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Abstract

Large language models (LLMs) have revolu-001
tionized the landscape of Natural Language002
Processing, but are computationally expensive.003
To reduce the cost without sacrificing perfor-004
mance, previous studies have explored various005
approaches to harness the potential of Small006
Language Models (SLMs) as cost-effective al-007
ternatives to their larger counterparts. Driven008
by findings that SLMs and LLMs exhibit com-009
plementary strengths in a structured knowl-010
edge extraction task, this work presents a novel011
SLM/LLM routing framework designed to im-012
prove computational efficiency and enhance013
task performance. In dialogue state track-014
ing tasks, the proposed routing framework en-015
hances performance substantially compared to016
relying solely on LLMs, while reducing the017
computational costs by over 50%.018

1 Introduction019

Large Language Models (LLMs) have become ver-020

satile tools capable of tackling a wide range of021

tasks with only a few training examples. How-022

ever, their expanding sizes have brought escalating023

computational demands. In contrast, more effi-024

cient Small Language Models (SLMs) often re-025

quire a substantial amount of fine-tuning data to026

become truly effective. This work addresses scenar-027

ios where only limited task-specific data is avail-028

able, making fine-tuned SLMs less dependable.029

Our objective is to develop a routing framework030

that orchestrates SLMs and LLMs, enhancing task031

performance while reducing computational costs.032

Task-oriented dialogue is crucial for efficient033

human-computer interaction, enabling systems to034

understand and assist with specific tasks like book-035

ing flights or scheduling meetings. Task-oriented036

dialogues involving structured data typically rely037

on Dialogue State Tracking (DST), where user in- 038

tent is extracted from the dialogue history between 039

a user and the agent in the form of slot values asso- 040

ciated with a predefined schema. Fine-tuned SLMs 041

have been used in DST for a few years, includ- 042

ing both autoregressive LMs (Ham et al., 2020; 043

Hosseini-Asl et al., 2020; Peng et al., 2020) and 044

sequence-to-sequence LMs (Lee et al., 2021; Su 045

et al., 2022; Bang et al., 2023; Imrattanatrai and 046

Fukuda, 2023; Wang et al., 2023). LLMs have been 047

used for few-shot in-context learning in DST (Xie 048

et al., 2022; Hudeček and Dušek, 2023; Hu et al., 049

2022; King and Flanigan, 2023a) where LLMs are 050

prompted with human-authored task descriptions 051

or in-context exemplars. In our work, we seek to 052

take advantage of the effectiveness of LLMs with a 053

small amount of training data but reduce the cost. 054

Strategies that leverage both SLMs and LLMs 055

have been developed to mitigate the computational 056

demands of LLMs. Cascade-based approaches di- 057

rect a query to an LLM when it cannot be resolved 058

by an SLM (Chen et al., 2023; Madaan et al., 2023). 059

These approaches introduce latency and computa- 060

tional redundancy since they consistently query 061

SLMs. Other approaches use binary classifiers to 062

predict the most appropriate LM to utilize (Kag 063

et al., 2022; Šakota et al., 2023). A limitation of 064

the classifier-based approaches is the necessity for 065

retraining when introducing new models. 066

In this work, we propose a dynamic rout- 067

ing framework, OrchestraLLM (illustrated in Fig- 068

ure 1), that leverages small (fine-tuned) and large 069

LM experts. Hypothesizing that examples with 070

similar semantic embeddings are of the same diffi- 071

culty level, we select an appropriate expert based 072

on embedding distances between the testing in- 073

stance and instances in expert pools. The expert 074

pools contain examples representing the types of 075
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dialogue contexts where the different LMs provide076

