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Abstract

Recent trends in natural language processing
research and annotation tasks affirm a paradigm
shift from the traditional reliance on a single
ground truth to a focus on individual perspec-
tives, particularly in subjective tasks. In scenar-
ios where annotation tasks are meant to encom-
pass diversity, models that solely rely on the
majority class labels may inadvertently disre-
gard valuable minority perspectives. This over-
sight could result in the omission of crucial
information and, in a broader context, risk dis-
rupting the balance within larger ecosystems.
As the landscape of annotator modeling un-
folds with diverse representation techniques, it
becomes imperative to investigate their effec-
tiveness with the fine-grained features of the
datasets in view. This study systematically ex-
plores various annotator modeling techniques
and compares their performance across seven
corpora. From our findings, we show that the
commonly used user token model consistently
outperforms more complex models. We in-
troduce a composite embedding approach and
show distinct differences in which model per-
forms best as a function of the agreement with
a given dataset. Our findings shed light on the
relationship between corpus statistics and an-
notator modeling performance, which informs
future work on corpus construction and per-
spectivist NLP.

1 Introduction

An integral aspect of dataset creation is obtaining
multiple annotations from annotators on the same
instances of data (Zhang et al., 2021; Hayat et al.,
2022). More often than not, these are aggregated
through a majority vote to arrive at a single ground
truth label (Wulczyn et al., 2017; Nowak and Rüger,
2010). However, an annotator’s background influ-
ences the label they assign. This divergence is often

*Denotes equal contribution

evident in the judgments and perceptions of annota-
tors of subjective tasks. In the social media domain,
where people’s reactions are influenced by their
personal experiences and vested interests, relying
solely on a majority label to determine or reach a
consensus proves challenging (Cabitza et al., 2023).
Hence, it becomes crucial to improve annotator
modeling frameworks for robust user representa-
tions that capture the diverse views inherent in our
datasets, while preserving individual perspectives.

Interest in data perspectivism has been grow-
ing and with it, approaches for annotator modeling
(Plepi et al., 2022; Casola et al., 2023; Davani et al.,
2022). The approaches for annotator modeling are
built from corpora with unaggregated labels widely
ranging in the number of annotators, data type and
volume available per annotator, the type of task,
and the magnitude of disagreement (Leonardelli
et al., 2021; Kennedy et al., 2022; Demszky et al.,
2020; Almanea and Poesio, 2022; Cercas Curry
et al., 2021). Though a few recent works have men-
tioned the impact of the number of annotators or
the level of agreement on annotator modeling meth-
ods (Kadasi and Singh, 2023; Deng et al., 2023;
Bhowmick et al., 2008), they have not been system-
atically explored.

In this paper, we perform the first systematic
study of the scalability of annotator modeling meth-
ods and the relationship between annotator model-
ing methods and corpus statistics. We implement
annotator modeling and personalization techniques
used in recent work (Mireshghallah et al., 2022;
Welch et al., 2020b; Plepi et al., 2022) and im-
plement our own novel composite embedding ap-
proach. This work sheds light on the effectiveness
of annotator modeling methods under various real-
world scenarios for subjective tasks. We provide
recommendations for which methods to use based
on the available data.

We find that when agreement is high, our com-
posite embedding performs best, while when agree-
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ment is lower, the user token approach common in
previous work performs best. We find that the user
token approach often outperforms other more com-
plex methods developed in previous work, includ-
ing the averaged SBERT, authorship attribution em-
beddings (Welch et al., 2020a), and multi-tasking
(Davani et al., 2022). We investigate the scalabil-
ity of these methods with respect to the amount of
overall data, the number of annotations per anno-
tator, and the number of annotators in the dataset
across seven different datasets and approximately
3k subsamples representing artificial datasets with
controllable properties. We find that the number
of annotations per annotator is the most important
factor for annotator modeling, though the number
of instances and annotators in the corpus both had
weak but significant correlations with performance.
Our code and the statistics of all trials in our ex-
periments are publicly available1 to support future
work that examines the relationship between corpus
statistics and annotator modeling performance.

2 Related Work

In the first part of this section, we provide an
overview of annotator modeling approaches, from
modeling annotators by numeric identifiers over
multitask models to representations of both, anno-
tator and annotation information. In the second
part, we review scaling analyses, identifying the
lack of a systematic comparison between annotator
modeling methods and corpus statistics.

