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Abstract

Coherence evaluation aims to assess the orga-
nization and structure of a discourse, which
remains challenging even in the era of large
language models. Due to the scarcity of an-
notated data, data augmentation is commonly
used for training coherence evaluation models.
However, previous augmentations for this task
primarily rely on heuristic rules, lacking de-
signing criteria as guidance. In this paper, we
take inspiration from linguistic theory of dis-
course structure, and propose a data augmen-
tation framework named COUDA. COUDA
breaks down discourse coherence into global
and local aspects, and designs augmentation
strategies for both aspects, respectively. Espe-
cially for local coherence, we propose a novel
generative strategy for constructing augmenta-
tion samples, which involves post-pretraining a
generative model and applying two controlling
mechanisms to control the difficulty of gener-
ated samples. During inference, COUDA also
jointly evaluates both global and local aspects
to comprehensively assess the overall coher-
ence of a discourse. Extensive experiments
in coherence evaluation show that, with only
233M parameters, COUDA achieves state-of-
the-art performance in both pointwise scoring
and pairwise ranking tasks, even surpassing
recent GPT-3.5 and GPT-4 based metrics. 1

1 Introduction

Coherence is a vital aspect of communication that
evaluates the structure and organization of dis-
course (Halliday and Hasan, 1976; Grosz and Sid-
ner, 1986). Consequently, models capable of evalu-
ating coherence of the given text are widely appli-
cable in both discourse generation and assessment.
While recent large language models show strong
performance in various tasks (Brown et al., 2020),
they have not presented superiority in coherence
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Opening:
Adding regular exercise to your daily routine 

has many benefits. 

- Aspect 1:
First, exercise makes your body healthier by 

making your muscles stronger. It also helps 

you stay at a good weight and lowers the 

chances of getting long-term illnesses.

- Aspect 2:
Second, exercise is good for your mind. When 

you do physical activities, your brain releases 

chemicals called endorphins. These 

endorphins make you feel good. 

Closing:
To sum up, exercise regularly can greatly 

improve both your body and mind.
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Figure 1: Example for global coherence and local co-
herence in a discourse. Globally, the discourse is well-
structured, with a opening sentence to introduce the
argument, five sentences to give evidence from two as-
pects, and a closing sentence for conclusion. Locally,
the focused items, which is denoted in Red and Purple,
transfers smoothly from sentence to sentence.

evaluation compared with the fine-tuning based
models (Fu et al., 2023). Considering both com-
putational efficiency and evaluation performance
a good evaluation metric should possess, in this
paper, we focus on modeling coherence via a fine-
tuning based lightweight model.

Due to the scarcity of human-annotated data,
data augmentation techniques are commonly em-
ployed in training a coherence evaluation model
(Li and Jurafsky, 2017; Jwalapuram et al., 2022).
As human-written discourses naturally possess co-
herence and can thus serve as positive samples,
previous research has focused on constructing neg-
ative samples, primarily through rule-based meth-
ods such as swapping or shuffling sentences (Barzi-
lay and Lapata, 2008; Shen et al., 2021; Jwala-
puram et al., 2022). However, as these methods
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are heuristically inspired without any design crite-
ria as guidance, they suffer from weak correlation
with human judgements (Mohiuddin et al., 2021).
This brings up the research question: To effectively
model coherence, can we find reasonable criterium
as guidance to design augmentation strategies?

According to Grosz and Sidner (1986), discourse
coherence is mainly determined by two aspects: the
organization of discourse segments (i.e. global co-
herence), and the transition of attention or focused
items (i.e. local coherence). Examples for these
two aspects of coherence are presented in Figure 1.
This inspires us to the designing criteria that a good
data augmentation strategy should uniformly cover
these two aspects of coherence. Following the crite-
ria, we propose a Coherence evaluation framework
via Unified Data Augmentation, namely CoUDA,
which unifies both global and local aspects of co-
herence throughout training and inference phase.

COUDA involves global and local augmentation
to capture the corresponding aspects of coherence.
Regarding global augmentation, we construct neg-
ative samples through shuffling, which disrupts the
original order of the sentences to induce global in-
coherence. For local augmentation, our target is to
construct negative samples that contain sentences
incoherent with the context. While prior rule-based
methods, such as swapping a sentence with an-
other from a different text (Shen et al., 2021), can
also introduce local incoherence, their constructed
samples often lack diversity and complexity, po-
tentially failing to capture nuanced aspects of local
coherence. To address this, we propose a novel
generative augmentation strategy that involves post-
pretraining a generative model, and applying two
controlling mechanisms to manipulate the difficulty
of generated samples. By sampling from a gener-
ative model, and applying difficulty control, we
construct high-quality negative samples to disrupt
local coherence. Finally, in inference phase, we de-
sign a unified scoring strategy to incorporate both
aspects of coherence for overall assessment.

