-SQL
parser, the model takes the concatenation of user

'"The prior SOTA method for Spider is Picard + T5-
3B (Scholak et al., 2021), in which Picard is a post-hoc de-
coding algorithm without modifying the model. In the scope
of our experiments, we use T5-large instead, as our behavior
tests involve significant computational expenses.

%As our focus is on the interpretation of the inner workings
of the model, we do not use any post-processing heuristic on
the model output, like Picard.
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[sQL prediction] SELECT avg ( age ...

(other tokens)

[Input]| What is the average age of all singers?‘: structured

input:|| concert_singer | stadium : stadium_id , location ,

name , capacity | singer : singer id , name , country , age ,

is_male | concert : concert id ,\concert_name , theme X

stadium_id , yea.r{ </s>

(Structure context)

(Self-node)

Figure 1: The input to the text-to-SQL parser consists of the query in natural language text (blue), and the relevant
structured data (red), other tokens (gray). “self-node,” refers to the input tokens corresponding to the expected output
node where a node refers to both column and table names, and “structure-context,” represents all the structured
input tokens excluding the self-node. The output is the predicted SQL query (top).

query text and the linear form of a database (DB)
structure as input and yields the SQL token se-
quence as output. The model has been trained with
prefix-tuning (Li and Liang, 2021). Each attention
module within the model is associated with 10 ex-
tra key-value entries from the prefix.

Terminology. For clarity of exposition, we intro-
duce the term "structure nodes," or simply "nodes,"
which collectively refer to both columns and tables.
We refer to “layer ranges” in the encoder or de-
coder, grouping them into to low, middle, and high
layers. Both the encoder and decoder have 24 lay-
ers. In our discussion, “low layers” refer to layer
0-11, “middle” to 6-17 and “high” to 12-23. In
addition, we mention “input sections,” such as text,
structure, and prefix. For a structure node, we also
have the input section of “self-node,” indicating the
input tokens of the anticipated output node, and
“structure-context,” representing all the structured
input tokens excluding the self-node. Figure 1 il-
lustrates the format of the input to the text-to-SQL
parser.

4 Research Questions

Preliminary Intuition Open Questions. The
model’s internal mechanics can be intuitively un-
derstood as follows: The encoder produces contex-
tualized encodings by fusing both textual and struc-
tural input elements. These combined encodings
then provide a comprehensive basis upon which the
decoder constructs the SQL. However, despite this
preliminary understanding, certain aspects remain
unclear. Key questions that arise include:

(Q1) What specific information is passed from
the encoder to the decoder via the text and structure

token encodings? Addressing this allows us to
delineate the functions of the encoder and decoder,
further aiding in model interpretation.

(Q2) Which parts of the model store the impor-
tant information? Here “parts” refers to model
intermediates within different modules, input sec-
tions or layer ranges. This helps in detecting the
possible bottlenecks and presents opportunities for
model compression on the less important parts.

(Q3) How do the attention modules handle
modality fusion? In our exploration of structured
data representation in text-only models, we aim to
understand how modality fusion is performed. It
is expected to occur within the attention modules,
as they are the only mechanism enabling different
tokens to communicate.

(Q4) What is the internal working pipeline of
the model? We aim to check if the thought process
of the model mirrors human-designed pipelines,
including steps such as schema-linking, syntax
prediction, and node selection (Gu et al., 2023;
Pourreza and Rafiei, 2023). Additionally, we seek
to verify whether the model obtains meaningful
knowledge through text-to-SQL training, or it is
mainly fitting to spurious correlations.

5 Probing Study
5.1 Probing Tasks

For our first question Q1, our initial investigation
focused on the information retained by the encod-
ing vectors. For this purpose, we conducted two
probing tasks as described below.

Node Name Reconstruction (NR). In this task,
we examine the ability of the encoder to retain
essential, low-level information about a node by
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attempting to reconstruct its surface-form name.
Due to the tokenization process of TS5, a node can
be tokenized into multiple sub-tokens. We keep all
sub-token encodings as a sequence and pass them
to a “probe decoder,” which has the same architec-
ture as TS5-decoder but is initialized randomly. The
probe decoder is trained to reconstruct the node
name autoregressively.

Link Prediction (LP). Unlike node name recon-
struction, this task assesses the ability of the model
to capture higher-order structural information in
its encodings. Using the encodings of a pair of
nodes,? we train a probing classifier to predict the
connection between them. The relation definitions
follow RAT-SQL (Wang et al., 2020). Examples
of these relations include QT-Exact (Question to-
ken and Table name Exact match), CC-TableMatch
(two Columns belong to the same Table), or null
relations like XY-default (a type X node and a
type Y node, no special relation). We pool the
sub-token encodings of each node into a single
vector. We then construct the input vector of two
nodes by concatenating their pooled encodings and
their element-wise dot-product, i.e. [e1; ea; €1 * €3]
where “;” denotes concatenation and “*” denotes
element-wise dot-product. We pass this input vec-
tor to a probe classifier, which is either a logistic
regressor (LR) or a 2-layer MLP, to predict the
relation between the two input nodes.

5.2 Probing Results

For both probing tasks, we utilized the train and
dev partitions from the Spider dataset for training
and evaluation respectively. The results are pre-
sented in Table 1. For Node Name Reconstruction
(NR), both prefix-tuned and pretrained T5 exhibit
very high reconstruction accuracy. This indicates
that the prefix-tuning process did not undermine
the ability of the model to preserve the low-level
information.

For Link Prediction (LP), our results showed
that the encodings from prefix-tuned TS model out-
performed the pre-trained version, suggesting that
the prefix-tuning process of the model enhances
its understanding of relations between nodes. In-
terestingly, the pre-trained T5 model also yields
high LP accuracy. This suggests that even without
tuning, pre-trained models have an implicit capa-
bility to process structured text. This observation is
consistent with findings from (Ravichander et al.,

3In this study, a question token is also considered a node.

NR LP
Model Exact Match | LR acc. | MLP acc.
T5-P-tuned 0.9649 0.8110 0.8600
T5-pretrain 0.9709 0.7929 0.8400
T5-random 0.4918 0.2839 0.3102

Table 1: Node Name Reconstruction (NR) and Link
Prediction (LP) probing results. “P-tuned” represents
the TS model with prefix-tuning.

2021a), where a model can learn features that are
not aligned with its primary objective.

For comparison, the TS-random version showed
significantly lower probing performance compared
to either T5-prefix-tuned or pre-trained. This con-
firms that the high performance are not merely due
to overfitting noise in high dimensions.

Takeaway 1 (Q1). Regarding the information
contained in the encodings, prefix-tuned T5 man-
ages to preserve low-level textual details and also
improves understanding of node relationships.
Surprisingly, pre-trained T5 model also exhibits
an intrinsic capacity to handle structured text to
some degree.

6 Direct Model Manipulation

Besides the insights from the probing study, a re-
maining question is whether the model actually
utilizes the information encoded in the representa-
tion. Since probing experiments did not answer this
question, we undertook an exploration of the inter-
nal mechanisms of the model by directly manipulat-
ing the model intermediates and observing the out-
comes. We employ the idea of causal tracing (Fin-
layson et al., 2021; Meng et al., 2022), where spe-
cific intermediate information is corrupted or re-
instated to analyze its influence on the ultimate
prediction. We design our studies in a fine-grained
way, computing prediction accuracy at the token-
level within a SQL query and categorizing the out-
comes based on token types. Token types include
columns, tables, table aliases, and syntax tokens
(including keywords and operators). We focus on
columns and syntax tokens, treating columns as
being representative of structure node prediction.
The results for rest of the token types are in the
appendix.

6.1 Encoder States Investigation

We begin by corrupting the input embeddings or
final encoding vectors of individual tokens or entire
input sections. A vector is “corrupted” by replacing
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Impact of restoring state after corrupted input
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Figure 2: An illustrative sample showing the

restoring effect of each encoder intermediate state.
The decoder prompt: SELECT song_name FROM
singer WHERE ==> age. Restoring the self-node
hidden state on any layer can recover the correct predic-
tion, while almost all other states do not have such an
effect. More samples are available in Figure 6.

it with a zero-vector. The underlying intuition is
that, when corrupting the embeddings of a token or
section, the information is fully removed from the
model. As such, the corruption study evaluates the
overall usefulness of the corrupted part. When the
final encodings are corrupted, only the information
stored in these encodings is lost, thus this corrup-
tion study checks the actual information stored in
these encodings and its importance.

We compute the average confidence on ground
truth tokens for samples where the uncorrupted
predictions are correct. The results for corrupting
entire sections can be found in Table 2, on the left.
First, as a sanity check, we confirm that corrupt-
ing the embeddings of the entire text section has a
substantial impact on the prediction performance
of both columns and syntax tokens. For structure
embeddings, corrupting column names suffers a
larger drop compared to syntax, consistent with
our expectation. For final encodings corruption, we
found that when predicting columns, the corruption
on merely the self-node is as impactful as the en-
tire structure section. Corruptions on the text part
are considerably less effective, and on the struc-
ture context it has almost no influence. Shedding
light on our question Q2 regarding which states
hold important information, these results indicate
that the self-node encoding vectors are the most

important when predicting this node. The structure
node encodings are “ego-centric,” each storing the
information pertinent to that node and not others.

We further explored the opposite direction, cor-
rupting the text embeddings and restoring the in-
termediate hidden states. Following ROME (Meng
et al., 2022), this approach highlights intermediate
states with high restoring effect, which refers to the
increased probability of correct prediction when
restoring the state back to the clean version. These
states likely capture crucial information and hold
notable importance. We chose to corrupt the em-
beddings of the text section based on the reasoning
that the expected SQL output is entirely specified
by the text.