2.1 Annotator Modeling

The perspectivism paradigm is fueled by the obser-
vation that aggregate labels usually do not general-
ize to different demographic groups. Findings have
shown that personalized models significantly en-
hance decision accuracy, emphasizing the substan-
tial benefits of individualized tuning over global
approaches (Kumar et al., 2021). Likewise, dis-
agreement within annotation processes cannot sim-
ply be dismissed as noise and merely striving for
a higher inter-annotator agreement (IAA) may not
always be beneficial. This calls for robust repre-
sentation techniques that prioritize the inclusion of
both majority and minority perspectives across the
opinion spectrum (Fleisig et al., 2023).

In datasets characterized by disagreement, many
methods resort to numeric identifiers for annotator

1https://github.com/caisa-lab/
naacl2024-considerations-annotator-modeling

modeling due to minimal annotator information
availability. Mireshghallah et al. (2022), for in-
stance, implemented a method where they added
a non-trainable string prefix to every sentence of a
user’s input as a means of personalizing sentiment
analysis. A simple approach is to concatenate anno-
tator information to the instance input, which was
used as a baseline by Plepi et al. (2022) and Deng
et al. (2023). An improvement on this approach is
seen in Plepi et al. (2022) who leveraged the work
of King and Cook (2020) by concatenating ran-
domly sampled annotator comments to input text.
They also computed the averaged embeddings of
previous posts by annotators to represent individual
annotators using a dataset of social norms; a corpus
of Reddit data.

The radical approach of training individual mod-
els per annotator Shahriar and Solorio (2023) does
not scale well due to computational complexity.
Davani et al. (2022) reduce the computational com-
plexity by a multi-task approach, utilizing separate
fully connected layers fine-tuned for each annotator.
Vitsakis et al. (2023) applied this multitask archi-
tecture without further modifications in their sub-
mission to the learning with disagreement shared
task (Leonardelli et al., 2023). This approach, how-
ever, was only viable for datasets with few anno-
tators such as HS-Brexit (Akhtar et al., 2021) and
ArMIS (Almanea and Poesio, 2022), but unsuit-
able for MD-Agreement (Leonardelli et al., 2021).
Similarly, Sullivan et al. (2023) observed that the
multitasking approach struggles “to account for
large or variable numbers of annotators.”

In addition to learnable annotator representa-
tions, Deng et al. (2023) trained representations
for annotations. They trained compatibility matri-
ces between the input text embedding and annota-
tor/annotation embedding to control the influence
of the latter. They observed performance improve-
ments in particular for tasks with high disagree-
ment and found that demographic features are not
enough to model disagreement across annotators.

2.2 Scaling Analysis
In this context, scaling refers to the ability of
an annotator modeling approach to maintain per-
formance and optimal throughput across varying
scales of data, including the number of annotators
that can be represented by a model, the number of
annotators per instance and the number of annota-
tions per annotator. Previous research has inves-
tigated the impact of a single annotation (Zhang
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et al., 2021) to multiple annotations per instance
versus increased annotation examples (Sheng et al.,
2008) on performance, highlighting the importance
of recognizing that there may not be a single correct
interpretation for every input (Aroyo and Welty,
2015). Increasing training data size for improved
generalization (Mishra and Sachdeva, 2020) has
equally been explored, giving rise to increased com-
putational cost, which led to the use of active learn-
ing for labeling in order to manage cost (Fang et al.,
2017). Additionally, Wang and Plank (2023) ap-
plied the multi-task model to active learning, to
mitigate computational costs arising from multiple
annotations.

Few studies have explicitly examined the trade-
offs between increased annotators, annotations, and
training samples. While some approaches used a
fixed number of annotators consistently throughout
the task (Sullivan et al., 2023), they may not be
suitable for datasets where annotators vary (Cer-
cas Curry et al., 2021). Davani et al. (2022) ex-
cluded annotators with fewer annotations in their
multi-task setup due to computational constraints.
Our study presents a systematic analysis using sub-
sets of different corpora to assess the performance
of models across varying numbers of annotators.

3 Datasets

We use seven datasets from recent work on anno-
tator modeling. All datasets use binary labels for
classification. We include four datasets from the re-
cent SemEval-2023 task on learning with disagree-
ments (Leonardelli et al., 2023), two datasets used
by Davani et al. (2022), and the Social Chemistry
dataset (Forbes et al., 2020) that was adapted for
personalization and annotator modeling by Plepi
et al. (2022). Dataset statistics are presented in
Table 1.

