
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pages 1382–1392

June 16-21, 2024 ©2024 Association for Computational Linguistics

Fine-Tuning Language Models with Reward Learning on Policy

Hao Lang Fei Huang Yongbin Li ∗

Alibaba Group
{hao.lang, f.huang, shuide.lyb}@alibaba-inc.com

Abstract

Reinforcement learning from human feedback
(RLHF) has emerged as an effective approach
to aligning large language models (LLMs)
to human preferences. RLHF contains three
steps, i.e., human preference collecting, reward
learning, and policy optimization, which
are usually performed serially. Despite its
popularity, however, (fixed) reward models
may suffer from inaccurate off-distribution,
since policy optimization continuously shifts
LLMs’ data distribution. Repeatedly collecting
new preference data from the latest LLMs
may alleviate this issue, which unfortunately
makes the resulting system more complicated
and difficult to optimize. In this paper, we
propose reward learning on policy (RLP),
an unsupervised framework that refines a
reward model using policy samples to keep it
on-distribution. Specifically, an unsupervised
multi-view learning method is introduced to
learn robust representations of policy samples.
Meanwhile, a synthetic preference generation
approach is developed to simulate high-quality
preference data with policy outputs. Extensive
experiments on three benchmark datasets show
that RLP consistently outperforms the state-
of-the-art. Our code is available at https:
//github.com/AlibabaResearch/
DAMO-ConvAI/tree/main/rlp.

1 Introduction

Large language models (LLMs) (Brown et al.,
2020; Bommasani et al., 2021) have shown great
promise in following open-ended user instruc-
tions (Askell et al., 2021; Ouyang et al., 2022;
Longpre et al., 2023). These capabilities are largely
attributed to the fine-tuning of pretrained LLMs
using Reinforcement Learning from Human Feed-
back (RLHF) (Christiano et al., 2017; Bai et al.,
2022a), which is a prominent technique to align
LLMs with human preferences and greatly en-

∗ Corresponding author.

preference data reward model LLM policy

RLHF with Reward Learning on Policies

reward
learning

reward
learning

finetuning

preference data reward model LLM policy

Standard RLHF

reward
learning

finetuning

Figure 1: Comparison of standard RLHF (top) and
RLHF with reward learning on policies (bottom). Dif-
ferent from (top), which performs reward learning and
policy optimization serially, we iteratively train one of
the two models with the help of the other.

hance their usability and safety (OpenAI, 2023;
Anthropic, 2023; Google, 2023).

A typical RLHF procedure is comprised of three
interrelated steps: human preference collecting, re-
ward learning, and policy optimization (Figure 1
top). The reward learning step fits a reward model
to the preference data that elicits evaluations from
humans. The policy optimization step uses rein-
forcement learning (RL) to fine-tune a language
model to produce outputs assigned high reward.

In practice, the three key steps of RLHF are of-
ten performed serially (Casper et al., 2023). Since
policy optimization shifts the language model’s
data distribution during the RL phase, the (fixed)
reward model will be inaccurate off-distribution
which is trained on offline data (Touvron et al.,
2023b). Hence, reward model accuracy can quickly
degrade and in turn degenerate the policy that ex-
ploits differences between the inferred and true
reward (Gao et al., 2023).

The above issue can be mitigated by gathering
new human preference data from an up-to-date ver-
sion of policy (Ziegler et al., 2019). However, the
resulting system is significantly more complicated

1382

https://github.com/AlibabaResearch/DAMO-ConvAI/tree/main/rlp
https://github.com/AlibabaResearch/DAMO-ConvAI/tree/main/rlp
https://github.com/AlibabaResearch/DAMO-ConvAI/tree/main/rlp

and difficult to optimize, involving iterations of
data gathering, reward learning, and RL fine-tuning.
Moreover, significant work is required to maintain
high data quality over a long time in this setting.

In this paper, we show how to optimize a reward
model against the policy to keep it on-distribution,
without repeatedly collecting new human prefer-
ence data. We propose Reward Learning on Policy
(RLP), a framework that refines a reward model
using policy samples in an unsupervised manner.
RLP first trains a reward model and a language
model policy from scratch with standard RLHF
methods, and then retrains the reward model when
exposed to the sample distribution of the trained
policy. Finally, RLP retrains the policy on the re-
trained reward model, which attempts to maintain
an accurate reward for the latest policy.

Concretely, RLP uses policy samples to retrain
the reward model via two methods: unsupervised
multi-view learning (UML) and synthetic prefer-
ence generation (SPG). RLP-UML constructs two
views for an input by generating two responses
from the policy (Zhao et al., 2017), then optimizes
a multi-view information bottleneck loss (Federici
et al., 2020) when fitting the reward model to a
dataset of human preferences. This training ob-
jective follows the information bottleneck princi-
ple (Tishby et al., 2000) and helps learn robust
representations of the policy’s data distribution.

In addition, RLP-SPG simulates preferences on
policy generations to supplement the human prefer-
ence data. Rather than producing and scoring two
outputs with LLMs as in Reinforcement Learning
from AI Feedback (RLAIF) (Bai et al., 2022b; Lee
et al., 2023), RLP-SPG generates a set of outputs
for an instruction. In this way, RLP-SPG can quan-
tify uncertainty and decide when to trust model
predictions via measuring the size of the largest
semantic equivalence cluster (Kuhn et al., 2023; Si
et al., 2023). Thus, RLP-SPG selectively gener-
ates pairwise preferences for instructions with low
uncertainty (Lin et al., 2023), where the preferred
output is sampled from the largest cluster of the
output set and the non-preferred one is sampled
from the rest clusters. This sampling scheme also
conforms to the self-consistency assumption, i.e.,
the most consistent output is selected as the final
prediction (Wang et al., 2023; Chen et al., 2023).

