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Abstract

Tool-augmented Large Language Models
(TALMs) are known to enhance the skillset
of large language models (LLMs), thereby,
leading to their improved reasoning abilities
across many tasks. While, TALMs have been
successfully employed in different question-
answering benchmarks, their efficacy on com-
plex mathematical reasoning benchmarks, and
the potential complementary benefits offered
by tools for knowledge retrieval and mathemat-
ical equation solving are open research ques-
tions. In this work, we present MATHSEN-
SEI, a tool-augmented large language model
for mathematical reasoning. We study the com-
plementary benefits of the tools - knowledge
retriever (Bing Web Search), program gener-
ator + executor (Python), and symbolic equa-
tion solver (WolframAlpha-API) through eval-
uations on mathematical reasoning datasets.
We perform exhaustive ablations on MATH,
a popular dataset for evaluating mathemati-
cal reasoning on diverse mathematical disci-
plines. We also conduct experiments involv-
ing well-known tool planners to study the im-
pact of tool sequencing on the model perfor-
mance. MATHSENSEI achieves 13.5% better
accuracy over gpt-3.5-turbo with Chain-of-
Thought on the MATH dataset. We further ob-
serve that TALMs are not as effective for sim-
pler math word problems (in GSM-8K), and
the benefit increases as the complexity and
required knowledge increases (progressively
over AQuA, MMLU-Math, and higher level
complex questions in MATH). The code and
data are available at https://github.com/Debrup-
61/MathSensei

1 Introduction
State-of-the-art Large language models (LLMs), includ-
ing gpt-3.5-turbo, GPT-4, and open-source counterparts,
such as Llama 2 have demonstrated impressive perfor-
mance across a broad spectrum of NLP tasks (Brown
et al., 2020; Radford et al., 2019; Chowdhery et al.,

*Work done during internship at Rakuten India Enterprise
Private Limited.

2024; OpenAI, 2023). However, their consistent failure
on established reasoning dimensions, such as mathe-
matical, commonsense, abductive, and multi-hop rea-
soning (Lu et al., 2023b; Cobbe et al., 2021; Huang
and Chang, 2023) have led the research community to
explore various solutions for enhancing their reason-
ing abilities. This pursuit has given rise to techniques,
such as - (1) intelligent prompting variations, such as
chain of thought (Wei et al., 2022), program of thought
(Chen et al., 2023c), tree of thoughts (Yao et al., 2023),
and self-refinement (Madaan et al., 2023), (2) program-
guided solving that generates python code as intermedi-
ate steps and offloads execution to a symbolic interpreter
(Gao et al., 2023), (3) multi-model interaction frame-
works, such as Multi-agent Debate (Du et al., 2023;
Liang et al., 2023) and Round-Table Conference (Chen
et al., 2023b), 4) tool-augmented LLMs powered by ex-
ternal symbolic tools, APIs, and libraries (Schick et al.,
2023; Lu et al., 2023a; Paranjape et al., 2023; Yang and
Narasimhan, 2023; Xie et al., 2023).

In this work, we study the effectiveness of tool-
augmented LLMs (TALM) applied to problems involv-
ing mathematical reasoning. Recent advancements
in TALM frameworks, such as Chameleon (Lu et al.,
2023a), OlaGPT (Xie et al., 2023), ART (Paranjape
et al., 2023), and SocraticAI (Yang and Narasimhan,
2023) have explored the effectiveness of incorporat-
ing external tools for solving knowledge-intensive rea-
soning tasks and fundamental mathematical problems
(such as, arithmetic and algebra). However, the effec-
tiveness of TALM framework is yet to be validated on
mathematical reasoning tasks involving complex com-
putations. In this context, it is imperative to assess
the suitability of specific tool combinations across di-
verse mathematical domains (e.g., PreAlgebra, Calcu-
lus, Geometry, Intermediate Algebra, Probability) at
varying levels of difficulty. This motivated us to un-
dertake a thorough evaluation of TALM framework in
the context of complex mathematical reasoning tasks.
We propose and develop MATHSENSEI, a TALM-based
framework, comprising a distinct set of tools (also re-
ferred to as modules), combined in a sequential fashion.
These modules include LLM-based components, such
as - knowledge retriever (KR ). python code gener-
ator (PG ), code refiner (CR ), , and solution genera-
tor (SG ); and APIs, such as - Bing-Web-Search-API
(BS ) and WolframAlpha-API (WA ). As illustrated in
Fig. 1, MATHSENSEI adopts the modular architecture
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Generated Query:  
solve |x + 3| = 6 
Answer: 
Yes, the solution from the Wolfram alpha API for
"solve |x + 3| = 6" is:  x = -9 and x = 3 (real solutions)
or  x =-3 + 6 e^(i n) and n element R (complex solutions)

 

MathSensei

student

Generated Code: 
from sympy import * 
# Define the equation 
# Solve the equation 
# sol = solve(eq, x) 
# Find the positive difference between the solutions 
# diff = abs(sol[0] - sol[1]) 
eq = Abs(x + 3) - 6 
print("Positive difference between the solutions:", diff) 
Code Output: 
Error message: Name ‘x’ is not defined 

 
 - From the Wolfram Alpha response, we find that the solutions are $x=-9$ and $x=3$. 
 - The positive difference between the solutions is $3-(-9)=12$. 
 - Therefore, the answer is $\\boxed{12}$.

Question : 
Find the positive
difference between
the solutions for  
$|x + 3| = 6$.
 