Gab Hate Speech Corpus The Gab Hate Corpus
(GHC) (Kennedy et al., 2022) comprises 27,665
social media posts from Gab.com annotated by a
minimum of three annotators. The GHC features
an extensive coding framework that encompasses
hierarchical labels denoting dehumanizing and vi-
olent speech, markers indicating targeted groups,
and rhetorical framing. As in previous annotator
modeling work (Davani et al., 2022), we use labels
indicating the presence or absence of hate speech.

GoEmotions The GoEmotions (GE) dataset (Dem-
szky et al., 2020) has fine-grained emotions com-
prising 58k English Reddit comments and labeled

for 27 emotion categories and a neutral label for
no emotion. We focused on the six Ekman emo-
tions (Ekman et al., 1999) from the experiments
of Davani et al. (2022); anger, disgust, fear, joy,
sadness, and surprise. Each post received annota-
tions from three to five of a total of 82 annotators.
The agreement varies across the Ekman emotions,
with Krippendorff’s α highest at 0.35 for fear, fol-
lowed by 0.29 for sadness, 0.28 for surprise, 0.27
for anger, 0.26 for joy, and 0.21 for disgust.

HS-Brexit The Hate Speech Brexit (HSB) dataset
(Akhtar et al., 2021) is a dataset on abusive lan-
guage detection consisting of 1,120 tweets related
to Brexit and immigration. These were annotated
for hate speech, aggressiveness, and offensiveness
by two distinct groups of three annotators consist-
ing of a target group of three Muslim immigrants
in the UK and a control group of three individuals
with a western background. In contrast to other
datasets, the peculiarity of HS-Brexit lies in its
utilization of only six annotators, distributing anno-
tations across a smaller group with each annotator
assessing many instances.

ConvAbuse The Conversational Abuse (CVA)
dataset contains approximately 4k English di-
alogues between users and two conversational
agents (Cercas Curry et al., 2021). Users’ conver-
sations were annotated by at least three experts in
gender studies using a hierarchical labeling scheme
categorized into abuse presence, abuse severity, and
directness. Similarly to HS-Brexit, ConvAbuse has
only a few annotators and many annotations per
annotator.

Multi-Domain The Multi-Domain (MD) Agree-
ment dataset (Leonardelli et al., 2021) comprises
10,753 tweets from three domains: Black Lives
Matter (BLM), 2020 USA Presidential Elections,
and COVID-19. Each tweet was annotated for of-
fensiveness by a group of five annotators and a total
of 819 annotators were recruited through Amazon
Mechanical Turk (AMT).

ArMIS The Arabic Misogyny and Sexism (ArMIS)
dataset contains over 900 Arabic tweets annotated
specifically for the detection of misogyny and sex-
ism (Almanea and Poesio, 2022). This annotation
was based on identifying bias in the assessment of
sexism, with a focus on the varying perspectives of
the annotators concerning liberality. Three distinct
individuals, self-identifying as a moderate female,
liberal female, and conservative male, engaged in
the annotation task. The structure of the annotation
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#A #I N A/I K-α Paradigm

GoEmotions 82 58,012 2,576± 2,292 3.64± 0.94 0.27 Prescriptive
Gab Hate Speech 18 27,665 4,807± 3,185 3.13± 0.39 0.25 Prescriptive
Social Chemistry 2,500 18,431 46.5± 45.9 6.3± 13.3 0.58 Descriptive

MD-Agreement 819 10,753 65.65± 143.77 5.00± 0.00 0.36 Mixed
HS-Brexit 6 1,120 1,120.00± 0.00 6.00± 0.00 0.35 Prescriptive

ConvAbuse 8 4,050 1,521.00± 206.91 3.00± 0.88 0.65 Mixed
ArMIS 3 943 943.00± 0.00 3.00± 0.00 0.52 Descriptive

Table 1: Dataset statistics including the number of annotators (A), the number of total instances (I), the number of
annotations per annotator (N), annotations per instance (A/I), the agreement as measured by Krippendorff’s alpha,
and the annotation paradigm.

task is similar to the HS-Brexit dataset.