more reliable answers. After retrieving the top k077

nearest examples, an expert is selected based on the078

majority vote. Unlike cascade-based and classifier-079

based approaches, the proposed framework elim-080

inates the need for router training, though hand-081

labeled data is needed for creating the expert pools.082

In addition, the retriever can be fine-tuned with083

target task labels or expert information to achieve084

more efficient and accurate routing.085

In summary, the key contribution of this work086

is the introduction of a novel switching model087

designed to reduce the computational costs asso-088

ciated with LLMs while simultaneously enhanc-089

ing performance. Experimental results on two090

different multi-domain DST benchmarks (Multi-091

WOZ (Budzianowski et al., 2018; Ye et al., 2022)092

and SGD (Rastogi et al., 2020)) demonstrate that093

OrchestraLLM capitalizes on the proficiencies of094

different experts, outperforming LLM systems095

while also achieving a substantial reduction of over096

50% in computational costs.097

2 Dialogue State Tracking098

In this work, we focus on combining general-099

purpose LLMs and task-specific SLMs to achieve100

better efficiency for dialogue state tracking (DST).101

In the following, we first provide the necessary task102

setups and then detail the two representative DST103

models using LLMs and SLMs respectively.104

A task-oriented dialogue (TOD) consists of a105

sequence of exchanges between two parties, each106

of which is initialized by the user and followed107

by a response from the system. Here, we denote108

each exchange as a turn leading to a sequence,109

U1, A1, ..., UT , AT , where Ut and At represent the110

user utterance and the system response, respec-111

tively. For the t-th turn, the user provides a new112

utterance Ut, and the system agent responds with113

utterance At. At turn t, the corresponding dialogue114

context is Ct = {U1, A1, . . . , At−1, Ut}, which115

excludes the latest system response At. The goal116

of DST is to extract task-relevant information as117

structured representations (dialogue states) from118

user-system utterances so that the user requests119

can be fulfilled accordingly. To facilitate this, there120

is typically a task-specific schema provided. In a121

multi-domain scenario considered in this paper, the122

schema contains M domains D = {d1, . . . , dM}123

and N slots S = {s1, . . . , sN} to track. DSTt, 124

the dialogue state at turn t, defines the current map- 125

pings from pairs of (dm, sn) into a value v based 126

on dialogue context Ct. Specifically, 127

DSTt = {(dm, sn, v
t
mn)|vtij ̸= null}, 128

only containing the non-null slots accumulated so 129

far. Instead of directly predicting the entire dia- 130

logue state from scratch, we build dialogue state 131

predictions based on the turn-level belief (TLB) as 132

done by Hu et al. (2022), which allows a more flex- 133

ible combination of LLMs and SLMs. At turn t, 134

the DST model only predicts TLBt, where new ex- 135

pressed slots or slots with updated values are used 136

to get the latest DSTt via aggregating all previous 137

TLBs.1 138

In the literature, task-specific SLM-based DST 139

models are typically fine-tuned with full-parameter 140

updates while DST models using LLMs are real- 141

ized via few-shot in-context learning. We discuss 142

the two different DST models considered below. 143

LLM DST. IC-DST (Hu et al., 2022) is an in- 144

context learning (ICL) framework that enables few- 145

shot DST with LLMs. The prediction is the change 146

in each turn pair instead of the accumulated dia- 147

logue states. To obtain the accumulated dialogue 148

states, the turn changes are aggregated across turns. 149

Dialogue states of previous turns are used as a sum- 150

mary of the context history and it allows to fit in 151

more exemplars which is crucial for ICL perfor- 152

mance. Concretely, given the schema table, K in- 153

context exemplars, dialogue states of the previous 154

turn, and the input instance (most recent agent-user 155

utterance pair), the LLM outputs 156

TLBt = LLM(T,E1:K , DSTt−1, At−1, Ut) (1) 157

where T is the schema table for all domains, Ek are 158

examples of pairs of turn changes and associated 159

outputs. 160

SLM DST. Here, we develop a prompt-based 161

DST model (denoted as Prompt-DST) with SLM 162

(T5 (Raffel et al., 2020)). The input of Prompt-DST 163

is similar to IC-DST, except that the in-context 164

exemplars are excluded. Specifically, given the 165

1We replace previous values with updated ones for slots
present in prior TLBs.
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schema prompt-augmented input, the model out-166

