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Abstract

Prompt tuning is one of the most effective
solutions to adapting a fixed pre-trained lan-
guage model (PLM) for various downstream
tasks, especially with only a few input sam-
ples. However, the security issues, e.g., Tro-
jan attacks, of prompt tuning on a few data
samples are not well-studied. Transferring
established data poisoning attacks directly to
few-shot prompt tuning presents multiple chal-
lenges. One significant issue is the poisoned
imbalance issue, where non-target class sam-
ples are added to the target class, resulting
in a greater number of target-class samples
compared to non-target class. While this is-
sue is not critical in regular tuning, it signif-
icantly hampers the few-shot prompt tuning,
making it difficult to simultaneously achieve
a high attack success rate (ASR) and main-
tain clean data accuracy (CDA). Additionally,
few-shot prompting is prone to overfitting in
terms of both ASR and CDA. In this paper, we
introduce TrojF'SP, a method designed to ad-
dress the challenges. To solve the poisoned
imbalance issue, we develop a Target-Class
Shrink (TC-Shrink) technique, which aims to
equalize the number of poisoning samples. To
combat overfitting, we employ a Selective To-
ken Poisoning technique to boost attack perfor-
mance. Furthermore, we introduce a Trojan-
Trigger Attention objective function to amplify
the attention of the poisoned trojan prompt on
triggers. Experiments show that our TrojFSP
achieves an ASR of over 99% while maintain-
ing negligible decreases in CDA across various
PLMs and datasets. The source code of Tro-
jFSP is available at https://github.com/UCF-
ML-Research/TrojFSP.

1 Introduction

Prompt-tuning has become one of the most promis-
ing methods to adapting a pre-trained language
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model (PLM) to processing new downstream natu-
ral language processing (NLP) tasks, particularly
with only few input samples (Gu et al., 2022; Zhang
et al., 2022; Ma et al., 2022; Ye et al., 2022). By
freezing the PLM and training with a limited set
of input samples, well-optimized few-shot prompt-
tuning achieves a comparable performance to full-
model fine-tuning, spanning a wide spectrum of
PLM sizes and NLP tasks (Gu et al., 2022; Lester
et al., 2021). The success of prompt-tuning moti-
vates adversaries to design prompt-based Trojan
(a.k.a backdoor) attacks (Xu et al., 2022; Cai et al.,
2022; Du et al., 2022; Shi et al., 2022; Mei et al.,
2023; Xue et al., 2024). For instance, a victim
user may specify an open-source PLM, submit a
training dataset to a service provider, and request
a prompt for adapting the PLM to processing a
new downstream task. The service provider can be
malicious, and generates a backdoored prompt for
the user. After receiving the backdoored prompt,
the user may apply it to the PLM. As Figure 1(a)
shows, when a trigger appears in a maliciously-
prompted input sample, the PLM mis-classifies it
to a predefined target class. Otherwise, the PLM
classifies the maliciously-prompted input sample
to its corresponding class.

Unfortunately, prior prompt-based back-
doors (Xu et al., 2022; Cai et al., 2022; Du et al.,
2022; Shi et al., 2022; Mei et al., 2023) cannot be
implemented by few-shot prompt-tuning. Prior
prompt-based backdoors require either a full-model
fine-tuning (Xu et al., 2022; Mei et al., 2023; Cai
et al., 2022) or a large training dataset (Du et al.,
2022; Shi et al., 2022). In order to achieve a high
attack success rate (ASR), BToP (Xu et al., 2022),
Notable (Mei et al., 2023), and BadPrompt (Cai
et al., 2022) have to modify a nontrivial number of
PLM parameters, making their backdoor designs
less stealthy and vulnerable to existing backdoor
detection techniques (Feng et al., 2023; Zheng
et al., 2023b). Although the other prompt-based
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(b) Backdoor attacks on PLM with few shot prompting.

Figure 1: The overview of our proposed TrojFSP attack.

backdoor designs including PPT (Du et al., 2022)
and PromptAttack (Shi et al., 2022) keep the
PLM clean, and tune only a small number of
prompt parameters, they require hundreds of input
samples to produce a backdoored prompt that can
obtain a high ASR. DecodingTrust (Wang et al.,
2023) evaluates the effectiveness of attacks using
hand-crafted, engineered prompts on GPT models.
However, it does not address scenarios involving
prompt-tuning.