Social Chemistry The Social Norm (SoC)
dataset (Welch et al., 2022b) is sourced from
Reddit, an online platform with various com-
munities known as subreddits. This dataset
specifically utilizes posts and comments from the
/r/amitheasshole (AITA) subreddit where users
share social experiences and seek community opin-
ions on the appropriateness of their behavior and
that of others involved. AITA members express
their views on whether the original poster is at fault
in a scenario, using labels YTA (you are the ass-
hole) and NTA (not the asshole), often providing
additional reasoning. The commenters are treated
as annotators and personalization methods can be
applied to their comments on other parts of the sub-
reddit or other subreddits to compute annotator rep-
resentations that are not possible with most datasets
that contain no more than annotator IDs (and oc-
casionally demographic information). The dataset
comprises 21k posts and 327k verdicts (229k NTA,
98k YTA) from 86k different authors. Due to the
large number of annotators, we downsampled to
only the top 2,500 annotators with the highest an-
notation counts, resulting in 18,431 instances.

In Table 1, we report the aggregated statistics
for our datasets. These include the number of an-
notators (A), the number of total instances (I), the
number of annotations per annotator (N), annota-
tions per instance (A/I), and the agreement level
across annotators quantified using Krippendorff’s
alpha. We list the annotation paradigm in the last
column, where a descriptive paradigm encourages,
and a prescriptive discourages subjectivity (Rottger
et al., 2022). The MD-Agreement and ConvAbuse
datasets are classified as mixed primarily because
of their annotation process. While these datasets

did not include a description aligned with the pre-
scriptive paradigm and did not explicitly encour-
age annotator subjectivity, the guidelines allow for
some degree of subjectivity.

4 Methodology

In our study, we investigated five distinct meth-
ods for capturing personalized attributes within a
collective context, encompassing varying levels of
complexity. Our models take the annotator ID and
text that was annotated as input and are designed
to distinguish between unique perspectives. In ad-
dition to representing the text in the input data, the
model also incorporates a representation of the an-
notator who provided the annotations for the text.
These representations are encoded as real-valued,
low-dimensional vectors. The choice of how to
represent the annotator embedding depends on the
specific method being used and the information
available about the annotator. With the exception
of Social Chemistry, the annotator tokens are the
sole explicit distinguishing attribute of the annota-
tors within the dataset. For several of our methods,
annotator embeddings were obtained using spe-
cial tokens and concatenated with the input strings
for each text instance to link each text instance to
its corresponding annotator. For the multi-tasking
model, the annotator ID instead determines which
layer of a multi-task model is responsible for pre-
dicting the label.

Additionally, we experimented with personaliza-
tion techniques for the Social Chemistry dataset.
This dataset contains additional writing for each
annotator that can be used to derive annotator rep-
resentations. We implemented the authorship attri-
bution approach (Welch et al., 2022a) and averaged
SBERT embeddings (Plepi et al., 2022). Note that
the averaged SBERT embeddings are averaging the
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additional text provided by annotators (which is
only available in SoC) rather than the embeddings
of the texts that were assigned an annotation.

We also introduce a composite embedding ap-
proach, where all instances of annotations for each
annotator were aggregated for each class. We calcu-
lated the average embeddings of the positive class
and negative class and concatenated them to derive
a unified representation for each annotator.

4.1 User Token Annotator Embedding
Consider an annotated dataset defined by D =
(X,A, Y ) where X is the set of text instances rep-
resented as X = {x1, x2, ...xn}, A is the set of
annotators represented as A = {a1, a2, ...ak}, and
Y : X × A → {0, 1} is the annotation matrix,
where an entry yij represents the label assigned to
instance xi by annotator aj . Since it is typical for
each annotator to assign labels to only part of the
dataset instances, Y may contain many missing val-
ues. Note that for GoEmotions, we have multiple
annotation matrices Y1, . . . , Y6, one for each of the
the six Ekman emotions.

When using a BERT-based encoder for label clas-
sification, the first step is a transformation of the
individual tokens of the input text instance xi into
a low-dimensional vector representation (embed-
ding). We denote the input token embedding rep-
resentation of instance xi as Ri =

[
w1, . . . , w|xi|

]
,

where w is the embedding of an individual token
and |xi| is the number of tokens in the input. To
incorporate annotator information, we extend the
model’s vocabulary and append a special token to
the input; the user token. Each annotator is rep-
resented by a distinct user token, serving as an
identifier. In accordance with input text embed-
dings, the user token is represented by a learnable
embedding uj that is randomly initialized. Cor-
respondingly, the input representation for training
the model augmented by annotator information be-
comes Rij =

[
w1, . . . , w|xi|, uj

]
.

4.2 Composite Embedding
The composite embedding approach involves com-
puting two embedding averages in the context of
a binary classification task; the average of all in-
stances an annotator labeled as positive, and the
average of all labeled negative. These two resulting
averages represent the typical embedding patterns
of the annotator when labeling positive and nega-
tive instances, respectively.