puts167

TLBt = SLM(T,DSTt−1, At−1, Ut). (2)168

Here, the model is trained using the learning ob-169

jective by maximizing the log-likelihood of slot170

values vt(dm, sn) for the current TLB, i.e.,171

max logP (TLBt|T,DSTt−1, At−1, Ut). (3)172

During inference, a greedy decoding procedure is173

directly applied, i.e., only the most likely token in174

the given model vocabulary is predicted at each175

decoding step.176

3 Routing Approach177

Here, we present our approach for routing with178

OrchestraLLM applied to the DST task. The over-179

all framework is illustrated in Figure 1. We denote180

different DST models as experts. Given a new181

input instance (the triplet (DSTt−1, At−1, Ut)),182

OrchestraLLM first computes its semantic embed-183

ding, compares it with exemplar embeddings of184

triplets from each expert pool using a cosine dis-185

tance, and retrieves the top-K exemplars. The186

router assigns the input to an expert based on ma-187

jority vote. While our approach draws inspiration188

from the work of Jang et al. (2023), it is impor-189

tant to note that their approach primarily focuses190

on optimizing task performance in zero-shot task191

transfer scenarios, whereas our emphasis lies in192

improving computational efficiency within the few-193

shot learning settings.194

3.1 Expert Pool Construction195

For each dialogue in a small held-out set, the SLM196

and LLM experts are used to predict the TLB at197

each user turn (TLBt) individually. If both experts198

correctly predict the TLB, the instance triplet is199

included in the SLM pool. When only one expert200

correctly predicts the TLB, the instance is assigned201

to that expert’s pool. Instances that are not cor-202

rectly predicted are not used in either pool.203

3.2 Triplet Representation Learning204

Similar to recent work on dense retrieval205

(Karpukhin et al., 2020), the retriever uses a bi-206

encoder architecture, which encodes dialogues207

with labels and predictions into embedding space.208

Throughout the work, SenBERT (Reimers and 209

Gurevych, 2019) is used as the backbone embed- 210

ding model. The bi-encoder is fine-tuned using 211

a small set of dialogues, the same as that used to 212

construct the expert pools. We use a contrastive 213

loss such that the similarity between a positive ex- 214

ample pair is high and the similarity between a 215

negative example pair is low. Three different meth- 216

ods for constructing positive and negative pairs 217

are explored: task-aware, expert-aware, and their 218

combination. 219

Task-Aware Supervision identifies positive and 220

negative instance pairs for training by first comput- 221

ing pairwise similarity for each sample in the hold- 222

out set. Then, the l highest and lowest scoring pairs 223

are used as positive and negative examples, respec- 224

tively. The similarity function leverages the gold 225

annotations of the hold-out set dialogues. Given 226

two instances, a and b, the similarity is a weighted 227

combination of the slot-value similarity of the pre- 228

vious state (DST) and the current TLB: 229

1

2
SimDST + SimTLB . 230

Let TLBx = {(sx1 , vx1 ), · · · , (sxm, vxm)} be the 231

TLB of instance x. Following Hu et al. (2022), 232

the slot-value pair similarity is 233

Fslot-value = F ({(sa1, va1), · · · , (sam, vam)}, 234

{(sb1, vb1), · · · , (sbn, vbn)}). 235

and the slot similarity is 236

Fslot = F ({sa1, · · · , sam}, {sb1, · · · , sbn}). 237

where F is the standard definition of F1 score i.e., 238

F = 2PR
P+R , in which P is precision, and R is recall. 239

The similarity score between TLBa and TLBb is 240

Sim(TLBa , TLBb) = Fslot-value + Fslot − 1 241

The context history similarity SimDST is defined 242

in the same way. 243

Expert-Aware Supervision first groups in- 244

stances in the hold-out set according to which ex- 245

pert gave the most accurate prediction. (For ties, 246

the SLM is chosen.) We then compute pairwise 247

triplet similarities using an off-the-shelf embedder 248

(e.g., SenBERT). The l highest scoring pairs with 249

the same expert label are positive examples, and 250
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Figure 1: Illustration of OrchestraLLM. LMs are orchestrated by a retrieval-based dynamic router. During inference,
the testing instance queries the expert pools to retrieve top k similar examples. Subsequently, a LM expert is
selected based on the majority vote.