Our main contributions are as follows:

• We propose Reward Learning on Policy
(RLP), an unsupervised framework that re-

fines a reward model using policy samples to
keep it on-distribution for RLHF.

• We optimize a multi-view loss when retrain-
ing the reward model to learn representations
of the policy’s data distribution. We also sim-
ulate preferences with a set of policy outputs,
which enables selective generation and high-
quality data construction.

• Our experiments on three standard benchmark
datasets show that RLP outperforms existing
methods for learning from human feedback,
including PPO-based RLHF.

2 Related Work

Instruction tuning is a procedure to fine-tune pre-
trained LLMs with instructions and human-written
completions (Mishra et al., 2022; Sanh et al., 2022),
which increases the usability of LLMs (Chung
et al., 2022). Recently, RLHF has emerged as
the central method for fine-tuning LLMs based
on human preferences and further improves their
downstream task performance and alignment with
user intent (Christiano et al., 2017). Generally,
RLHF methods first fit a reward model to human
preferences, then fine-tune a language model to
maximize the inferred reward using RL algorithms.

Reward models tend to be an imperfect estimate
of the true reward due to misspecification (Bıyık
et al., 2022) and misgeneralization (Tien et al.,
2023), and imperfect in reward models leads to
reward hacking (Skalse et al., 2022). Methods with
reward ensemble (Coste et al., 2024) and diverse
feedback (Yu et al., 2023) are proposed to tackle
this issue. Our method retrains the reward model
with policy samples to make it on-distribution and
generalize to the policy’s data distribution.

Human feedback simulation aims to generate
additional synthetic preference data using weak
human supervision and LLMs (Bai et al., 2022b).
RLAIF approaches obtain pairwise preferences by
scoring two outputs from a shared prompt (Lee
et al., 2023), whereas RLCD generates outputs
from two variants of a prompt (Yang et al., 2024).
Our method RLP-SPG is the first attempt to simu-
late human preferences using a set of outputs.

Uncertainty quantification provides confi-
dence scores for generations of LLMs, helping
users decide when to trust these generation re-
sults (Si et al., 2023). Supervised methods fine-tune

1383

the language model to predict the uncertainty (Ka-
davath et al., 2022; Lin et al., 2022), while unsuper-
vised methods measure uncertainty by calculating
semantic entropy or semantic dispersion amongst
generated answers (Kuhn et al., 2023; Lin et al.,
2023). In this work, we measure uncertainty to
selectively generate preference data.

3 Preliminaries

We start by introducing the instruction following
task (Ouyang et al., 2022; Bai et al., 2022a). Given
user instructions x ∈ X (e.g., “Generate a defi-
nition for artificial intelligence”), we aim to de-
velop a model πθ that generates high-quality re-
sponses y ∼ πθ(y|x) as judged by some latent
reward model. In this study, we focus on RLHF
for this task, due to its central role in instruction-
following LLMs (Ouyang et al., 2022). RLHF
usually consists of three steps: human preference
collecting, reward modeling, and RL policy opti-
mization (Dubois et al., 2024; Rafailov et al., 2024;
Casper et al., 2023).

Step 0, SFT: RLHF generally begins with a pre-
trained model, which is fine-tuned with supervised
learning on instruction-following demonstrations
(x, y), to produce a model πSFT(y|x).
Step 1, Human preference collecting: The first
step is to produce pairs of responses (y1, y2) ∼
πSFT(y|x) for the instruction x. These are then
presented to humans who express preferences for
each response, denoted as yw ≻ yl | x where yw
and yl denotes the preferred and non-preferred com-
pletion amongst (y1, y2) respectively.

Step 2, Reward learning: The second step is to
fit a reward model rϕ(x, y) by minimizing the neg-
ative log-likelihood loss (Christiano et al., 2017):

LR = −E(x,yw,yl)∼D[log σ(rϕ(x, yw)− rϕ(x, yl))],

where D = {(x, yw, yl)} is a dataset of pairwise
preferences and σ is the sigmoid function. rϕ(x, y)
is often initialized from πSFT(y|x) with one addi-
tional linear layer that infers the reward value.

Step 3, RL policy optimization: The third step
is to use the reward model rϕ(x, y) to fine-tune the
language model. The parameters θ of π are trained
to maximize

Ex∼U,y∼πθ(y|x)[rϕ(x, y)− βDKL(πθ(y|x)||πref(y|x))],

where U = {x} is an unlabeled instruction dataset,
the language model policy πθ(y|x) is fine-tuned

from the SFT model πSFT , the reference policy
πref is also the SFT model πSFT, and β is a regu-
larization coefficient controlling the deviation from
πref . This objective is typically optimized with RL
algorithms such as PPO (Schulman et al., 2017).

4 Reward Learning on Policy

4.1 Overview

In this study, we propose a novel RLHF framework
to fine-tune LLMs with human feedback following
five steps: Step 1-3. Collect a pairwise human
preference dataset D, then train a reward model
rϕ and fine-tune a language model policy πθ; Step
4. Retrain a reward model r̂ϕ using outputs of
policy πθ; Step 5. Retrain a policy π̂θ based on the
retrained reward model r̂ϕ.