We define the average positive embedding Ep

as the sum of all embeddings of all instances x
labeled positive by annotator aj , i.e., {xi|yij =
1}ni=1, divided by total count of positive instances
by annotator aj .

Ep =

∑
i|yij=1 x

embed
i

|{yij = 1}ni=1|
(1)

We obtain the embedding of an instance xembed by
encoding x with a pre-trained SBERT model.2

Similarly, let En denote the average embedding
of all instances labeled negative by annotator aj ,
i.e., yij = 0:

En =

∑
i|yij=0 x

embed
i

|{yij = 0}ni=1|
(2)

Given Ep and En, we calculate the composite em-
bedding for annotator aj as cj = [Ep||En] where ||
denotes concatenation.

The composite embedding cj is used to initial-
ize a special token embedding representing the an-
notator, whereas the user token approach uj is a
random initialization. Intuitively, an initialization
computed from all training data for a given anno-
tator should provide a better starting point for the
model.

4.3 Composite Embedding with User Token
This approach follows the convention as in §4.1
and §4.2 above. It utilizes the two special token
embeddings; uj associated with the annotator ID
of aj , and cj associated with the composite repre-
sentation of the same annotator. Both are appended
to the input text xi annotated by aj resulting in
Rij =

[
w1, . . . , w|xi|, uj , cj

]
to model the annota-

tor. This approach uses both a randomly initialized
user token embedding and the composite embed-
ding, which are updatable during training.

4.4 Multi-task
The multi-tasking model is implemented on top
of a BERT-base model as in previous work. One
linear prediction layer is added for each annota-
tor. The loss is summed over all annotators for a
given instance. We tuned the learning rate of the
multi-tasking model on the validation sets and used
1e−5 for subsequent experiments. This model has
more parameters dedicated to each annotator, so
we hypothesized that it would outperform the other

2https://huggingface.co/sentence-transformers/
paraphrase-MiniLM-L6-v2
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Method GE GHC SoC MD HSB CVA ArMIS

SBERT 68.6 68.5 53.3 73.0 68.6 85.9 61.7

User Token 70.2 76.5 58.5 77.7 77.6 88.5 62.1
Composite Embed (Ours) 68.2 68.2 58.6 73.1 67.6 85.8 61.4

Composite+User Token (Ours) 70.0 76.4 60.4 77.5 77.3 88.6 62.5
Multi-task 68.3 70.5 53.5 75.7 71.7 82.3 56.6

Table 2: Full dataset result F1 scores on the individual annotator labels for each annotator representation method
and dataset.

Method Anger Disgust Fear Joy Sadness Surprise

SBERT 67.9 64.3 71.1 69.2 69.7 70.2

User Token 69.6 66.9 73.1 69.9 70.6 71.1
Composite Embed (Ours) 66.3 63.6 71.5 69.0 68.9 69.8

Composite+User Token (Ours) 69.1 66.2 72.3 69.8 70.5 71.6
Multi-task 67.8 64.0 70.4 68.9 68.8 69.6

Table 3: GoEmotions Ekman emotion F1 scores on the individual annotator labels for each method.

annotator methods. We expect to see a trade-off
between the cost in time and model complexity
versus the improvement in annotator modeling.

4.5 Personalization Methods

We implement the authorship attribution and aver-
aged SBERT embeddings used in previous work
for the Social Chemistry dataset. The averaged
SBERT embeddings are computed for a given an-
notator by taking the set of texts that annotator has
written independently of their annotations, encod-
ing them with SBERT, and subsequently averaging
the representations.

The authorship attribution method is imple-
mented by training an authorship attribution classi-
fier over the text of all annotators. We first embed
the text with SBERT and forward these encodings
to a two-layer feed-forward network. The output
of the last linear layer provides a distribution over
all annotators for predicting the author of the text.
For each annotator, we use all of their texts from
the training set (each label is accompanied with
text) and pass them to the classifier. Intuitively, an
annotator that is more often confused with another
annotator should be more similar to that annotator.

5 Experimental Setup

First, following Plepi et al. (2022), we implemented
a text-only baseline that also serves as the base
model, which we extend by different methods for

annotator modeling. Specifically, we used SBERT
(Reimers and Gurevych, 2019), a consistently high-
performing BERT-based model trained to encode
sentences for a variety of downstream tasks. We
used a pre-trained3 SBERT model with the Dis-
tilRoBERTa (Sanh et al., 2019) backbone, which
features a 768-dimensional representation and a
maximum sequence length of 512 tokens. On top
of the text encoding provided by SBERT, we im-
plemented a classification head and fine-tuned the
model for binary classification.