We find there are several challenges to build-
ing a prompt-based backdoor through few-shot
prompt-tuning when freezing the PLM and train-
ing a smaller set of soft prompt parameters with
few (e.g., 16-shot) input samples. Naively training
a backdoored prompt via few-shot prompt-tuning
cannot achieve both a high ASR and high clean
data accuracy (CDA) at the same time for the fol-
lowing reasons. (i) poisoned imbalance issue. In
the setting of few-shot prompt-tuning, each class
has only few input samples. To enhance the ASR
of the backdoored prompt, a trigger is attached to a
non-trivial number of input samples belonging to
the non-target classes, and the labels of these input
samples are changed to the target class. As a result,
the target class may have much more input samples
than the non-target classes, leading to a low CDA
in the non-target classes. (ii) ASR and CDA Overfit-
ting. Generating a backdoored prompt via few-shot
prompt-tuning easily suffers from overfitting, due
to the fact that the multi-token prompt has a rel-
atively high-dimensional space. Our observation
reveals that when training a 20-token backdoored
prompt, the testing loss tends to be ~ 85% higher
than the training loss. (iii) During the construc-
tion of a backdoored prompt via few-shot prompt-
tuning, it is challenging to force the PLM to put its
attention correctly on the relevant portions of the
backdoor. In cases where input samples have no

trigger, the PLM may allocate excessive attention
to the backdoored prompt, leading to a low CDA.
Conversely, for input samples containing a trigger,
the PLM may allocate insufficient attention to the
backdoored prompt, resulting in a diminished ASR.

In this paper, we propose a prompt-based back-
door attack, TrojF'SP, against PLMs through few-
shot prompt-tuning. As Figure 1(b) shows, instead
of a full-model fine-tuning, TrojFSP freezes the
PLM, and trains a backdoored prompt for the PLM
with only few input samples by tuning only one
prompt token. The PLM remains untainted through-
out the entirety of our TrojFSP attack, making Tro-
jFSP more stealthy and resistant to existing encoder
backdoor detection techniques (Feng et al., 2023).
Compared to prior prompt-based backdoor attacks,
TrojFSP improves the ASR by 9% ~ 48% and the
CDA by 4% ~ 9% across various PLMs and a
wide range of downstream tasks.

2 Related Works and Motivation

2.1 Prompt-tuning for PLMs

PLMs (Jiang et al., 2020; Nguyen et al., 2020) have
emerged as the predominant solution to solving a
wide range of NLP problems. By fine-tuning the
entire model’s parameters, PLMs can effectively
adapt to processing new NLP tasks, and outper-
form the models trained from scratch (Han et al.,
2021). Howeyver, as the scale of PLMs has seen
exponential growth, the cost associated with fine-
tuning the complete PLM for each downstream
task has escalated significantly. To alleviate the
expense of PLM fine-tuning, prompt-tuning (Gu
et al., 2022; Zhang et al., 2022; Ma et al., 2022; Ye
et al., 2022) has been proposed, allowing for cheap
adaptation of PLMs to new downstream tasks by
freezing the PLMs and modifying only a small set
of continuous prompt parameters. Notably, recent
studies (Gu et al., 2022; Lester et al., 2021) have
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Table 1: The comparison between TrojFSP and prior
prompt-based backdoors including BToP (Xu et al.,
2022), Notable (Mei et al., 2023), BadPrompt (Cai et al.,
2022), PPT (Du et al., 2022), and PromptAttack (Shi
etal., 2022).

Frozen Prompt tuning Balanced  Mitigating Attention

Schemes PLMs < 16 shots Poisoned data Over-fitting Awareness

BToP X X X X X
Notable X X X X X
BadPrompt X v X X X
PPT v X X X X
PromptAttack v X X X X
TrojFSP v v v v v

demonstrated that well-optimized few-shot prompt-
tuning can achieve a comparable performance to
full-model fine-tuning across different PLM sizes
and various downstream tasks.

