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Abstract

We propose utilizing n-best reranking to en-
hance Sequence-Level Knowledge Distillation
(Kim and Rush, 2016) where we extract pseudo-
labels for student model’s training data from
top n-best hypotheses and leverage a diverse
set of models with different inductive biases,
objective functions or architectures, including
some publicly-available large language mod-
els, to pick the highest-quality hypotheses as
labels. The effectiveness of our proposal is val-
idated through experiments on the WMT’21
German ↔ English and Chinese ↔ English
translation tasks. Our results demonstrate that
utilizing pseudo-labels generated by our n-best
reranker leads to a significantly more accurate
student model. In fact, our best student model
achieves comparable accuracy to a large trans-
lation model from (Tran et al., 2021) with 4.7
billion parameters, while having two orders of
magnitude fewer parameters.

1 Introduction

Knowledge Distillation (KD) (Hinton et al., 2015;
Buciluǎ et al., 2006) plays a pivotal role in many
machine learning tasks including neural machine
translation (NMT). This is evident in recent trans-
lation evaluations (Akhbardeh et al., 2021; Kocmi
et al., 2022; Agarwal et al., 2023), where the major-
ity of submissions incorporate KD into their train-
ing pipelines. Central to this paper is KD’s primary
strength, which lies in its ability to utilize a larger
teacher model to train a smaller student model ef-
fectively. Consequently, the accuracy of the teacher
model correlates with that of the student model.

One well-known yet simple approach for enhanc-
ing the accuracy of machine learning models in-
volves model ensembling (Dietterich, 2000), as
also has been applied by (Hinton et al., 2015) for
KD. In this approach, the underlying models are
typically trained on the same datasets but with vary-
ing random initializations. Many existing works

applying KD to NMT have adopted this approach,
including its dominant variant, namely sequence-
level KD (Kim and Rush, 2016), which deploys an
ensemble of teacher models to generate the pseudo-
labels of the student models’ training data. To
maintain the simplicity of the inference process
when generating the labels, the sequence-level KD
often imposes the requirements that the underlying
models share the same vocabulary and network ar-
chitecture. These factors, unfortunately, restrict the
types of models that can be included in the ensem-
ble, thereby limiting the avenues for improving the
teacher accuracy.

We introduce an n-best reranking approach to
extend the vanilla sequence-level KD to allow KD
to benefit from a more diverse type of models. N-
best reranking is a well-known and powerful ap-
proach for boosting translation accuracy, as evident
in (Marie et al., 2020; Qian et al., 2021; Tran et al.,
2021) just to name a few. Unfortunately, the associ-
ated inference cost can be too high for this approach
to be deployed in online environments with tight
latency constraint. By applying n-best reranking
for distillation, the elevated computational cost is
shifted to training stage without affecting the la-
tency of the deployed student model, thus sharing a
similar motivation as (Yang et al., 2022; Finkelstein
et al., 2023).

Our proposed approach involves a two-step pro-
cess. The first step involves generating a high-
quality n-best list from each source sentence. Our
initial study indicates a potential gain of almost 10
BLEU on our validation set if we consider hypothe-
ses beyond top-1. The final decision on which hy-
pothesis to be selected is deferred to the second step
where we take advantage of models with various
architectures, inductive biases, sources of training
data and objective functions to rerank the n-best
list. To increase model diversity further, we also
incorporate open-source large pretrained models
in our experiments, tapping into their availability
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and increased translation capabilities. This flexi-
bility stands in contrast to the rigid type of teacher
models deployed by the vanilla sequence-level KD.

We showcase our reranker’s effectiveness in two
scenarios, namely the traditional and iterative KDs.
In the former, pseudo-labels are directly utilized
for training student models, while the latter, often
dubbed as self-training, involves an extra step of
iteratively retraining the teacher models using the
pseudo-labels (Li et al., 2019). In the first scenario,
we thoroughly examine the accuracy of student
models trained with pseudo-labels generated by
our reranker, comparing them to models trained
with pseudo-labels from the vanilla sequence-level
KD. In the second scenario, we investigate whether
our reranker can yield a valuable cascading effect
by progressively enhancing teacher models using
the pseudo labels from teacher models from the
previous iteration. These improved teacher models,
in turn, may generate superior pseudo-labels for
training more accurate student models.

We also explore efforts that are directed at scal-
ing up our method to distill large-scale training data
more efficiently. This includes methods such as
model selection, where we choose a smaller set of
models for distillation that results in only a minimal
accuracy drop, and transfer set reduction, where we
decrease the volume of data to be distilled to only
include in-domain samples. More concretely, we
conduct extensive experiments on WMT’21 Ger-
man ↔ English and Chinese ↔ English translation
tasks. Our final model is as accurate as a large mul-
tilingual model with 4.7 billion parameters, despite
having only 68 million parameters.

2 Background: Sequence-Level KD

KD trains a student model (pθ) with the supervi-
sion of a more powerful teacher model (qθ) by min-
imizing the discrepancy between the prediction of
the student model with that of the teacher model.
Sequence-level KD, proposed by Kim and Rush
(2016), extends KD by minimizing the discrepancy
at the level of sequence (rather than at token level)
by introducing the following loss function:

LSEQ-KD = −
∑

t∈T
qθ(t|s) log pθ(t|s)

where t ∈ T represents the set of all possible se-
quences that the teacher model can generate from a
source sentence (s). Since enumerating all possible
sequences is intractable, Kim et al. (2021) approxi-
mate the distribution with its mode t̂ and arrive at

the following approximation:

LSEQ-KD ≈ −1
{
t = t̂

}
log pθ ≈ − log pθ(t̂|s),

where the mode is obtained via the following in-
ference: t̂ = argmax qθ(t|s). This simple ap-
proximation allows NMT to reuse the same stan-
dard training pipeline for student model with only a
slight modification, namely by substituting the orig-
inal labels t with pseudo-labels t̂ when computing
the loss function.