Figure 2 illustrates the restoring effect of all en-
coder states on a representative sample. We observe
that restoring the self-node hidden states at any
layer can restore the correct prediction. However,
for other tokens, restoring their representations at
any layer has minimal impact. This observation re-
inforces the finding that self-node representations
hold greater significance than other tokens when
predicting that node. The ability of a single encod-
ing to restore the correct prediction confirms that
the low-level textual information is retained within
the encoding and effectively utilized by the decoder
QD).

We also investigated the effects of restoring the
final encodings of entire sections with corrupted
text embeddings. The findings are presented in
Table 2, on the right side. We observed the same
trend where restoring only the self-node encoding
proves to be more effective than restoring the entire
text section or the structural context.

Takeaway 2 (Q1, Q2). The encodings of struc-
ture nodes are predominantly ''ego-centric,’ con-
taining primarily information relevant to them-
selves with minimal data about other nodes. Conse-
quently, the target node’s encodings emerge as the
most important among all encodings during node
prediction.

6.2 Contextual Representations of Structure

We now turn our attention to Q3, which explores
the attention mechanism and the integration of
modalities between text queries and structured in-
put. As can be seen in Table 2, when text embed-
dings are corrupted, even if their final encodings
are restored, the prediction accuracy is still com-
promised (0.5663), since the structure nodes fail
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Table 2: The effect of corrupting different sections of
the input on columns and syntax token. Values are the
average confidence scores of the ground truth over all
samples where the clean (uncorrupted) prediction is
correct.

to access accurate text information. This under-
scores the important role of text information in
the process of encoding structure node, affirming
the overall necessity of modality fusion.

In the following experiments, we aim to study
the inner workings of the attention modules by
examining and manipulating them through various
methods.

6.2.1 Attention Corruption Study

To reveal the inner mechanism of modality fusion, a
straightforward first question we propose is: Where
does the fusion primarily take place? For this,
we explore another type of causal study, namely
attention corruption, in which we deactivate the
attention within certain layers and between certain
sections by masking the corresponding attention
entries. In detail, there are two corruption schemes,
by “weights” or by “logits”. The “weights” set-
ting simply sets the corrupted attention weights to
0, keeping others unchanged. The “logits” setting
adjusts attention logits to —oo before the softmax
operation, essentially zeroing out the corrupted sec-
tions while ensuring a valid distribution. Both set-
tings are considered in our experiments.

Intuitively, modality fusion is expected to oc-
cur within encoder self-attention or decoder cross-
attention. We evaluated the prediction accuracy
of the model for columns and syntax tokens with
our above-mentioned attention corruption, target-
ing the encoder self-attention or the decoder cross-
attention, across different sections and within dif-
ferent layer ranges. Our guiding intuition here is
straightforward: for components not engaged in
modality fusion, a smaller performance drop is ex-
pected.

The results are shown in Table tables 3 and 4.

Table 3 reveals an interesting finding under column
“Columns - Weights” and on the row “S — 17

Section Embeddings Final Encodings || Encoding Restore C . . Columns Syntax tokens
Column  Syntax | Column Syntax Column orruption par - - - -
Text 02482 02704 | 09115 04329 0.5663 Weights Logits | Weights Logits
Struct 04084 0.8435 | 04822 0.7056 0.8016 =S 0.9671  0.9543 | 0.9933  0.9919
Self-node | 0.3916 - 0.5239 - 0.6801 S—T 0.9071 0.6879 | 0.9926 0.9845
StuctCix. | 08995 - | 09848 - 0.1028 T+ S 0.8416  0.6138 | 0.9878  0.9788
all 0.0083 0.0422 | 0.0943 0.1458 0.9416 all 0210l 01500 | 0.7260  0.7338

Table 3: Attention corruption study on encoder self-
attention across input sections. For input sections, “T”
means text and “S” stands for structure. “T" — S~
means corrupting the attention weights from text to
structure tokens; “all” means corrupting the full atten-
tion matrix. On top, “Weights” and “Logits” represent
the attention corruption scheme.

(structure-to-text*): the interference of encoder
self-attention from the entire structure section to
the text section had a negligible negative impact
(0.9071), compared to the performance drop in
Table 2 caused by text embeddings corruption
(0.5663). Likewise, Table 4 row “Text” reports
minimal damage to accuracy (0.9063) when the
decoder cross-attention to the text was obstructed.

These findings seem to contradict our previous
conclusion that the fusion of text and structure in-
formation is vital for the task. We propose an ex-
planation for this inconsistency, suggesting that it
stems from the duplicative robustness of the model.
It means the model has learned certain capabilities
in multiple locations, encoder and decoder in our
case. To verify this hypothesis, we experiment with
jointly corrupting the encoder self-attention from
structure to text, and decoder cross-attention to text,
essentially combining the corruption effect of the
two experiments above. The results are shown in
Table 5. We can observe that simultaneously cor-
rupting both leads to a more substantial decline in
accuracy. This supports our duplicative robustness
hypothesis with regard to modality fusion. Related
to Q3, this finding provides novel insights into
modality fusion. It underscores the robustness of
the model, but also hints at potential opportunities
for post-hoc model compression.

Takeaway 3 (Q3). The model exhibits duplica-
tive robustness in the joint representation of text
and structure. Both encoder and decoder demon-
strate proficient capabilities in fusing text infor-
mation into structure, highlighting both the inter-
nal robustness of the model but also possibilities
Jor compression.

“Th notation of attention “from section A to B,” means the

attention matrix entries with tokens from A as query ¢, and
tokens from B as keys k& and values v.
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Corruption part . Columns . Syntax token§
Weights Logits | Weights  Logits
Text 0.9063 09132 | 0.8517 0.8305
Struct 0.3239  0.4333 | 0.9543 0.9326
Prefix 09114 0.9025 | 0.8332 0.7676
StructCtx. 0.9429 0.9876 - -
Self-node 0.3840 0.5382 - -
all 0.1316  0.0597 | 0.4590 0.3725

Table 4: Attention corruption study on decoder cross-
attention from each decoder step to encodings of each
input section.

6.2.2 Attention Weights Information

To delve deeper into the functionalities of attention,
we examine the potential correlation between atten-
tion weights and actual interpretable information.
In Q4 we hypothesize that the model internally per-
forms subtasks akin to those designed by humans.
One of them is schema linking, which aims to de-
termine the relevance of a node, i.e., whether this
node should appear in the output SQL. For that, we
explore the correlations between the distribution
patterns of a column within encoder self-attention
and the relevance of the column. In detail, within
each sample, we gather the attention weights from
each column’ to different input sections, across
different layers and attention heads. We then com-
pare patterns between relevant and non-relevant
columns to gauge any distinctive behavior.

The results are presented in Table 6. We in-
deed observe distinctions between relevant and
non-relevant columns. For specific heads and input
sections, attention is consistently high for only one
type of columns and low for the other. For exam-
ple, head 8 shows a notably high attention to text
and low attention to structural context for relevant
nodes. For heads 10 and 11, attention to prefix
token #4 is markedly high for non-relevant nodes.

We further confirm the correlation between en-
coder self-attention weights and node relevance
by directly utilizing the attention patterns as fea-
tures for node relevance classification. Specifically,
we focused on the attention positions (layer, head,
section) with clear discrepancy between relevant
and non-relevant nodes, as mentioned above, and
collect the attention weights on these positions to
form “input features” for each node. A logistic
regressor (LR) was trained to make the relevance
prediction using these features. We compared with
the implicit predictions made by the full model,

>For simplicity, in this study we only use the first token of
each column as its representative.

Corrupted part Weights Logits
Enc.SA-only 0.9071 0.6879
Dec.XA-only 0.9063 0.9132
Enc.SA + Dec.XA 0.6414 0.2987

Table 5: Joint corrupting encoder self-attention (struc-
ture to text) and decoder cross-attention (to text), to
highlight the duplicative robustness phenomenon.

Head 7 Head 8 Head 10 Head 11
prefix#0 | 0.55/0.06 | 0.01/0.01 | 0.04/0.01 | 0.00/0.04
prefix#4 | 0.04/0.05 | 0.00/0.00 | 0.01/0.45 | 0.01/0.42
prefix#8 | 0.01/0.01 | 0.01/0.24 | 0.07/0.02 | 0.12/0.03
text 0.00/0.01 | 0.73/0.06 | 0.05/0.01 | 0.00/0.00
self 0.25/0.57 | 0.01/0.01 | 0.03/0.00 | 0.04/0.05
context | 0.10/0.24 | 0.17/0.61 | 0.33/0.09 | 0.22/0.23
others 0.01/0.01 | 0.06/0.05 | 0.27/0.07 | 0.52/0.15

Table 6: Attention weights from a column to each sec-
tion, averaged for all relevant / non-relevant columns.
Values in red are high for relevant nodes, and in blue are
high for non-relevant nodes. Due to space constraints
we only show results for Encoder layer 23, on a subset
of heads and prefix tokens, on the dev set. More results
are provided in Table 13.

where nodes in the generated SQL were predicted
as relevant. The results can be found in Table 7.
The accuracy and F1 scores of the LR are on par
with those of the full model, and significantly bet-
ter than simple heuristics such as predicting nodes
with “exact text match” as relevant. This reaffirms
that the encoder self-attention is tightly associated
with node relevance, and that the encoder has suc-
cessfully internalized the schema linking subtask.

Takeaway 4 (Q3, Q4). Encoder self-attention
weights carry distinguishing information about
node relevance. This implies the ability of the
encoder to perform the schema linking subtask.