Dataset MultiWOZ SGD

# Domains 8 41
# Dialogues 8438 16142
# Total Turns 113556 329964
Avg. Turns per Dial. 13.46 20.44
Avg. Toks per Turn 13.13 9.75
# Slots 24 214
# Slot Values 4510 14139

Table 1: Experiment data summary. The numbers are
computed on training splits of the datasets.

the l lowest scoring pairs with different expert label251

are negative examples.252

Task+Expert-Aware Supervision simply pools253

both sets of positive and negative pairs.254

Note that task-aware supervision is agnostic to255

what experts are used in routing, so the embed-256

ding model need not be retrained as experts are257

added or updated. Expert-aware supervision will258

require updating the embedding model if the ex-259

perts change. In all cases, the expert pools will260

need to be updated with changes to the experts.261

4 Experiments262

4.1 Datasets263

We use two datasets detailed below for experiments.264

A summary of DST datasets is reported in Table 1.265

266

MultiWOZ (Budzianowski et al., 2018) is a multi-267

domain task-oriented dialogue dataset that contains268

over 10K human-human written dialogues across269

8 domains and has been one of the most popular 270

benchmarks in the DST literature. After the publi- 271

cation of Budzianowski et al. (2018), many works 272

improve the label qualities, e.g., MultiWOZ 2.1 273

(Eric et al., 2020) and MultiWOZ 2.4 (Ye et al., 274

2021). We experiment using the most recent ver- 275

sion, MultiWOZ 2.4. 276

SGD (Rastogi et al., 2020) is a task-oriented dia- 277

logue dataset that contains over 16k multi-domain 278

conversations spanning 41 domains, featuring out- 279

of-domain evaluation. 15 out of 21 domains in the 280

test set are not present in the training set and 77% 281

of the dialogue turns in the test set contain at least 282

one domain not present in the training set. 283

4.2 Experimental Setting 284

In this work, we consider a few-shot set up for 285

DST. Following the multi-domain experiment set- 286

ting from Wu et al. (2020), we randomly sample 287

5% of training data from MultiWOZ and SGD re- 288

spectively for training the expert models. 289

Model and Hyperparameter Setting. For 290

Prompt-DST, we use T5-base and T5-large as the 291

backbone model for MWOZ and SGD respectively, 292

as the latter is more complex in terms of schema 293

and more dialogue turns. For IC-DST, we use Chat- 294

GPT as the backbone model2 with 10 in-context 295

exemplars. We initialize the routing retriever from 296

2Accessed: August–October 2023, Version: gpt-3.5-turbo-
0301.
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SenBERT (all-mpnet-base-v2). We run inference297