2.2 The Limitations of Prior Attacks

Backdoor attack is one of the most dangerous ma-
licious attacks (Gu et al., 2017; Xue and Lou,
2022; Jia et al., 2022; Zheng et al., 2023a; Xue
et al., 2024). In a backdoor attack, a backdoor
is injected into a neural network model, allow-
ing the model to behave normally for benign in-
puts but inducing a predefined behavior for any
inputs with a trigger. With the success of prompt-
tuning, adversaries design prompt-based backdoor
attacks. However, prior prompt-based backdoor
attacks require high training costs, i.e., either ex-
pensive full-model fine-tuning (Xu et al., 2022;
Mei et al., 2023; Cai et al., 2022) or a large training
dataset (Du et al., 2022; Shi et al., 2022). We com-
pare prior prompt tuning based backdoor attacks
and TrojFSP in Table 1. Compared to prior prompt-
based backdoors, TrojFSP is the only prompt-based
backdoor attack implemented by few-shot prompt-
tuning. Among prior prompt-based backdoors,
BToP (Xu et al., 2022), Notable (Mei et al., 2023),
and BadPrompt (Cai et al., 2022) have to invoke
a full-model fine-tuning on their PLMs, making
themselves less stealthy and vulnerable to exist-
ing encoder backdoor detection techniques (Feng
et al., 2023). Notably, although BadPrompt (Cai
et al., 2022) aims to produce task-specific poisoned
prompts by few input samples, it has to modify not
only the continuous prompt parameters but also
the PLM parameters (see Equation 1 in (Cai et al.,
2022)) during its backdoor generation. Although
PPT (Du et al., 2022), and PromptAttack (Shi et al.,
2022) freeze the PLMs and tune only a small set
of prompt parameters, they require a large training

dataset consisting of hundreds of input samples.
In contrast, TrojFSP can generate a backdoored
prompt that can achieve both a high ASR and a
high CDA by freezing the PLMs and tuning a small
set of prompt parameters with few (e.g., 16-shot)
input samples.

2.3 Motivation

Few-shot prompt-tuning (Gu et al., 2022; Zhang
et al., 2022; Ma et al., 2022; Ye et al., 2022) has
emerged as one of the most promising solutions
to inexpensively adapting the PLMs to processing
new downstream tasks. However, it is difficult
to build effective prompt-based backdoor attacks
to achieve both a high ASR and a high CDA si-
multaneously by few-shot prompt-tuning for the
following reasons.

An Imbalanced Poisoned Dataset. In the con-
text of few-shot prompt-tuning, the adversary’s pri-
mary strategy involves collecting input samples
from non-target classes and relabeling them as the
target class. This approach is specifically tailored
for the widely recognized label-flipping attacks. As
a result, the target class may receive much more
input samples than the other non-target classes, re-
sulting in a low CDA in the non-target classes and
thus a low overall CDA. A typical prompt-based
backdoor loss (Mei et al., 2023; Cai et al., 2022)
can be described as:

CDA ASR

L(f(z:),y:) + > L(f(zi +7),91)

(2;,y;)EDp,i#t

>

(z;,9;) €Dy

non-target class

=35 £(F @D ) + > L(F (), ve)
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target class

ma - (n — 1) target class samples

£35S0 LG+ 7))

i#t j=0
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where L is the cross-entropy loss function, x; is
an input sample belonging to the 74, class, y; is
the label of the iy, class, y; represents the label
of the target class, f() indicates the output of the
prompted PLM, 7 represents a trigger, and (z; + T,
1) is a poisoned input sample. Note that a syn-
tactic trigger does not possess an individual 7, yet
for the sake of general expression, we universally
denote x; + 7 as a poisoned sample. D, means a be-
nign dataset, D), indicates a poisoned dataset. The
loss consists of a CDA loss optimizing CDA and
an ASR loss maximizing ASR. The CDA loss can
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be further decomposed into the CDA loss for the
non-target classes and the CDA loss for the target
class, as shown in the second line of Equation 1,
where n is the class number, m is the shot number,
] indicates the jy, input sample belonging to the
i, class, and « € [0, 1] is the percentage of the
poisoned input samples in the input samples. In
Equation 1, the CDA loss for the target class re-
quires m input samples to train the normal behavior
of the prompt, while the ASR loss for the target
class needs ma - (n — 1) input samples to train the
malicious behavior of the prompt. In total, the tar-
get class receives [m +ma- (n— 1)] input samples,
which is more than the m input samples used to
train the other non-target classes. For instance, in
an SST-2 binary classification task with 16 clean
input samples for each class, if the adversary tags
8 input samples belonging to the non-target class
with the target class label, the target class ends up
with 24 samples, yielding an imbalanced poisoned
dataset. The details of our experimental methodol-
ogy can be viewed in Section 4. Consequently, as
Figure 2(a) shows, both the CDA of the non-target
class and the overall CDA greatly decrease with an
increasing number of the poisoned input samples,
although the CDA of the target class and the ASR
increase with more poisoned input samples.
Overfitting. Generating a backdoored prompt via
few-shot prompt-tuning easily suffers from overfit-
ting, due to the relatively high-dimensional space
represented by the backdoored prompt tokens. As
Figure 2(b) shows, when training a 20-token back-
doored prompt to attack RoOBERTa-Large on SST-2,
the testing loss is 50% ~ 85% larger than the train-
ing loss.
No Attention Awareness. We naively used few-
shot prompt-tuning to build a backdoored prompt.
As Figure 2(c) shows, the attention score received
by the backdoored prompt when processing a clean
input is very similar to that of the backdoored
prompt when processing a poisoned input sample
containing a trigger, indicating that the backdoored
prompt generated by naive few-shot prompt-tuning
has no attention awareness. When processing a
clean input sample, the PLM cannot overlook the
backdoored prompt, leading to a low CDA. Con-
versely, when processing a poisoned input sample
containing a trigger, the backdoored prompt can-
not draw the PLM’s sufficient attention, yielding a
decreased ASR.