6.2.3 End-to-End SQL Performance and
Error Analysis

To verify the above findings, which are based on
token-level prediction results, we extended our
experiments using the same corruption settings
to evaluate the end-to-end SQL prediction perfor-
mance. SQL predictions are measured by the Exact
Match and Execution Match metrics, in line with
the original Spider leaderboard (Yu et al., 2018).
In these experiments, we introduced corruptions
on different layer ranges and targeting specific sec-
tions such as the encoder self-attention between the
text and structure, and decoder cross-attention to
text and structure. Additionally, we added decoder
self-attention corruption, which yielding interest-
ing findings.
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Relevance | Attn. + LR | Full model | Heuristics
Accuracy 0.9729 0.9842 0.9403
Precision 0.8669 0.9316 0.8616
Recall 0.8535 0.8994 0.4634
F1 0.8602 0.9152 0.6026

Table 7: Column relevance prediction results. The
P/R/F1 is computed for “relevant” columns due to their
sparsity (<10%) among all columns.

Module | Corruption type | Layers | Section || Exact | Exec
Enc.SA Logits Low | S—T || 0.6538 | 0.6654
Enc.SA Logits Low |7 — S || 0.6518 | 0.6721
Enc.SA Logits Low | T S || 0.6422 | 0.6634
Enc.SA Logits High | S — T || 04072 | 0.4362
Enc.SA Logits all S — T | 0.2234 | 0.2369
Enc.SA Weights all S — T | 0.5145 | 0.5387
Dec.XA Logits all Text 0.0706 | 0.0812
Dec. XA Logits all Struct || 0.0648 | 0.0638
[Dec.SA [  Weights [ all [ all [[0.0000 [ 0.0000 |
[ - ] (Clean) | - [ - 06692 0.6809 |

Table 8: End-to-end SQL performance with different
attention corruption settings. Rows are selected for
discussion; full results are available in Table 20 in the
appendix. SA: self-attention; XA: cross-attention.

The results are provided in Table 8. For encoder
self-attention (Enc.SA), the trends are consistent
with previous observations. For example, the per-
formance of “logits” corruption is much lower than
“weights” (0.2369 vs. 0.5387 on Exec-match). In-
terestingly, corruption on the lower layers resulted
in almost no decrease in performance, even for
section “I" <> S (0.6809 — 0.6634), hinting at
opportunities for model pruning.

For decoder cross-attention (Dec.XA), introduc-
ing corruption to either text or structure drastically
reduces performance. This is attributable to the
compromised ability to predict syntax tokens and
structure nodes, respectively. To further understand
the actual behavior of the model (Q4), we con-
ducted manual error analysis on a subset of 50 sam-
ples. The results are shown in Figure 3, with supple-
mentary details provided in Table tables 21 and 22
in the appendix. We observe that when cross atten-
tion to text is blocked, the predominant errors are
“clause-semantic errors,” most commonly missing
a condition or aggregation function. On the other
hand, blocking structure section primarily results in
node selection errors, where the model hallucinates
on node names. This finding verifies the special-
ized capabilities of the decoder for SQL syntax
prediction and node selection, functioning indepen-
dently of each other. This reinforces the conclusion
from Takeaway 4 for Q4 that the model mirrors

138

Decoder cross-attention corruption error types

50

mmm Clause-Semantics Ermors
Node Errors

40 = Other errors

Frequency
=]

[
=

=
1=}

et struct
Corrupting layer ranges

Figure 3: Error type analysis on decoder cross-
attention corruption on the text or structure part.
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Figure 4: Error type analysis on decoder self-attention
corruption on various layer ranges.

high

human-designed pipelines, including schema link-
ing, syntax prediction, and node selection.

Takeaway 5 (Q4) The model shows the ability
to perform different subtasks corresponding to
human-designed pipelines: schema linking in the
encoder self-attention, syntax prediction in de-
coder cross-attention to text, and node selection
in decoder cross-attention to structure.

Decoder Self-attention Study. In Takeaway 5,
we confirmed the model’s subtask handling capa-
bilities and identified corresponding submodules.
Delving deeper, we aim to pinpoint the layers
where these processes occur, relating back to Q2
concerning the storage of information within the
layer dimension. Hypothetically, different layer
ranges in the decoder have distinct responsibili-
ties. Intuitively, lower layers would focus more
on syntax prediction, while higher layers would
concentrate more on node selection, reflecting the
intrinsic order of these subtasks.

To verify this, we conducted additional exper-
iments by corrupting the decoder self-attention,
effectively blocking all incoming information from
previous timesteps in the decoder, within differ-
ent layer ranges. The goal was to identify the in-
formation that is either already available or still



Q: What is the average horsepower for all cars produced before 1980 ?
Pred: SELECT avg (horsepower) FROM cars_data WHERE year prior 1980
Gold: SELECT avg (horsepower) FROM cars_data WHERE year < 1980

Q: What are the codes of types that have fewer than 3 ?
Pred: SELECT template_type_code FROM templates GROUP BY
template_type_code HAVING COUNT (x) less than 3

Gold: SELECT template_type_code FROM templates GROUP BY
template_type_code HAVING COUNT (x) < 3

Q: What are the names of airports in Aberdeen?
Pred: SELECT airportname FROM airports WHERE city is Aberdeen
Gold: SELECT airportname FROM airports WHERE city = "Aberdeen"

Q: List the title of all cartoons in alphabetical order.
Pred: SELECT title FROM cartoon arranged alphabetically
Gold: SELECT title FROM cartoon ORDER BY title

Q: How many type of governments are in Africa?

Pred: SELECT COUNT (different governmentform)
FROM country WHERE continent = Africa
Gold: SELECT COUNT (DISTINCT governmentform)
FROM country WHERE continent = "Africa"

Table 9: Samples of corrupting decoder self-attention
on high layers. In red are natural phrases generated
by the model that semantically match the SQL syntax
counterparts in blue.

missing at each layer range. The overall results are
presented in Table 8, where, as expected, the end-
to-end performance significantly deteriorated. For
deeper insights, we performed manual error anal-
ysis on each layer range, including low, middle,
and high, on a subset of 50 samples. The results
are shown in Figure 4, with more details in Ta-
ble tables 23 and 24 in the appendix. We observe
a clear spectrum of error types distributed across
the corrupted layer ranges. For low layers, the er-
rors are predominantly “low-level syntax errors”
such as unpaired brackets or quotes. For middle
layers, many errors are “clause-level errors” where
missing clauses or operators invalidate the SQL.
For high layers, the SQL predictions are generally
better formed syntactically, and the errors tend to
pertain to higher-level semantics of the SQL. Inter-
estingly, often the SQL error is confined to a clause
where the SQL grammars are replaced by natural
language phrases with similar semantics. Exam-
ples of this phenomenon are provided in Table 9.
This intriguing observation is a strong indicator that
the model has learned to align the semantics of SQL
with natural language, and these representations are
already obtained within the lower layers. Mean-
while, the overall behavior discrepancies between
layer ranges support our intuitive hypotheses on
the distinct functionalities of different layer ranges
in the decoder.

Takeaway 6 (Q2, Q4) The decoder follows hu-
man intuitions that low layers focus more on syn-
tax prediction and high layers focus more on node
selection. Remarkably, we found that the model
learns to align the semantics of SQL with natu-
ral language, despite no training on naturalized

SQL versions, such as SemQL or NatSQL (Guo
et al., 2019; Gan et al., 2021). This suggests
that the model learns meaningful knowledge rather
than merely exploiting spurious correlations in the
dataset.

7 Conclusion

We conducted a comprehensive study on the
internal behavior of an encoder-decoder lan-
guage model, specifically TS5, text-to-SQL parser.
Through both probing and manipulation of internal
states, we provide insight into various aspects such
as the information transfer between encoder and de-
coder, the storage of crucial data within the model,
the functions of attention mechanisms, the process
of modality fusion, the internal processing pipeline
of the model, and the intrinsic alignment of SQL
and natural language semantics. Our findings can
inform and guide future research in text-to-SQL
and related structured data representation tasks.

8 Limitations

Our study is limited to one type of pretrained lan-
guage model architecture and did not consider a
broader spectrum of models. The scope of our
study was also limited by the computational re-
sources required for analyzing larger models and
the availability of model intermediates. Thus, fu-
ture research directions include: 1) Exploring sim-
ilar studies across different pretrained language
model architectures, such as the widely adopted
decoder-only models (Brown et al., 2020). ii) Ex-
amining the impact of model scaling, both in terms
of increased parameters and data volume, follow-
ing the insights from scaling laws (Hoffmann et al.,
2022). iii) Extending the study to other structured
data tasks, such as speech-to-SQL (Shao et al.,
2023) or text-to-plots (Shao and Nakashole, 2020;
Wang et al., 2021). and a variety of structured
data sources such as knowledge graphs (Nakas-
hole et al., 2010, 2011; Nakashole, 2013; Nakas-
hole and Weikum, 2012; Nakashole et al., 2013;
Mitchell et al., 2015; Kumar et al., 2017; Moon
etal., 2019; Tuan et al., 2022) and tables (Yin et al.,
2020; Herzig et al., 2020; Yu et al., 2021; Yang
et al., 2022).

Our study was carried out only on the Spider
dataset for text-to-SQL. However, we do not con-
sider this to be a significant limitation, since our
objective was to interpret the model behavior rather
than proposing and validating a novel model.
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A Details of Dataset and Model

Spider Dataset The Spider dataset has 7000 sam-
ples in the training set and 1034 samples in the dev
set (Yu et al., 2018). Unless mentioned otherwise,
our analytical studies were conducted on the full
dev set.

Text-to-SQL Model The model we study is T5-
large with prefix-tuning, implemented in the USKG
project (Xie et al., 2022). Regarding the model size,
it is almost the same as T5-large which has around
770M parameters.

Data Processing The tokenizer we use is the T5
tokenizer imported from HuggingFace, consistent
with the model.