While previous research on coherence evalua-
tion has traditionally adhered to a pairwise ranking
setup, we have pioneered a pointwise coherence
scoring setting that we believe is more relevant
in real-world scenarios. On SUMMEVAL(Fabbri
et al., 2021), our COUDA exhibits remarkable im-
provements in pointwise scoring compared to prior
methods, including GPT-4-based metrics. Despite
not being specifically tailored for pairwise ranking,

our model outperforms previous ranking models
on both the INSTED-CNN and INSTED-WIKI

datasets (Shen et al., 2021). Furthermore, COUDA
is a lightweight model with only 233M parameters.
To sum up, our contributions are as follows:

• We propose COUDA, a data augmentation frame-
work inspired by linguistic theory of discourse
structure, which uniformly models both global
and local coherence aspects of a discourse.

• We propose a novel generative augmentation
strategy, which utilizes the power of the pre-
trained language model via post-pretraining and
two mechanisms for sample difficulty control.

• Comprehensive experiments in coherence evalu-
ation show COUDA with only 233M parameters
achieves SOTA performance, even surpassing
GPT-3.5 and GPT-4 based metrics.

2 COUDA Framework

In this section, we introduce our COUDA frame-
work, as illustrated in Figure 2. First, we use global
and local augmentation to create negative samples
that have relatively poor global coherence and local
coherence, respectively. To be specific, we use sen-
tence shuffling for global augmentation, and design
a generative strategy for local augmentation. Our
generative strategy involves post-pretraining a gen-
erative model, and applying two controlling mecha-
nisms to control the difficulty of generated samples.
Then we combine the constructed negative sam-
ples with the original discourses, which serves as
positive samples, to train our metric model for co-
herence/incoherence classification. In inference
phase, we utilize a unified scoring strategy to in-
corporate global and local coherence for overall
assessment.

2.1 Preliminaries

Task Formulation. Given a discourse that con-
tains multiple sentences D = {s1, s2, . . . , sn}, the
goal of a coherence evaluator fθ is to assess its
degree of coherence by a logit score fθ(D) ∈ [0, 1]
(the higher the better). Ideally, fθ(D) = 1 repre-
sents that D is perfectly coherent, while fθ(D) = 0
indicates the opposite. Different from previous
work that additionally relies on references (Zhao
et al., 2022) or source inputs (Zhong et al., 2022),
we evaluate coherence in this more concise frame-
work that solely takes the discourse as the input.
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(a) Global and Local Augmentation
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(b) Training
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[s1;s2]
...

[sn-1;sn]

: Generative Augmentor

: Metric Model

(c) Unified Scoring

Figure 2: Overview of our proposed COUDA framework. (a): First, we use global and local augmentation to create
negative samples D−

g and D−
l , respectively. (b): Then, we combine D−

g and D−
l with the original discourses D to

train our metric model via coherence/incoherence classification. (c): In inference phase, our metric model scores
the whole discourse for global score Sg, and scores each consecutive sentence pairs for local score Sl. Sg and Sl

are combined to produce the final coherence score.

That is more appropriate for evaluation as coher-
ence is an intrinsic quality of a discourse.

Data Augmentation. Data augmentation aims
to artificially create additional training samples by
manipulating existing data. For a discriminative
setting, we need both positive and negative sam-
ples for training. In terms of coherence evaluation,
since a natural discourse D is intrinsically coher-
ent, we focus on applying data augmentation to
construct negative samples, i.e. incoherent samples
D−. Afterwards, the created incoherent discourses
D− and the original discourse D respectively serve
as negative and positive samples to train fθ.

In the following, we introduce how we construct
our two types of negative samples via global aug-
mentation and local augmentation in details.

2.2 Global Augmentation

To construct samples that have relatively poor
global coherence, we disrupt the original appro-
priate organization of sentences in D. Concretely,
we shuffle the order of sentences in D to effectively
disrupt its global coherence. As illustrated in Fig-
ure 2(a), by shuffling D = {s1, s2, s3}, we can
construct a negative sample D−

g = {s3, s1, s2}.

2.3 Local Augmentation

Local augmentation aims to construct samples with
relatively poor local coherence using the original
discourse D. Intuitively, we can realize it by re-
placing a sentence sk ∈ D with a substitute s′k

that is incoherent with the leftover discourse D\sk.
This is based on the insight that, through such a re-
placement, s′k will decrease local coherence of the
discourse by introducing an incoherent transition
of attention between sentences.

Subsequently, the most important question is
how to find a suitable s′k in practice. However,
most prior studies introduce such incoherent el-
ements via heuristic rules, resulting in s′k that
has very weak relevance or even irrelevant with
the remaining discourse D\sk. For example, IN-
SteD (Shen et al., 2021) obtains s′k by extracting
sentence of the highest n-gram overlap with sk
from another discourse. As a result, their intro-
duced local augmentation samples are too easy to
train a powerful coherence evaluator.