3 N-best Reranking for Distillation

Our n-best reranker formulates qθ(t|s) as a
weighted log-linear model, which is parameterized
by a collection of M models, M(s, t) ∈ RM , and
their associated weights λ ∈ RM . Each model,
Mi(s, t) ∈ R, assigns a real-valued score that in-
dicates the plausibility of a hypothesis t being the
translation of s according to the model, hence we
refer to M(s, t) as scoring models. The score of
each scoring model Mi(s, t) is weighted by λi and
then combined with all other models to produce the
final score. While the models are considered static,
their associated weights are trainable parameters,
learned via discriminative training. We discuss the
process in Section 3.1.

To generate pseudo-labels, our reranker applies
the following argmax formula:

t̂ = arg max
t∈N (s)

λ · logM(s, t)⊺, (1)

where t ∈ N (s) refers a hypothesis in an n-best
list. We generate the n-best list by running beam
search inference with a beam size set to n; however,
it can also be generated using alternative methods
such as epsilon sampling. We refer to the mod-
els used to generate N as G(s) ⊂ M(s, t). If
G(s) = M(s, t) and consists of only one identi-
cal translation model, then Eq 1 would revert back
to the vanilla sequence-level KD.

3.1 Discriminative Training of λ
To find the optimal λ, we utilize discriminative
training and a tuning set, which is assumed to be
drawn from the same distribution of the test sets.
For this paper, we employ the Margin Infused Re-
laxed Algorithm (MIRA) (Chiang et al., 2008),
known for its wide adaptation in Statistical Ma-
chine Translation and its ability to handle tens of
thousands of inputs. Without loss of generality,
we use BLEU (Papineni et al., 2002) to measure
translation accuracy in our experiments.
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MIRA seeks to find λ that minimizes the follow-
ing structured hinge loss LMIRA(λ)

= max
t∈N

[
∆(t) + λ · (M(s, t)⊺ −M(s, t∗)⊺)

]

where t∗ is the oracle hypothesis, which refers the
hypothesis in the n-best list that attains the high-
est BLEU score, while ∆(t) signifies the BLEU
differentials of a hypothesis t with the aforemen-
tioned oracle hypothesis. Ideally, the optimal λ
is achieved when the loss reaches 0, indicating
that a clear separation can be established between
each non-oracle hypothesis and the oracle hypoth-
esis with a margin proportional to their respective
BLEU differentials.

In our experiments, we use a variant of MIRA
with an efficient batch-level support, called KB-
MIRA (Cherry and Foster, 2012) which can be
found in the Moses toolkit (Koehn et al., 2007).
It also includes a sparsity-inducing regularization
which we utilize for model selection. For a more
in-depth discussion on MIRA and its variants, we
refer the readers to the cited papers.

3.2 M(s, t): Models for Scoring n-best List

The efficacy of our n-best reranker depends on the
diversity and quality of the deployed scoring mod-
els. The log-linear formulation in Equation (1)
imposes minimal assumptions about the underly-
ing models, which relaxes the requirements for the
models to strictly adhere to probabilistic principles
or comprehensively describe the entire translation
process. As a result, our reranker is able to ac-
commodate a wide spectrum of models, including
heuristics or target-side language models, as long
as they assign a relatively meaningful score.

In total, we conduct experiments involving over
50 scoring models for each language pair. For con-
ciseness, we group the models into 8 categories and
provide a description for each category, summa-
rized in Table 1. The first four categories include a
diverse range of in-house translation models, char-
acterized by distinctions in translation directions,
generation orders, network architectures, and do-
main adaptability. It is worth mentioning that most
of these models are developed for other exploratory
projects and including them as scoring models pro-
vides another avenue to reuse them. Meanwhile,
the last four categories encompass models that do
not strictly pertain to translation models but capture
some specific nuances of translation phenomena,

such as the fluency of hypotheses or the level of
agreement between hypotheses.

The first category is the forward translation
model (TM), which includes standard NMT mod-
els p(s|t). These models correspond to an au-
toregressive translation process that generates the
translation sequentially one token at a time condi-
tioned on the source sentence and previously gen-
erated tokens. The models in this category include
NMT models with various well-known architec-
tures, such as Transformer Big (Vaswani et al.,
2017), Deep Encoder Shallow Decoder (Kong et al.,
2021), Nearest-Neighbor (Khandelwal et al., 2021)
and MEGA (Ma et al., 2023).

The second category is the backward TM, which
includes models that are similar to the forward TM
but with different translation direction. In particu-
lar, these models focus on modeling the backward
translation direction p(t|s), useful to capture how
likely the source sentences be the translation of a
hypothesis, complementing the forward TM.

The third category is the right-to-left TM, which
includes models from the first two categories but
look at a reverse generation order, namely generat-
ing tokens in a right-to-left fashion. According to
(Liu et al., 2016; Zhou et al., 2019), the left-to-right
models are more effective at generating accurate
prefixes while the right-to-left models are more
effective at generating accurate suffixes.

The fourth category is domain-adapted models,
which consists of translation models from the pre-
vious three categoeis that we adapt to multiple do-
mains. In our experiments, we simply equate the
corpus provenance as the domain. We adopt a tag-
based approach and prepend the source sequence
with d ∈ {europarl, commoncrawl, rapid, · · · },
like in (Johnson et al., 2017; Ha et al., 2017).

The fifth category is the language model, con-
sisting of the models that focus on evaluating the
fluency aspect of the hypotheses. In our experi-
ments, we train a causal language model with the
GPT-2 architecture (Radford et al., 2019) on the
target side of our parallel data and the monolingual
data. Meanwhile, the sixth category is the align-
ment models, consisting of the models that evaluate
the fine-grained correspondences between tokens in
the hypothesis and the source sequence. To gener-
ate the alignment, we use the IBM model 3 (Brown
et al., 1993) from the eflomal toolkit (Östling and
Tiedemann, 2016). The seventh category corre-
sponds to the Minimum Bayes-Risk (MBR) util-
ity function. Via the models in this category, our
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Model category Formulation Description

(1) Forward translation model (TM)
∑I

i=0 log p(ti|t<i, s) Variants: Deep Encoder, MEGA

(2) Backward TM
∑J

j=0 log p(sj |s<j , t) idem

(3) Right-to-left model
∑I

i=0 log p(ti|t>i, s) Applied to (1 & 2) as well

(4) Domain-adapted TM
∑I

i=0 log p(ti|t<i, s, d) d: domain tag, applied to TM

(5) Monolingual language model
∑N

i=0 log p(ti|t<i) Causal language model

(6) Alignment-based model logP (t|s, a) a: token alignment between y, s

(7) MBR loss function U(t|t′ ∈ N ) U ∈ BLEU, TER, chrF, etc

(8) Various publicly-available pretrained models, e.g. LASER, mBART, M2M, BLOOM-Z, etc

Table 1: Categories of models to evaluate hypothesis pair s, t ∈ N in the n-best list. The first four categories
correspond to in-house translation models, while the last four correspond to general models.

reranker is able to give preferences to hypotheses
that have the higher level of consensus with other
hypotheses in the n-best list, as measured by some
extrinsic translation metrics. These models infuse
our reranker with elements of consensus decoding
(Kumar and Byrne, 2004).