Probing Models For logistic regression, we use
the Logistic Regression class from the Scikit-learn
package (Pedregosa et al., 2011), with hyperparam-
eter C = 1.0. For neural models including MLP
(for the LP probing task) and T5-decoder (for the
NR probing task), we use AllenNLP with Pytorch
backend (Gardner et al., 2017). The MLP probe for
the LP task has 2 linear layers with a middle dimen-
sionality of 64 and activation function LeakyReLLU
(slope = 0.01). It is trained with Adam with initial
learning rate le=*. The "probe decoder" for the
NR task uses T5-large decoder architecture and
pretrained parameters (without prefix-tuning). It
is fine-tuned with Adam with initial learning rate
le5.

B Extra Details of Analysis

B.1 Probing Study

For Link Prediction (LP), we made adjustments to
balance the frequencies of relation labels, given that
there are multiple dominant classes with "default"
labels (indicating no specific relation). For each
input sample, which consists of a textual sentence
and its corresponding structural input, we use only
K node-pairs from each relation class. In our study,
we simply set K = 1.

B.2 Causal Tracing Study

When the ground truth unit is multi-token, no mat-
ter node name or syntax tokens, we compute the
probability of each sub-token in the ground truth
with teacher-forcing, and compute the minimum
probability (bottleneck) among all sub-tokens as
the probability of the entire unit.

When we study behavior of columns in the input,
such as the effect of "self-node" or the attention to
other sections, we exclude the column whose name
appears more than once in the structured input,
since it is non-trivial to define "self-node" in such
cases. In detail, it is unclear whether another node
with the exact same name should be considered as
"self-node".

We corrupt representation vectors to zero-
vectors instead of adding a random noise vector
as done in (Meng et al., 2022). This is because we
observed in our preliminary studies that adding a
random noise does not change the model prediction
in most cases, different from the behaviors of the
studied GPT-2 model in (Meng et al., 2022).

C Extra Results
C.1 Attention Blocking Effect

In comparing the outcomes of corrupting "weights"
versus "logits" in Table tables 3 and 4, an interest-
ing trend emerges. In Table 3,when corrupting
"S — T" (and similarly "T" <+ S") in encoder self-
attention, the "logits" corruption caused a higher
detriment than "weights" (0.9071 vs. 0.6879).
This means that reallocating encoder self-attention
weights to other less-attended sections can severely
hamper performance. Conversely, Table 4 does
not display the same pattern. When corrupting de-
coder cross-attention to "Text", the accuracy under
the "logits" setting is not inferior to "weights" but
slightly superior (0.9063 vs. 0.9132). For other
sections like "Struct” or "Self-node", the "logits"
accuracy is also higher than the "weights" setting.
Besides, such patterns are only observed for col-
umn prediction and not for syntax tokens.

We attribute these trends to what we term the
blocking effect of encoder self-attention, where a
high attention weights serves a dual purpose: trans-
mitting information from that section while simul-
taneously inhibiting other sections from conveying
information. This effect is also verified by our
finding on the correlation of attention weights and
node relevance, which proves the attention weights
carry distinguishing information. This explains the
lowered performance when reallocating the atten-
tion to other sections, and justifies the existence of
blocking effect in encoder self-attention.

C.2 Attention per Layer Range

Exploring another aspect of Q3 (attention func-
tionalities), we check the importance of attention
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within different layer ranges. It also touches on
Q4 regarding the inner pipeline of the model. Re-
ferring back to Table tables 3 and 4, it is evident
that for the encoder self-attention, corruption in
low layers yields a substantially milder effect com-
pared to high layers. This trend is consistent for
both structure nodes and syntax prediction. This
suggests that, within the encoder, the high-layer
self-attention takes an overall lead on the contex-
tualization process. We further conducted direct
observations on a subset of samples, examining
the attention distribution from a column token to
all tokens. We found that low-layer self-attention
is more "self-concentrated", meaning it is largely
attending to the self-node tokens. In contrast, at-
tention in high layers is generally more distributed
towards other tokens. Relevant visualizations can
be found in Figure 7. Another evidence is from the
attention distribution patterns (Table 13). High lay-
ers exhibit more distinctive attention positions than
low layers. This further implies that high layers
play a more pivotal role in gathering information.

For the decoder cross-attention, the comparison
between low and high layers is less clear. One pos-
sible explanation is that different layer ranges have
distinct responsibilities. We will further discuss
this topic in later sections.

D Experiment Environment

CPU: 48 x Intel(R) Xeon(R) Gold 6136 CPU @
3.00GHz

GPU: 4 x NVIDIA GeForce GTX 1080 Ti
CUDA: Version =10.2
OS: Ubuntu 16.04.6 LTS (Xenial)

Relation Freq | T5-P-tuned | TS-pretrained
qq_dist(-2) 500 0.7725 0.7367
qq_dist(-1) 500 0.5164 0.5196
qq_dist(0) 500 0.9159 0.9684
qq_dist(1) 500 0.4990 0.5125
qq_dist(2) 500 0.7787 0.7324
qc_default 500 0.9098 0.8793
qt_default 500 0.9715 0.9547
cq_default 500 0.8877 0.8598
cc_default 500 0.6264 0.6385
cc_foreign_key_forward 471 0.8986 0.8925
cc_foreign_key_backward | 471 0.9104 0.9031
cc_table_match 500 0.6274 0.6141
cc_dist(0) 500 0.9210 0.9440
ct_default 500 0.7035 0.6549
ct_primary_key 465 0.9110 0.8665
ct_table_match 500 0.7522 0.7249
ct_any_table 500 0.9950 0.9980
tq_default 500 0.9639 0.9660
tc_default 500 0.6730 0.6046
tc_primary_key 465 0.8862 0.8580
tc_table_match 500 0.7543 0.6991
tc_any_table 500 0.9891 0.9960
tt_default 471 0.5612 0.5571
tt_foreign_key_forward 439 0.6683 0.6073
tt_foreign_key_backward 439 0.6396 0.6369
tt_dist(0) 500 0.9620 0.9320
qcCEM 264 0.8910 0.8673
c¢qCEM 264 0.8922 0.8729
qtTEM 199 0.9466 0.9300
tqTEM 199 0.9249 0.9193
qcCPM 281 0.8885 0.8405
cqCPM 281 0.9024 0.8364
qtTPM 51 0.8367 0.8200
tqTPM 51 0.8315 0.8444
qcNUMBER 81 0.9701 0.9405
cgNUMBER 81 0.9529 0.9277
qcTIME 15 0.8889 0.7500
cqTIME 15 0.8889 0.7692
qcCELLMATCH 125 0.8250 0.7410
cqCELLMATCH 125 0.7686 0.7903

Table 10: Link prediction (LP) probing results (F1-
score) per relation type, using logistic regression (LR)
as probing method. For detailed definitions of each rela-
tion, please refer to (Wang et al., 2020).
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Column Clean Text | DC. Text | Crpt. Text
Clean struct 0.9905 0.9611 0.8505
DC. struct 0.6152 0.4952 0.0489
Crpt. struct 0.3916 0.3469 0.0241
Table Clean Text | DC. Text | Crpt. Text
Clean Struct 0.9906 0.9802 0.9687
DC. Struct 0.4472 0.3965 0.1020
Crpt. Struct 0.2241 0.1958 0.0015

Table 11: Results of "dirty context encodings". "DC."
means "dirty context", i.e. this section is encoded with
its own embeddings clean but the other part embeddings
corrupted; the other part’s final encodings are restored
to the clean state. Effectively, in this setting we obtain
encodings without information from the context. "Crpt."
means "corrupted”, i.e. the input embeddings of this
section is corrupted.

Both+ | Clean+ | SCC+ | None | Total
Column 1333 103 66 500 | 2002
Table 1424 123 105 31 1683
Table alias | 1509 191 64 275 | 2039

Table 12: Struct context corruption (SCC) effect. Clean+
means clean prediction is correct, with SCC it is wrong.
Vice versa, SCC+ means clean prediction is wrong, but
SCC makes it correct. We see the number of cases in
which such corruption has positive / negative effects
are on the same level, indicating that the two factors
(information removal & distraction removal) both exist
in structure context corruption.
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Figure 6: Encoder state restoration effectiveness. Multi-token nodes are usually harder to recover by restoring a
single state. Supplementary for Figure 2.
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Figure 7: Encoder self-attention direct visualization.
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Dev-L1 Head 0 Head 1 Head 2 Head 3 Head 4 Head 5 Head 6 Head 7 Head 8 Head 9 Head 10 Head 11 Head 12 Head 13 Head 14 Head 15