To construct samples with a higher level of lo-
cal incoherence, we propose to construct s′k in a
generative way. Specifically, we train a generative
augmentor G to reconstruct sk based on D\sk and
use its generated sentence s′k ∼ G(sk|D\sk) to
replace sk. The strong performance of pretrained
generation model will ensure s′k to meet the ba-
sic standard of fluency and relevance with regard
to D\sk. Meanwhile, due to the intrinsic limita-
tion of autoregressive generation, the reconstructed
s′k will frequently be incoherent with D\sk, mak-
ing it possible to construct negative samples in a
generative way. To further ensure that s′k conveys
the local incoherence we expect, we design two
controlling mechanisms during the inference of G.
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These two mechanisms, context truncation and co-
herence filtering , constraints s′k to be neither too
strong (perfectly coherent with D\sk) nor too easy
(the incoherence that is too obvious). Overall, by
replacing sk with s′k, we construct a much stronger
negative sample, which conveys high-level local
incoherence while maintaining the basic relevance
and fluency with D\sk. In the following, we will
introduce our generative augmentor, context trun-
cation and coherence filtering in details.

Generative Augmentor. Given discourse D, we
uniformly sample sk from D’s non-opening and
non-closing sentences. Next, we train a text gener-
ation model G by learning to reconstruct sk based
on the leftover discourse D\sk. Following recent
popular text generation paradigm, this can be done
by selecting G as a transformer-based sequence-to-
sequence model and maximizing the likelihood of
G(s|D\sk) autoregressively.

We also notice that Gap Sentences Generation
(GSG), the pretraining task of PEGASUS (Zhang
et al., 2020), takes the similar form of reconstruct-
ing sentences. But we cannot directly apply PEGA-
SUS as G, because GSG is specially designed for
summarization, which requires predicting multiple
salient sentences in the discourse. By contrast, our
sentence reconstruction task aims to capture the
coherence relation between an arbitrary sentence
s and the leftover discourse. In practice, we also
find s′k generated by PEGASUS often serve as sum-
maries of the leftover discourse, rather than being
coherent with it. Thus, instead of directly applying
PEGASUS, we leverage this similarity of tasks and
use PEGASUS for initialization. In this way, we
inherit the effectiveness of pretrained model.

After the generative augmentor is trained, we use
it to predict s′k with two controlling mechanisms:

Context Truncation. Due to the strong gener-
ation ability of generative augmentor, s′k may be
highly coherent with D\sk, which is not the nega-
tive sample we expect. To ensure s′k to convey the
local incoherence, we develop a context truncation
mechanism to restrict the model’s generation to
only partially coherent with the context. Specif-
ically, given D\sk = {s1, s2, ..., [mask], ..., sn}
with sk masked, we randomly choose to truncate
the context before or after the mask token, i.e.,
the input for our generative augmentor is either
{s1, s2, ..., [mask]} or {[mask], ..., sn}. Take the
former as an example, without information from

subsequent text, the model is only able to generate
predictions that are coherent with preceding text.

Coherence Filtering. In addition to context trun-
cation, we also perform coherence filtering to re-
move negative samples that are too easy. We utilize
UNIEVAL (Zhong et al., 2022) to score the coher-
ence of each sample and eliminates samples with
coherence scores below a filtering threshold δ.

2.4 Training and Unified Scoring
Training. We combine the original discourses
with negative samples constructed via global and
local augmentation to train our metric model, as
illustrated in Figure 2(b). We utilize the classifi-
cation setup, based on findings (Steen and Mark-
ert, 2022) that indicate its superior performance
in coherence evaluation and downstream tasks, as
opposed to the commonly used pairwise ranking
setup. Specifically, we train our metric model to
distinguish each sample as coherent or incoherent
through binary cross entropy loss. For implementa-
tion details, please refer to Appendix A.

Unified Scoring. For a comprehensive evalua-
tion of discourse coherence, our COUDA further
includes a unified scoring strategy, as presented in
Figure 2(c). Specifically, our model first assigns a
score conditioned on the whole discourse to repre-
sent its global coherence level:

Sg = fθ(D) (1)

Then, since global scoring may fail to effec-
tively capture the fine-grained coherence between
sentences, we extract consecutive sentence pairs
[si; si+1] from the discourse and have our model
evaluate the inter-sentential coherence Si

l of each
pairs, where 1 ≤ i ≤ n− 1:

Si
l = fθ([si; si+1]) (2)

Notably, although our model is trained for scoring
the whole discourse, rather than sentence pairs, the
training data includes discourse samples with only
two sentences. As a result, our model can general-
ize to scoring sentence pairs as well. Afterwards,
we obtain local coherence score for discourse D by
averaging each sentence pair’s coherence score:

Sl = Average({S1
l , ..., S

n−1
l }) (3)

The global and local scores are then combined via
interpolation to form the overall coherence score:

Score = (1− λ) · Sg + λ · Sl (4)
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where λ ∈ [0, 1] controls the weight. This unified
design also aligns with the coherence rating process
of human readers, who consider both discourse
organization as a whole, and smooth transitions of
focused items between adjacent sentences.