Our last category consists of various publicly-
available pretrained models. It includes the LASER
sentence-embedding model (Artetxe and Schwenk,
2018), the mBART multilingual translation model
(Liu et al., 2020), the M2M-100 (Fan et al., 2020)
and the NLLB (NLLB Team et al., 2022). It also
includes a single dense multilingual model from
the WMT21 winning team, namely Facebook AI
Research (FAIR) WMT21 (Tran et al., 2021) - cur-
rently known as Meta AI Research. Additionally, it
includes multilingual large language models from
BigScience, namely BLOOMZ and mT0 (Muen-
nighoff et al., 2022). These models are trained with
significantly more data and not all of them are ex-
plicitly trained to optimize translation objectives.
When utilizing these models, we condition them
for translation by prepending five translation exam-
ples as the prefix (5-shot) like in (Moslem et al.,
2023). The sizes of these models vary from 50
million to 10+ billion parameters, which is larger
than the models in other categories.

3.3 G(s): Models for Generating n-best List

The efficacy of our n-best reranking also hinges
upon the accuracy and diversity of the n-best list.
While an ideal scenario involves deploying all scor-
ing models within M(s, t), this proves to be both
computationally intensive and impractical, espe-
cially considering that not all models explicitly

generate translations, such as language models.
To strike a balance between efficiency and effi-

cacy, we choose to utilize the two specific models,
which we call the L2R and the R2L models. The
L2R model comprises an ensemble of four Trans-
former Big models (Vaswani et al., 2017) while
the R2L model is its right-to-left counterpart. The
former belongs to the first category and the latter to
the third category described in Table 1. By combin-
ing n-best lists from the L2R model, specialized at
producing accurate prefixes with diverse suffixes,
and from the R2L model, specialized at generating
accurate suffixes with diverse prefixes, we aim to
generate highly accurate but diverse n-best lists.
Appendix B provides more details about our ex-
ploration. For fair comparison, we employs the
same L2R models as our baseline sequence-level
KD experiments.

3.4 Scaling Up n-best Reranking

Deploying the complete set of scoring models to
showcase accuracy improvements on a small set of
test data is relatively affordable. However, deploy-
ing the same complete set to distill the entire train-
ing dataset becomes computationally intractable
given the scale of the data. Therefore, we describe
two efforts to scale up n-best reranking, namely re-
ducing the number of scoring models at distillation
time and reducing the number of student model’s
training data to distill.

3.4.1 Model Reduction
We seek to find a subset of scoring models, namely
D(s, t) ⊂ M(s, t), that provides minimal quality
degradation. In our case, we think the goal is attain-
able since, despite the intended complementarity
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of the models, there may be significant redundancy,
particularly as the majority of our in-house models
are trained on the same data.

Manual selection of D(s, t) is impractical given
the vast number of choices. Instead, we adopt a
simple solution by leveraging the discriminatively
learned weights λ associated with each scoring
model. This approach capitalizes on the regular-
ization term employed by the KB-MIRA optimizer
(Section 3.1), offering a convenient and inexpen-
sive way of selecting models that contribute signifi-
cantly to the task. In our experiments in Section 4.1,
we select top 5 models with the heighest weights
for distillation, reducing the model count in our
reranker with minimal accuracy drop.

3.4.2 Transfer Set Reduction
The distillation cost of our n-best reranker is propor-
tional to the size of the so-called transfer set, refers
to the examples that were distilled and used to train
the student model (Hinton et al., 2015). Typically,
to maximize accuracy, the transfer set for NMT in-
cludes a new set of monolingual data, as suggested
by (Edunov et al., 2018). This, in addition to the
whole parallel data used also to train the teacher
model, significantly increases the distillation cost.

To reduce the distillation cost, thus, we inves-
tigate transfer set reduction. Particularly, in our
experiments in Section 4.2, we explore using dis-
tilled bitext, monolingual data or the combination
of both. We found that using only the monolingual
data as the transfer set is adequate with no accu-
racy drop, which leads to a significant saving in
distillation time. In addition, we also experiment
with a significantly smaller transfer set that consists
of the aggregate of multiple in-domain validation
sets, used for finetuning a baseline student model,
similar to (Finkelstein et al., 2023). Unfortunately,
our initial investigation suggests that while it does
improve the baseline model’s accuracy, the gain is
marginal.

4 Experimental Results

To showcase the efficacy of our proposal, we con-
duct large-scale experiments on WMT21 German
↔ English and Chinese ↔ English translation
tasks. Our baseline is the vanilla sequence-level
KD (Kim and Rush, 2016) that employs the afore-
mentioned LR models as its teachers. We con-
strained the student model’s capacity to approx-
imately 68 million parameters, in line with the
Transformer Base architecture. We use Fairseq

(Ott et al., 2019) for training and inference of
our in-house models. More details about these
models can be found in Appendix A, including
other experimental setup including the bitext used
mainly for teacher model training and the mono-
lingual data primarily used for student model train-
ing. We use the WMT19 set to learn λ weights
for our reranker, the WMT20 set as our validation
set and the WMT21 set as our blind test set. For
these sets, we use the maximum number of refer-
ences provided. To report accuracy, we use sacre-
BLEU (Post, 2018) with the following signature
nrefs:k|case:mixed|eff:no|tok:13a|smooth
:exp where k is the number of reference(s).
For our main results, we additionally re-
port chrF (Popović, 2015) with this signature
nrefs:k|case:mixed|eff:yes|nc:6|nw:0|spa
ce:no and COMET22 (Rei et al., 2022) using
wmt22-comet-da model. For generating n-best list
and student model’s hypothesis, we set beam size
to 8 and 5 respectively.