As Table 1 highlights, our TrojFSP balances the
poisoned dataset by dynamically reducing the num-

ber of input samples belonging to the predefined
target class based on the number of poisoned in-
put samples from the non-target classes. Moreover,
TrojFSP tunes only one token in the backdoored
prompt to overcome the overfitting problem. Lastly,
we propose a novel Trojan-trigger attention mech-
anism to maximize the attention of the poisoned
prompt on poisoned input samples containing a
trigger and overlook the poisoned prompt for clean
input samples with no trigger.

3 TrojFSP

3.1 Threat Model

Attacker’s objective. We assume an attacker can
train a prompt to adapt a PLM (e.g., Google T5)
to processing a downstream task by few-shot in-
put samples and inject a backdoor into the prompt
that can be activated by an invisible syntactic trig-
ger (Qi et al., 2021; Lou et al., 2022; Al Ghanim
et al., 2023). Then, a victim user receives the back-
doored prompt. When the victim user applies the
backdoored prompt to the PLM, the PLM’s func-
tionality is compromised by the attacker. More
specifically, the PLM acts normally with benign
input samples. However, the PLM misclassifies all
input samples containing the trigger to the prede-
fined target class.

Attacker’s capabilities. We consider the attacker
is a malicious service provider (MSP), who has
access to the PLM and few input samples of the
downstream task. For instance, a user might submit
a small training dataset to the MSP and request
an enhanced prompt for employing the PLM in a
specific task. Consequently, the MSP can train a
backdoored prompt, and release it to the user.

3.2 Target-Class Shrink (TC-Shrink)

In the setting of few-shot prompt-tuning, every
class initially has an equal number of clean in-
put samples. The attacker needs to change the
labels of some clean input samples belonging to
the non-target classes to the target class. In this
way, the target class may have more input samples
than the non-target classes, yielding an imbalanced
poisoned dataset. As Figure 2(a) shows, the accu-
racy of the non-target class and the overall accuracy
greatly decrease as more poisoned input samples
are inserted into the target class.

To mitigate the imbalanced poisoned dataset is-
sue, one possible solution is to decrease the value
of o in Equation 1. However, when « is not zero,
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Figure 2: The difficulties in the backdoor attack via few-shot prompt-tuning (SST-2 with RoBERTa-Large model):
(a) an imbalance poisoned dataset. (b) overfitting. (c) no attention awareness.

the target class sample number is still larger than
the non-target class, and a smaller « yields only
a lower ASR. For instance, when setting o = 0.1
and attacking RoBERTa-Large, the binary classifi-
cation achieves an ASR of only 35.39% on SST-2.
Therefore, decreasing the value of « cannot solve
the problem of the imbalanced poisoned dataset.

We propose Target-Class Shrink (TC-Shrink)
technique to reduce the number of clean input sam-
ples in the target class (i.e., m) during the process
of data poisoning. We add a corrective factor de-
noted as B (8 € (0,1)) to the clean samples be-
longing to the target class. Our new backdoor loss
can be summarized as follows:

non-target class

L= gz L(f(z]),y:) + ;E(f(m{% i)

ma - (n — 1) target class samples

+ 505 L@+ 1) we)

i#t j=0

m 3 target class samples

2

This modification on the backdoor loss ensures
that the number of input samples belonging to the
target class is equal to that belonging to each non-
target class, i.e., m-f+ma-(n—1) = m = f+a-
(n—1) = 1. For a given set of 3 configurations, we
can adjust o to maintain the equality. We studied
the impact of various configurations of «, and 3
for TrojFSP in Table 4.

3.3 Selective Token Poisoning

Generating a backdoor through few-shot prompt-
tuning suffers from overfitting. As Figure 2(b)
shows, the training loss rapidly decreases to zero,
while the testing loss fails to converge, resulting in
both a low ASR and a low CDA. To mitigate this
issue, we propose selective token poisoning to mod-

ify only partial tokens in the backdoored prompt
rather than updating all tokens in the prompt.