Figure 1: An end-to-end workflow of MATHSENSEI on the compositional setting from the MATH dataset.
The final answer is higlighted in green font.

.

TALM Math Discipline Form Search Python WAlpha Plan Tool-Study
OlaGPT Algebra MCQ ✓ ✗ ✗ Plan-And-Solve ✗

Chameleon ✗ ✗ ✓ ✓ ✗ Plan-And-Solve ✗
ART Algebra Open ✓ ✓ ✗ Call-as-req ✗

MATHSENSEI
Algebra, Precalculus,
Geometry, Probability,
Number Theory & more

Both ✓ ✓ ✓ Both ✓

Table 1: Comparison of MATHSENSEI with state-of-the-art Tool-Augmented LLMs; Form - Question-Answer Format (MCQ
with multiple options, Open/Subjective), Search - Use of Web Search, Python - Python code guided problem solving, WAlpha -
WolframAlpha, Tool-Study - Study of each tool, Plan - Planning Strategy used; Plan-And-Solve - Determine the sequence of
tools to be executed beforehand, Call-as-req - Dynamically decide to call tool when required at a step during execution.

from Chameleon (Lu et al., 2023a). Through system-
atic experiments of MATHSENSEI, we aim to discern
the effectiveness of each module in addressing specific
types of mathematical problems, having varying levels
of difficulty.

Our extensive ablations (varying the set and order of
modules), show that complex mathematical problems,
spanning different subdomains can be benefited by spe-
cific types, combinations, and order of the modules.
This further highlights the need for planning strategies.
We evaluate two advanced planning techniques within
our pipeline, investigating methodologies such as Plan-
And-Solve (Lu et al., 2023a) and REACT (Yao et al.,
2022) with MATHSENSEI.
We make the following contributions:
1. We comprehensively evaluate the effectiveness
of TALM frameworks across multiple mathemati-
cal datasets, such as GSM-8K, AQUA-RAT, MATH,
MMLU-Math, encompassing diverse mathematical
problem types and tasks. Compared to MATH, MMLU-
Math, our experiments on simpler mathematical datasets
(e.g., GSM-8K, AQUA-RAT) reveal minimal benefit of
using multiple modules on top of CoT prompting.
2. Through systematic ablations by varying the set and
order of modules in our framework, we observe that
complex mathematical problems spanning different do-
mains (such as, algebra, calculus, number theory, and
probability from the MATH dataset) can be benefited by
certain types, combinations, and order of these modules.

We observe that the BS module outperforms the KR
module for retrieving relevant knowledge for mathemat-
ical problems. The setting of WA+BS+SG outperforms
PG+SG, demonstrating that program-guided solving
techniques (Gao et al., 2023; Drori et al., 2022) may not
be universally suitable for all mathematical problems.
These findings motivate the necessity of exploiting bet-
ter planning techniques.
Our best configuration of MATHSENSEI, PG+WA+SG
achieves an impressive performance accuracy of 47.6
% on the MATH dataset, surpassing gpt-3.5-turbo( )
with Chain-of-Thought (CoT) prompting by 13.5%
(Chen et al., 2023a). The same setting shows a perfor-
mance gain of +11.6% over GPT-4 (with CoT prompt-
ing) on Intermediate Algebra problems. For Precalculus,
GPT-4 (with CoT prompting) has an accuracy of 26.7%,
which gets improved to 28.9% by our WA+PG+SG set-
ting. Improvements on AQuA-RAT and MMLU-Math
are lower, 2.4% and 3.3% respectively, showing the ef-
ficacy decreases as requirement of external knowledge
decreases.
3. We quantify the performance of state-of-the-art
planning techniques, such as Plan-And-Solve and RE-
ACT coupled with tool-augmented LLMs on the MATH
dataset. However, we do not observe benefit of using the
planners over our best configurations of PG+WA+SG,
which may indicate a need for developing targeted plan-
ning strategies for mathematical TALMs. We include
our Planning related experiments in the Appendix.
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2 Related Work

Prompting Techniques. Large Language Models
(LLMs) employing prompting strategies such as Chain-
of-Thought (CoT) (Wei et al., 2022) and Program-
of-Thought (POT) (Chen et al., 2023c) have demon-
strated commendable performance on simple mathe-
matical datasets such as GSM-8K (Cobbe et al., 2021).
However, their efficacy diminishes for datasets requir-
ing complex computations and advanced mathematical
knowledge. For instance, on the MATH dataset, GPT-4
exhibits a notably low accuracy of around 50%. Sev-
eral variations of these strategies have been explored to
improve accuracy in reasoning tasks. (Madaan et al.,
2023) proposed self-refine that involves iteratively re-
fining the initial output by utilizing feedback from the
same model. (Zhou et al., 2024) employs code-based
self-verification, by utilizing python code to check sim-
ple constraints that the LLM generated output should
satisfy and correcting the output if necessary. Simi-
larly, Progressive-Hint-Prompting (Zheng et al., 2023)
involves multiple turns of interactions, using previously
generated answers as hints for subsequent turns. Similar
to POT prompting, PAL (Program Aided language mod-
els) (Gao et al., 2023) adopts a program-guided solving
paradigm. It reads natural language problems, generates
programs as intermediate reasoning steps, and delegates
the solution step to a runtime environment, such as a
Python interpreter. Across 13 natural language reason-
ing tasks within Big-Bench-Hard (Suzgun et al., 2023),
they observe that program-guided solving consistently
outperforms significantly larger models.