Before applying RLP, we assume existing RLHF
approaches can be used to train the reward model
rϕ and the policy πθ (Ouyang et al., 2022). The
sample distribution of the policy πθ can be quite
different from the preference data D on which the
reward model rϕ is trained (Touvron et al., 2023b).
For example, outputs become increasingly longer
after applying RLHF methods as shown in the anal-
ysis of AlpacaFarm (Dubois et al., 2024). The
average length of SFT outputs is 278 characters
and applying PPO increases it to 637 tokens. These
distributional differences make the reward model
rϕ inaccurate off-distribution.

Our goal is to refine the reward model using sam-
ples of the policy πθ and keep it on-distribution.
This process is expected to increase the general-
ization of the retrained reward model r̂ϕ to policy
samples. Accordingly, it can maintain an accurate
reward during the RL policy optimization phase.

4.2 Reward Retraining

We now describe how to retrain the reward model
r̂ϕ in Step 4 of RLP. We first construct a dataset
of policy samples P = {(x,y) | x ∈ U ,y ∼
πθ(y|x)}, where y is a set of n outputs from policy
πθ for instruction x. Then, we refine the reward
model with policy samples P in addition to the hu-
man preference dataset D. Specifically, we propose
two different methods for this purpose: unsuper-
vised multi-view learning (UML) and synthetic
preference generation (SPG).

Unsupervised Multi-View Learning attempts
to learn robust representations of policy samples.
For each pair (x,y) ∈ P , two semantic invariant

1384

views are constructed: vi(x) = (x, y) | y ∼ y,
(i = 1, 2). These two views preserve the same task-
relevant information (Zhao et al., 2017). Then, a
multi-view information bottleneck (MIB) loss (Fed-
erici et al., 2020) is optimised for unsupervised
representation learning, following the information
bottleneck principle (Tishby et al., 2000). This opti-
mization process retains task-relevant information
in the representations while discarding superficial
information.

To facilitate the computation, we parametrize
the representation zi of each view vi(x) with a
factorized Gaussian distribution, i.e., pψ(z|vi) =
N [µ(vi),Σ(vi)]. Concretely, we estimate vi(x)
with the final transformer layer of the reward model
and use two neural networks µ(vi) and Σ(vi) to
produce the mean and deviation respectively. The
following MIB loss is optimized:

LM = E(x,y)∼P [−I(z1; z2) +DSKL(pψ(z|v1)||pψ(z|v2))],

where I calculates mutual information of two
random variables, and DSKL represents the sym-
metrized KL divergence obtained by averaging the
expected value of DKL(pψ(z|v1)||pψ(z|v2)) and
DKL(pψ(z|v2)||pψ(z|v1)).

Synthetic Preference Generation aims to simu-
late high-quality preference data with policy sam-
ples. For each pair (x,y) ∈ P , we assume the
most frequent item of y as the correct predic-
tion and its frequency as the confidence score (Si
et al., 2023), following the self-consistency assump-
tion (Wang et al., 2023). To address semantic equiv-
alence, i.e., different sentences can mean the same
thing, we cluster items of y into groups G with
a bi-directional entailment algorithm (Kuhn et al.,
2023). Sentences from each group g ∈ G are ex-
pected to share the same meaning. We estimate
the confidence score of (x,y) as |g̃|

|y| , where g̃ is
the largest group of G and the operator | · | mea-
sures the size of a set. Thus, we can selectively
generate a synthetic preference dataset with high
confidences D̂ = {(x, yw, yl) | (x,y) ∈ P, |g̃||y| ≥
γ, yw ∼ g̃, yl ∼ y \ g̃}, where γ is the thresh-
old for selective generation, the preferred output
yw is sampled from the largest group g̃ with the
largest reward score and the non-preferred one yl
is randomly sampled from the rest groups.

The overall loss that we optimize for the reward
model r̂ϕ is:

LR̂ =− E(x,yw,yl)∼D∪D̂[log σ(r̂ϕ(x, yw)− r̂ϕ(x, yl))]

+ λ LM ,
(1)

where the coefficient λ controls the weight of the
multi-view information bottleneck loss. To sim-
plify computational complexity, we implement two
variants: 1. RLP-UML removes the synthetic
dataset D̂ in Eq. 1 and learns the representations of
policy samples when fitting the reward model. 2.
RLP-SPG removes the MIB loss by setting λ = 0
in Eq. 1 and fits the reward model with human and
synthetic preference data.

4.3 Policy Retraining
We finally retrain the policy π̂θ using r̂ϕ in Step 5
of RLP. Specifically, we optimize π̂θ to maximize

Ex∼U,y∼π̂θ(y|x)[r̂ϕ(x, y)− βDKL(π̂θ(y|x)||πref(y|x))].

Our approach RLP is summarized in Algo-
rithm 1.

Algorithm 1: RLP: RLHF with Reward
Learning on Policy

Input: SFT model πSFT, unlabeled data U .
Output: A language model policy π̂θ.

1 Collect a human preference dataset D.
2 Train a reward model rϕ using D.
3 Fine-tune a language model πθ from πSFT

using U and rϕ.
4 Retrain a reward model r̂ϕ using LR̂ (Eq. 1).
5 Fine-tune π̂θ from πSFT using U and r̂ϕ.

Dataset #Sample

Training data

SFT dataset 10k

Preference dataset D 10k

Unlabeled dataset U 20k

Evaluation data

AlpacaFarm 805

LLMBar 100

Vicuna 80

Table 1: Dataset statistics.

5 Experiments

5.1 Datasets
We run experiments on the instruction following
task (Ouyang et al., 2022; Bai et al., 2022a), which
remains a challenging task for the strongest LLMs
today (Wu et al., 2023; Li et al., 2023).