In Section 4.1, we first focus on intrinsic evalua-
tion, comparing the accuracy of the n-best reranker
with that of the sequence-level KD’s teacher mod-
els on validation sets. In Section 4.2 and Sec-
tion 4.3, we then shift to primary evaluations where
we assess the utility of the pseudo-labels generated
by our n-best reranker for training student model
and retraining teacher models. We mainly focus on
the German → English direction and summarize
the results for the other language pairs at the end.

4.1 Accuracy of n-best Reranker
Table 2 summarizes the accuracy of our n-best
reranker on the German → English’s validation
set. In the WMT20 set, the baseline system attains
a BLEU score of 58.8. This score also represents
the score of the top-1 hypothesis in our n-best list
since the list is generated by the same model (com-
plemented with its right-to-left counterpart).

In rows Oracle and Anti-Oracle, we report the
accuracy of the best-scoring and worst-scoring hy-
potheses within our n-best list. Row Oracle shows
that the best-scoring hypotheses surpass the top-1
by almost 10 BLEU point, indicating the substan-
tial room for improvement embedded in our n-best
reranking approach. Conversely, row Anti-Oracle
shows that the gap to the worst-scoring hypotheses
is much wider, which is almost 20 BLEU point
worse. This underscores the importance of employ-
ing robust scoring models, given the risk associated
with poor-scoring alternatives.
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Description WMT20

Baseline / Top-1 58.8
Oracle 67.5 †
Anti-Oracle 41.3
n-best Reranker - Full (|M| = 72) 60.4 †
n-best Reranker - Select (|Md| = 5) 60.3 †
kNN-MT 59.1
MBR-BLEU 59.3

Table 2: N-best reranker results on WMT20 validation.
†implies that the difference is statistically significant
with the Baseline at p < 0.05.

Using the full set of 72 models (M), our n-best
reranker achieves the BLEU score of 60.4, sur-
passing the baseline system by 1.6 BLEU point.
This outcome underscores the efficacy of our n-
best reranker proposal in enhancing model accu-
racy. We then proceed to apply the model selection
strategy described in Section 3.4.1. We pick 5 mod-
els with the highest weights, rerun reranking with
the same weights (zeroing out the weights of other
models) and report the reranker accuracy in the last
row. As shown, the accuracy of the n-best reranker
with smaller model count is relatively similar to
running with the full set of models.

In the last rows of Table 2, we also include two
systems from (Yang et al., 2022) and (Finkelstein
and Freitag, 2024) for reference. The models from
these two system are already in included in the scor-
ing models in our n-best reranker experiment. The
kNN-MT is based on the vanilla (Khandelwal et al.,
2021) trained on the same training data as our base-
line. For inference, we set k = 64 and τ = 100.
For MBR-BLEU, we use our baseline model to
generate 260 hypotheses for each source sentences,
where we use beam search to generate 4 hypotheses
and use epsilon sampling with ϵ = 0.02 to generate
the remaining 256 hypotheses, following (Finkel-
stein and Freitag, 2024). As shown, the accuracy
of these two systems are better than the baseline
systems, but combining them with other models
provide a much better accuracy. Considering the
computational cost of kNN-MT and MBR-based in
generating hypotheses (discussed in Appendix F),
we opt to include these methods as scoring models.

Table 3 compiles the WMT20 accuracy of some
models that are eventually utilized in the distilla-
tion of the student model’s training data. We rank
the models based on the accuracy of each model

when it is used as the only model to rerank the n-
best list. As shown, the two models utilized for
generating the n-best list (G) are ranked 5 and 13
respectively, but are not selected by our model se-
lection strategy. Interestingly, the models selected
for distillation (D) exhibit considerable variabil-
ity in terms of ranking, notably excluding the top
highest-ranked models. We hypothesize that this
is due to redundancy in high-performing models,
and the reranker prioritizes model diversity as also
suggested by (Gontijo-Lopes et al., 2022). The
first model in D is the single multilingual dense
model provided by (Tran et al., 2021), which is
the most accurate model. While this model is not
their final submission to WMT, it is highly accurate
since it is trained on significantly larger training
data and consists of 4.7 billion parameters. The
remaining four other models in D come from dif-
ferent model categories, ranging from backward,
adapted, R2L and publicly-available models. Note
that since the model selection strategy is automatic
and non-deterministic, the models chosen for each
iteration are dynamic. This is also applicable in
other translation pairs.

4.2 N-best Reranking Improves Student
This section investigates the utility of our n-best
reranking approach on the downstream task of train-
ing student model. We use the reranker with se-
lected models (D) to generate the pseudo-labels for
the whole training data. For our baseline sequence-
level KD, we use the L2R model to generate the
pseudo-labels. As another baseline, we also include
sequence-level Knowledge Interpolation (KI) from
(Kim and Rush, 2016), which chooses hypotheses
in the n-best list that give the highest BLEU score
using the original labels as the references.

As part of scaling up mentioned in 3.4.2, we
explore how the accuracy of the student model is
impacted by different transfer sets. We investi-
gate three configurations, namely bitext only, bitext
+ monolingual, and monolingual only. Table 4
summarizes the results of our experiments, which
contains the accuracy of various student models on
WMT21 test set.

In the bitext only condition, we only consider
the distilled parallel data to train the student model.
More specifically, we compare the pseudo-labels
generated by n-best reranking with three baseline
methods: original labels, pseudo-labels obtained
through sequence-level knowledge interpolation
(KI), and those obtained through sequence-level
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Rank Description Model Category G D WMT20

1 FAIR WMT21 Dense (8) Public model - ✓ 59.6
5 TransformerBig L2R (1) Forward TM ✓ - 58.8

13 TransformerBig R2L (3) Right-to-Left TM ✓ - 58.0
14 TransformerBig d=cc (4) Adapted - ✓ 58.0
19 BigScience mt0-xxl-mt (8) Public model - ✓ 57.8
32 TransformerBigBwd, R2L d=rapid (2,3,4) Backward, R2L, Adapted - ✓ 54.8
50 TransformerBigBwd, L2R (2) Backward TM - ✓ 54.7

Table 3: Description of the models used to generate n-best lists (G) and models selected for distillation (D),
specifically for the first iteration of German → English direction, together with their accuracy on WMT20.