In our Tool-augmented framework (MATHSENSEI),
we incorporate several such techniques. We adopt CoT
prompting for the text generation modules, and use the
methodology by (Gao et al., 2023) to generate python
code (using libraries like sympy) based on the current
context and mathematical question; followed by execu-
tion of the code using python interpreter. While (Gao
et al., 2023) focuses on elementary level MWP (Math
Word problems) and simple arithmetic datasets such
as ASDIV (Miao et al., 2020) and SingleEQ (Koncel-
Kedziorski et al., 2015), we explore complex mathe-
matical datasets spanning diverse math problem types
(MATH, AQUA (Ling et al., 2017), MMLU-Math). Fol-
lowing self-refine, we employ a code refinement module
to iteratively rectify syntactical errors in the original
generated code, using error messages from the inter-
preter.
Tool-Augmented LLMs. The emerging trend of tool-
augmented LLMs has garnered increasing attention
within the research community. Large language models,
trained on the objective of next-token prediction, ex-
cel at generating tokens based on probabilistic patterns
in their training data, making them effective in data-
intensive tasks. However, their proficiency falls short
in capturing nuanced reasoning or token relationships,
particularly in mathematical domains. Consequently,
there are instances or specific question types where it

would be advantageous for an LLM to leverage support
from specialized tools or modules. For instance, con-
sider a question requiring the solution to the roots of a
4th-degree polynomial. The LLM, upon generating a
special token followed by a query, can pause its genera-
tion and invoke a mathematics computing platform Wol-
framAlpha. WolframAlpha, in turn, can utilize its API
to process the query and return the answer to the LLM,
which can then continue its generation. Toolformer
(Schick et al., 2023) leverages data annotated with such
tool calls (using special tokens for tools) and responses
to train language models to employ tools as needed in a
self-supervised manner. Similarly, the tool-augmented
LLM framework CHAMELEON (Lu et al., 2023a) adopts
a plug-and-play approach to utilize tools sequentially.
In their setup, the sequence of execution of the tools
is predetermined based on a target task; the output of
each tool is added to the context for subsequent down-
stream tools in the pipeline. They perform evaluation
on multi-modal knowledge-intensive datasets, such as
ScienceQA and TabMWP. Similarly, frameworks such
as ART (Paranjape et al., 2023) engage in multi-step rea-
soning, where each step is linked to a tool call. Utilizing
search and code tools, ART tackles various tasks across
datasets such as MMLU (Hendrycks et al., 2021a)and
BigBench (Srivastava et al., 2023).

Our work adopts the generic backbone of popular
tool-augmented LLM frameworks such as Toolformer
and CHAMELEON. In comparison to the previous work,
we distinguish ourselves by conducting a comprehen-
sive analysis and comparison specific to tools useful
for addressing diverse mathematical problems. No-
tably, CHAMELEON lacks evaluation on mathematical
datasets, and ART focuses exclusively on algebra, lead-
ing to gaps in the assessment of tool-augmented LLMs.
Furthermore, our study incorporates a comparison of
planning techniques within tool-augmented LLM frame-
works for mathematical reasoning, an aspect not ade-
quately addressed in the current literature. To the best of
our knowledge, planning techniques like REACT (Yao
et al., 2022) have primarily been tested on knowledge-
intensive reasoning datasets such as FEVER (Thorne
et al., 2018) and HotpotQA (Yang et al., 2018).

3 Methodology

We first discuss some notations to formalize the problem.
Let M denote the set of modules1 (each performing a
specific task), pi be the input prompt for module mi,
and Q be the set of mathematical queries.

3.1 Problem Formulation

Given an input mathematical query q ∈ Q, the objective
is to provide the final correct answer a by executing

1The modules can be viewed as external tools, where each
module m ∈ M can be either powered by LLMs, such as
Python code generators, Knowledge Retrievers, or they can
be non-LLM API tools, such as WolframAlpha, Bing Web
Search.
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the set of relevant modules. Let [m1, . . . ,mt], be the
ordered sequence of chosen modules for answering q,
and [o1, . . . , ot] be the output sequence of the t modules.
Let, si, fi, and ci denote the instruction, in-context
example(s), and context, respectively, that we use for
module mi. The input prompt pi, corresponding to
module mi is defined as:

pi = ⟨si; fi; ci⟩ (1)

where context ci is defined as:

ci =

{
[q], if i = 1;

[ci−1; oi−1], for i = 2, . . . , t
(2)

Here, x; y denotes concatenation of x and y.

3.2 Modules
In this section, we present a brief overview of the tools
or modules that we use in our study. We show the
list of model/api used for each module in Table 8. A
detailed description of the prompts used in each module
is presented in the Appendix section.
• LLM-based Knowledge Retrieval (KR) - For this
module, we design a prompt to extract relevant knowl-
edge from a pre-trained LLM (taking any one from the
list of models mentioned in Table 8) in the form of con-
cepts, formulas, mathematical expressions, theorems,
definitions, and hints on how to solve a corresponding
mathematical question. An example prompt and output
is shown in Table 19 in Appendix.
• Bing Web Search (BS) - This module queries the
Bing-Web-Search-API ( ) to extract the most relevant
snippets which may contain similar questions and con-
cepts required for solving a mathematical problem. For
similar questions search, we directly query the API with
the mathematical question. In case of concepts search,
we first use an LLM (either gpt-3.5-turbo or text-davinci-
003) to generate a query corresponding to the input ques-
tion, and then call the API to retrieve relevant concepts
(refer to Fig. 2 for an example).
• WolframAlpha (WA) - This module (comprising
multiple components) calls the WolframAlpha-API us-
ing a query in the Wolfram language, retrieving the
mathematical information from this knowledge base and
utilizing the capabilities of its computation engine. First
we employ an LLM to generate contextualized thoughts.
Subsequently, based on the generated thought, the next
component formulates a Wolfram code language query
(referred to as the “Final Query”). On passing this
query as input to the WolframAlpha-API, we get a JSON
dictionary object. We extract all the useful information
from this dictionary (using an LLM-based extractor)
and add it to the context of next module. An overview
of the WA module is presented in Fig. 3.
• Python Generator+Executor (PG) - We use an
LLM that takes as input the current context as a part of
a well-structured prompt (shown in Fig. 4). The LLM is
explicitly instructed to use the sympy library for access-
ing a set of mathematical operations and data structures