3 Experimental Setup

3.1 Evaluation Tasks

We perform meta-evaluation on the proposed met-
ric model in two task settings, i.e. pointwise scor-
ing and pairwise ranking.
Pointwise Scoring involves assigning coherence
scores to text summarization samples and evaluat-
ing the correlation between model-assigned scores
and human-rated scores. This task closely sim-
ulates real-world scenarios. To determine the
accuracy of the assigned scores, we compute
the correlation coefficients between the model-
generated scores and human ratings using Spear-
man (Sedgwick, 2014), Pearson (Sedgwick, 2012),
and Kendall’s tau (Abdi, 2007). Following pre-
vious work, these correlation scores are reported
at both sample-level and dataset-level (See Ap-
pendix A for their definitions).
Pairwise ranking requires the metric models to de-
termine the more coherent option when presented
with two candidates. This task serves as an alterna-
tive when absolute scores are unavailable, relying
solely on relative coherence rankings. For this task,
we use accuracy as performance metric.

3.2 Evaluation Datasets

For pointwise scoring, we evaluate model perfor-
mance on SUMMEVAL (Fabbri et al., 2021), which
is a meta-evaluation benchmark for summarization
that contains 100 articles with summaries gener-
ated by 16 different systems. For each summary, it
offers human annotated scores in terms of fluency,
coherence, consistency, and relevance.2

In pairwise ranking, we evaluate model perfor-
mance on INSTED (Shen et al., 2021), which is
an intruder sentence detection dataset constructed
using discourses from CNN and Wikipedia. We
denote these two parts as INSTED-CNN and
INSTED-WIKI. In this dataset, incoherent dis-
courses are created by randomly substituting a sen-
tence with another one selected using n-gram over-
lap from different discourses.

2In this paper, we focus on discourse coherence, so we
neglect coherence evaluation datasets on dialogue.

3.3 Baselines Models
Though more applicable in real scenarios, few work
in coherence evaluation has pioneered in point-
wise scoring. For a comprehensive performance
comparison, we include baselines models from
three categories: 1) Pairwise Coherence Eval-
uators: UNC (Moon et al., 2019) and MULTI-
NEG (Jwalapuram et al., 2022). UNC captures
different levels of coherence via a LSTM-based
Siamese architecture; MULTINEG3 mines hard neg-
ative samples constructed via sentence shuffling to
train pairwise coherence ranking models. 2) Gen-
eral Evaluators: BARTSCORE (Yuan et al., 2021),
UNIEVAL (Zhong et al., 2022). BARTSCORE treats
text evaluation as a generation task, utilizing BART
to assign quality scores for a specific dimension.
UNIEVAL reframes text evaluation as a Boolean
Question Answering task. Backboned with T5, it
is trained with rule-based local augmentation for
coherence evaluation. 3) Large Language Mod-
els: G-EVAL (Liu et al., 2023) uses LLMs with
chain-of-thoughts to assign quality scores. We ex-
periment with two versions using GPT-3.5-Turbo
/ GPT-4, respectively denoted as G-EVAL-3.5 / 4.
We include more details about using UNIEVAL and
G-EVAL in Appendix C and D, respectively.

3.4 Details of Synthetic Data
Data Source. We obtain positive part of data for
our framework by sampling from CNN (Nallap-
ati et al., 2016) and Wikipedia (Yang et al., 2015).
For CNN, we utilize its source documents rather
than summaries, because the latter is constructed
by combining bullet points, hence lacks coherence.
For each source document, we randomly select 2
to 5 leading sentences, enabling our metric model
to generalize to different lengths. The same length
constraint is applied on Wikipedia as well. Con-
cretely, we sample 10,000 documents each from
CNN and Wikipedia, hence obtaining 20,000 posi-
tive samples.

Statistics. For global coherence, we perform per-
mutation on 5,000 positive samples, and acquire
5,000 negative samples for this aspect. For local
coherence, we perform gap sentence generation
on the remaining 15,000 positive samples using

3The original MULTINEG model is backboned with XLNet
and trained on the WSJ dataset. For fair comparison, we
retrained this model from ALBERT-xxlarge, using the same
part of Wikipedia and CNN data. Notably, due to its use of
two encoders, MULTINEG has twice the number of parameters
compared to COUDA.