Row Transfer Sets Baseline Seq-level KI Seq-level KD n-best rerank

1 bitext only (91M) 48.8 49.3 49.6 50.0
2 bitext + mono (155M) - - 50.9 52.0
3 mono only (54M) - - 50.9 52.2

Table 4: Comparison of BLEU scores on WMT21 test sets between n-best reranking and the three baseline models,
including sequence-level knowledge interpolation and distillation, across different configurations of transfer sets.

knowledge distillation (KD). As shown in row 1,
the student model trained with the original labels
achieved an accuracy of 48.8 BLEU point. Mean-
while, the models trained with pseudo-labels gen-
erated through sequence-level KI and KD showed
improvements of 0.5 and 0.8 BLEU points respec-
tively, which is in line with previous literature (Kim
and Rush, 2016). Our n-best reranker approach
leads to even stronger performance, with the stu-
dent model achieving an accuracy of 50.0 BLEU
point. This is a statistically significant improve-
ment of 1.2 BLEU points compared to the baseline.

In the bitext+mono condition, we augment the
training data for the student model with the dis-
tilled monolingual data. Since the monolingual
data lack labels, we compare our n-best rerank-
ing method only with sequence-level knowledge
distillation (KD). The results in row 2 reveal that
incorporating the distilled monolingual data signifi-
cantly improves the accuracy of the sequence-level
KD system by approximately 1.3 BLEU points.
However, our n-best reranking approach achieves
an even greater gain of 2.0 BLEU points, thereby
widening the performance gap with sequence-level
KD to 1.1 BLEU points. This result highlights the
value of incorporating in-domain data as the trans-
fer sets. In our approach, the monolingual data
used seems to align with the domain of the evalu-
ation sets, while in contrast, the parallel data are
sourced from a broader range of domains.

In row 3, we investigate whether a smaller in-

domain transfer set is more or as effective than
a larger mixed-domain one. The results in row
3 reveal marginal gains for both sequence-level
KD and our n-best reranking approach when using
only the distilled monolingual data as the transfer
sets. This result is highly encouraging since we
can reduce the distillation time by half without
accuracy drop. In any case, our n-best reranking
approach leads to a student model that is 3.4 BLEU
better than the baseline and 1.3 BLEU better than
sequence-level KD. Based on these results, we use
monolingual data as the transfer set subsequently.

4.3 Self-Training Teacher Improves Student

Given the substantial accuracy gains obtained by
using pseudo-labels generated by n-best reranker
in student models, we investigate whether teacher
models can derive similar benefit from the use of
the same pseudo-labels. Up to now, all the teachers
models are trained exclusively from parallel data
with original labels that come from a mixed set
of domains. In light of this, we conduct a series
of experiments retraining the teacher model using
pseudo-labels. To manage computational costs ef-
fectively, we focus our investigations on retraining
the models in G. This is accomplished through fine-
tuning the models, as opposed to retraining them
from scratch, and utilizing only monolingual data,
excluding the bitext, as the transfer sets. Our ratio-
nale for this strategy is detailed in the preliminary
experiments, discussed in the Appendix C.
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System | θ | German → English English → German
BLEU chrF COMET22 BLEU chrF COMET22

1. Baseline 68M 48.8 67.4 84.8 52.6 68.3 82.0
2. Seq-level KD 68M 50.9† 68.6 85.7 54.5† 69.1 83.0
3. n-best (iter 1) 68M 52.2†‡ 69.3 85.9 57.4†‡ 71.1 84.4
4. n-best (iter 2) 68M 52.7†‡ 69.9 85.8 58.3†‡ 71.6 84.6
5. n-best (iter 3) 68M 52.8†‡ 70.0 86.0 59.1†‡ 72.0 84.9
6. FAIR WMT21 Dense 4.7B 52.6†‡ 86.3 63.1 59.9†‡ 72.7 85.5
7. FAIR WMT21 MoE 52B 53.3†‡ 86.5 63.7 62.0†‡ 73.5 85.8

System | θ | Chinese → English English → Chinese
BLEU chrF COMET22 BLEU chrF COMET22

1. Baseline 68M 21.2 48.7 60.5 40.3 29.7 79.9
2. Seq-level KD 68M 22.9† 53.1 73.5 42.5† 33.1 81.6
3. n-best (iter 1) 68M 28.3†‡ 57.4 79.5 43.7†‡ 33.3 81.7
4. n-best (iter 2) 68M 29.4†‡ 58.1 80.2 45.2†‡ 34.9 82.7
5. n-best (iter 3) 68M 30.3†‡ 59.4 80.8 45.5†‡ 35.2 83.0
6. FAIR WMT21 Dense 4.7B 29.9†‡ 60.1 81.9 42.4†‡ 34.3 85.2
7. FAIR WMT21 MoE 52B 32.1†‡ 60.4 82.2 49.9†‡ 39.4 85.2

Table 5: German ↔ English (top) and Chinese ↔ English (bottom) results on WMT21 test set, compared to the
baseline models and WMT21 models from FAIR. FAIR MoE accuracy is from (Barry Haddow, 2021). Our n-best
reranking results are in gray. † implies that the difference with the baseline is statistically significant at p < 0.05,
while ‡ implies that the difference with the Seq-level KD is statistically significant at p < 0.05.

More specifically, we fine-tune the two models in
G for one epoch using the pseudo-labels obtained
from the n-best reranker and using monolingual
data as the transfer sets. We then retrain the next
iteration’s reranker using these models, producing
a new set of pseudo-labels for training the student
model. It’s worth reiterating that the models se-
lected for distillation D vary in each iteration. We
continue this iterative process twice when we typi-
cally start observing diminishing gain.