prefix#0 | 0.00/0.00 { 0.02/0.03 { 0.04/0.03 | 0.01/0.01 | 0.00/0.00 { 0.09/0.11 { 0.02/0.02 | 0.00/0.00 | 0.01/0.01 | 0.01/0.01 | 0.00/0.00 | 0.01/0.01 | 0.00/0.00 | 0.00/0.00 | 0.04/0.05 | 0.01/0.02
prefix#1 | 0.00/0.00 | 0.01/0.01 | 0.00/0.00 | 0.00/0.00 | 0.02/0.01 | 0.01/0.02 | 0.0370.03 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.01/0.00 | 0.05/0.05 | 0.00/0.00
prefix#2 | 0.00/0.00 { 0.01/0.01 { 0.00/0.00 | 0.04/0.05 | 0.09/0.08 | 0.11/0.06 | 0.01/0.01 { 0.00/0.00 | 0.01/0.01 | 0.02/0.01 | 0.00/0.00 { 0.03/0.02 { 0.01/0.01 | 0.01/0.01 | 0.01/0.02 | 0.05/0.05
prefix#3 | 0.01/0.00 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.03/0.03 | 0.03/0.02 | 0.04/0.03 | 0.00/0.00 | 0.03/0.03 | 0.01/0.01 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.01/0.01 | 0.02/0.04
prefix#4 | 0.01/0.01 { 0.01/0.01 { 0.01/0.01 { 0.00/0.00 { 0.05/0.04 | 0.02/0.02 | 0.02/0.02 { 0.00/0.00 | 0.01/0.02 { 0.00/0.00 | 0.00/0.00 { 0.00/0.01 { 0.00/0.00 | 0.00/0.00 | 0.02/0.02 | 0.02/0.03
prefix#5 | 0.02/0.02 [ 0.08/0.09 { 0.00/0.00 | 0.01/0.01 [ 0.04/0.04 | 0.02/0.02 { 0.03/0.03 { 0.00/0.00 { 0.01/0.00 [ 0.06/0.04 | 0.00/0.01 | 0.01/0.01 | 0.00/0.00 [ 0.00/0.00 [ 0.01/0.01 [ 0.00/0.01
prefix#6 | 0.00/0.00 | 0.01/0.01 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.02/0.03 | 0.00/0.00 | 0.00/0.01 | 0.03/0.03 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.01/0.01 | 0.04/0.03 | 0.00/0.00
prefix#7 | 0.00/0.00 { 0.00/0.00 { 0.00/0.00 [ 0.00/0.00 | 0.03/0.04 | 0.06/0.02 | 0.02/0.01 | 0.00/0.00 | 0.08/0.09 | 0.00/0.00 | 0.00/0.00 | 0.07/0.08 | 0.00/0.00 | 0.00/0.00 | 0.02/0.01 | 0.01/0.01
prefix#8 | 0.05/0.06 | 0.06/0.05 | 0.01/0.02 | 0.00/0.00 | 0.00/0.00 | 0.02/0.03 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.01/0.02 | 0.00/0.00 | 0.00/0.00 | 0.02/0.02 | 0.00/0.01
prefix#9 | 0.01/0.01 [ 0.01/0.01 { 0.00/0.00 { 0.00/0.00 { 0.00/0.00 { 0.01/0.01 | 0.01/0.02 { 0.00/0.00 | 0.01/0.01 | 0.00/0.00 | 0.00/0.00 [ 0.01/0.02 { 0.00/0.00 [ 0.00/0.00 [ 0.02/0.03 | 0.02/0.05
text 0.05/0.01 | 0.04/0.03 | 0.00/0.00 | 0.02/0.01 | 0.03/0.01 | 0.06/0.05 | 0.12/0.09 | 0.01/0.00 | 0.21/0.11 | 0.00/0.00 | 0.41/0.02 | 0.09/0.01 | 0.00/0.00 | 0.42/0.04 | 0.05/0.03 | 0.35/0.06
self 0.33/0.34 | 0.44/0.39 | 0.81/0.80 | 0.20/0.22 | 0.19/0.18 | 0.09/0.08 | 0.02/0.02 | 0.26/0.22 | 0.00/0.00 | 0.63/0.66 | 0.28/0.50 | 0.11/0.08 | 0.45/0.42 | 0.13/0.33 | 0.09/0.09 | 0.01/0.01
context | 0.50/0.51 | 0.28/0.33 | 0.09/0.10 | 0.69/0.67 | 0.50/0.53 | 0.40/0.48 | 0.50/0.57 | 0.04/0.04 | 0.40/0.49 | 0.26/0.26 | 0.30/0.47 | 0.54/0.63 | 0.39/0.45 | 0.37/0.55 | 0.49/0.53 | 0.38/0.60
others 0.02/0.01 | 0.02/0.02 | 0.03/0.03 | 0.03/0.01 | 0.02/0.01 | 0.06/0.06 | 0.17/0.15 | 0.69/0.73 | 0.19/0.19 | 0.00/0.00 | 0.01/0.00 | 0.10/0.10 | 0.15/0.12 | 0.04/0.05 | 0.12/0.10 | 0.12/0.11

(a) Dev-L1

Dev-LI12 Head 0 Head 1 Head 2 Head 3 Head 4 Head 5 Head 6 Head 7 Head 8 Head 9 Head 10 Head 11 Head 12 Head 13 Head 14 Head 15

prefix#0 | 0.00/0.00 | 0.06/0.07 | 0.04/0.06 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.07/0.10 | 0.00/0.00 | 0.00/0.00 | 0.01/0.06 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00
prefix#1 | 0.00/0.01 | 0.01/0.05 | 0.00/0.00 | 0.03/0.04 | 0.00/0.00 | 0.00/0.00 | 0.10/0.05 | 0.26/0.14 | 0.00/0.01 | 0.00/0.00 | 0.01/0.02 | 0.02/0.01 | 0.00/0.01 | 0.08/0.11 | 0.00/0.00 | 0.00/0.00
prefix#2 | 0.16/0.12 | 0.01/0.02 | 0.01/0.01 | 0.02/0.02 | 0.00/0.00 | 0.00/0.00 | 0.10/0.05 | 0.18/0.21 | 0.01/0.01 | 0.15/0.18 | 0.00/0.00 | 0.04/0.04 | 0.05/0.10 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00
prefix#3 | 0.08/0.03 | 0.00/0.01 [ 0.00/0.01 | 0.00/0.00 | 0.00/0.00 | 0.01/0.00 | 0.04/0.02 | 0.00/0.00 | 0.01/0.01 | 0.07/0.04 | 0.03/0.01 [ 0.03/0.01 | 0.00/0.01 | 0.01/0.01 [ 0.01/0.02 | 0.01/0.05
prefix#4 | 0.07/0.04 | 0.06/0.08 | 0.01/0.01 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.05/0.12 | 0.00/0.00 | 0.00/0.00 | 0.02/0.01 | 0.02/0.01 | 0.14/0.08 | 0.00/0.00 | 0.03/0.02 | 0.01/0.01 | 0.00/0.00
prefix#5 | 0.05/0.05 | 0.06/0.05 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.07/0.03 | 0.05/0.06 | 0.00/0.00 | 0.00/0.01 | 0.00/0.01 | 0.11/0.06 | 0.00/0.00 | 0.00/0.00 | 0.01/0.01 | 0.00/0.00
prefix#6 | 0.01/0.01 | 0.02/0.06 | 0.13/0.09 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.01/0.02 | 0.00/0.00 | 0.00/0.01 | 0.01/0.02 | 0.01/0.02 | 0.01/0.01 | 0.00/0.00 | 0.03/0.02 | 0.00/0.00
prefix#7 | 0.02/0.01 | 0.00/0.00 | 0.01/0.01 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.01/0.00 | 0.02/0.02 | 0.00/0.00 | 0.20/0.19 | 0.01/0.01 | 0.01/0.01 | 0.00/0.00 | 0.00/0.00 | 0.01/0.01 | 0.00/0.00
prefix#8 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.04/0.02 [ 0.00/0.01 | 0.00/0.00 | 0.07/0.09 | 0.00/0.00 | 0.00/0.01
prefix#9 | 0.11/0.12 | 0.01/0.01 | 0.00/0.00 | 0.02/0.03 | 0.00/0.00 | 0.00/0.00 | 0.00/0.01 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.03/0.05 | 0.02/0.01 | 0.03/0.03 | 0.00/0.00 | 0.00/0.00
text 0.03/0.02 | 0.02/0.02 | 0.00/0.00 | 0.00/0.00 | 0.02/0.01 | 0.04/0.02 | 0.11/0.08 | 0.01/0.01 | 0.25/0.05 | 0.00/0.00 | 0.18/0.11 | 0.01/0.01 | 0.00/0.00 | 0.14/0.08 | 0.13/0.07 | 0.71/0.18
self 0.18/0.20 | 0.61/0.44 | 0.33/0.39 | 0.27/0.32 | 0.57/0.49 | 0.25/0.28 | 0.01/0.01 | 0.11/0.09 | 0.00/0.00 | 0.28/0.23 | 0.02/0.01 | 0.07/0.07 | 0.44/0.38 | 0.04/0.03 | 0.15/0.13 | 0.01/0.01
context 0.16/0.25 | 0.10/0.14 | 0.04/0.05 | 0.63/0.58 | 0.36/0.44 | 0.40/0.44 | 0.27/0.39 | 0.06/0.07 | 0.41/0.56 | 0.07/0.06 | 0.51/0.46 | 0.45/0.56 | 0.23/0.23 | 0.46/0.45 | 0.55/0.61 | 0.18/0.44
others 0.10/0.13 ] 0.03/0.05 | 0.41/0.36 | 0.01/0.02 | 0.04/0.06 | 0.29/0.25 | 0.22/0.23 | 0.21/0.29 | 0.31/0.36 | 0.18/0.26 | 0.15/0.24 | 0.07/0.07 | 0.24/0.24 | 0.13/0.18 | 0.10/0.11 | 0.09/0.31