971



Model #Param. ↓
Sample-Level ↑ Dataset-Level ↑

ρ r τ ρ r τ

UNC - 18.8 27.8 14.1 19.8 24.3 14.0
MULTINEG 466M 44.6 48.1 34.0 47.7 47.8 34.3

BARTSCORE 406M 44.8 45.8 34.2 40.8 43.4 29.2
UNIEVAL 770M 56.7 57.8 43.6 58.7 55.6 42.3

G-EVAL-3.5 >10B 47.0 48.4 40.3 43.5 43.8 35.3
G-EVAL-4† >100B 58.2 - 45.7 - - -

COUDA (ours) 233M 60.0 62.1 46.0 65.6 64.2 47.8

Table 1: Sample-level and dataset-level Spearman (ρ) / Pearson (r) / Kendall (τ ) correlations with human ratings on
SUMMEVAL. Best results in each column are denoted in Bold. † denotes results reported in the original paper. With
only 233M parameters, COUDA largely outperforms previous methods, including GPT-4 based methods.

Model CNN Wiki

UNC 96.4 60.5
MULTINEG 94.2 72.1

BARTSCORE 70.7 58.8
UNIEVAL 92.0 77.3

G-EVAL-3.5 82.2 58.5

COUDA 98.5 79.1

Table 2: Pairwise ranking accuracy on the CNN and
Wikipedia split of INSTED.

generative augmentor with context truncation. By
setting threshold δ for confidence filtering to 0.5,
we obtain 10,889 positive and negative pairs for this
aspect. Hence, the final size of our synthetic data
(including positive samples) is 31,778. We split it
into 30,000 / 1,178 for training and validation.

3.5 Implementation Details.
Our metric model utilizes ALBERT (Lan et al.,
2020) as the backbone, benefiting from its sentence
order prediction task during pretraining to capture
information flow between sentences. Specifically,
we use ALBERT-xxlarge with a total of 233M pa-
rameters. We set batch size to 32 and learning
rate to 1e−5. Convergence is reached within 3,000
steps. We use the best performing checkpoint on
the validation part of synthetic data. Details about
generative augmentor are presented in Appendix A.
In terms of hyperparameters λ and δ, we simply set
both of them to 0.5.

4 Results

In this section, we show that COUDA framework
achieves impressive coherence evaluation results
on pointwise scoring and pairwise ranking tasks,

even when compared with GPT-4 based models.
We report average scores across 3 runs with differ-
ent random seeds.

4.1 Results on SUMMEVAL

Table 1 presents the sample-level and dataset-level
correlations of each model with human ratings
on SUMMEVAL. Since UNC and MULTINEG

are trained through pairwise ranking, their perfor-
mance on for pointwise scoring is relatively limited.
BARTSCORE and UNIEVAL are general evaluators
for multiple dimensions such as informativeness
and coherence. The former lacks specific train-
ing for these dimensions, leading to lower perfor-
mance, while the latter gain significant improve-
ment through tailored training for coherence. How-
ever, UNIEVAL still relies on heuristic rules for
augmentation, resulting in limited improvements.
The third block presents the results of G-EVAL-3.5
and G-EVAL-4, built upon GPT-3.5-TURBO and
GPT-4, respectively. Since there are no exact de-
scription of how many parameters GPT-3.5/4 takes,
we estimate them as >10B and >100B.

Among baselines models, G-EVAL-4 achieves
highest correlation with human ratings, followed
by UNIEVAL, which demonstrates strong per-
formance, even surpassing G-EVAL-3.5. Com-
pared with UNIEVAL, COUDA consistently
shows its superiority on both sample-level corre-
lation (+3.3/+4.3/+2.4 in ρ, r, τ ) and dataset-level
correlation (+6.9/+8.7/+5.4 in ρ, r, τ ). With only
233M parameters, it also surpasses G-EVAL-4 in
both sample-level Spearman and Kendall corre-
lations by 1.8 and 0.3 points, respectively. This
remarkable improvement consolidates the efficacy
of our designing criteria. Additionally, we notice
that performance gain in dataset-level correlation
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G LG LR

Sample-Level Dataset-Level

ρ r τ ρ r τ

✓ 56.3 57.2 43.1 58.2 56.2 42.1
✓ 57.6 59.4 44.1 62.9 61.6 45.6

✓ 53.8 56.4 41.1 59.4 60.1 43.2

✓ ✓ 56.6 59.3 42.5 61.5 61.3 44.1
✓ ✓ 60.0 62.1 46.0 65.6 64.2 47.8

Table 3: Comparison of global augmentation G, our
generative local augmentation LG, previous rule-based
local augmentation LR, and their combinations.

is much greater than that of sample-level.