Table 5 provides a summary of our self-training
experiments. Focusing on the German → En-
glish columns, the first three rows of the table are
taken from Table 4, reporting the accuracies of
the baseline model, the student model trained with
sequence-level KD, and the student model trained
with pseudo-labels from n-best reranking. The next
two rows show the results from our self-training ex-
periments for two iterations. Our experiments show
that self-training the teacher models for one itera-
tion can improve the student model accuracy by 0.5
BLEU points (row 4). Our final model, after three
iterations, scores 4.0 BLEU points higher than the
baseline model and 2.9 BLEU points higher than
sequence-level KD. This conclusion is consistent
across both chrF and COMET metrics. We also

compare our final model with the winning WMT21
models from FAIR with respect to accuracy and
model size, as shown in rows 6 and 7. Performance-
wise, our final model is comparable to FAIR’s
Dense model, while having fewer parameters. Our
model consists of 68 million parameters, while the
FAIR model is around 70 times larger.

We also present the experimental results for the
English → German and the Chinese ↔ English
directions in Table 5. As shown, we observe a gain
similar to the one observed in the German → En-
glish direction where the pseudo-labels from n-best
reranker leads to a significantly better student ac-
curacy. These gains remain consistent across mul-
tiple metrics, encompassing chrF and COMET22,
although given that our reranker is trained to opti-
mize BLEU score, the most pronounced improve-
ment is evident in the BLEU score. Nevertheless,
these results affirm our hypothesis that the n-best
reranker with robust scoring models can effectively
enhance the quality of training data labels.

5 Related Work

Our proposal intersects with many works in various
ways. The idea of utilizing n-best reranking to im-

1337



prove accuracy has been extensively investigated as
far back as the era of Statistical Machine Transla-
tion if not earlier, for example in (Och et al., 2004;
Shen et al., 2004; Chiang et al., 2008) and more
recently in (Marie et al., 2020; Qian et al., 2021;
Tran et al., 2021). In these recent work, n-best
reranking incurs significantly higher inference time
from running multiple models over the n-best list,
thus may not be practical for real-world systems.
In contrast, our work makes a practical trade-off
by shifting the heavy computational cost of n-best
reranking to training data preprocessing without
affecting the latency of the deployed model. Our
work shares the same motivation as (Yang et al.,
2022; Finkelstein et al., 2023), but we consider a
larger and more diverse set of models.

The idea of looking at n-best hypotheses for
knowledge distillation has been also investigated in
the original sequence-level KD paper (Kim et al.,
2021), namely sequence-level Knowledge Inter-
polation which we consider as one of our baseline
where the authors propose to approximate the mode
with the hypothesis that scores the highest accord-
ing some translation metrics. However, since this
approach requires the ground truth, the application
of this variant is limited to distilling parallel data.
In contrast, since our n-best reranker is trained on
a tune set, our approach is applicable for distilling
unlabelled monolingual data.

Our n-best reranker incorporates various mod-
els as reranking models. Some of these models
have been applied to knowledge distillation. For
example, Yang et al. (2022) deploys nearest neigh-
bor machine translation models. Meanwhile, Yee
et al. (2019) combines direct models with chan-
nel and language models. Currey et al. (2020)
trains domain-specific teacher models to distilled
in-domain training data for training multi-domain
student model. On the other hand, our n-best
reranker incorporates significantly larger number
of models, including the aforementioned. Also, we
deploy these models to score hypotheses, rather
than to generate them, which is significantly faster.

Self-training has also been frequently investi-
gated for Machine Translation in statistical and
neural era (Li et al., 2019). Recently, it is often
dubbed as iterative knowledge distillation and can
be found as a winning formula in many evaluation
campaigns (Li et al., 2019). In this work, we apply
self-training using high-quality pseudo-labels from
n-best reranker which produces accurate results.

6 Summary and Future Work

We enhance the sequence-level knowledge distil-
lation (Kim and Rush, 2016) by incorporating n-
best reranking. Thus, rather than improving the
accuracy of the teacher models by following neu-
ral scaling laws alone, our proposed method do so
by leveraging a multitude of models with differ-
ent inductive biases, objective functions or archi-
tectures to collaboratively rescore n-best hypothe-
ses and identify the best pseudo-labels. Further-
more, we observed a relatively strong cascading ef-
fect, where teacher models finetuned using pseudo-
labeled data are more accurate, leading to the gen-
eration of more accurate pseudo-labels for the next
iteration and resulting in an even more accurate
student model. We also explore efficienty efforts
to scale up n-best reranking via model selections
and transfer set reductions, resulting in a reduc-
tion in distillation time. Our final student model
demonstrates up to 4.0 BLEU point improvement
over baseline systems and is on par with a strong
large translation model on German↔English and
Chinese↔English translation tasks, despite having
only 1/70th the parameters.

For future work, we intend to improve the effi-
cacy of our approach by incorporating more pow-
erful large language models that are finetuned to-
wards translation tasks as well as models that more
explicitly capture fine-grained phenomena such as
gender or number agreements. To improve the ef-
ficiency, we also plan to investigate methods to
automatically identify transfer sets at fine-grained
sentence level as well as ways to speed up the scor-
ing process further, for instance by utilizing only
unnormalized probabilty score like in (Devlin et al.,
2014).

Limitations

While the proposed evaluation framework is
language-agnostic, the experiments conducted in
this study are limited to two language pairs. Due
to its reliance on the availability of models and in-
domain monolingual, we cannot guarantee accurate
results when applied to language pairs involving a
low-resource language pairs. We use numerous pre-
trained models with various license terms. While
all of them are friendly for non-commercial re-
search purpose, not all of them are not for commer-
cial purpose. Readers should perform their own
due dilligence.
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Ethics Statement

We acknowledge the ethical considerations asso-
ciated with the n-best reranking approach, which
utilizes multiple models to generate pseudo-labels.
First of all, we recognize that these models possess
their own biases, inherited from the training data,
which can potentially perpetuate societal inequal-
ities. Bias in the models can result from biased
training data or the inherent limitations of the algo-
rithms used. Despite our best efforts to preprocess
and debias the training data, complete elimination
of biases is challenging. Second of all, the n-best
reranking approach incurs higher computational
costs compared to traditional methods. These costs
arise from training and maintaining multiple mod-
els concurrently. We have implemented mitigation
strategies such as model recycling and leveraging
publicly available corpora to address these con-
cerns. Furthermore, although we utilize numerous
models, it is important to highlight that the major-
ity were not specifically trained for this n-best ap-
proach. In fact, many originate from our broader ex-
ploratory initiatives, and the n-best reranker serves
as a means to repurpose them effectively. Despite
of our mitigation efforts, the increased computa-
tional burden can limit the accessibility and afford-
ability of the approach, particularly for researchers
or organizations with limited resources.