1385

Method AlpacaFarm LLMBar Vicuna
Simulated Win-Rate Human Win-Rate Simulated Win-Rate Simulated Win-Rate

GPT-4 79.0 69.8 74.0 85.0
ChatGPT 61.4 52.9 59.0 63.7
PPO 46.8 55.1 47.5 57.5
Best-of-n 45.0 50.7 43.4 52.5
SFT 36.7 44.3 42.4 50.0
LLaMA-7B 11.3 6.5 12.5 12.8

RLP-UML (ours) 49.1 56.5 48.5 61.3
RLP-SPG (ours) 50.2 57.4 50.5 62.5

Table 2: The win-rate (%) performance of RLP and baselines. Win-rates are computed against reference model
text-davinci-003. Baseline results in AlpacaFarm come from Dubois et al. (2024). Bold numbers are
superior results among the implemented LLMs. We omitted LLMBar and Vicuna for human evaluation because the
simulated method rankings consistently correlate with the human method rankings in AlpacaFarm.

PPO RLP-SPG0
10
20
30
40
50
60
70 self-instruction

Win
Tie
Loss

(a)
PPO RLP-SPG0

10
20
30
40
50
60
70 helpful-base

Win
Tie
Loss

(b)
PPO RLP-SPG0

10
20
30
40
50
60
70 oasst

Win
Tie
Loss

(c)
PPO RLP-SPG0

10
20
30
40
50
60
70 koala

Win
Tie
Loss

(d)

Figure 2: The simulated win-rate (%) performance of RLP-SPG compared to PPO on various subsets of AlpacaFarm.
Win-rates are computed against reference model text-davinci-003.

Training data of the RLHF procedure come
from Alpaca data, which consists of 52k
instruction-following demonstrations (x, y) (Taori
et al., 2023). Following the data splits of Al-
pacaFarm (Dubois et al., 2024), three splits are
used: 1. SFT split are 10k data for fine-tuning the
SFT model πSFT; 2. Preference split are 10k in-
structions on which we collect pairwise preference
dataset D; 3. Unlabeled split are 20k unlabeled
instructions U used in PPO. Concretely, two vari-
ants of preference dataset D are curated: simulated
Dsim are constructed with AlpacaFarm simulated
annotators by prompting API LLMs, and human
Dhuman are constructed with human annotators.

Evaluation data of the trained LLMs include
three benchmarks: 1. AlpacaFarm consists of 805
instructions, which includes instructions from Self-
instruct evaluation (Wang et al., 2022), OASST
evaluation, Anthropic helpful evaluation (Bai et al.,
2022a), Vicuna evaluation (Chiang and Lee, 2023),
and Koala evaluation (Geng et al., 2023); 2. LLM-
Bar (Zeng et al., 2024) contains 100 instructions
with objective preferences. We use the natural set
to evaluate performance in real-world distributions;
3. Vicuna (Chiang et al., 2023) contains 80 instruc-

tions to evaluate different skills of LLMs. Table 1
shows the statistics of these datasets.

5.2 Metrics and Experimental Setups

Following Dubois et al. (2024); Touvron et al.
(2023b), we use win-rate to evaluate the perfor-
mance of an LLM πθ, i.e., the percentage of times
πθ is preferred to a reference model πref for their
instruction-following outputs. Following the ex-
perimental setups of AlpacaFarm (Dubois et al.,
2024), we use simulated win-rate to evaluate meth-
ods trained on simulated Dsim with simulated an-
notators by prompting API LLMs. In parallel, we
use human win-rate to evaluate methods trained on
human Dhuman with human annotators.

5.3 Implementation Details

Our implementations of reward learning, policy
optimization, and simulated annotators are based
on the AlpacaFarm codebase and its default hyper-
parameters (Dubois et al., 2024). Specifically, we
use RL algorithm PPO (Schulman et al., 2017)
to fine-tune the language model during policy
optimization. All reward models and language
models are based on LLaMA-7B (Touvron et al.,
2023a). We sample n = 10 outputs for each in-

1386

Instruction:
What are different drawers I should have for clothes?

SFT Output:
Different drawers for clothes can include a top drawer for socks and underwear, a middle drawer
for shorts, pants, and skirts, a lower drawer for long-sleeved shirts, a separate drawer for t-shirts
and tank tops, a drawer for sweaters and cardigans, a drawer for jackets, and a drawer for shoes.

PPO Output:
Different drawers for clothes can include a master drawer for all items, such as pants, shirts,
and jackets; a drawer for socks and underwear; a drawer for delicates, such as lingerie and fine
clothing; a drawer for seasonal clothing, such as winter coats and swimwear; a drawer for work
clothes, such as dress shirts and skirts; a drawer for shoes; and a drawer for accessories, such as
belts, hats, and purses.

RLP-UML Output:
Different drawers for clothes can include:
- A top drawer for long-sleeved shirts and blouses.
- A middle drawer for short-sleeved shirts and blouses.
- A bottom drawer for sweaters, sweaters, and jackets.
- A separate drawer for pants, shorts, and skirts.
- A drawer for socks and underwear.
- A drawer for accessories such as belts, scarves, and hats.
- A separate drawer for seasonal clothing, such as winter coats and summer dresses.

RLP-SPG Output:
Different drawers for clothes can include:
- A master drawer for folded clothing, such as shirts, pants, skirts, and shorts.
- A drawer for seasonal items, like sweaters and jackets.
- A drawer for delicate items, like lingerie and fine fabrics.
- A drawer for formal wear, like suits and dresses.
- A drawer for accessories, like belts, scarves, and jewelry.
- A drawer for uniforms, like work clothes and school uniforms.
- A drawer for out-of-season items, like swimwear and winter coats.
- A drawer for shoes, organized by type and use.
- A drawer for cleaning supplies, like a laundry bin or ironing board.
- A drawer for miscellaneous items, like first-aid kits and sewing supplies.