on 100 dialogues randomly sampled from valida-298

tion sets of MWOZ and SGD as the held-out sets.299

The same 100 dialogues are used to train the re-300

triever. For all experiments, l = 25 is used for301

the positive and negative examples for contrastive302

learning. During inference, we randomly sample303

100 turns from the held-out sets to serve as SLM304

pool and LLM pool respectively for MWOZ exper-305

iments and 300 turns for SGD experiments. We306

use k = 10 for the majority vote and break the tie307

by favoring SLM.308

4.3 Evaluation309

4.3.1 Accuracy310

Conventionally, DST systems are evaluated by311

joint goal accuracy (JGA) on accumulated dialogue312

states (Henderson et al., 2014). This metric as-313

sesses the correctness of the dialogue state at each314

turn and deems it accurate only if all slot values315

within every domain precisely match the ground-316

truth values. It is difficult to accurately assess how317

well a system performs on single turns with DST318

JGA. Therefore we also report turn-level belief319

(TLB JGA) (Dey et al., 2022).320

4.3.2 Efficiency321

Floating-point operations per Second (FLOPs) rep-322

resent the number of floating-point arithmetic op-323

erations (additions and multiplications) a model324

performs in one pass. FLOPs are often used to325

estimate the computational cost or workload re-326

quired for training or inference. Training a large327

model requires a significant number of backward328

passes, which are more expensive than forward329

passes, yet inference is a continuous process that330

happens whenever the model is in use, thus accru-331

ing more cost over time. NVIDIA (Leopold, 2019)332

and Amazon (Barr, 2019) report around 90% of the333

ML workload is inference processing in their cloud334

services. Therefore, we choose to report FLOPs335

for inference time usage.336

We estimate the aggregate computational cost,337

measured in TeraFLOPs, required for performing338

inference across the entire testing dataset. It is339

important to note that IC-DST relies on ChatGPT,340

a model that is not publicly accessible, thus pre-341

cluding a direct evaluation of its computational342

efficiency. Based on prevailing conjecture within343

the public domain, ChatGPT is presumed to be 344

a fine-tuned iteration of the GPT-3 model with a 345

substantial parameter count of 175 billion (Brown 346

et al., 2020). To estimate the computational re- 347

quirements, we conduct FLOPs measurements on 348

the GPT-2 (Radford et al.) model and subsequently 349

scale these measurements in accordance with the 350

parameter size differential between GPT-2 and 351

ChatGPT. The computational cost of the retriever, 352

measured in FLOPs, for each turn instance, is 353

approximately 0.02 TeraFLOPs. This computa- 354

tional load becomes negligible when considered in 355

conjunction with ChatGPT in the OrchestraLLM. 356

ChatGPT requires approximately 3000 TeraFLOPs 357

for each turn instance. 358

4.4 Baselines 359

Classification-Based Routing 360

We compare our routing framework with existing 361

classification-based approaches to model switch- 362

ing, such as those proposed by Šakota et al. (2023) 363

and Kag et al. (2022). These existing approaches 364

typically train a binary classifier to serve as the 365

router. We train BERT (Devlin et al., 2019) (bert- 366

base-cased) with the expert labels in the hold-out 367

set of dialogues with a binary classification objec- 368

tive to do routing as a baseline. 369

Cascade-Based Routing 370

Cascade-based approaches Chen et al. (2023); 371

Madaan et al. (2023) typically query a SLM and 372

redirect the instance to a LLM if the small lan- 373

guage model is not confident enough. We choose 374

to utilize the normalized sequence level probability 375

of SLM output as the confidence measure. We tune 376

the probability threshold on the hold-out-set and 377

use the threshold to determine whether to redirect 378

the instance to LLM during inference. 379

4.5 Results 380

4.5.1 MultiWOZ 381

We demonstrate the MultiWOZ experiments in a 382

few-shot setting in Table 2. We use 5% of dia- 383

logues in the training set for finetuning Prompt- 384

DST and retriever of IC-DST. Prompt-DST and IC- 385

DST perform inference on another 100 dialogues 386

from the validation set, documenting the turns each 387

expert specializes in. We randomly select 100 turns 388

from these dialogues for each expert to serve as 389

expert pools for dynamic routing. 390
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Models Router Assignment Ratio TeraFLOPs TLB JGA DST JGA

DST Baselines
Prompt-DST N/A N/A 272 73.43 46.06
IC-DST (Hu et al., 2022) N/A N/A 22 M 78.21 49.68
DS2 - T5 (Shin et al., 2022)∗ N/A N/A N/A N/A 49.89

Routing Baselines
Prompt-DST & IC-DST Oracle 73% Prompt-DST 5.94 M 88.07 65.39
Prompt-DST & IC-DST Classification-Based 91% Prompt-DST 1.98 M 77.60 47.58
Prompt-DST & IC-DST Cascade-Based 13 % Prompt-DST 19.14 M 80.40 51.46

Our Retrieval-Based Routing DST
OrchestraLLM SenBERT 60% Prompt-DST 8.8 M 80.74 50.19
OrchestraLLM Task-Aware 55% Prompt-DST 9.9 M 82.43 52.53
OrchestraLLM Expert-Aware 78% Prompt-DST 4.8 M 81.02 50.65
OrchestraLLM Task+Expert-Aware 62% Prompt-DST 8.3 M 82.46 52.68

Table 2: Results on MultiWOZ 2.4. The TeraFLOPs are computed on inference passes on the entire testing set. We
report the percentage of turns routed to Prompt-DST in the assignment ratio column. ∗ marks numbers reported in
Hu et al. (2022).