4.2 Results on INSTED

Table 2 presents each model’s pairwise ranking
accuracy on INSTED-WIKI and INSTED-CNN.
Both MULTINEG and UNC achieves impressive
accuracy. We suppose it is because they are exactly
trained using the pairwise ranking setup. UNIEVAL

also achieves competitive results, which means that
specialized training for coherence greatly enhances
model performance. Surprisingly, G-EVAL-3.5 ob-
tains merely above chance accuracy on INSTED-
WIKI, indicating that current LLMs are unreliable
in pairwise ranking tasks, necessitating further in-
vestigation and attention from researchers. Our
COUDA, though not directly trained under pair-
wise ranking settings, achieves best results on both
INSTED-CNN and INSTED-WIKI, with a perfor-
mance gain of 2.2 and 1.8 points, respectively.

5 Comparison of Augmentation Methods

In this section, we validate the advantage of our
unified data augmentation strategy for coherence
scoring over previous data augmentation strategies.

Compared Data Augmentation Methods. Co-
herence evaluation emphasizes the sentence struc-
ture and organization of a discourse. Due to this
special focus, data augmentation strategies de-
signed for other tasks, e.g. EDA (Wei and Zou,
2019), are not directly applicable. Instead, we
compare following data augmentation strategies
for generating negative samples: 1) G: Global aug-
mentation via sentence shuffling (Barzilay and Lap-
ata, 2008), which is also adopted in our framework.
2) LR: Rule-based local augmentation through
sentence intrusion, which employs n-gram overlap
to select locally incoherent samples (Shen et al.,
2021). 3) LG: Our generative local augmentation

Method
Sample-Level Dataset-Level

ρ r τ ρ r τ

Generative Augmentor 30.2 33.5 22.5 26.7 25.4 18.6

+ C.T. 51.4 51.9 38.9 53.8 51.9 38.2
+ C.T. + filter δ = 0.2 53.7 51.3 41.5 55.9 47.8 40.3
+ C.T. + filter δ = 0.4 52.8 54.0 40.4 56.8 53.7 40.1
+ C.T. + filter δ = 0.6 55.7 55.3 42.8 58.0 55.9 42.0
+ C.T. + filter δ = 0.8 46.3 42.7 35.9 49.5 41.5 35.7

Table 4: Analysis of our controlling mechanisms for
local augmentation. C.T. stands for context truncation.
δ is the threshold for confidence filtering.

strategy. 4) G+ LR or G+ LG: Combination of
global and local augmentation methods.

Global vs. Local vs. Unified. In Table 3, we
can see that unifying global and local augmenta-
tion data yields the best human correlation, bet-
ter than using global or local augmentation alone.
This aligns well with the linguistic theory of dis-
course structure that the organization of discourse
segments (global coherence), and the transition of
attention or focused items (local coherence) are two
key factors of discourse coherence, from which our
unified data augmentation framework are inspired.

Generative vs. Rule-based. Further, we com-
pare the result of generative augmentation vs. rule-
based augmentation for modeling local coherence.
First, metric model trained with LG outperforms
that of LR by a large margin on both sample-level
correlation (+3.8/+3.0/+3.0 in ρ, r, τ ) and dataset-
level correlation (+3.5/+1.5/+2.4 in ρ, r, τ ). Sec-
ond, when combined with global augmentation,
G+ LG yields significantly superior performance
than G + LR. Based on these two aspects, we
can conclude that our generative strategy is more
effective than rule-based methods.

6 Analysis

Unified Scoring. First, we study the effective-
ness of our unified scoring strategy. Experiment
results are demonstrated in Figure 3. First, both
global and local scores are beneficial in improving
human correlation. Additionally, global scores cor-
relate better with human ratings than local scores.

Controlling Mechanisms. We then analyze the
effect of our difficulty controlling mechanisms in
local augmentation. Specifically, we train our met-
ric model separately on local augmentation data
constructed under different settings to compare
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Figure 3: Ablation study of global and local scores in
our unified scoring strategy.

their impacts. Table 4 presents the results. First,
we can see that context truncation contributes a sig-
nificant portion of performance, without which our
generative augmentor suffers a severe performance
drop of more than 20 points. This demonstrates
the effectiveness of constructing partially coherent
samples. Second, we find that our confidence filter-
ing mechanism, through which we filter out easy
negative samples, also helps model performance.
We found that 0.6 is an optimal threshold that can
filter out easy examples while ensuring enough
amount of training data. We have also provided a
case study in Appendix B.

Discourse Length. We compare our model’s
performance with strong baselines (MULTINEG,
MULTINEG, G-EVAL-3.5) w.r.t. different dis-
course length. Concretely, we categorize all 1,600
system summaries of SUMMEVAL into different
groups according to the sentence numbers they
have. We calculate the average of dataset-level
Spearman / Pearson / Kendall correlation as defined
in Equation 6 for each group. Figure 4 presents the
results. On average, our model achieves best re-
sults when target discourse contains no more than
5 sentences. As the discourse length increases,
all models suffer from performance drop, with G-
EVAL-3.5 being the only exception, which ren-
ders very steady correlation against length variance.
Since each training sample we construct contains
no more than 5 sentences (see Appendix A), we
assume COUDA’s performance drop can be allevi-
ated by training on samples with more sentences.