SIMILAR
QUESTION 
SEARCH

CONCEPTS
SEARCH

QUERY
GENERATED

If the fourth term of an arithmetic sequence is $200$ and the eighth
term is $500$, what is the sixth term? 

QUESTION

 

Question 1: Find the 16th term of
arithmetic sequence with common
difference 2? 
From the given, a1 = 0 ; n = 16 ; d
= 2; a16 = 0 + (16 - 1)2; a16  = 15 *
2 = 30

Question 2:
...

What is the formula for the
nth term of an arithmetic
sequence?

The main difference between sequence and series is that, by
definition, an arithmetic sequence is simply the set of numbers
created by adding the common difference each time. 

Arithmetic series, on the other head, is the sum of n terms of a
sequence. For example, you might denote the sum of the first
12 terms with S12 = a1 + a2 + ... + a12.", 

It is represented by the formula a_n = a_1 + (n-1)d, where a_1 is
the first term of the sequence, a_n is the nth term of the
sequence, and d is the common difference, which is obtained
by subtracting the previous term from the current term. How do
you know if a sequence is arithmetic or geometric?"

Figure 2: Overview of the BS module; We concatenate
the similar questions and concepts (which is then used
by a downstream module).

 
 

Find the dot product of

PROMPT

...

{{ thought }}

To find the dot product of two
vectors, we need to multiply
their corresponding components
and then add them up. 

Do you know the Wolfram
Alpha command to calculate
the dot product of two given
vectors?

GENERATE 
THOUGHT

G
EN

ER
AT

E
W

O
LF

R
A

M
Q

U
ER

Y
...

{{ question }}

EXTRACT
ANSWER

Answer: 
Yes, the Wolfram Alpha
command to find the dot
product of the two vectors
is: dot product [-2,0,7] and
[3,4,-5]

Final Query: dot product
[-2,0,7] and [3,4,-5]

...

{{ answer }}

the dot product of [-2,0,7] and
[3,4,-5] is -41.

WOLFRAM ANSWER  
JSON OBJECT

...

CALL 
WOLFRAM 
ALPHA

Figure 3: Overview of the WA module.

required. Based on the prompt, the module generates an
(executable) Python code, which on execution returns
some output(s) or an error message. We handle syntax
errors using two setups:

- Without refinement: Here, if generated code pro-
duces syntax errors, we omit the output of PG from
the context for next module.

- Code-Refinement (CR): Here, we feed the error
message along with the incorrect program to a
code-fixing LLM which then generates a corrected
python code and rationales of fixed errors given
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as “Errors fixed”. We also add the information of
common errors from our qualitative analysis in the
system prompt to aid the code refinement process.
An output for the code refinement setup from the
MATH dataset is presented in Fig. 4 (Appendix).

• Solution Generator (SG) - The solution generator is
the final module in all settings. It takes the output from
the pipeline and compiles a step-by-step solution based
on all the context of previous modules. The final step
is prompted to produce the answer of the question. It
outputs the final answer enclosed within $\\boxed{}$
for the MATH dataset.

4 Experimental Setup
We first introduce the mathematical datasets used in
our study (§4.1), followed by the experiments that we
perform with various combinations of modules (§4.2).
We use gpt-3.5-turbo as the default LLM in LLM-
based modules unless mentioned otherwise. This is
mainly because it is more accessible and cheaper com-
pared to GPT-4. For querying a search-engine, we use
Bing-Web-Search-API. Please refer to 23 in Appendix
for details about online resources that we use.

4.1 Datasets
MATH. The MATH dataset (Hendrycks et al., 2021b)
serves as the primary dataset for our work. It covers
5000 mathematical problems, which are categorized into
seven subject types (Precalculus, Prealgebra, Algebra,
Geometry, Intermediate Algebra, Counting and Proba-
bility, and Number Theory) and five levels of difficulty
(ranging from 1 to 5, where 1 denotes the least difficult
and 5 denotes the most difficult). Our choice of the
MATH dataset is motivated by its unique characteristics:
Unlike many datasets, scaling up LLMs (in terms of
model parameters) does not necessarily enhance accu-
racy on MATH. The dataset also poses intricate chal-
lenges, going beyond simple arithmetic or high school
mathematics problems.

AQUA-RAT. The AQUA-RAT dataset (Ling et al.,
2017) contains 253 algebraic math word problems with
rationales. Unlike the MATH datset, it has a multiple-
choice answer format with five options. It allows us to
evaluate MATHSENSEI on mathematical problems in
the domain of algebra.

GSM-8K. GSM-8K (Cobbe et al., 2021) contains
high school level math word problems which require
basic arithmetic operations (addition, subtraction, multi-
plication, and division) to reach the final answer. The
final answer is always an integer value. We use all 1319
examples from GSM-8K test set for evaluation.