Table 3: Outputs generated by RLP and baselines for an example from AlpacaFarm. RLP-UML and RLP-SPG
produce more comprehensive outputs than SFT and PPO in this case.

struction to construct a dataset of policy samples
P . For unsupervised multi-view learning, we im-
plement µ(vi) and Σ(vi) as three-layer MLPs, and
use Jensen-Shannon mutual information estimator
(Hjelm et al., 2018) to estimate mutual information
I in the MIB loss. For synthetic preference genera-
tion, we implement a bidirectional entailment clus-
tering algorithm using Deberta-large model (He
et al., 2021) and set the threshold γ = 0.5 for se-
lective generation. We set λ = 0.5 in Eq. 1 for
RLP-UML. At training and inference time, we use
a sampling temperature of 1.0 and 0.7, respectively.
All experiments are performed on a single 8×A100
machine.

5.4 Baselines

We compare RLP with competitive baselines: 1.
LLaMA-7B (Touvron et al., 2023a) directly gener-
ates outputs using the base unaligned LLaMA-7B;
2. SFT (Taori et al., 2023) is a LLaMA-7B model
supervised fine-tuned on 10k Alpaca instruction-

following data; 3. Best-of-n (Stiennon et al., 2020)
samples n i.i.d. responses from the SFT model and
returns the response with the highest inferred re-
ward; 4. PPO (Schulman et al., 2017) is a reinforce-
ment learning algorithm that maximizes surrogate
reward, subject to a KL penalty keeping parameters
near the SFT model; 5. ChatGPT uses OpenAI
API LLM gpt-3.5-turbo-0301; 6. GPT-4
uses OpenAI API LLM gpt-4-0314.

5.5 Main Results

We compare the win-rate performance of our
method RLP and all baselines on three standard
benchmarks to assess their instruction-following
ability in Table 2. It can be seen that API LLM
GPT-4 significantly outperforms all other models
due to its obvious advantages. Among the im-
plemented LLMs, RLP-SPG performs the best in
both the simulator and human preference data, and
achieves SOTA results on all three benchmarks.
Compared with the implemented best-performing

1387

baseline PPO, RLP-SPG brings up from a simu-
lator win-rate of 46.8% to 50.2% in AlpacaFarm,
47.5% to 50.5% in LLMBar, and 57.5% to 62.5%
in Vicuna. RLP-SPG also brings up from a human
win-rate of 55.1% to 57.4% in AlpacaFarm.

We can also observe that: 1. Both the two vari-
ants of RLP, namely, RLP-UML and RLP-SPG,
outperform all implemented baselines that do not
train reward models using policy samples. The
performance gain demonstrates the advantage of
considering policy for reward learning, which can
help keep the reward model on-distribution. 2.
RLP-SPG generally outperforms RLP-UML under
all circumstances. It demonstrates that synthetic
preference generation leads to better performance,
which simulates pairwise preference data with pol-
icy samples that can be leveraged for optimizing a
reward model directly.

To provide a clearer perspective on RLP’s supe-
riority over other baselines, we illustrate the simu-
lated win-rate of our best method RLP-SPG com-
pared to the best-performing baseline PPO on vari-
ous subsets of AlpacaFarm in Figure 2. Instructions
from these subsets show diverse coverage over re-
alistic interactions, allowing for an intricate anal-
ysis of the proficiency attained through language
model fine-tuning (Dubois et al., 2024). Notably,
RLP-SPG outperforms PPO across all subsets, in-
cluding Self-instruct evaluation, Anthropic helpful
evaluation, OASST evaluation, and Koala evalua-
tion. It further indicates that reward learning on
policy leads to a comprehensive enhancement in
the capabilities of the LLMs. Meanwhile, RLP also
outperforms these baselines on knowledge inten-
sive benchmarks such as MMLU (Hendrycks et al.,
2021) (See Appendix A.).

The difference between RLP and baselines can
be observed qualitatively as well. For example,
the case shown in Table 3 makes it sufficiently
clear why RLP is so strongly preferred over our
baselines from AlpacaFarm. Compared to RLP-
UML, RLP-SPG generates even longer and more
comprehensive outputs.

5.6 Ablation Studies

This section provides comprehensive ablation stud-
ies to understand the efficacy of RLP. For consis-
tency, all ablations are conducted using metric sim-
ulated win-rate that is computed against reference
model text-davinci-003.

Method AlpacaFarm LLMBar
Win-Rate Win-Rate

InfoMax 44.4 46.5
MVI 48.1 47.5
CL 48.2 46.5

RLP-UML 49.1 48.5

Table 4: Ablation study on the representation learning
loss for RLP-UML.

Sampling Method Preference AlpacaFarm
Acc. Win-Rate

A Pair RLAIF 52 46.0
Reward 56 48.9

A Set
Select-All 55 48.7

RLP-SPG 59 50.2

Table 5: Ablation on different synthetic preference gen-
eration approaches.