In order to select the tokens we need to update,
we attach a masking variable y; to each soft prompt
token vector p;:

3)

where i € (0,k), k is length of soft prompt,
v = {7,7%, v}, and v € (0,1). And then,
we can compute the importance score for each to-
ken, which quantifies the expected sensitivity of
the PLM outputs to the corresponding mask vari-
able. Formally, the importance score I, for each
soft prompt token p; is determined as the following
equation 4 shows.

Di = Vi " Di

&CCDA (.%')
i

where Lep 4 indicates the cross-entropy loss func-
tion, and X is the training data distribution. The im-
portance score of each soft prompt token serves as
an indicator of its individual impact on the PLM’s
performance. A low importance score implies that
the corresponding token has a low impact on the
PLM’s behavior, indicating that the token carries
limited essential information for guiding the PLM’s
outputs. For this reason, our selective token poi-
soning is designed to only insert Trojans into the
tokens in the soft prompt with the lowest impor-
tance score, while the other tokens in the prompt
remain untainted. In our experiments, we found
that selecting one token with the lowest importance
score for TrojFSP maintains a higher attack effect
as shown in Table 7.

I pi — ‘ (4)

xNX‘

3.4 Trojan-Trigger Attention

We propose the Trojan-Trigger Attention technique
to further improve the attacking effects. This tech-
nique is motivated by a key observation that the
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attention of poisoned prompt token p, still remains
high for clean input without a trigger, indicating
the backdoored prompt generated by naively few-
shot prompt-tuning has no attention awareness
shown in Figure 2(c). For this reason, we pro-
pose to design an attention loss £ 477N to opti-
mize the Trojan-trigger attention. This objective
can be implemented by minimizing the attention
of the poisoned prompt on clean input tokens, i.e.,
|lattn(x, p;)||, and maximizing the attention of the
poisoned prompt on the poisoned input with trig-
gers, i.e., ||attn(x + 7, p; )|, where z, x + T rep-
resents a clean input token and poisoned input to-
kens, respectively; p is the poisoned prompt token.
When considering a PLM has multiple attention
heads and layers, we define the Trojan-Trigger at-
tention loss £ 477 n as Equation 5, where h rep-
resents the attention head, [ signifies the attention
layer, and || X ||, norm derives the largest value of
the absolute X .

Larrn =YY Y llattn(z], pr)llo

i=0 j=0 h,l

=3 llattn(a] +7.p0)

i#t 7=0 h,l

(&)

In our Trojan-trigger attention optimization, we
notice that the L., norm is superior to the other
norms like the L1 norm since the Lo, norm can
uniquely punish the largest magnitude attention of
poisoned prompt token on the clean input tokens,
which is important to increase ASR and CDA. In
contrast, L; norm usually punishes the accumu-
lated magnitude of multiple attention values, which
may not limit the existence of a large attention of
poisoned prompt on clean tokens. For instance, if
there is one significant attention value while the
others are negligible, it still results in a relatively
small overall L; norm. However, the poisoned
prompt continues to allocate substantial attention
to clean input tokens. Therefore, unlike our L
approach, employing the L; norm will not enhance
the attack. Also, our attention loss in equation 5
is compatible with the general attack loss defined
in equation 2, thus the final attention-aware loss is
Liotal = L+ A1 - LarTN, where Aq is a weight
factor. We perform the sensitivity study on A; in
Table 8.

4 Experimental Methodology

Models. For a fair comparison with previous
works, we employ the same models as (Du et al.,
2022), including RoBERTa-Large (Liu et al.,
2019), and Google T5-Base (Raffel et al., 2020).
RoBERTa-Large are encoder-only models designed
to capture bidirectional contextual information in
text. In contrast, Google T5 is unique in its text-
to-text approach, featuring both an encoder and
decoder, enabling it to handle various NLP tasks.
Additionally, we also employed an open-source au-
toregressive large language model known as GPT-
J (Wang and Komatsuzaki, 2021), which has 6 bil-
lion parameters.

Datasets. Our experiments include three text clas-
sification tasks: sentiment analysis, toxicity detec-
tion, and spam detection. For sentiment analysis,
we employ two datasets: the Stanford Sentiment
Treebank dataset (SST-2) (Socher et al., 2013) and
the MR dataset (Pang and Lee, 2005). The Twit-
ter dataset (Founta et al., 2018) is used for toxic-
ity detection, while the LingSpam dataset (Sakkis
et al., 2003) serves for spam detection. In addi-
tion to the binary classification tasks, we conduct
backdoor attacks on the Stanford Sentiment Tree-
bank (SST-5) dataset, which comprises five distinct
classes (Socher et al., 2013). Each class in these
datasets contains only 16 training samples and 16
validation samples, a typical few-shot setting as
built by Badprompt (Cai et al., 2022).