MMLU-Math. The MMLU dataset (Hendrycks et al.,
2021a) covers 57 diverse tasks (including elementary
mathematics, US history, computer science, etc.), which
require extensive problem solving abilities and world
knowledge. For this work, we use the mathematical test

subset of MMLU, known as MMLU-Math that contains
974 mathematical questions spanning 5 types - abstract
algebra, elementary mathematics, high-school mathe-
matics, college mathematics, and formal logic. Similar
to AQUA-RAT, MMLU-Math also has a multiple-choice
answer format.

4.2 Experiments

We conduct several experiments by meticulous analysis
of individual modules in the domain of complex math-
ematical reasoning, through systematic ablations on
the module sequences. For some of our ablations, we
use different variants of OpenAI models, such as text-
davinci-002 and text-davinci-003 other than the default
gpt-3.5-turbo. We also employ models from the Llama
family, such as Llama-2-7B and Phind-Code-Llama-
34B-V2. We use accuracy as our evaluation metric for
comparing different settings. Our experiments enquire
the following questions:
• What is the impact of adding LLM generated mathe-
matical knowledge relevant to the question [KR mod-
ule] before invoking the Solution Generator module
[SG module]? (§5.1)
• How does Bing Web Search [BS module] com-
pare against the LLM-based knowledge generation [KR
module] for the task of adding relevant mathematical
knowledge and information to the problem solving pro-
cess? (§5.1, §5.2)
• What is the utility of augmenting mathematical
knowledge-bases, such as WolframAlpha [WA mod-
ule] with LLMs for solving problems across different
levels of complexity? How does it compare against the
paradigm of program-guided solving? (§5.3)
• What are the benefits of using program-guided com-
plex problem solving [PG module], and impact of LLM-
based code refinement [CR module] in case of syntacti-
cal errors? (§5.4)
• What is the effect of using multiple modules to-
gether? How does the benefit vary with the difficulty
level, mathematical subject type, and dataset? (§5.5)
• How to plan effective utilization of these modules?
How does non-adaptive planning strategies [Plan-And-
Solve] compare against dynamic planning strategies
such as [REACT] which uses a thought, action, and
observation based mechanism. (Appendix A)

5 Effects of Adding Modules over LLMs

Here, we present results and analyze the impact of
adding individual modules on top of the original LLM
CoT variant (termed SG): KR in §5.1, BS in §5.2, PG in
§5.4, and WA in §5.3. For each module, we also provide
ablations over different LLMs (as applicable).

5.1 LLM-Based Knowledge Retrieval (KR)

Recently, Chameleon (Lu et al., 2023a) demonstrated
an accuracy boost for knowledge intensive QA datasets,
such as ScienceQA and TabMWP by using the KR mod-
ule. Skills-In-Context prompting (Chen et al., 2023a)
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Model Ovr Acc

text-davinci-002 ( ) 22.8
text-davinci-003 ( ) 27.1
Llama2-7B ( ) 28.4
gpt-3.5-turbo ( ) 34.4

Table 2: Performance of different backbone models used for
KR module in the KR+SG setting. For all settings, we use
gpt-3.5-turbo as the default LLM for the SG module.

also shows similar results by utilizing some basic skills
(such as mathematical theorems) during generation. Fol-
lowing the literature, we investigate the impact of adding
relevant knowledge (such as mathematical concepts and
formulae) using an LLM-based KR module in the con-
text of SG module, and examine the efficacy of the
KR+SG setting on the MATH dataset (Table 4). We also
ablate over different LLMs (Table 2) to power the KR
module, while fixing the SG module to gpt-3.5-turbo.

Results. As shown in of Table 4, the extra knowledge
retrieved by the KR module is useful only for prob-
lems in Algebra, PreAlgebra, and Probability domains.
Moreover, the overall accuracy drops steadily as we
change KR’s LLM from gpt-3.5-turbo to other vari-
ants (shown in Table 2). This indicates that, generic
LLMs (such as those mentioned in Table 2) are not
equipped with mathematical concepts of other domains
(Precalculus, Geometry, Number Theory, Intermediate
Algebra). After analyzing different LLM variants for
the KR module, we find that the knowledge retrieved
by weaker LLMs heavily degrades performance of the
downstream SG module. This motivated us to explore
the impact of search engine-based knowledge retrieval
(detailed in §5.2).

5.2 Bing Web Search (BS)

We investigate the advantages of adding a search engine-
based knowledge retrieval module (BS) as an alterna-
tive of KR for similar questions search and concepts
search before applying SG.

Results. In Table 3, we observe that BS+SG
setting is a clear winner over the SG setting,
when gpt-3.5-turbo is used for generating the
Bing-Web-Search-API query and getting final solution
from SG. This holds true even if the stand-alone SG
is varied between text-davinci-003 (+22.5%) and
gpt-3.5-turbo (+4.2%). Thus, augmenting LLMs
with knowledge (relevant to a mathematical ques-
tion) retrieved from the web proves to be beneficial
in improving problem solving capabilities. The use
of text-davinci-003 alone or in combination with
gpt-3.5-turbo for BS and SG modules, diminishes
the performance of both BS+SG and SG settings, which
is expected (Ye et al., 2023).

Setting

LLMs ( + ) ( + ) ( )

( + ) 38.7 42.6 -
( + ) 27.4 35.6 -
( + ) 30.0 37.8 -
( + ) 20.8 27.0 -

( ) - - 34.5
( ) - - 16.2

Table 3: Ablations of BS+SG ( + ), WA+SG ( + ), and
SG ( ) settings using different combination of LLMs, such
as gpt-3.5-turbo ( ) and text-davinci-003 ( ) on the
MATH dataset.