For the multi-task model, we used the same setup
as Davani et al. (2022) who used a BERT model
with separate output layers for each annotator (De-
vlin et al., 2019). Lastly, since all of our datasets
are in English except ArMIS, which is in Arabic,
we used the Arabic BERT model from Safaya et al.
(2020), which was trained on a combination of data
from Wikipedia and Common Crawl.

To evaluate, we used the macro F1 score across
individual annotator’s labels. We trained our mod-
els for 10 epochs, employing early stopping based
on the validation set performance. The Adam opti-
mizer was used, with an initial learning rate set at
2e−5. We split the data into 80% train and 10% for
each of validation and test with the same annotators
in all splits. Our experiments were conducted on
a single NVIDIA A100 40GB GPU. The average

3https://huggingface.co/sentence-transformers/
all-distilroberta-v1
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running time for both training and inference phases
combined was around 15 minutes per model.

6 Results

Individual Annotators In Tables 2 and 3 we
report the F1 score for all our models across dif-
ferent datasets. Our analysis reveals a consistent
trend across our personalized models: performance
generally improves with a smaller number of an-
notators and a high agreement rate. Our models
are performing the worst in the Social Chemistry
dataset, which contains the highest number of an-
notators (triple that of the dataset with the next
highest count). In contrast, in the GoEmotions
dataset, our models underperform compared to the
MD-Agreement model, despite having fewer anno-
tators. This can be attributed to two key differences
between both datasets: a significant variance in the
number of annotations per annotator and a lower
overall agreement rate among annotators. Our mod-
els achieve the best performance in the ConvAbuse
dataset, characterized by a smaller pool of annota-
tors and a higher rate of agreement. This pattern
suggests that both the number of annotators and the
level of agreement among them are pivotal factors
influencing model performance. This correlation is
further observed in the GoEmotions dataset, as de-
tailed in Table 3. For instance, our models perform
poorly in the disgust category, which coincides
with the lowest annotator agreement.

For Social Chemistry, we also calculated the
authorship attribution and averaged embeddings
scores. The F1 for authorship attribution was 56.7
and for averaged embeddings was 57.1, both un-
derperforming our composite embedding plus user
token. However, these results are comparable with
the 56 F1 reported by Plepi et al. (2022) for the
situation split (the same splitting method we use),
even though we are using 10k fewer annotators.

Majority Label We presented results using the
F1 scores of the individual annotator labels as our
primary concern is with annotator modeling. How-
ever, it is interesting to note that the methods that
perform best on annotator modeling are not the
same as those that perform best when aggregating
the results of individual predictions to the majority
label. To obtain these results we take the individual
annotator labels predicted by the model for a given
instance and take the most frequent label as the
predicted majority label. This is compared to the
gold majority label and the resulting F1 scores are

shown for the full datasets in Table 4 and for each
Ekman emotion of GoEmotions in Table 5.

For the majority labels, we find that the com-
posite embedding combined with the user token
improves performance on GHC as well as Disgust.
The performance on ArMIS still outperforms other
annotator modeling methods, but the SBERT base-
line appears to perform better for ArMIS, as well
as HS-Brexit and Fear. For two emotions, Anger
and Joy, we see the multi-task model outperform
other methods, while it is never the best at predict-
ing individual labels. For Social Chemistry, the
authorship attribution method achieved an F1 of 57
and the averaged SBERT embeddings scored 56.

For the majority vote, it is interesting to note
that the text-only baseline is sometimes the best
model. However, we know from Tables 2 and 3
that the baseline is more often getting the individual
annotator labels incorrect. This finding supports
similar findings indicating that the best model of
the majority class often marginalizes the voice of
minority annotators (Sap et al., 2019; Fleisig et al.,
2023), which can be particularly harmful, for in-
stance, in cases such as when racial bias impacts
the perception of hate speech (Sap et al., 2022).

7 Scaling Up

Subsequently, to further test the impact of dataset
statistics reported in Table 1, we created subsets of
our datasets by scaling the number of annotations
per annotator, and the number of annotators.