Models Router Assignment Ratio TeraFLOPs TLB JGA DST JGA

DST Baselines
Prompt-DST N/A N/A 8882 62.21 28.38
IC-DST (Hu et al., 2022) N/A N/A 121 M 63.86 33.15

Routing Baselines
Prompt-DST & IC-DST Oracle 62% Prompt-DST 45.98 M 77.48 47.50
Prompt-DST & IC-DST Classification-Based 38% Prompt-DST 75.02 M 66.94 31.86
Prompt-DST & IC-DST Cascade-Based 7.9% Prompt-DST 111.34 M 64.17 32.75

Our Retrieval-Based Routing DST
OrchestraLLM SenBERT 50% Prompt-DST 60.50 M 65.97 32.75
OrchestraLLM Task-Aware 55% Prompt-DST 54.45 M 67.25 32.78
OrchestraLLM Expert-Aware 54% Prompt-DST 55.66 M 67.34 32.95
OrchestraLLM Task+Expert-Aware 57% Prompt-DST 52.03 M 68.09 33.07

Table 3: Results on SGD. The TeraFLOPs are computed on inference passes on the entire testing set. We report the
percentage of turns routed to Prompt-DST in the assignment ratio column.

As expected, IC-DST outperforms Prompt-DST391

in the few-shot setting, indicating that the LLM392

is more generalizable than the fine-tuned SLM.393

The BERT-based classification router struggles to394

effectively harness the capabilities of both mod-395

els. To establish an upper performance bound for396

the learned router, we introduce the oracle router,397

which aggregates predictions from both LLM and398

SLM when either model is correct, with a pref-399

erence for SLM whenever available. Even with400

a vanilla SenBERT as a retriever, OrchestraLLM401

outperforms IC-DST while saving 60% calls to402

LLM, demonstrating the effectiveness of our pro-403

posed framework. Further finetuning the retriever404

with the proposed task-aware contrastive examples405

routes examples more effectively and improves406

DST JGA around 3% compared to IC-DST. With407

additional expert-aware training of the retriever, 408

we can further save around 7% traffic to LLM with 409

superior performance compared with IC-DST. In 410
spite of its compact size, Prompt-DST is finetuned 411

to align with specific in-domain knowledge and 412

task-specific artifacts (e.g., schema constraints and 413

customized labeling strategies). Conversely, IC- 414

DST is enriched with an extensive repertoire of 415

knowledge acquired during the pretraining phase 416

of LLM, endowing it with contextual reasoning ca- 417

pabilities and an enhanced grasp of common-sense 418

knowledge (Section 5.2). Since these two models 419

are complementary, an effective integration can 420

surpass the performance of the IC-DST model. 421

4.5.2 SGD 422

To evaluate our system under out-of-domain sce- 423

narios, we show experimental results in a few-shot 424

6
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Figure 2: Cross-domain generalization results on SGD.
We denote In-Domain when all of the testing domains
are in the training set and denote OOD when all of
the testing domains are not in the training set. For all
other dialogues, we categorize them as Half OOD. We
report TLB JGA for all settings. Green bars indicate
OrchestraLLM with different retrievers.