5.3 WolframAlpha Search (WA)

We compare the performance of WA+SG and SG set-
tings on the MATH dataset in Table 3. We perform
ablations with text-davinci-003 and gpt-3.5-turbo as the
LLMs used in WA for query generation and answer
extraction.

Results. From Table 3, we observe that WA+SG
outperforms the SG approach by 8.1%, when both
WA and SG are powered by gpt-3.5-turbo. This
shows a clear and significant contribution of com-
plementary strengths coming from the knowledge re-
trieved through WolframAlpha. Furthermore, it is no-
table that the observed benefits of the WA module can-
not be solely attributed to the characteristics of the
LLMs employed for query generation or answer ex-
traction. This is evident from the substantial perfor-
mance gains (around 10.8%) achieved, even after en-
abling both WA and SG with a comparatively weaker
model, such as text-davinci-003. Additionally, the
mix of text-davinci-003 and gpt-3.5-turbo for
the WA+SG setting demonstrates superior performance
compared to SG with gpt-3.5-turbo, achieving im-
provements of 1.1% and 3.3%, respectively. Thus, show-
casing meaningful positive impact of augmenting WA
with the stand-alone SG module.

5.4 Python Generator (PG)

In this section, we investigate the effectiveness of the
Python Generator (PG) module in using python code,
and an interpreter to solve mathematical problems
(utilizing external symbolic libraries from Sympy).
Following, PAL (Program Aided Language Models)
(Gao et al., 2023), Program of thought (Chen et al.,
2023c), our PG module consists of a a program
generator and an executor. The generated code and
corresponding output are added in context of the next
module in sequence. We present the results of the
PG+SG setting in Table 4 for the MATH dataset.
For MATH, we present three variations: (i) PG+SG
with no code refinement, (ii) PG+CR+SG with code
refinement, and (iii) PG′[ ]+SG (where PG′[ ] denotes
the use of Phind-CodeLLama-34B-V2 model for
PG. We choose Phind-CodeLLama-34B-V2 for our
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Method Alg P.Cal P.Alg Geom Prob N.Th Int.Alg O.Acc

Baselines with gpt-3.5-turbo ( )
CoT-LTP (Guo et al., 2023) 49.6 16.3 52.3 22.5 30.2 29.8 16.9 31.1
ComplexCoT (Fu et al., 2023) 49.1 16.8 53.8 22.3 29.7 33.4 14.6 34.1
ComplexCoT+PHP (Zheng et al., 2023) 51.1 16.1 57.7 25.4 33.7 35.1 17.1 36.5
SKiC (Chen et al., 2023a) 57.9 23.0 62.0 30.1 38.2 35.5 17.8 40.6

Baselines with GPT-4
CoT (Zhou et al., 2024) 70.8 26.7 71.6 36.5 53.1 49.6 23.4 50.4
PHP (Zhou et al., 2024) 74.3 29.8 73.8 41.9 56.3 55.7 26.3 53.9

Ours
SG ( ) 46.7 18.1 55.7 25.3 32.9 30.2 16.2 34.5
KR+SG ( + ) 49.1 15.0 58.0 24.4 34.3 29.6 12.0 34.4
BS+SG ( + ) 51.6 20.1 63.3 27.1 36.1 39.6 16.3 38.7
PG+SG ( + ) 60.0 26.5 66.1 30.7 42.1 40.5 21.1 44.6
PG+CR+SG ( + + ) 59.7 25.2 63.9 26.9 48.3 43.0 26.9 44.8
PG′[ ]+SG ( + ) 55.4 23.5 58.0 22.9 32.7 42.2 17.9 39.6
WA+SG ( + ) 57.8 26.1 58.5 26.3 37.6 37.8 31.5 42.6
PG+BS+SG ( + + ) 53.1 20.7 58.7 28.6 37.8 36.6 19.9 39.0
BS+PG+SG ( + + ) 55.0 23.1 61.2 27.5 35.4 35.4 20.5 39.8
WA+PG+SG ( + + ) 62.5 28.9 61.5 27.1 42.6 45.7 33.4 46.3
PG+WA+SG ( + + ) 61.6 28.7 64.7 30.5 42.8 49.1 35.0 47.6
BS+WA+SG ( + + ) 56.2 22.9 61.0 29.8 37.5 44.0 28.9 42.9
WA+BS+SG ( + + ) 60.0 27.0 65.0 29.0 40.5 42.2 31.4 45.4
BS+PG+WA+SG ( + + + ) 60.2 26.4 65.0 31.3 44.7 48.7 31.6 46.7

Table 4: Comparison of our Modular Settings to Published Baselines on MATH. We use gpt-3.5-turbo ( ) as the default LLM
for each setting (except one row). For PG′[ ]+SG ( + ) setting, we use Phind-CodeLlama-34B-V2 as the underlying LLM for
the PG module (while keeping gpt-3.5-turbo ( ) as the default LLM for SG module); Alg: Algebra, P.Cal: Precalculus,
P.Alg: Prealgebra, Geom: Geometry, Prob: Probability, N.Th: Number Theory, Int.Alg: Intermediate Algebra; We have taken
the first four baseline results from SKiC (Chen et al., 2023a), and following two baselines from (Zhou et al., 2024).

ablation since it is the best model from the huggingface
Code-LLM leaderboards. The Phind family of models
are finetuned versions of CodeLlama-34B on a Phind
dataset consisting of 80k high quality programming
problems and solutions.