Information Bottleneck Loss We demonstrate
the effectiveness of our multi-view information bot-
tleneck loss LM by replacing LM in Eq. 1 with
other alternatives of representation learning: 1. In-
foMax (Poole et al., 2019) maximizes the mutual
information between an input v(x) and its repre-
sentation z, i.e., I(v; z); 2. MVI (Bachman et al.,
2019) is similar to InfoMax except that it max-
imizes the mutual information between its two
views I(z1; z2); Note that neither InfoMax nor MVI
attempts to remove superficial information from
representations. 3. CL (Caron et al., 2020) uses a
contrastive learning loss. Positive pairs in this vari-
ant are obtained using our multi-view construction
approach.

Results in Table 4 show that the information
bottleneck loss used in RLP-UML performs better
than all other variants. We also want to highlight
that the approach of explicitly removing superficial
information in RLP-UML makes it outperform In-
foMax and MVI by 4.7% and 1.0% in AlpacaFarm,
and 2.0% and 1.0% in LLMBar, respectively. This
validates our claim that the multi-view informa-
tion bottleneck loss used in RLP-UML effectively
removes the superficial information.

Synthetic Preference Generation We compare
RLP with two types of synthetic preference gener-
ation approaches: I. sampling a pair of responses
for each instruction and then labeling its preference
with LLMs; II. sampling a set of outputs for each
instruction and then selecting a preferred and a non-
preferred one to construct pairwise preference data.

1388

Instruction:
Generate a definition for the term “artificial intelligence”.

RLAIF Simulated Preference Data:
yw: Artificial intelligence (AI) is a branch of computer science that enables machines to
learn from experience, adjust to new input, and mimic human decision-making processes. AI
technology is used to develop systems that can interact with their environment and achieve tasks
such as robotic navigation, natural language processing, and computer vision.
yl: Artificial intelligence (AI) is a field of study focused on developing computers and machines
that are capable of performing tasks that are typically done by humans, such as reasoning,
problem solving, and decision-making. AI technology is used in a variety of applications,
including robotics, games, speech recognition, natural language processing, and automation.

RLP Simulated Preference Data:
yw: Artificial intelligence (AI) is a branch of computer science that involves the use of sophisti-
cated algorithms and technology to enable machines to think, learn, and act like humans. AI
systems can be programmed to perform a variety of tasks, from simple to complex, such as
recognizing speech, understanding natural language, automating tasks, and more. AI technology
is used in a wide range of applications, from self-driving cars to virtual assistants to automated
customer service. In short, AI is the science and technology of making computers and machines
smart and capable of doing things traditionally done by humans.
yl: Artificial intelligence (AI) is a field of study focused on developing computers and machines
that can think and act like humans. AI technology allows machines to interact with their
environment and to learn from their mistakes, just like humans do.

Table 6: An example instruction and corresponding simulated preference data from RLAIF and RLP-SPG.

Decision Instruction Confidence

Reject

Describe the life and reign of King Charles II. 0.1
What type of fruit would be a good addition to a fruit salad? 0.2
Research about a famous scientist and provide a short biography about him/her. 0.2
Compose a five word sentence describing your day. 0.4

Accept

Write a scientific explanation for why the sky is blue. 0.6
Find the synonyms of the following word: ‘Tenacious’. 0.7
Find the main idea of the following passage. 0.8
Create a tweet summarizing the following news article in 140 characters or less. 0.9

Table 7: Cases of rejected and accepted instructions for selective synthetic preference generation by RLP-SPG.

For type I, we implement RLAIF (Lee et al., 2023)
that labels preferences with policy πθ, and Reward
that rank the two outputs with reward model rϕ
and assume the top ranked output as the preferred
one. For type II, we study a variant of RLP, Select-
All, that sets γ = 0 for selective generation and no
longer rejects low confidence data.

Table 5 shows the accuracy of generated pref-
erence data and the win-rate of the corresponding
LLMs. Golden preferences are labeled with Al-
pacaFarm simulated annotator. These results indi-
cate that RLP-SPG outperforms all ablation vari-
ants in terms of synthetic preference quality and
LLM performance. We can also observe that: 1.
Sampling a set of outputs rather than a pair for
each instruction helps encourage output diversity
and leads to high-quality preference generation. 2.
The confidence score based on multiple sampling
can be used for selective generation and further
improve preference quality. 3. LMMs trained with

more accurate preference data generally perform
better and obtain higher win-rate scores.

5.7 Further Analysis
Here we present further analysis of intermediate
results during LLM training. Table 6 shows an ex-
ample of simulated preference data by RLAIF and
RLP-SPG, respectively. The two outputs (yw and
yl) of RLAIF for this case look quite similar. How-
ever, yw is preferred by RLAIF which would bring
in noises in the training process. On the contrary,
yw of RLP-SPG is more comprehensive than yl of
RLP-SPG, resulting in more accurate labels. We
also find a major difference in the length distribu-
tions of RLP-SPG outputs, with preferred outputs
yw (510 characters on average) significantly longer
than non-preferred outputs yl (449 characters on
average).

Table 7 also demonstrates cases of rejected and
accepted instructions for selective synthetic prefer-
ence generation by RLP-SPG (rejecting low confi-

1389

dence generations). It can be observed that open-
ended instructions (e.g., more subjective and cre-
ative) tend to have low confidences and be rejected.

6 Conclusion

In this paper, we propose reward learning on pol-
icy (RLP), a novel framework to align LLMs with
human preferences. RLP learns robust representa-
tions of the policy’s data distribution via optimizing
a multi-view information bottleneck loss. RLP also
simulates preferences with a set of policy outputs,
which enables confidence estimation and selective
generation. Extensive experiments demonstrate
that RLP outperforms SOTA baselines.