When scaling the number of annotators, the three
smallest datasets were scaled in increments of one
annotator. For the other four, we scaled in incre-
ments of two annotators for the range of 6 to 18
annotators; the upper limit for GHC. Then for GoE-
motions and Social Chemistry we scaled from 18 to
82 annotators in increments of 4. Lastly, we scaled
Social Chemistry from 100 to 2.5k in increments of
100. This is repeated for each method and Ekman
emotion across five runs. We tested each method
on each subset, which yields a total of 1,670 trials
using artificially constructed datasets.

Figure 1 shows each method for the GoEmotions
dataset when scaling the number of annotators from
6 to 82. The baseline SBERT method is marked by
a dashed line. User token performed best overall
and even performs strongly when the number of
annotators and amount of data is low. The compos-
ite embedding and multi-tasking methods perform
poorly in this setting but approach the performance
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Method GE GHC SoC MD HSB CVA ArRMIS

SBERT 67.0 67.5 51.6 79.8 72.7 87.6 65.3

User Token 67.4 69.7 58.7 80.6 72.2 88.8 62.1
Composite Embed (Ours) 65.5 69.2 56.7 80.1 71.9 87.5 63.0

Composite+User Token (Ours) 66.6 69.8 59.9 80.5 70.4 89.3 63.6
Multi-task 66.7 66.7 49.5 76.4 70.2 83.1 55.3

Table 4: Full dataset result F1 scores for each annotator representation method and dataset using the F1 score of
predicting the majority class label rather than the individual annotator labels.

Method Anger Disgust Fear Joy Sadness Surprise

SBERT 67.5 62.6 73.2 63.3 67.5 67.6

User Token 67.5 63.3 72.5 64.8 68.0 68.4
Composite Embed (Ours) 69.4 61.0 64.9 63.4 66.9 67.2

Composite+User Token (Ours) 66.8 63.5 72.2 64.0 66.2 66.7
Multi-task 70.3 62.0 70.9 67.8 62.6 66.7

Table 5: GoEmotions Ekman emotion F1 scores for each annotator representation method using the F1 score of
predicting the majority class label rather than the individual annotator labels.

Figure 1: GoEmotions mean performance across emo-
tions when scaling the number of annotators. The
SBERT baseline is indicated by the dashed line. Shaded
regions correspond to 95% confidence intervals.

of other methods as the amount of data increases.

To identify trends across these three variables we
looked at the correlation with performance across
all trials. We split the data into those with greater
than 18 annotators (the median value across our
corpora) and those with 18 or fewer. For each
model, we calculate the percentage of relative im-
provement in the F1 measure over the baseline and
measure the correlation using Pearson’s coefficient.
Since we scaled each dataset based on their avail-
able annotations and annotators to examine corpora
specific patterns, this resulted in an unequal distri-
bution of trials across datasets. For this analysis, to
avoid imbalance of dataset influence, we sampled

60 trials from each of the seven corpora.

When there are more than 18 annotators, there
are no significant correlations. However, when we
have 18 or fewer, we find that there is a significant
correlation with the dataset size (R = 0.18, p <
0.0005), number of annotators (R = 0.16, p <
0.001), and most significantly with the number of
annotations (R = 0.42, p < 0.0001).

Subsequently, we decided to look at the impact
of the number of annotations per annotator on per-
formance. We ran experiments on all datasets when
fixing the number of annotators to the maximum
number for ArMIS, ConvAbuse, and HS-Brexit.
For the others, we fixed the number of annotators
to 14 and lastly, for GoEmotions, MD Agreement,
and Social Chemistry we also ran trials with 50
annotators. We varied the number of annotations
per annotator in increments of 10% up to the mini-
mum number of annotations per annotator in each
set of annotators for a given dataset. This resulted
in an additional 1,260 trials, which we sampled
as in the previous analysis. When examining the
relationship between performance and the number
of annotations per annotator, our correlation coef-
ficient was R = 0.47 (p < 0.0001). The samples
shown in Figure 2 are from the best performing
method on each dataset according to Table 2. We
see that the number of annotations per annotator is
important, but on most datasets the improvement
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Figure 2: Relative performance increase in F1 as a func-
tion of the number of annotations per annotator.

levels off after a couple hundred annotations.

8 Discussion

When examining the dataset statistics and perfor-
mance, we notice that the user token method per-
forms well when the Krippendorff alpha is rela-
tively low (K-α < 0.4). For the Social Chemistry,
ConvAbuse, and ArMIS datasets, the agreement is
higher (K-α > 0.5) and we find that in these cases
the composite embedding boosts performance, be-
coming the best model. This may be because when
agreement is higher, the composite embedding is
more informative as an initialization of the anno-
tator representation. When annotators agree more
with each other, the aggregate of their positive and
negative labels is more generalizable, as opposed
to the random initialization of the user token.