7 Related Work

7.1 Coherence Evaluation

Coherence evaluation measures the organization
and structure of a discourse. Due to the paucity of
human-annotated training data, previous work has
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Figure 4: Average of dataset-level Spearman / Pearson
/ Kendall correlation on SUMMEVAL w.r.t. discourses
containing different numbers of sentences.

mainly focused on two synthetic tasks: permutation
detection and sentence intrusion detection. Permu-
tation detection task (Barzilay and Lapata, 2005;
Elsner et al., 2007; Barzilay and Lapata, 2008; Li
and Jurafsky, 2017) requires the model to distin-
guish original discourse from its sentence shuffled
version. Sentence intrusion detection task (Shen
et al., 2021) determines whether a discourse con-
tains an intruder sentence from another discourse.

A series of methods have been proposed for
these synthetic tasks. Barzilay and Lapata (2005,
2008) introduced the popular entity-based model
using Centering Theory (Grosz et al., 1995). It was
further extended to combine with entity-specific
features (Elsner and Charniak, 2011), convolu-
tional neural networks (Tien Nguyen and Joty,
2017), and graph neural networks (Mesgar et al.,
2021). Jwalapuram et al. (2022) attempted to im-
prove model generalization by training their model
purely through self-supervision, with negative sam-
ples mined from permutation space. Instead, we
propose to improve evaluation performance by uni-
fying different aspects of discourse coherence, as
inspired by linguistic theory of discourse struc-
ture (Grosz and Sidner, 1986). UNC (Moon et al.,
2019) captured different levels of coherence via
a Siamese architecture that involved bi-linear pro-
jection and lightweight convolution-pooling. By
contrast, we address this from the perspective of
data augmentation rather than model architecture.

7.2 General Evaluators

We denote evaluators capable of assessing multi-
ple quality dimensions by altering input and output
contents (Yuan et al., 2021), or adopting differ-
ent formulas (Scialom et al., 2021; Zhong et al.,
2022) as general evaluators. A leading trend
is to utilize generation model for quality assess-
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ment, such as BARTSCORE (Yuan et al., 2021),
UNIEVAL (Zhong et al., 2022). Apart from that,
DISCOSCORE (Zhao et al., 2022) compared the fo-
cus matrix between the candidate and the reference
to calculate the overall quality score.

With the rise of large language models (LLMs),
there has been a growing tendency to use LLMs for
evaluation purpose (Wang et al., 2023a; Fu et al.,
2023; Wang et al., 2023b; Liu et al., 2023). Wang
et al. (2023a) adopted ChatGPT for NLG evalu-
ation and achieved competitive results in terms
of correlation with human judgments. Liu et al.
(2020) used LLMs with chain-of-thought and a
form-filling paradigm to assess the quality of text.

8 Conclusion

We propose a unified data augmentation framework
called COUDA, with the designing criteria to unify
both global and local aspects of coherence, as in-
spired by linguistic theory of discourse structure.
This data framework includes global and local aug-
mentation, a classification paradigm for training
and a unified scoring strategy for inference. We
specifically propose a novel generative augmen-
tation strategy, which involves post-pretraining a
generative model, and applying two controlling
mechanisms to control the difficulty of generated
samples. With only 233M parameters, our frame-
work achieves remarkable improvement over previ-
ous methods, including GPT-4 based metrics.

Limitations

Our work is still limited in some aspects, particu-
larly in handling extra long discourses. Note that
our framework requires assigning coherence scores
to all adjacent sentence pairs. While this approach
allows for detailed modeling of local coherence
between sentences, it may be slow when dealing
with documents that contain a large number of sen-
tences.
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A Details of Data, Generative Augmentor,
and Correlation Calculation

Details of Generative Augmentor. Our genera-
tive augmentor is initialized with PEGASUS-Large
using the checkpoint in Huggingface. We train
it on the positive samples mentioned above, with
batch size set to 32. Convergence is reached within
5,000 steps. To avoid data leakage in training and
prediction, we split our positive samples into part
A and part B, each with 20,000 samples. We first
train our model solely on part A, and use it to con-
struct negative samples for part B. Then we train a
new model solely on part B, and use it to construct
negative samples for part A.

Sample-Level and Dataset-Level Correlation.
Suppose we have n documents in a dataset, for
each document di, i ∈ {1, ..., n}, we have J sys-
tem outputs. Let oij , j ∈ {1, ..., J} be the output
of the jth system for the ith document, K be a
correlation measure, fθ and fh be metric model
and human evaluation, respectively, sample-level
correlation and dataset-level correlations can be
calculated as follows:
(1) Sample-level correlation.