Limitations

While we have carefully studied the effectiveness
of RLP compared to several baselines on three
benchmark datasets for LLaMA-7B, we have not
yet empirically verified our conclusions when align-
ing larger pretrained LLMs. It would also be
interesting to align new SOTA pretrained LLMs
such as LLaMA 2 (Touvron et al., 2023b) and
test other methods for fitting preference data like
DPO (Rafailov et al., 2024).

Meanwhile, all of our training and evaluation
data are in English, and we have not tested in other
languages. Performance may degenerate especially
in low-resource languages when pretrained LLMs
have not been trained with these data.

Ethics Statement

This work does not raise any direct ethical issues.
In the proposed work, we seek to develop a novel
RLHF framework to align large language models
(LLMs) with human preferences. Concretely, we
propose to learn reward models on policy to keep
it on-distribution. We believe this work can benefit
the field of LLMs, with the potential to benefit other
fields requiring NLP models. All experiments are
conducted on open datasets.

References
Anthropic. 2023. Introducing claude.

Amanda Askell, Yuntao Bai, Anna Chen, Dawn Drain,
Deep Ganguli, Tom Henighan, Andy Jones, Nicholas
Joseph, Ben Mann, Nova DasSarma, et al. 2021. A
general language assistant as a laboratory for align-
ment. arXiv preprint arXiv:2112.00861.

Philip Bachman, R Devon Hjelm, and William Buchwal-
ter. 2019. Learning representations by maximizing
mutual information across views. In NeurIPS.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda
Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, et al.
2022a. Training a helpful and harmless assistant with
reinforcement learning from human feedback. arXiv
preprint arXiv:2204.05862.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu,
Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini,
Cameron McKinnon, et al. 2022b. Constitutional
ai: Harmlessness from ai feedback. arXiv preprint
arXiv:2212.08073.

Erdem Bıyık, Dylan P Losey, Malayandi Palan,
Nicholas C Landolfi, Gleb Shevchuk, and Dorsa
Sadigh. 2022. Learning reward functions from di-
verse sources of human feedback: Optimally inte-
grating demonstrations and preferences. The Interna-
tional Journal of Robotics Research.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli,
Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosse-
lut, Emma Brunskill, et al. 2021. On the opportuni-
ties and risks of foundation models. arXiv preprint
arXiv:2108.07258.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. In NeurIPS.

Mathilde Caron, Ishan Misra, Julien Mairal, Priya
Goyal, Piotr Bojanowski, and Armand Joulin. 2020.
Unsupervised learning of visual features by contrast-
ing cluster assignments. In NeurIPS.

Stephen Casper, Xander Davies, Claudia Shi,
Thomas Krendl Gilbert, Jérémy Scheurer, Javier
Rando, Rachel Freedman, Tomasz Korbak, David
Lindner, Pedro Freire, et al. 2023. Open problems
and fundamental limitations of reinforcement
learning from human feedback. TMLR.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and
Denny Zhou. 2023. Teaching large language models
to self-debug. arXiv preprint arXiv:2304.05128.

Yew Ken Chia, Pengfei Hong, Lidong Bing, and Sou-
janya Poria. 2023. Instructeval: Towards holistic
evaluation of instruction-tuned large language mod-
els. arXiv preprint arXiv:2306.04757.

Cheng-Han Chiang and Hung-yi Lee. 2023. Can large
language models be an alternative to human evalua-
tions? In ACL.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al.

1390

https://www.anthropic.com/index/introducing-claude

2023. Vicuna: An open-source chatbot impressing
gpt-4 with 90%* chatgpt quality. See https://vicuna.
lmsys. org (accessed 14 April 2023).

Paul F Christiano, Jan Leike, Tom Brown, Miljan Mar-
tic, Shane Legg, and Dario Amodei. 2017. Deep
reinforcement learning from human preferences. In
NeurIPS.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2022. Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416.

Thomas Coste, Usman Anwar, Robert Kirk, and David
Krueger. 2024. Reward model ensembles help miti-
gate overoptimization. In ICLR.

Yann Dubois, Xuechen Li, Rohan Taori, Tianyi Zhang,
Ishaan Gulrajani, Jimmy Ba, Carlos Guestrin, Percy
Liang, and Tatsunori B Hashimoto. 2024. Alpaca-
farm: A simulation framework for methods that learn
from human feedback. In NeurIPS.

Marco Federici, Anjan Dutta, Patrick Forré, Nate Kush-
man, and Zeynep Akata. 2020. Learning robust rep-
resentations via multi-view information bottleneck.
In ICLR.

Leo Gao, John Schulman, and Jacob Hilton. 2023. Scal-
ing laws for reward model overoptimization. In
ICML.

Xinyang Geng, Arnav Gudibande, Hao Liu, Eric Wal-
lace, Pieter Abbeel, Sergey Levine, and Dawn Song.
2023. Koala: A dialogue model for academic re-
search. Blog post, April, 1.

Google. 2023. Bard.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2021. Deberta: Decoding-enhanced
bert with disentangled attention. In ICLR.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021. Measuring massive multitask language under-
standing. In ICLR.

R Devon Hjelm, Alex Fedorov, Samuel Lavoie-
Marchildon, Karan Grewal, Phil Bachman, Adam
Trischler, and Yoshua Bengio. 2018. Learning deep
representations by mutual information estimation and
maximization. In ICLR.

Saurav Kadavath, Tom Conerly, Amanda Askell, Tom
Henighan, Dawn Drain, Ethan Perez, Nicholas
Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli
Tran-Johnson, et al. 2022. Language models
(mostly) know what they know. arXiv preprint
arXiv:2207.05221.

Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. 2023.
Semantic uncertainty: Linguistic invariances for un-
certainty estimation in natural language generation.
In ICLR.