References
Milind Agarwal, Sweta Agrawal, Antonios Anasta-

sopoulos, Luisa Bentivogli, Ondřej Bojar, Claudia
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A Experimental Setups

We follow the experimental setup of the WMT21
news translation task, particularly the constrained
track to train our in-house models. For German
↔ English directions, our parallel data are com-
posed of Europarl v10, ParaCrawl v7.1, Common
Crawl, News Commentary v16, Wiki Titles v3,
Tilde Rapid and WikiMatrix. For Chinese ↔ En-
glish directions, our parallel data are composed
of Paracrawl v7.1, News Commentary v16, Wiki
Titles v3, UN Parallel Corpus v1.0, CCMT and
WikiMatrix. For monolingual data, we use the
2021 subsets of News Crawl. We deduplicate and
preprocess the data using the M2M-100 (Fan et
al., 2021) processing scripts1. For training our in-
house teacher models, we run up to 80 thousand up-
dates, while for training the student model, we run
up to 30 thousand updates. For finetuning teacher
models, we run one epoch of updates.

Table 6 summarizes the data sizes for different
splits of the two language pairs.

Bitext Mono Valid Test

De → En 91M 38M 785 1000
En → De 91M 37M 1418 1002
Zh → En 54M 32M 2000 1948
En → Zh 54M 37M 1418 1002

Table 6: Sizes of Splits used in the paper, where Valid
refers to WMT20 and Test refers to WMT21.

B Pilot Study for Models for n-best
Generation

Figure 1 shows the BLEU scores for the top-1 and
oracle hypotheses of n-best list with different N
from 1 to 32 on our tune set. As shown, the BLEU
score for the top-1 hypotheses marginally improves
when we increase the beam size from 1 to 4 but
then it plateaus, which is consistent with Britz et al.
(2017)’s finding. This suggests that increasing the
beam size may not benefit the original sequence-
level KD. In contrast, the oracle BLEU score im-
proves monotonically with larger beam size, where
the gap for N > 8 is more than 10 BLEU points
and growing. This gap speaks to the potential for
our proposed n-best reranking. Compared to L2R,
the n-best list’s oracle score from L2R+R2L is
around 2-3 BLEU points higher. We equate G to

1https://github.com/facebookresearch/fairseq/
tree/main/examples/m2m_100
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Figure 1: BLEU scores for top-1 and oracle hypotheses
of WMT19 with different beam size

L2R+R2L with beam size of 8 since its accuracy
is better than doubling the beam size of L2R setup
with additional parallelization benefits.

C Pseudo-Labels from N-best reranking
for Self-Training

We conduct a pilot study on one of the L2R models,
which is part of G, to inform our decisions on two
aspects: 1) determining which transfer sets to uti-
lize, and 2) determining whether it is necessary to
retrain the teacher model from the scratch or if fine-
tuning proves to be sufficient. The results of this pi-
lot study are summarized in Table 7. For finetuning,
we only run one epoch, while for retraining we run
around 50 epochs (up to 80 thousands update). The
baseline accuracy of training this teacher model
using the original bitext is 57.4 point, as indicated
in the first row of column Baseline. The Retrain
column shows that training the teacher model with
the same bitext, but with pseudo-labels, resulted in
a gain of 0.6 BLEU point. As shown in the subse-
quent rows (bitext+mono and mono only), adding
the distilled monolingual data to the transfer sets
or using them alone result in a stronger gain of
around 1.5 BLEU points, which is consistent with
our finding in the student model training.

Comparing the Retrain and Finetune columns,
we observe that the accuracy of finetuned mod-
els is on par with the model trained from scratch.
These results are encouraging because we can ob-
tain a teacher model that is 2.1 BLEU points more
accurate with minimal training FLOPs via finetun-
ing and using the smallest transfer set. We con-
duct similar experiments using pseudo-labels from
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Transfer Sets Baseline Retrain Finetune

bitext only 57.4 58.0 58.0
bitext+mono - 59.5 59.2
mono only - 59.5 59.5

Table 7: WMT20 scores of a teacher model trained
with pseudo-labels from n-best reranking with different
transfer sets (rows) and training regime (columns).

sequence-level KD and discuss it in Appendix D.
Although a similar trend is observed, the resulting
gain from sequence-level KD is smaller.

D Pseudo-Labels from Sequence-level KD
for Self-Training

We report the results for self-training teacher model
using the pseudo-labels from sequence-level KD
in Table 8. As shown in row bitext only, retraining
teacher models with these pseudo-labels leads to
a degradation. Including the monolingual data as
the transfer sets helps to improve the accuracy as
shown in row bitext+mono and mono only. Com-
paring columns Retrain and Finetune, we observe
that finetuning can achieve a similar accuracy gain
as the full retraining, which is similar to what we
observe in finetuning experiments using pseudo-
labels from n-best reranking. Comparing with us-
ing pseudo-labels from n-best reranking reported
in Table 7, self-training using pseudo-labels from
sequence-level KD gives smaller accuracy gain
than self-training using pseudo-labels from n-best
reranking.

Baseline Retrain Finetune

bitext only 57.4 57.3 57.1
bitext+mono - 58.3 57.8
mono only - 58.3 58.1

Table 8: WMT20 BLEU scores of a teacher model
trained with pseudo-labels from sequence-level KD
with different transfer sets (rows) and training regime
(columns).