Results In Table 4, we observe that the PG+SG set-
ting using the sympy library without code refinement
can improve upon the performance accuracy of SG on
the MATH dataset by a margin of 10.1%. We find that a
majority of problems in MATH require complex com-
putations such as solving equations, representation of
complex mathematical objects such as vectors, solv-
ing problems in Geometry, some of which are hurdles
for the Solution generator module since text representa-
tions alone fail to capture such complexities. Libraries
such as Sympy, on the other hand, has support for sym-
bolically representing such objects using well defined
functions, classes, methods, and sub-packages. We find
that this helps PG outperform SG on all mathematical
types in MATH. The outcomes of our experiment with
PG+CR+SG setting only yields marginal enhancements
on overall accuracy. We also observe a drop in the accu-
racy by 5% when using Phind-CodeLLama-34B-V2 as
the LLM in PG module.

Setting FL AA EM CM HM

( ) 53.9 49.0 84.6 41.0 57.7
( + ) 50.6 43.9 84.8 38.6 58.5
( + ) 52.4 54.5 88.1 58.0 67.0
( + ) 40.5 44.4 80.1 49.0 63.0
( + ) 49.5 50.0 81.6 44.0 69.4
( + + ) 44.7 36.1 81.4 57.1 63.7
( + + ) 45.7 55.5 92.1 42.3 68.0
( + + ) 50.0 47.0 81.2 44.0 59.1
( + + ) 46.8 38.0 84.9 47.5 63.3
( + + + ) 41.3 43.0 79.3 45.0 66.1

Table 5: MMLU Accuracy vs type of problem; FL:Formal
logic, AA: Abstract Algebra, EM: Elementary Mathematics,
CM: College Mathematics, HM: High School Mathematics

Setting GSM-8K AQUA M.Math

( ) 77.0 61.4 66.2
( + ) 71.8 57.5 64.5
( + ) 61.7 57.9 66.0
( + ) 56.0 53.5 67.6
( + ) 74.1 55.1 68.1
( + + ) 69.1 63.8 65.1
( + + ) 67.6 62.6 67.1
( + + ) 67.6 58.3 67.2
( + + ) 69.2 56.3 69.5
( + + + ) 70.7 61.4 66.9

Table 6: Comparison of Multi-Module Settings for GSM-8K,
AQUA-RAT (AQUA), and MMLU-Math (M.Math) datasets.
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5.5 Results of Multiple Module Experiments

We experiment with various module combinations
on four datasets MATH, AQUA-RAT, GSM-8K, and
MMLU-Math and report in Tabs. 4 & 6. Our findings re-
veal that distinct modules exhibit specialized efficacy in
addressing specific categories of mathematical problems.
On the MATH dataset, (1) WA emerges as a valuable re-
source for tackling intricate mathematical subdomains,
particularly in Intermediate Algebra (Int.Alg) and Num-
ber Theory (N.Th). The PG+WA+SG setting outper-
forms SG by 19% on Int.Alg. We conduct a qualitative
analysis of PG+SG on 106 randomly sampled questions
from MATH spanning all types and difficulty levels, pre-
sented in Table 13. We find that the majority of errors
in Int.Alg arise from python code execution errors and
the inability of python code to represent complex math
objects in this subdomain. In contrast, the WA mod-
ule effectively interacts with the API using both natural
language and symbolic queries (Table 15) to address
these issues, resulting in substantial enhancements.(2)
For Algebra-related problems (Prealgebra and Alge-
bra) having complex computations, the generation of
Python code guided by PG and the Sympy library proves
to be an effective choice. The WA+PG+SG setting ele-
vates the performance of SG by 15.8% on Algebra. The
PG+SG setting performance is also significantly better
compared to SG (10.4%) on Prealgebra showing the
utility of code representations over natural language in
this subdomain. (3) Table 9 presents an examination
of the variations in accuracy among various settings as
a function of the problem levels (1-5) in the MATH
dataset. Our analysis reveals a consistent improvement
of over 10% across all levels with diverse modular con-
figurations. This reaffirms the importance of judiciously
selecting tools and configurations based on the specific
features and attributes of the given problem.
Effectiveness of MATHSENSEI on MMLU-
Math. Results in Table 6 reveal that the BS+PG+SG
configuration enhances the accuracy of the SG setting
by 3.3%. As the performance is gain is low, we
further perform a type wise analysis in Table 5. We
observe that, other than Formal Logic (FL), adding
different modules show substantial improvements in
different types, such as 17% in College Math, 11.7% in
High School Math, 7.5% in Elementary Math. More
specifically we find that: (1) The PG+WA+SG setting
improves the accuracy of the SG setting from 84.6%
to 92.1% on Elementary mathematics problems.
(2) Interestingly, problems in Formal logic are best
solved using SG alone. The drop in performance
for the PG+SG setting (53.9 -> 49.5) is due to the
inability of PG to adequately represent predicate
logic, First Order Logic (FOL) sentences through
python code, (3) For College Mathematics, the
WolframAlpha module demonstrates highest efficacy,
as evidenced by the substantial benefits observed in
both the WA+SG and WA+PG+SG settings. Notably,
WA+SG outperforms the SG setting by a significant