Harrison Lee, Samrat Phatale, Hassan Mansoor, Kellie
Lu, Thomas Mesnard, Colton Bishop, Victor Car-
bune, and Abhinav Rastogi. 2023. Rlaif: Scaling
reinforcement learning from human feedback with ai
feedback. arXiv preprint arXiv:2309.00267.

Shiyang Li, Jun Yan, Hai Wang, Zheng Tang, Xi-
ang Ren, Vijay Srinivasan, and Hongxia Jin. 2023.
Instruction-following evaluation through verbalizer
manipulation. arXiv preprint arXiv:2307.10558.

Stephanie Lin, Jacob Hilton, and Owain Evans. 2022.
Teaching models to express their uncertainty in
words. arXiv preprint arXiv:2205.14334.

Zhen Lin, Shubhendu Trivedi, and Jimeng Sun. 2023.
Generating with confidence: Uncertainty quantifi-
cation for black-box large language models. arXiv
preprint arXiv:2305.19187.

Shayne Longpre, Le Hou, Tu Vu, Albert Webson,
Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V
Le, Barret Zoph, Jason Wei, et al. 2023. The flan
collection: Designing data and methods for effective
instruction tuning. In ICML.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and
Hannaneh Hajishirzi. 2022. Cross-task generaliza-
tion via natural language crowdsourcing instructions.
In ACL.

OpenAI. 2023. Gpt-4 technical report.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. In NeurIPS.

Ben Poole, Sherjil Ozair, Aaron Van Den Oord, Alex
Alemi, and George Tucker. 2019. On variational
bounds of mutual information. In ICML.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano
Ermon, Christopher D Manning, and Chelsea Finn.
2024. Direct preference optimization: Your language
model is secretly a reward model. In NeurIPS.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja,
et al. 2022. Multitask prompted training enables
zero-shot task generalization. In ICLR.

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Proxi-
mal policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

Chenglei Si, Zhe Gan, Zhengyuan Yang, Shuohang
Wang, Jianfeng Wang, Jordan Boyd-Graber, and Li-
juan Wang. 2023. Prompting gpt-3 to be reliable. In
ICLR.

Joar Skalse, Nikolaus Howe, Dmitrii Krasheninnikov,
and David Krueger. 2022. Defining and characteriz-
ing reward gaming. In NeurIPS.

1391

https://bard.google.com/

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel
Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. 2020. Learn-
ing to summarize with human feedback. In NeurIPS.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model.

Jeremy Tien, Jerry Zhi-Yang He, Zackory Erickson,
Anca D Dragan, and Daniel S Brown. 2023. Causal
confusion and reward misidentification in preference-
based reward learning. In ICLR.

Naftali Tishby, Fernando C Pereira, and William Bialek.
2000. The information bottleneck method. arXiv
preprint physics/0004057.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023a. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. 2023. Self-consistency improves chain
of thought reasoning in language models. In ICLR.

Yizhong Wang, Swaroop Mishra, Pegah Alipoor-
molabashi, Yeganeh Kordi, Amirreza Mirzaei,
Anjana Arunkumar, Arjun Ashok, Arut Selvan
Dhanasekaran, Atharva Naik, David Stap, et al. 2022.
Super-naturalinstructions: Generalization via declar-
ative instructions on 1600+ nlp tasks. arXiv preprint
arXiv:2204.07705.

Zhaofeng Wu, Linlu Qiu, Alexis Ross, Ekin Akyürek,
Boyuan Chen, Bailin Wang, Najoung Kim, Jacob An-
dreas, and Yoon Kim. 2023. Reasoning or reciting?
exploring the capabilities and limitations of language
models through counterfactual tasks. arXiv preprint
arXiv:2307.02477.

Kevin Yang, Dan Klein, Asli Celikyilmaz, Nanyun Peng,
and Yuandong Tian. 2024. Rlcd: Reinforcement
learning from contrast distillation for language model
alignment. In ICLR.

Tianshu Yu, Ting-En Lin, Yuchuan Wu, Min Yang, Fei
Huang, and Yongbin Li. 2023. Constructive large
language models alignment with diverse feedback.
arXiv preprint arXiv:2310.06450.

Zhiyuan Zeng, Jiatong Yu, Tianyu Gao, Yu Meng, Tanya
Goyal, and Danqi Chen. 2024. Evaluating large lan-
guage models at evaluating instruction following. In
ICLR.

Jing Zhao, Xijiong Xie, Xin Xu, and Shiliang Sun. 2017.
Multi-view learning overview: Recent progress and
new challenges. Information Fusion.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B
Brown, Alec Radford, Dario Amodei, Paul Chris-
tiano, and Geoffrey Irving. 2019. Fine-tuning lan-
guage models from human preferences. arXiv
preprint arXiv:1909.08593.

A Evaluation on Knowledge Intensive
Benchmark

We also evaluate the performance of RLP on knowl-
edge intensive benchmark MMLU (Hendrycks
et al., 2021), which includes exam questions from
57 tasks such as mathematics, history, law, and
medicine. Specifically, we use InstructEval (Chia
et al., 2023) to perform the evaluation. As shown in
Table 8, both RLP-UML and RLP-SPG outperform
PPO.

Method MMLU

GPT-4 86.4
ChatGPT 70.0
PPO 36.9
LLaMA-7B 35.2

RLP-UML (ours) 37.6
RLP-SPG (ours) 37.3

Table 8: Performance of RLP and baselines on the
MMLU benchmark. The scores are obtained by run-
ning InstructEval.

1392