(b) Dev-L12

Dev-L23 | Head 0 Head 1 Head 2 Head 3 Head 4 Head 5 Head 6 Head 7 Head 8 Head 9 Head 10 Head 11 Head 12 Head 13 Head 14 Head 15

prefix#0 | 0.00/0.00 | 0.03/0.01 | 0.00/0.00 | 0.09/0.04 | 0.04/0.02 | 0.09/0.14 | 0.11/0.07 | 0.55/0.06 | 0.01/0.01 | 0.07/0.03 | 0.04/0.01 | 0.00/0.04 | 0.06/0.32 | 0.02/0.00 | 0.00/0.00 | 0.01/0.00
prefix#1 | 0.03/0.03 | 0.02/0.04 | 0.13/0.09 | 0.00/0.00 | 0.01/0.00 | 0.00/0.00 | 0.06/0.03 | 0.00/0.00 | 0.00/0.01 | 0.01/0.00 | 0.01/0.01 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.01/0.00 | 0.04/0.02
prefix#2 | 0.08/0.01 | 0.00/0.20 | 0.00/0.00 | 0.04/0.00 | 0.00/0.00 | 0.00/0.01 | 0.12/0.01 | 0.00/0.00 | 0.00/0.01 | 0.03/0.03 | 0.00/0.00 | 0.00/0.00 | 0.07/0.08 | 0.03/0.00 | 0.00/0.00 | 0.01/0.00
prefix#3 | 0.00/0.00 | 0.00/0.03 | 0.14/0.01 | 0.10/0.00 | 0.01/0.01 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.00/0.04 | 0.05/0.01 | 0.03/0.01 | 0.00/0.00 | 0.00/0.00 | 0.12/0.09 | 0.00/0.00
prefix#4 | 0.02/0.01 | 0.01/0.01 | 0.09/0.16 | 0.10/0.02 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.04/0.05 | 0.00/0.00 | 0.01/0.00 | 0.01/0.45 [ 0.01/0.42 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.05/0.01
prefix#5 | 0.00/0.00 | 0.17/0.04 | 0.01/0.00 | 0.01/0.00 | 0.00/0.00 | 0.00/0.00 | 0.04/0.02 | 0.01/0.04 | 0.00/0.00 | 0.00/0.21 | 0.08/0.24 | 0.02/0.05 | 0.00/0.03 | 0.02/0.01 | 0.01/0.00 | 0.00/0.01
prefix#6 | 0.01/0.00 | 0.03/0.20 | 0.01/0.03 | 0.08/0.01 | 0.00/0.00 | 0.00/0.06 | 0.06/0.23 | 0.00/0.00 | 0.00/0.00 | 0.00/0.01 | 0.01/0.00 | 0.00/0.00 | 0.03/0.02 | 0.01/0.09 | 0.10/0.17 | 0.00/0.00
prefix#7 | 0.01/0.01 | 0.01/0.11 | 0.02/0.00 | 0.00/0.00 | 0.00/0.03 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.00/0.14 | 0.02/0.01 | 0.03/0.00 | 0.01/0.00 | 0.00/0.00 | 0.23/0.01 | 0.00/0.00
prefix#8 | 0.02/0.05 | 0.01/0.01 | 0.06/0.14 | 0.00/0.00 | 0.04/0.02 | 0.00/0.00 | 0.03/0.01 | 0.01/0.01 | 0.01/0.24 | 0.00/0.00 | 0.07/0.02 | 0.12/0.03 | 0.00/0.00 | 0.32/0.06 | 0.07/0.02 | 0.01/0.02
prefix#9 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.01/0.00 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.01/0.07 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.07/0.00 | 0.00/0.00
text 0.01/0.00 | 0.07/0.04 | 0.00/0.00 | 0.01/0.00 | 0.02/0.01 | 0.02/0.01 | 0.05/0.02 | 0.00/0.01 | 0.73/0.06 | 0.00/0.00 | 0.05/0.01 | 0.00/0.00 | 0.00/0.00 | 0.10/0.01 | 0.01/0.00 | 0.10/0.05
self 0.46/0.40 | 0.09/0.04 | 0.41/0.37 | 0.07/0.21 | 0.29/0.24 | 0.03/0.11 | 0.02/0.03 | 0.25/0.57 | 0.01/0.01 | 0.25/0.26 | 0.03/0.00 | 0.04/0.05 | 0.28/0.19 | 0.14/0.11 | 0.10/0.10 | 0.04/0.02
context | 0.28/0.44 | 0.37/0.22 | 0.06/0.07 | 0.21/0.53 | 0.31/0.44 | 0.77/0.60 | 0.36/0.50 | 0.10/0.24 | 0.17/0.61 | 0.29/0.13 | 0.33/0.09 | 0.22/0.23 | 0.15/0.12 | 0.25/0.59 | 0.26/0.56 | 0.46/0.68
others 0.08/0.04 | 0.18/0.05 | 0.08/0.12 | 0.30/0.18 | 0.26/0.21 | 0.07/0.05 | 0.14/0.08 | 0.01/0.01 | 0.06/0.05 | 0.32/0.15 | 0.27/0.07 | 0.52/0.15 | 0.39/0.22 | 0.11/0.13 | 0.03/0.02 | 0.25/0.18

(c) Dev-L23

Train-L23 | Head 0 Head 1 Head 2 Head 3 Head 4 Head 5 Head 6 Head 7 Head 8 Head 9 Head 10 Head 11 Head 12 Head 13 Head 14 Head 15

prefix#0 | 0.00/0.00 | 0.02/0.01 | 0.00/0.00 | 0.08/0.04 | 0.04/0.02 | 0.05/0.12 | 0.13/0.05 | 0.52/0.05 | 0.01/0.01 [ 0.08/0.03 | 0.04/0.01 | 0.00/0.05 | 0.02/0.35 | 0.02/0.00 | 0.00/0.00 | 0.02/0.00
prefix#1 0.05/0.07 | 0.02/0.03 | 0.11/0.09 | 0.00/0.00 | 0.01/0.00 | 0.00/0.00 { 0.03/0.03 | 0.00/0.00 | 0.00/0.00 | 0.01/0.00 | 0.02/0.01 | 0.00/0.00 | 0.01/0.00 | 0.00/0.00 [ 0.02/0.00 | 0.04/0.03
prefix#2 | 0.10/0.01 | 0.00/0.17 | 0.00/0.00 | 0.04/0.00 | 0.00/0.00 | 0.00/0.01 | 0.10/0.01 | 0.00/0.00 | 0.00/0.01 | 0.04/0.03 | 0.00/0.00 | 0.00/0.00 | 0.10/0.11 | 0.02/0.00 | 0.00/0.00 | 0.01/0.00
prefix#3 0.00/0.00 | 0.01/0.03 | 0.18/0.01 | 0.10/0.00 | 0.00/0.01 | 0.00/0.00 { 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.01/0.03 | 0.05/0.01 | 0.02/0.01 | 0.00/0.00 | 0.00/0.00 | 0.11/0.09 | 0.00/0.00
prefix#4 | 0.02/0.01 { 0.01/0.01 | 0.08/0.21 | 0.11/0.02 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.05/0.06 | 0.00/0.00 { 0.01/0.00 | 0.01/0.45 | 0.00/0.49 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.06/0.01
prefix#5 0.00/0.00 | 0.13/0.04 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.03/0.01 | 0.02/0.04 | 0.00/0.00 | 0.00/0.21 | 0.08/0.25 | 0.01/0.03 | 0.00/0.02 | 0.03/0.01 | 0.01/0.00 | 0.00/0.01
prefix#6 | 0.01/0.00 | 0.02/0.20 | 0.01/0.03 | 0.12/0.01 | 0.00/0.00 | 0.00/0.06 | 0.03/0.21 | 0.00/0.00 | 0.01/0.01 | 0.00/0.01 | 0.01/0.00 | 0.00/0.00 | 0.05/0.03 | 0.01/0.08 | 0.05/0.14 | 0.00/0.00
prefix#7 | 0.00/0.01 { 0.01/0.16 | 0.01/0.00 | 0.00/0.00 | 0.00/0.05 | 0.00/0.00 | 0.00/0.00 | 0.01/0.00 | 0.00/0.00 [ 0.00/0.17 | 0.02/0.01 | 0.04/0.00 | 0.01/0.00 | 0.00/0.00 | 0.22/0.01 | 0.00/0.00
prefix#8 | 0.03/0.05 | 0.01/0.00 | 0.03/0.11 | 0.00/0.00 | 0.05/0.02 | 0.01/0.01 | 0.02/0.02 | 0.01/0.01 | 0.00/0.24 | 0.00/0.00 | 0.07/0.02 | 0.12/0.02 | 0.00/0.00 | 0.33/0.07 | 0.09/0.03 | 0.01/0.02
prefix#9 | 0.00/0.00 { 0.01/0.01 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.01/0.01 | 0.00/0.00 | 0.00/0.00 { 0.00/0.00 | 0.00/0.07 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.06/0.00 | 0.01/0.01

text 0.01/0.00 | 0.07/0.04 | 0.00/0.00 | 0.01/0.00 | 0.03/0.01 | 0.02/0.01 | 0.06/0.02 | 0.00/0.01 | 0.75/0.05 | 0.00/0.00 | 0.05/0.01 | 0.00/0.00 | 0.00/0.00 | 0.10/0.01 | 0.01/0.00 | 0.10/0.04
self 0.44/0.39 | 0.09/0.04 | 0.44/0.35 | 0.06/0.20 | 0.30/0.23 | 0.03/0.12 { 0.02/0.03 | 0.24/0.58 | 0.01/0.01 | 0.21/0.24 | 0.03/0.00 | 0.04/0.05 | 0.30/0.19 | 0.13/0.10 | 0.11/0.11 | 0.05/0.02
context 0.27/0.42 1 0.41/0.22 | 0.06/0.07 | 0.18/0.54 | 0.32/0.45 | 0.81/0.61 { 0.39/0.53 | 0.12/0.24 | 0.15/0.62 | 0.28/0.12 | 0.34/0.10 | 0.25/0.20 | 0.12/0.10 | 0.26/0.59 | 0.28/0.58 | 0.45/0.69
others 0.07/0.03 ] 0.19/0.05 | 0.07/0.12 | 0.29/0.17 | 0.24/0.20 | 0.07/0.06 | 0.15/0.08 | 0.01/0.01 | 0.06/0.05 | 0.35/0.16 | 0.27/0.06 | 0.51/0.13 | 0.38/0.20 | 0.10/0.12 [ 0.03/0.03 | 0.25/0.17