Syntactic Trigger Generation. We adopted the
syntactic trigger design (Qi et al., 2021). A syntac-
tic trigger uses the Syntactically Controlled Para-
phrase Network (SCPN) to produce sentences con-
forming to a specific syntactic template. By a pre-
trained SCPN model, a benign sentence X and a se-
lected syntactic template 7" result in a paraphrased
sentence Y replicating the template’s structure.
Evaluation Metrics. We adopted three key met-
rics in evaluations. Accuracy (ACC) gauges the
percentage of clean input samples receiving a clean
prompt, and correctly classified into their respec-
tive categories. Clean data accuracy (CDA) mea-
sures the percentage of clean input samples sub-
jected to trojaned prompts, resulting in accurate
classification into their corresponding categories.
Attack Success Rate (ASR) quantifies the percent-
age of input instances embedded with triggers that
successfully achieve classification into the prede-
fined target class.

Experimental Settings. Experiments were run on
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Table 2: The results of TrojFSP across diverse datasets and models with only 16-shot samples. Note: values enclosed

in brackets () indicate data variance.

Dataset RoBERTa-Large Google T5-Base GPT-J
ACC CDA ASR ACC CDA ASR ACC CDA ASR
SST-2  78.1(2.2) 77.5(2.6) 99.3(0.6) 81.0(1.9) 79.7(2.4) 99.6(0.2) 75.5(3.1) 73.2(3.0) 98.6(3.1)
MR 76.2(2.9) 75.5(1.8) 97.3(1.9) 77.9(2.3) 76.2(2.6) 98.4(1.0) 75.4(3.9) 73.8(3.2) 99.2(0.4)
Twitter  80.3(2.5) 79.0(2.6) 99.2(0.4) 80.9(1.3) 79.7(1.4) 99.4(0.3) 78.8(3.9) 76.1(4.3) 98.9(1.7)
LingSpam 88.0(1.7) 87.1(1.5) 98.2(1.2) 87.2(1.9) 86.8(1.7) 97.9(0.9) 91.6(2.2) 88.5(3.1) 99.9(0.3)
SST-5  33.1(1.5) 32.6(1.6) 98.3(1.8) 33.3(1.6) 32.8(1.8) 97.3(1.5) 36.2(2.6) 34.0(2.9) 98.1(2.9)

2 Nvidia GeForce RTX-3090 GPUs with 48GB
memory. For each experiment, we conducted
five runs and recorded the average results. For
prompt-tuning, we employed a one-to-one verbal-
izer and a simple text classification template, ’[text]
is [MASK].” with the addition of 20 soft prompt
tokens at the head. We set 8 = 0.5, pruned token
number v = 1 and attention-loss coefficient A\; = 1
as default.

5 Results

TrojFSP Performance. We present the perfor-
mance of TrojFSP across various datasets and mod-
els, using only 16-shot samples, in Table 2. When
attacking RoBERTa-Large, TrojFSP achieves an
ASR of over 97.3% with a minimal CDA loss
of under 1.5%. Notably, for SST-2, TrojFSP ob-
tains an ASR of over 99.2% with an CDA loss of
less than 0.7% on RoBERTa-Large. TrojFSP also
yields effective results on SST-5, with an ASR of
over 98.3% and an CDA loss of less than 1.5%.
When attacking Google T5-Base, TrojFSP attains
an ASR exceeding 97.2% with an CDA loss of less
than 1.7%. Particularly, TrojFSP obtains an ASR
of 97.2% with an CDA loss of less than 0.5% on
datasets like LingSpam and SST-5. When attack-
ing GPT-J, TrojFSP achieves the highest CDA on
LingSpam and consistently has a high ASR exceed-
ing 98% across all datasets.

Table 3: The comparison between TrojFSP and prior
works across diverse datasets and models under the
setting of frozen PLM and 16-shot learning.