E Effects of Pseudo-Labels on Different
Model Architectures

This section describes the efficacy of pseudo-labels
generated by n-best reranker on the teacher models,
beyond the student model described in the main pa-
per. Table 9 details the accuracy of teacher models

with and without reranking along with the accu-
racy of the corresponding student models, focusing
on the German → English WMT21 test set. For
the student models, we copy the numbers from the
German → English section of Table 5. At iteration
0, the student model is trained with the original
labels of the bitexts, while at the later iterations,
the student is trained with monolingual data with
pseudo-labels generated using n-best reranker at
the corresponding iteration. For column Top-1, we
report the accuracy of the generating models, which
refer to an ensemble of 4 models with Transformer
Big architecture, each consisting of around 310
million parameters. At iteration 1, these teacher
models are trained with original labels of the bi-
texts, and at later iterations, they are trained with
monolingual data with pseudo labels generated by
the reranker at the previous iteration.

As shown, there is a 2 BLEU point gap between
the student model (row iter 1; column Student)
and the teacher models (row iter 1; column Top-1)
when the two models are trained with parallel data
with original labels. As shown, the n-best reranker
improves the teacher accuracy by +2.5 BLEU point
(from 50.8 to 53.3). When this reranker is used
to generate the pseudo-labels of the monolingual
data for student model training, the student model’s
accuracy increases up to 52.2 BLEU score (row iter
2; column student). When the same pseudo-labels
are used to train the teacher models, the accuracy
of teacher model’s next iteration increases up to
52.5 BLEU point (row iter2 and column Top-1).
A similar trend but with less significant improve-
ment is also observed for iteration 2 and iteration
3. This result demonstrates that the accuracy gain
observed in the student model is also observed in
the teacher models, which is an order magnitude
larger. Additionally, it also shows that the accuracy
gap between teacher and student models is smaller
with the combination of self-training and n-best
reranking.

F Distillation Cost

Table 10 presents the distillation cost incurred for
distillating a sample of 10,000 German sentences
utilizing the n-best reranker outlined in Table 1.
Since our n-best reranking consists of many paral-
lelizable components, we detail the costs in terms
of parallel and serial hours. Parallel hours depict
a scenario in which all computing resources are
accessible simultaneously, while serial hours de-
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Iter Student
Teacher

Top-1 Reranked ∆

1 48.8 50.8 53.3 +2.5
2 52.2 52.5 53.6 +1.1
3 52.7 53.0 54.0 +1.0
4 52.8

Table 9: WMT21 BLEU scores of teacher and stu-
dent models across different iteration for the WMT21
German-English test set.

Step
Parallel Serial
Hours Hours

Generating n-best 00:48 01:33
TransformerBig L2R 00:48
TransformerBig R2L 00:45

Scoring 02:08 06:22
FAIR WMT21 Dense 01:55
TransformerBig d=cc 00:43
BigScience mt0-xxl-mt 02:08
TransformerBigBwd,R2L,d=rapid 00:51
TransformerBigBwd,L2R 00:45

argmax 00:10*

n-best reranking total 03:06 08:05

kNN-NMT 14:54
MBR-BLEU 15:28

Table 10: GPU hour breakdown of a German-English
distillation process for a sample of 10,000 German sen-
tences using n-best reranker described in Table 1. Last
two rows report the distillation cost for two other meth-
ods. * refers to CPU hours

pict a scenario where only one resource is available
at a time. The actual wallclock time is contingent
upon the condition of the compute cluster condi-
tion, which impacts the actual level of parallelism.
Apart from the reranking step which computes the
final cost of each hypothesis, all the cost in Table 10
refers to GPU hours.

As shown, generating the n-best list takes around
one and a half hour to generate using the two
generation models. For the baseline knowledge-
distillation, utilizing solely the L2R model, the
pseudo-labels can be generated in less than an hour.
The majority of cost for n-best stems from the scor-
ing step, involving 5 models. The cost for each
model correlates with the model size. Scoring us-
ing a 13 billion models (BigScience mt0-xxl-mt)

takes around 2 hours while scoring using an en-
semble of 4 models with 655 million parameters
(TransformerBig) takes around 45 minutes. The
parallel cost for the scoring step is around 2 hours,
which represents an optimal situation where the
computing resources are available to score using
all models, which is equal to the time needed for the
slowest model. Meanwhile, the serial cost for this
step takes up eight hours, which represents a less
than ideal situation where each model must wait for
resources sequentially. The last step (argmax) is
to takes the scored n-best and rerank it according to
the learned weights. This step only requires CPU
and the cost is negligible compared to other steps.
In practice, the n-best reranking takes between 3:06
to 08:05, incurring around 4.0x to 10x times distil-
lation cost than the baseline sequence-level KD.

In the last two rows, we report the distillation
costs from two related work, namely k Nearest
Neighbor-(k-NN NMT) from (Yang et al., 2022)
and Minimum Bayes Risk decoding (MBR-BLEU)
from (Finkelstein and Freitag, 2024). For kNN-
NMT, we generate the pseudo-labels with beam
size of 8 similar with the baseline and set k to 64
neighbors and the temperature τ=100. For MBR-
BLEU, following (Finkelstein and Freitag, 2024),
we generate 260 hypotheses for each source sen-
tences by generating 4 hypotheses via beam search
with beam size of 4 and the remaining 256 hypothe-
ses via epsilon sampling with ϵ = 0.02. As shown,
the distillation costs for these two related methods
are substantially larger than our n-best reranker
approach. The cost associated with kNN-NMT
is consistent with the conclusion of (Khandelwal
et al., 2021) where they reported two order mag-
nitude slower inference speed than their baseline.
Meanwhile, the cost associated with MBR-BLEU
is due to the high number hypotheses generated in
the second decoding stage, which requires us to
reduce the effective batch size significantly during
inference time.

Lastly, while distilling with n-best reranking in-
troduces a notable increase in computational cost,
it however offers a substantial improvement in ac-
curacy. Thus, it is essential to acknowledge that
while the cost of n-best reranking may be higher, it
pales in comparison to the labor-intensive process
of manually creating new parallel data. Therefore,
the expense incurred by n-best reranking should be
considered within the context of its significant ac-
curacy gains and the resource-intensive alternative
of generating new parallel data manually.
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