setting on SGD in Table 3. We use 5% of dialogues425

in the training set for finetuning Prompt-DST and426

the retriever of IC-DST. Prompt-DST and IC-DST427

performed inference on another 100 dialogues in428

the validation set to serve as expert pool. We ran-429

domly select 300 turns from each expert to serve430

as expert pools for dynamic routing.431

As we observe in MultiWOZ, incorporating an432

off-the-shelf SenBERT as the router improves the433

TLB score and also saves around 50% of com-434

putes. Finetuning SenBERT with the task-aware435

objective improves efficiency by 5% and increases436

both the TLB and DST scores. With the additional437

expert-aware supervision, more turns are routed to438

SLM and improves TLB score. This setting out-439

performs IC-DST by over 4% TLB JGA and saves440

57% FLOPs, demonstrating that our router is uni-441

versal enough to support cross-domain assignment442

and successfully improves system accuracy.443

5 Analysis444

5.1 Cross-Domain Generalization445

Out-of-Domain (OOD) in SGD To assess the ef-446

fectiveness of OrchestraLLM in generalizing to447

unseen domains, we present breakdown results on448

SGD in Figure 2. First, we observe that Prompt-449

DST performs better than IC-DST on in-domain di-450

alogues but lags behind IC-DST on all other types451

of dialogues. This suggests that the generaliza- 452

tion ability of Large Language Models (LLMs) is 453

superior to Small Language Models (SLMs). All 454

variants of OrchestraLLM outperform IC-DST in 455

OOD scenarios, demonstrating the router’s capa- 456

bility to effectively dispatch instances even when 457

they are out of the domain. 458

Cross-Dataset Retriever We further evaluate 459

our proposed framework in a more challenging 460

scenario where the router and backbone models 461

are trained in different datasets. We train the re- 462

triever model on MWOZ holdout set dialogues and 463

evaluate the framework on SGD testing dialogues 464

and vice versa. Notably, our routing framework 465

can still effectively orchestrate two LLMs with a 466

retriever trained with a different dataset and outper- 467

forms IC-DST while also achieving computational 468

cost savings of approximately 54% on MultiWOZ 469

and 43% on SGD (only slightly less savings than 470

the domain-matched model). 471

5.2 Specialty of SLM and LLM 472

To better understand the complementary nature of 473

the LMs, we inspected examples to identify their 474

specialties. We provide representative examples 475

from the expert pools in Table 4. One common 476

mistake made by LLM is failing to adhere to the 477

schema. In this example, LLM simply copies the 478

text ("affordable") from the turn as a DST predic- 479

tion, while SLM is capable of grounding the value 480

in the schema-specific format ("cheap"). How- 481

ever, we identify two strengths that LLM possesses 482

over SLM. Firstly, it excels in handling common- 483

sense knowledge, for example, it can infer the cor- 484

rect number of guests staying at the guest house 485

from the context ("me and my mum"). Secondly, 486

it demonstrates proficiency in long-context reason- 487

ing. When there is a reference to previous con- 488

text across domains, LLM consistently makes the 489

correct inference, while SLM often overlooks the 490

context and produces random values. 491

6 Related Work 492

6.1 Sample-Adaptive Inference 493

For allocating variable levels of computational 494

resources for processing different input samples, 495

two predominant categories of approaches have 496

emerged in this domain: early exiting (Liu et al., 497
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Example from SLM pool

DST of Previous Turn restaurant-area: centre
Test turn [system] Do you have a cuisine or price range in mind? [user] Yes, something in the affordable price

range. Also, do any of them serve Singaporean food ?
SLM Prediction restaurant-food: Singaporean, restaurant-pricerange: cheap
LLM Prediction restaurant-food: Singaporean, restaurant-pricerange: affordable

Example from LLM Pool

DST of Previous Turn hotel-name=Alpha Milton guest house
Test turn [system] Would you like to book a room? [user] That would be a massive help if you can do that for me!

It’s me and my mum and we’ll be there for 2 nights.
SLM Prediction hotel-bookstay: 2, hotel-bookpeople: 1
LLM Prediction hotel-bookstay: 2, hotel-bookpeople: 2

DST of Previous Turn restaurant-name=Cocum, restaurant-area: west
Test turn [system] Can I be of any further assistance today? [user] Yes, I am also looking for a 3-star hotel located

in the same area as the restaurant.
SLM Prediction hotel-stars: 3, hotel-area: centre
LLM Prediction hotel-stars: 3, hotel-area: west

Table 4: Representative examples from SLM and LLM pool. Red color text indicates the errors made by LMs.