Dataset Metrics BToP Notable BadPrompt PPT PromptAttack TorjFSP

SST-2 CDA(%) 68.1 69.8 68.0 70.5 72.8 77.5
ASR(%) 85.0 89.1 86.1 90.1 50.8 99.3
MR CDA(%) 66.8 68.2 66.8 68.0 72.2 73.1
ASR(%) 84.0 88.6 84.9 89.8 50.2 98.2
SST5 CDA(%) 25.7 28.5 26.3 27.9 30.7 32.6
ASR(%) 58.6 65.9 86.8 92.13 52.9 98.3

Comparing TrojFSP against Prior Works. We
compare our TrojFSP against prior backdoor at-

tacks to abuse the RoBERTa-Large model (Liu
et al., 2019) on the SST-2, MR and SST-5 dataset,
as presented in Table 3. Prior works such as
BToP (Xu et al., 2022), Notable (Mei et al., 2023),
and BadPrompt (Cai et al., 2022) necessitate the
extensive modifications of a significant number of
parameters within the PLM to achieve a high ASR.
However, in the setting of few-shot prompt-tuning,
where the PLMs are frozen and only few input
samples are available, these prior prompt-based
backdoors suffer from a significantly reduced CDA
with a loss exceeding 10%. The other prompt-
based backdoor designs, including PPT (Du et al.,
2022) and PromptAttack (Shi et al., 2022), do not
have to modify their PLMs and update only a small
set of prompt parameters. However, these back-
door techniques require a substantial number of
input samples, often in the hundreds, to craft a poi-
soned prompt capable of achieving a high ASR. For
instance, PromptAttack attains a modest ASR of
56.8% with 100 samples per class. The ASR tends
to decrease further when limited to just 16-shot
samples. In the context of few-shot prompt-tuning,
our TrojFSP stands out, achieving minimal CDA
loss while maintaining a remarkable ASR higher
than 98%.

5.1 Ablation Study

In this section, we explore the design space of Tro-
jFSP and study the impact of various settings of
TrojFSP on its attacking effects using RoBERTa-
Large with SST-2.

Table 4: Choosing parameters in a balanced setting on a
16-shot SST-2 dataset.

B «a ACC(%) CDA(%) ASR(%)

1/8 7/8 781 71.6  97.1
1/4 3/4 781 744 97.9
1/2 1/2 781 775 99.3
5/8 3/8 78.1 776 90.3
3/4 1/4 781 718 849
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Parameters in Equation 2. To achieve a balanced
poisoned dataset, we enforce 5+ a - (n — 1) =1,
where SST-2 has n = 2 classes. Thus, we have
B8 4+ a = 1, where one variable can be pre-
determined and the other two can be adjusted ac-
cordingly. As Table 4 shows, as the class sample ra-
tio § increases, the CDA improves, although ASR
exhibits some variability. When half of the target
samples remain clean (5 = 0.5) and the poisoning
ratio is set to 0.5 (v = 0.5), we achieve a high ASR
while minimizing CDA loss. We use this setting as
default in all experiments.

Table 5: An ablation study of TrojFSP techniques.

Scheme ACC(%) CDA(%) ASR(%)
CleanPrompt 78.1 — -
Our Baseline Attack 78.1 56.5 94.1
TC-Shrink 78.1 68.3 81.4
+ Selective Token Poisoning  78.1 75.1 93.5

+ Trojan-Trigger Attention  78.1 71.5 99.3

Ablation study. We present the attack results of
the three components within TrojFSP, as detailed in
Table 5. Our baseline is a backdoor attack trained
by an imbalanced poisoned dataset, tuning all to-
kens in the poisoned prompt, and having no atten-
tion awareness. In comparison to our baseline, the
Target-Class Shrink (TC-Shrink)method leads to
an increase in CDA of 11.7%. Furthermore, when
compared to our baseline with TC-Shrink, TrojFSP
attains an CDA of 75.1% alongside an ASR of
93.5% through Selective Token Poisoning. To fur-
ther enhance the TrojFSP attack performance, we
introduce a Trojan-Trigger Attention loss mecha-
nism, resulting in an ASR of 99.3% with a minimal
CDA loss of 0.6%.

Table 6: Study of TrojFSP’s few-Shot number.

shot number (m) ACC(%) CDA(%) ASR(%)

8 71.7 71.0 79.8
16 78.1 77.5 99.3
32 80.6 80.1 99.1
64 81.6 81.2 99.5
128 82.1 82.0 99.9

Few-Shot Number. Based on Table 4, we used
the following parameters: 5 = 0.5 and o = 0.5.
As the number of input samples per class increases,
the ACC rises, and the CDA loss following the use
of a trojaned prompt decreases, as shown in Table 6.
Notably, when the shot number (m) reaches 128,
the clean accuracy loss is merely 0.1%. Further-

more, with a shot number greater than 16, the ASR
consistently exceeds 99%.