(d) Training-L23

Table 13: Encoder attention weights to each sections from all relevant / non-relevant nodes on each head. Values in
red are high for relevant nodes, and in blue are high for non-relevant nodes. (The criteria is based on heuristics:
x/y —y/x + x — y > 2.0) Supplementary for Table 6. The trend is almost the same between training and dev set.
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Corruption part Low layers | High layers | All layers
Prefix 0.9802 0.9226 0.8499
Text 0.9862 0.9331 0.8594
Self-node 0.9625 0.8054 0.6572
Struct 0.9526 0.7498 0.5507
Text+struct 0.9478 0.6707 0.4909
StructContext 0.9876 0.9473 0.9195
Text+StructContext 0.9821 0.8757 0.6738
All 0.9376 0.5974 0.4509
(a) Columns
Corruption part Low layers | High layers | All layers
Prefix 0.9796 0.8033 0.5895
Text 0.9913 0.9775 0.9551
Self-node 0.9862 0.8126 0.4924
Struct 0.9631 0.7350 0.3310
Text+struct 0.9545 0.6817 0.2948
StructContext 0.9844 0.9384 0.7964
Text+StructContext 0.9799 0.8890 0.5685
All 0.8988 0.4484 0.2337
(b) Tables
Corruption part Low layers | High layers | All layers
Prefix 0.9923 0.9541 0.9259
Text 0.9942 0.9856 0.9746
Self-node 0.9917 0.9833 0.9519
Struct 0.9874 0.9468 0.9137
Text+struct 0.9869 0.9405 0.9117
StructContext 0.9924 0.9501 0.9384
Text+StructContext 0.9911 0.9436 0.9275
All 0.9751 0.9278 0.9078

Table 14: Attention corruption study on attentions from
node-of-interest to each section, the results for all node

types.

(c) Table aliases
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Corruption part Weights Logits

Low window High window All layers | Low layers High layers All layers
T—S 0.9908 0.9787 0.9671 0.9836 0.9622 0.9543
S—=T 0.9929 0.9647 0.9071 0.9847 0.8381 0.6879
T+ S 0.9889 0.9413 0.8416 0.9762 0.7769 0.6138
T—P 0.9805 0.9460 0.8856 0.9694 0.9251 0.8703
S—P 0.9782 0.9268 0.8459 0.9680 0.8821 0.8317
TS — P 0.9707 0.7953 0.5793 0.9524 0.7073 0.5778
T—-T 0.9882 0.9491 0.8048 0.9578 0.9028 0.7631
S—=S 0.9574 0.6447 0.5213 0.6859 0.5708 0.4601
all 0.8502 0.3578 0.2101 0.5213 0.2521 0.1502

(a) Columns

Corruption part Weights Logits

Low window High window All layers | Low layers High layers All layers
T7—S 0.9908 0.9784 0.9737 0.9888 0.9774 0.9732
S—=T 0.9906 0.9755 0.9319 0.9829 0.8792 0.6925
T+ S 0.9868 0.9654 0.9106 0.9777 0.8498 0.6302
T—P 0.9887 0.9792 0.9471 0.9867 0.9718 0.9469
S—P 0.9695 0.7746 0.6130 0.9642 0.7444 0.6515
TS — P 0.9625 0.7064 0.4773 0.9547 0.6173 0.4781
T—T 0.9864 0.9833 0.9441 0.9732 0.9802 0.9304
S—=S 0.9350 0.6739 0.3604 0.5448 0.5519 0.3727
all 0.8045 0.3939 0.1594 0.4762 0.2360 0.1012

(b) Tables

Corruption part Weights Logits

Low window High window All layers | Low layers High layers All layers
T—S 0.9971 0.9953 0.9933 0.9965 0.9943 0.9919
S—=T 0.9980 0.9949 0.9926 0.9977 0.9918 0.9845
T+ S 0.9965 0.9920 0.9878 0.9958 0.9895 0.9788
T—P 0.9945 0.9739 0.9585 0.9947 0.9695 0.9549
S—P 0.9962 0.9853 0.9829 0.9961 0.9857 0.9830
TS - P 0.9921 0.9459 0.8976 0.9924 0.9401 0.9022
T—T 0.9903 0.9830 0.9432 0.9872 0.9753 0.9268
S—=S 0.9834 0.9769 0.9320 0.9674 0.9727 0.9582
all 0.9257 0.8382 0.7269 0.8961 0.7883 0.7338

(c) Syntax tokens

Table 15: Attention corruption study on encoder self-attentions across input sections. For corruption part, "T" means
text, "S" for structure, "P" for prefix; "I' — S" means corrupting the attention weights from text to structure tokens,
i.e. text tokens as ¢ and structure tokens as k. On top, "Weights" and "Logits" represent the attention corruption
scheme. Supplementary for Table 3.
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Corruption part Weights Logits

Low layers High layers All layers | Low layers High layers All layers
Text 0.9588 0.9815 0.9063 0.9565 0.9835 0.9132
Struct 0.8746 0.3577 0.3239 0.8067 0.5050 0.4333
Prefix 0.9260 0.9806 09114 0.9199 0.9746 0.9025
Struct ctx. 0.9420 0.9867 0.9429 0.9551 0.9981 0.9876
Self-node 0.9505 0.3911 0.3840 0.9320 0.5857 0.5382
All 0.5805 0.1613 0.1316 0.3284 0.1017 0.0597

(a) Column

Corruption part Weights Logits

Low layers High layers All layers | Low layers High layers All layers
Text 0.9895 0.9905 0.9840 0.9907 0.9909 0.9868
Struct 0.7901 0.0539 0.0672 0.7465 0.3822 0.3137
Prefix 0.9273 0.9900 0.9115 0.8963 0.9878 0.8784
Struct ctx. 0.9140 0.9940 0.9824 0.9236 0.9997 0.9954
Self-node 0.9100 0.1794 0.1738 0.9075 0.4587 0.4272
All 0.5965 0.0328 0.0341 0.4779 0.0985 0.0706

(b) Table

Corruption part Weights Logits

Low layers High layers All layers | Low layers High layers All layers
Text 0.9820 0.9377 0.8517 0.9770 0.9103 0.8305
Struct 0.9568 0.9970 0.9543 0.9317 0.9963 0.9326
Prefix 0.9608 0.9486 0.8332 0.9545 0.8971 0.7676
All 0.7780 0.8878 0.4590 0.6694 0.8221 0.3725

(c) Syntax tokens

Table 16: Attention corruption study on decoder cross-attentions to each input section. Supplementary for Table 4.

Text match Exact (791) Partial (443) No match (202)
Low layers High layers All layers | Low layers High layers All layers | Low layers High layers All layers

T— S 0.9942 0.9868 0.9784 0.9820 0.9699 0.9433 0.9882 0.9654 0.9555
S—T 0.9977 0.9838 0.9461 0.9954 0.9525 0.8613 0.9806 0.9289 0.8456
T+ S 0.9954 0.9640 0.8725 0.9839 0.9239 0.8003 0.9773 0.8993 0.7890
T—P 0.9915 0.9601 0.9269 0.9811 0.9346 0.8350 0.9552 0.9183 0.8206
S—P 0.9895 0.9599 0.9307 0.9568 0.9437 0.8441 0.9660 0.8388 0.6529
all 0.9148 0.4417 0.2527 0.7743 0.3159 0.2053 0.7489 0.1492 0.0524

Table 17: Attention corruption study on encoder self-attentions across input sections (for column prediction).
Comparison of results between target columns with different text-matching situations.

Text match Exact (791) Partial (443) No-match (202)
Low layers High layers All layers | Low layers High layers All layers | Low layers High layers All layers

Text 0.9558 0.9845 0.9006 0.9578 0.9817 0.8859 0.9645 0.9759 0.9252
Struct 0.9740 0.5157 0.4410 0.7737 0.1094 0.1353 0.7410 0.1828 0.1946
Prefix 0.9809 0.9896 0.9641 0.9415 0.9744 0.9325 0.8188 0.9670 0.8052
StructCtx. 0.9739 0.9924 0.9610 0.9468 0.9572 0.8852 0.8813 0.9901 0.9369
Self-node 0.9926 0.5288 0.5167 0.8994 0.2956 0.2533 0.8979 0.1813 0.1999
all 0.7176 0.2169 0.1877 0.4343 0.0809 0.0672 0.3974 0.0915 0.0530