Ksample =
1

n

n∑

i=1

K([fθ(oi1), ..., fθ(oiJ)],

[fh(oi1), ..., fh(oiJ)])

(5)

(2) Dataset-level correlation.

Kdataset =K([fθ(o11), ..., fθ(onJ)],

[fh(o11), ..., fh(onJ)])
(6)

B Case Study

We demonstrate an example of substitute sentences
selected or generated using different methods in Ta-
ble 5. RULE selects the substitute sentence through
n-gram overlap, resulting in a relatively easy sam-
ples, as the selected sentence is very incoherent
with the context. PEGASUS generates a sentence
that summarizes the remainder, rather than being
coherent with the context. The prediction of our
generative augmentor is highly coherent with the
context, making it difficult to be distinguished as
negative. Through context truncation, we obtain a
partially coherent prediction, which is only coher-
ent with proceeding sentences.

Context

The cities of Annecy, Munich and Pyeongchang will battle
it out to host the 2018 Winter Olympics. [mask] The In-
ternational Olympic Committee have confirmed they have
received applications from France, Germany and South
Korea ahead of this week’s deadline.

Predictions

RULE: Thousands of South Koreans gathered at the foot
of a ski jump well past midnight in a passionate display
of excitement that included fireworks, singing, dancing,
picnicking and kimchi – the traditional Korean side dish.

PEGASUS: The cities of Annecy, Munich and Pyeong-
chang will battle it out to host the 2018 Winter Olympics.

Generative Augmentor (GA): The French resort of An-
necy, the German city of Munich and the South Korean
city of Pyeongchang have all submitted bids to host.

GA w/ Context Truncation: The International Olympic
Committee’s Executive Board will meet on Wednesday in
Copenhagen to pick the host.

Table 5: Comparison of different local augmentation
strategies.

Src Doc.
Sample-Level Dataset-Level

ρ r τ ρ r τ

UniEval

Empty ("") 56.7 57.8 43.6 58.7 55.6 42.3
Original Src 57.5 55.4 44.2 59.2 53.3 42.5

CoUDA

None 60.0 62.1 46.0 65.6 64.2 47.8

Table 6: Performance Comparison of UniEval w/ or w/o
Source Document.

C Performance Comparison of UniEval
w/ or w/o Source Document

Recall that UNIEVAL requires a source document
as input when assessing coherence. Since our
framework solely takes the discourse as input, we
set its source document to empty string for fair
comparison. In this section, we conduct additional
experiments to explore how the source document
influences coherence evaluation for UNIEVAL. Re-
sults are presented in Table 6. It can be observed
that whether the source is provided does not have a
significant impact on the performance of UNIEVAL.
This further consolidates our assumption that coher-
ence is an intrinsic quality of discourse that its eval-
uation does not require other inputs. Furthermore,
even with original source provided to UNIEVAL,
COUDA’s performance remains substantially su-
perior, verifying the effectiveness of our proposed
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[Task Introduction] 

You will be given two discourse. Your task is to rate both 
discourses on one metric. Please make sure you read and 
understand these instructions carefully. Please keep this 
document open while reviewing, and refer to it as needed.

[Evaluation Criteria]

Coherence (1-5) - the collective quality of all sentences. We 
align this dimension with the DUC quality question of 
structure and coherence whereby ‘the summary should be 
well-structured and well-organized. The summary should not 
just be a heap of related information, but should build from 
sentence to sentence to a coherent body of information about 
a topic’.

[Evaluation Steps]

{Evaluation steps generate through CoT}

[Discourse A]

{discourse A}

[Discourse B]

{discourse B}

Please avoid assigning same coherence score to A and B, 
because we want to pick the more coherent one.

Output with the following format:

The score of A: <score>

The score of B: <score>

Figure 5: Skewed Template for G-Eval-3.5 in pairwise
ranking. We adopt the Balanced Position Calibration
strategy proposed by Wang et al. (2023b) to alleviate
positional bias of LLMs

method.

D Skewed Template to use G-Eval for
Pairwise Ranking

Skewed template to use G-Eval for pairwise rank-
ing is presented in Figure 5. We adopt the Balanced
Position Calibration strategy proposed by Wang
et al. (2023b) to alleviate positional bias of LLMs.

E The choice of Weight Parameter λ

Figure 6 shows the results of varying weight pa-
rameter λ for global and local coherence score. We
see that the best weight for Spearman correlation
and Kendall correlation is around 0.4, while the
best weight for Pearson correlation is around 0.6.
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Figure 6: Sample-level correlation and dataset-level cor-
relation on SUMMEVAL with different weight parameter
λ ∈ [0, 1] for global and local coherence score.

978