The largest boost provided by the composite em-
bedding occurred in the Social Chemistry dataset,
where we have the lowest number of annotations
per annotator. This led us to check the correla-
tion between the performance of the user token and
composite embedding methods with the number
of annotations per annotator when examining the
scaling experiments. We found a slightly stronger
correlation for the user token (R = 0.40) than for
the composite embedding (R = 0.35) suggesting
that the low number of annotations per annotator is
more detrimental to the user token method, but fur-
ther work is needed to understand this relationship.

Interestingly, while the multi-task model per-
formed the best in previous work on GoEmotions
and GHC (Davani et al., 2022), we found that it
performed worse in our experiments and was more
expensive to train. This was the case even when

using the full datasets, while our reimplementa-
tion of the approach outperforms results reported
in their paper. It tends to perform worse than the
baseline for the datasets that had higher agreement.
Our hypothesis when we began our study was that
multi-tasking would outperform other methods, as
it allocates a larger number of dedicated parame-
ters to learning representations of each annotator.
We expected to see a trade-off in the model com-
plexity and annotator modeling performance, with
multi-tasking being the highest on both.

Lastly, it is important to note that our analysis is
focused on the correlations between performance
and surface-level features. This is to provide initial
exploratory insight into an area that deserves much
further analysis and experimentation. Corpora have
idiosyncrasies and future work can explore how to
measure such qualities of dataset construction to
support a more human-centric and personalized
approach to annotator modeling, rather than one
that abstracts away from these qualities.

9 Conclusion

As research on subjective tasks in natural language
processing has grown, the importance of model-
ing annotators and minority opinions has become
more apparent. With the recent growth in work on
annotator modeling and data perspectivism, it is be-
coming important to understand how the properties
of our datasets and methods impact the effective-
ness of annotator modeling methods. We examined
seven corpora to better understand recent methods
and introduced our method, the composite embed-
dings. We found that when annotator agreement
on a dataset is low (K-α < 0.4), the user token
embedding was most effective. When the annota-
tor agreement was higher (K-α > 0.5), our new
composite embedding gave the best performance.
Surprisingly, the user token and composite embed-
dings, which are simple and efficient to implement,
outperformed the multi-tasking model that was the
highest performing model in prior work. Impor-
tantly, we also note that the number of annotations
per annotator is correlated much more strongly with
performance improvements than other corpus statis-
tics, suggesting that this should be an area of focus
for those constructing new datasets and collecting
annotations. Our code and collection of over 3k
trial experiments statistics are publicly available to
support further work in this area.
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Limitations

We examined seven different corpora for our experi-
ments and covered the binary classification tasks of
emotion recognition, hate and offensive speech de-
tection, and judgement of social norms and moral-
ity. However, there are many more types of sub-
jective tasks we have not considered in our work,
including those that were previously thought to be
more objective in nature (Pavlick and Kwiatkowski,
2019). We do not know how our results will gener-
alize to unseen tasks that are significantly different
than we we have examined in this paper. It would
be interesting to extend the analysis by the type of
task and the degree on a prescriptive to descriptive
continuum to measure the influence on annotator
modeling performance. Furthermore, our experi-
ments examine surface statistics of corpora, which
may be impacted by underlying mechanisms of
data collection, corpus construction, or other fac-
tors and more work is needed to understand the
relationship between these mechanisms and down-
stream model performance.

The scaling experiments we performed were ini-
tially designed to target the number of annotators
and number of annotations per annotator and for
experiments with one, we held fixed the value of
the other to serve as a control. While we ran a large
number of trials, many of the annotation scaling
experiments use only a handful of different quan-
tities of annotators. Future work should diversify
the sampling for such trials to confirm these results,
but our work serves as a first exploratory study that
exemplifies the relationship with regards to the cor-
relation and thresholds for sufficient numbers of
annotations per annotator.

Our datasets did not all include demographic in-
formation. Previous work by Deng et al. (2023)
included a detailed analysis and breakdown of an-
notator identity groups and their relation to annota-
tor modeling performance. Since we do not know
which annotators are represented in four of our
seven datasets, we cannot say that our results are
robust across demographic groups. Future work in
this area should include more corpora with annota-
tor information, and future data collection should
strive to contextualize collected annotations with
such annotator meta-data.
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