Table 18: Attention corruption study on decoder cross-attentions to each input section (for column prediction).
Comparison of results between target columns with different text-matching situations.
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Syntax-tok | t s | s>t | t<s |t—=p | s—=p|ts—=p| t—=t | s—s All Eff_cnt | All_cnt | Eff_rate
1= 0.9984 | 0.9995 | 0.9825 | 0.8485 | 0.9998 | 0.9070 | 0.3025 | 0.9193 | 0.0284 20 20 1.0000
( 0.9999 | 0.9794 | 0.9946 | 0.9719 | 0.9795 | 0.9685 | 0.8983 | 0.9467 | 0.1856 98 675 0.1452
) 0.9257 | 0.9926 | 0.9716 | 0.9914 | 0.9074 | 0.8420 | 0.9244 | 0.4715 | 0.1108 13 23 0.5652
* 1.0000 | 0.9999 | 1.0000 | 0.9997 | 0.9999 | 0.9998 | 0.9999 | 0.9982 | 0.1802 10 381 0.0262
= 0.9784 | 0.9923 | 0.9786 | 0.9378 | 0.8940 | 0.7439 | 0.9466 | 0.5933 | 0.1149 128 968 0.1322
> 1.0000 | 1.0000 | 1.0000 | 0.9509 | 0.9990 | 0.9652 | 0.8193 | 0.9845 | 0.0219 68 101 0.6733
>= 1.0000 | 1.0000 | 1.0000 | 0.9151 | 1.0000 | 0.9048 | 0.2593 | 0.9964 | 0.1703 11 30 0.3667
and 0.7931 | 0.8981 | 0.6727 | 0.4962 | 0.8409 | 0.3468 | 0.3603 | 0.6749 | 0.0554 29 39 0.7436
as 0.9212 | 0.8936 | 0.8349 | 0.7992 | 0.5034 | 0.3457 | 0.8478 | 0.3288 | 0.1002 52 952 0.0546
asc 0.9723 | 0.9096 | 0.9437 | 0.4939 | 0.8596 | 0.3612 | 0.6133 | 0.6725 | 0.0408 19 19 1.0000
avg 0.9996 | 0.9940 | 0.9972 | 0.7660 | 0.9996 | 0.3619 | 0.7743 | 0.9513 | 0.0360 63 65 0.9692
between 0.9999 | 0.9999 | 1.0000 | 0.7788 | 0.9999 | 0.3407 | 0.0009 | 0.9999 | 0.0000 6 6 1.0000
count 0.9911 | 0.9977 | 0.9960 | 0.9641 | 0.9850 | 0.7469 | 0.8609 | 0.8691 | 0.0220 294 406 0.7241
desc 0.9939 | 0.9992 | 0.9942 | 0.9198 | 0.9191 | 0.7296 | 0.9044 | 0.6997 | 0.1144 82 164 0.5000
distinct 0.8663 | 0.8651 | 0.8284 | 0.6270 | 0.9118 | 0.4787 | 0.6194 | 0.7636 | 0.0014 26 26 1.0000
except 0.9517 | 0.9847 | 0.9415 | 0.6213 | 0.9311 | 0.0783 | 0.4062 | 0.7137 | 0.0002 21 21 1.0000
from 0.9924 | 0.9703 | 0.9671 | 0.9781 | 0.9519 | 0.6276 | 0.8407 | 0.5194 | 0.1384 263 1196 0.2199
group 0.9895 | 0.9925 | 0.9771 | 0.8332 | 0.9838 | 0.5694 | 0.9167 | 0.7823 | 0.0282 241 265 0.9094
having 0.9978 | 0.9924 | 0.9894 | 0.5962 | 0.9993 | 0.3893 | 0.8985 | 0.9348 | 0.0262 77 81 0.9506
in 0.9973 | 0.9995 | 0.9992 | 0.9995 | 0.9253 | 0.5859 | 0.7717 | 0.3267 | 0.1096 8 50 0.1600
intersect 0.9649 | 0.9938 | 0.9522 | 0.2385 | 0.9592 | 0.0575 | 0.4348 | 0.8243 | 0.0001 34 34 1.0000
join 0.9099 | 0.6489 | 0.4976 | 0.7286 | 0.3030 | 0.1984 | 0.7286 | 0.1891 | 0.0158 44 496 0.0887
like 1.0000 | 1.0000 | 1.0000 | 0.9997 | 0.9997 | 0.8233 | 0.2700 | 0.8809 | 0.0062 12 12 1.0000
limit 0.9932 | 0.9854 | 0.9684 | 0.8400 | 0.9992 | 0.7895 | 0.8076 | 0.7534 | 0.1531 26 177 0.1469
max 0.8483 | 0.9925 | 0.9741 | 0.8141 | 0.9458 | 0.4659 | 0.5214 | 0.9008 | 0.0633 29 30 0.9667
min 0.9962 | 1.0000 | 1.0000 | 0.9906 | 0.9993 | 0.9377 | 0.7412 | 0.9999 | 0.0450 14 18 0.7778
not 0.9884 | 0.9515 | 0.9360 | 0.9510 | 0.9067 | 0.6624 | 0.8928 | 0.7208 | 0.0117 45 46 0.9783
or 0.9788 | 0.9728 | 0.9582 | 0.7773 | 0.9856 | 0.9181 | 0.4193 | 0.9718 | 0.0311 34 34 1.0000
order 0.9964 | 0.9891 | 0.9826 | 0.7079 | 0.9802 | 0.4836 | 0.8542 | 0.8393 | 0.0680 197 221 0.8914
sum 0.9054 | 0.9988 | 0.8969 | 0.8431 | 0.9998 | 0.6812 | 0.4672 | 0.9511 | 0.0119 20 22 0.9091
union 0.9990 | 0.8977 | 0.8037 | 0.2034 | 0.7390 | 0.3218 | 0.0174 | 0.7111 | 0.0001 6 6 1.0000
where 0.9820 | 0.9900 | 0.9702 | 0.9035 | 0.9576 | 0.7533 | 0.8924 | 0.7699 | 0.0858 350 516 0.6783

Table 19: The accuracy of each syntax token when corrupting encoder self-attention. This table shows the detailed
effect of such corruptions. Eff_rate means for all occasions with this token as ground truth, the percentage of
predictions being affected (became wrong) by the corruption.
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. Weights Logits
Layer | Section Exact  Exec Exact  Exec
Low | S—T | 0.6683 0.6789 | 0.6538 0.6654
Low | T — S| 06586 0.6779 | 0.6518 0.6721
Low | T+ S| 0.6538 0.6712 | 0.6422 0.6634
Mid | S—T | 0.6180 0.6344 | 0.5019 0.5184
Mid | T — S | 0.6470 0.6692 | 0.6451 0.6586
Mid | T« S | 0.5957 0.6141 | 0.4294 0.4468
High | S — T | 0.5938 0.6141 | 0.4072 0.4362
High | T'— S | 0.6248 0.6431 | 0.6151 0.6412
High | T+ S | 0.5242 0.5387 | 0.3250 0.3559
all S —T | 05145 0.5387 | 0.2234 0.2369
all T— S |05938 0.6190 | 0.5783 0.6103
all T+ S |03926 04236 | 0.1509 0.1712
[ (clean) | (clean) [ 0.6692 0.6809 [ 0.6692 0.6809
(a) Encoder self-attention
. Weights Logits
Layer | Section Exact  Exec Exact  Exec
Low Text | 0.5135 0.5406 | 0.4400 0.4700
Low Struct | 0.3327 0.3472 | 0.2592 0.2679
Mid Text | 0.2737 0.2950 | 0.1818 0.2002
Mid Struct | 0.3762 0.3801 | 0.2147 0.2128
High Text | 0.4836 0.4255 | 0.3994 0.3627
High Struct | 0.0068 0.0068 | 0.1015 0.1044
all Text | 0.0996 0.1015 | 0.0706 0.0812
all Struct | 0.0010 0.0010 | 0.0648 0.0638
[ (clean) | (clean) [ 0.6692 0.6809 [ 0.6692 0.6809
(b) Decoder cross-attention
Layer Exact Exec
Low 0.0416 0.0329
Mid 0.0696 0.0841
High 0.2089 0.2157
all 0.0000 0.0000

(c) Decoder self-attention. Only experimented with blocking
all tokens and using "weights" corruption type, essentially

zeroing out the self-attention output vector.

Table 20: End-to-end SQL performance with different
attention corruption settings. Supplementary for Ta-

ble 8.
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Error class

Definition

S-class: Clause-level Semantics Errors

SO missing / wrong aggregator
S1 missing / wrong condition clause or ordering
S2 missing / wrong literal value
N-class: Node (column / table name) Errors
NO invalid (hallucinated) node name, either token or natural language phrases
N1 using **’ for an actual column
N2 valid but wrong node name (not including ’*”)
J-class: Join-chain Errors
JO extra join, but still correct
1 missing alias reference, may cause ambiguous-column error depending on the schema
A-class: Low-level Syntax Errors

A0 Unpaired brackets / quotes
Al Misspelled keyword
A2 Non-ending token

B-class: Clause-level Syntax Errors
BO Missing / extra / misplaced / partial clauses (causing syntax error)
B2 Alias error (t1 -> tl.col, t1 -> t1st, errors like this)
B3 Missing / extra operator (causing syntax error)

C-class: Other High-level Semantics Errors
CO0 Natural language expression of SQL, or unquoted string values
C3 (Not really an error) - equivalent or alternative correct answer
Table 21: Decoder cross-attention corruption error analysis: detailed categories and descriptions.
S J N A B
Category
SO | S1|S2|JO|J1 | NO|NI|N2|AO| A1 | A2 |BO0O|B2 | B3| C0|C3
all-text 31121 | 1 0 1 0 6 2 0 0 0 0 0 0 0 1
all-struct | O 0 0 0] 046 O 1 1 1 1 6 1 2 1 0
Table 22: Decoder cross-attention corruption error analysis: detailed break down.
Error class | Definition
A-class: Low-level Syntax Errors

A0 Unpaired brackets / quotes
Al Misspelled keyword (some keywords like ‘avg’, ‘distinct’ could be tokenized)
A2 Non-ending token

B-class: Clause-level Syntax Errors
BO Missing / extra / misplaced clauses (causing syntax error)
B2 Alias error (t1 -> tl.col, t1 -> tlst, errors like these)
B3 Missing / extra operator

C-class: High-level Semantics Errors
CO Natural language expression of SQL, or unquoted string values
Cl Wrong node name with similar surface form
C2 Valid SQL but wrong semantics from user query
C3 (Not really an error) - equivalent or alternative correct answer

Table 23: Decoder self-attention corruption error analysis: detailed categories and descriptions.
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Category A B

A0 | A1 | A2 B0 |B1 B2 B3 |C0|C1|C2]|C3
low 31119 5 |10 ] 1 4 0 0 0 1 0
mid 27 | 0 0 |16 ]| O 0 3 1 0 1 2
high 0 0 O |14 ] 0 1 9 | 21| 4 1 2

Table 24: Decoder self-attention corruption error analysis: detailed break down.

156