2020; Xin et al., 2021; Zhou et al., 2020) and to-498

ken dropping (Goyal et al., 2020; Guan et al., 2022;499

Kim and Cho, 2021). Salehi et al. (2023) also stud-500

ies to direct different samples to sub-networks with501

varying widths. Our proposed routing framework502

also embraces sample-adaptive inference. How-503

ever, it distinguishes itself by leveraging not just a504

single model but a combination of models.505

6.2 Model Switching506

There has been a growing body of research focus-507

ing on the concept of model switching, wherein508

input examples are intelligently routed between509

small and large models based on their individual510

complexity levels. For instance, Madaan et al.511

(2023) proposes a methodology that leverages an512

external meta-verifier to ascertain the correctness513

of predictions made by a SLM and to determine514

whether an example warrants routing to a LLM. In515

contrast, our approach does not necessitate the use516

of additional verifiers. Another set of related ap-517

proaches, exemplified by the work of Šakota et al.518

(2023); Kag et al. (2022), involves training binary519

classifiers to categorize examples as suitable for520

SLM or LLM processing. This approach requires521

the router to be trained on labeled data where lan-522

guage models have made predictions. In contrast,523

our methodology exhibits the ability to leverage524

off-the-shelf retriever, enhancing its versatility.525

6.3 Few-Shot Dialogue state tracking 526

To reduce the need for labeled data in DST, many 527

approaches are proposed for few-shot DST (Li 528

et al., 2021; Lin et al., 2021; Shin et al., 2022; 529

Hu et al., 2022). The state-of-the-art few-shot DST 530

model is (King and Flanigan, 2023b), in which 531

the authors reformulate DST as a Python program- 532

ming task and leverages Codex (Chen et al., 2021) 533

as the backbone LLM, which is no longer accessi- 534

ble. Additionally, their approach involves multiple 535

decoding passes for a single turn and relies on prob- 536

ability scores of tokens, which might not always 537

be readily available. 538

7 Conclusion 539

We introduce OrchestraLLM, a routing framework 540

that seamlessly integrates a SLM and a LLM, or- 541

chestrated by a retrieval-based router. During infer- 542

ence, a dynamic router guides instances to either 543

LM based on their semantic embedding distances 544

with the retrieved LM exemplars, leveraging the 545

expertise of both SLM and LLM. Our evaluation 546

on DST demonstrates that OrchestraLLM outper- 547

forms LLM-based systems while also achieving 548

computational cost savings of over 50%. This re- 549

search represents a significant step towards effi- 550

cient collaboration of language models, particu- 551

larly in a multi-turn human-computer interaction 552

system such as task-oriented dialogue. 553
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8 Limitations554

Our study demonstrates the benefits of combin-555

ing SLM and LLM for improved task performance556

while managing computational costs, particularly557

in the context of dialogue state tracking tasks. How-558

ever, it’s important to acknowledge that the appli-559

cability of our approach may not extend seamlessly560

to all types of tasks in the broader NLP domain.561

Additionally, in our current framework, we focus562

on leveraging a SLM and a LLM. However, real-563

world applications often involve a wide array of564

diverse tasks, each potentially requiring LMs with565

varying expertise. As a future avenue of research,566

we intend to explore the orchestration of multiple567

LMs simultaneously.568
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Pruning strategies are primarily devised to reduce 907

computational overhead by selecting and retain- 908

ing a subnetwork within a larger model (Fan et al., 909

2019; Michel et al., 2019; Wang et al., 2020; La- 910

gunas et al., 2021; Xia et al., 2022). In contrast, 911

distillation techniques entail the training of a com- 912

pact student model, with the objective of imparting 913

the knowledge and performance of a larger teacher 914

model (Sanh et al., 2019; Turc et al., 2019; Jiao 915

et al., 2020). Finally, quantization methods aim to 916

diminish memory demands by representing model 917

parameters with fewer bits, thereby trading off a 918

degree of precision for enhanced efficiency (Shen 919

et al., 2020; Dettmers et al., 2022, 2023). Note that 920

the aforementioned methods are characterized as 921

"static" in nature, as they primarily focus on the 922

optimization of fixed model architectures for each 923

data point. In contrast, the routing framework intro- 924

duced in this work adopts a dynamic perspective. 925
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