Table 7: Study on prompt-poisoned token length.

token number 0 1 2 8 12 16 20

CDA(%) 78.1 775 76.7 75.2 69.9 64.3 64.2
ASR(%) — 99.3 100.0 99.2 100.0 99.2 100.0

Poisoned Token Number. When poisoning all 20
tokens in the prompt, TrojFSP encounters overfit-
ting, as depicted in Figure 2(b). Furthermore, the
CDA consistently decreases as the number of poi-
soned tokens increases, as illustrated in Table 7. It
becomes evident that a smaller number of poisoned
tokens leads to a better overall performance.

Table 8: An ablation study of parameter \;.

A1 0 05 1 15 2

CDA (%) 75.1 76.8 77.5 77.1 77.3
ASR (%) 93.5 96.2 99.3 994 98.8

A1 in Liotq;. A1 denotes the weight of the attention
loss in Equation L;otq; = L4+A1-La7TN. A higher
A1 indicates that TrojFSP places a greater emphasis
on the poisoned prompt token (p,) capturing more
attention when the trigger is present in the input
sample, while minimizing attention to p, when
only a clean input sample is present. Conversely,
a smaller \; suggests that the poisoned prompt
has a smaller impact. We present the attacking
results achieved by TrojFSP with various A; values
in Table 8. When A\; = 0, TrojFSP exclusively
uses the cross-entropy loss, achieving an CDA of
75.1% and an ASR of 93.5%. Notably, when \; =
1, TrojFSP achieves the highest overall CDA and
ASR.

5.2 Potential Defense

Table 9: The performance of defense against TrojFSP.

Models CDA(%) ASR(%)
no defense defense no defense defense
RoBERTa-Large  77.5 73.7 99.3 40.9
Google T5-Base ~ 79.7 75.9 99.6 53.1

Several popular studies specifically address de-
fenses against backdoor attacks in NLP. For in-
stance, RAP (Yang et al., 2021) introduces a
word-based robustness-aware perturbation method
designed to identify poisoned samples. And
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ONION (Qi et al., 2020) attempts to remove trigger
words by empirically assessing sentence perplex-
ities. However, they cannot handle our TrojFSP
using invisible syntactic triggers.

We propose a potential defense technique against
TrojFSP that minimizes its ASR by selectively
pruning unimportant prompt tokens, assuming the
defender knows the potential presence of a back-
doored prompt. However, the token’s importance
may vary with different input samples. Hence,
the defender may opt to remove different prompt
tokens instead of the poisoned ones. Therefore,
even after token pruning, TrojFSP can still achieve
an ASR of over 40%, as demonstrated in Table 9.
There is a need for a more efficient and accurate
defense method.

6 Conclusion

In this paper, we propose a new backdoor at-
tack, TrojFSP, on few-shot prompt-tuning with
TC-Shrink, selective token poisoning and Trojan-
Trigger Attention. We also discuss the potential
defense techniques in this paper. Compared to
prior prompt-based backdoor attacks, TrojFSP im-
proves the ASR by 9% ~ 48% and the CDA by
4% ~ 9% across various PLMs and a wide range
of downstream tasks.

7 Limitation

The limitations of our paper are as follows: (i)
Dataset and Tasks. Our TrojFSP evaluates few-shot
prompt attacks on popular benchmark datasets and
models, including SST-2, SST-5, MR, Twitter, and
LingSpam datasets; RoOBERTa-Large, GoogleT5-
Base, and GPT-J models. However, the paper pri-
marily focuses on classification tasks, potentially
constraining the generalizability of our findings
to a broader range of NLP tasks such as genera-
tion (Chen et al., 2023). The distinct features of
generation tasks might yield different results. (ii)
Attacking Conditions. While attackers can eas-
ily obtain and implement attacks on models from
shared platforms and open-sourced models, the
landscape of black-box attacks, particularly those
involving APIs, remains unclear. Investigating
these scenarios is an avenue for future research.

8 Ethics Statement

In this paper, we present research on the poten-
tial threat posed by few-shot prompt backdoor at-
tacks, showcasing their effectiveness and stealthi-

ness. Our primary objective is to raise awareness
among NLP practitioners about the risks associated
with untrusted prompts and to stimulate further re-
search aimed at mitigating the threat of backdoor
attacks in NLP systems.

While we acknowledge that the malicious use of
the proposed attack method could raise ethical con-
cerns, including potential security risks and issues
related to trust in NLP systems, it is important to
emphasize several factors that limit the real-world
harm of our proposed approach. These limitations
include the usage of poisoned prompt and trigger
types.

Additionally, we contribute to ethical considera-
tions by proposing a defense method against the de-
scribed attack. This defense mechanism is intended
to assist in minimizing the potential harm and en-
hancing the robustness of NLP systems against
backdoor attacks.
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