margin of 17%. Our analysis in MMLU-Math further
supports the complementary benefit of the tools used
in MATHSENSEI framework for various mathematical
types.
Decreased Effectiveness of MATHSENSEI on GSM-
8K, and AQUA-RAT. From Table 6, we observe
marginal improvements of using multiple modules
on AQUA-RAT and GSM-8K, over the standalone
SG module. Both datasets comprise simpler algebraic
and arithmetic word problems. GSM-8K consists of
problems requiring simple arithmetic operations such
as addition, subtraction, etc. and its complexity stems
from linguistic diversity. We conduct a case study on a
randomly sampled set of 20 examples from GSM-8K,
where PG+SG is incorrect and SG is correct, we find
that 18 (out of 20) have incorrect outputs generated by
PG (due to reasoning errors) (Table 13). For all these
18 examples, the LLM generated python code tries to
solve a simple problem by using complex objects in
Sympy, which in turn degrades the performance. For
the remaining two examples, one has an execution
error, while for the other one, SG alters the correct PG
answer to incorrect. Similar to GSM-8K, AQUA-RAT
primarily focuses on problems that require generic
language-based reasoning skills. We find that settings
with tools mostly hurt the performance compared
to SG. This is attributed to the fact that WA and
BS are unnecessary for addressing straightforward
problems, and invoking them often introduces noisy
and irrelevant information into the context of SG. As
we saw previously in case of GSM-8K, a significant
proportion of errors in PG+SG ( + ) can be linked to
the application of Sympy for simple problems (Table 13).
These outcomes highlight the diminishing utility of
employing additional modules for tasks requiring
minimal external knowledge.

5.6 Insights from Qualitative Analysis of Modules

We consider an example from the MATH dataset and
present a qualitative analysis of the responses generated
by different settings in Table 7. We observe that SG and
PG+SG are unable to capture the fine-grained nuances
in the input question (repetition of characters in the word
"NINE"), leading to reasoning errors. On the other hand,
the BS+SG and WA+SG settings avoid committing such
errors. This demands a need for a careful examination of
the strengths and limitations of the individual modules,
which we discuss in details in this section.

Bing Web Search (BS). Previous investigations of
retrieval-augmented generation (RAG) (Lewis et al.,
2021) and Self-RAG (Asai et al., 2023) have shown that
conditional generation using retrieval-based approaches
improves factuality in knowledge intensive tasks such
as question answering, fact verification, etc. We observe
similar benefits of employing retrieval-based methods
in the domain of complex mathematical reasoning. The
BS module retrieves useful information (such as for-
mulas, concepts and similar questions) from the Web,
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QUESTION: Determine the number of ways to arrange the letters of the word NINE. GOLD ANSWER: 12

SG ( ): PG+SG ( + ) BS+SG ( + ) WA+SG ( + )

There are 4 distinct letters in the
word NINE. The number of ways
to arrange 4 distinct letters is 4!
= 24. Therefore, the answer is 24 .

SG module misses the repeated
characters in NINE.

from sympy import *
word = ’NINE’
numperm=factorial(len(word));
print(numperm);
. . .
The word NINE has 4 letters.The
number of ways to arrange 4 distinct
letters is 4! = 24. Therefore, the
answer is 24 .

PG module ignores the repeated
characters.

Retrieved Example: In the word
"BANANA", there are 6 letters but
only 3 distinct letters . . . repeated
letters.
Retrieved Formula: nPr = n!/(n1!
n2! ... nr!) . . . Therefore, the answer
is 4!/ (2! 1! 1!) = 12 .

BS module retrieves similar
examples and relevant formula from
the Web.

We call the Permutations function
on the word NINE to find all
possible arrangements of the letters.
The answer from WolframAlpha is
EINN, ENIN, . . . , NINE. Therefore,
the answer is 12 .

WA module generates the cor-
rect query: Permutations[NINE]
to solve the given question and
final SG answer is grounded on WA
output.

Table 7: Qualitative Analysis of the Responses generated by different Settings for a given MATH example.

improving the effectiveness of the downstream SG mod-
ule. As shown in Table 7, the BS module retrieves an
informative example of a similar question (permutations
of the letters in the word "BANANA", having repeated
characters) and the correct formula of permutations with
repetitions, which aids the SG module in correctly rea-
soning about the final solution. However, our current
implementation of the BS module also has certain lim-
itations. We directly use the raw output returned by
the Bing Web Search API v7, which is noisy in certain
cases. Additionally, we do not employ any critique
mechanism to check the relative importance of multi-
ple pieces of the retrieved information. We also observe
a significant reduction in performance on GSM-8K after
adding the BS module to SG. This calls for a compo-
nent which can effectively decide when it is required to
retrieve knowledge and when it is not necessary (future
research).

WolframAlpha (WA). The WA module overcomes
the limitations of SG by harnessing the computational
power and intelligence of the WolframAlpha engine.
In cases, where the query to the WolframAlpha-API is
syntactically and logically correct for solving a mathe-
matical question, the returned answer is guaranteed to
be correct, which is then processed by the SG module
to compile the final answer. From Figure 6, we observe
maximum benefit of WolframAlpha module for prob-
lems in the subdomains of Algebra and Intermediate
Algebra (primarily for difficulty levels greater than one).
We demonstrate the utility and limitations of the WA
module in Tables 16 and 14, respectively. The limi-
tations of the WA module are mostly associated with:
(1) Logical errors in LLM-generated WA API Queries
(Example 1 in Table 14), (2) Wrong interpretation of
correct WA response by the downstream SG module
(Example 2 in Table 14), (3) Single line WA response,
which restricts the ability of downstream SG module
to generate step-by-step reasoning (Example 3 in Table
14).

Python Generator (PG). As mentioned in Section
5.4, the Sympy library offers strong capabilities to the
PG module for MATH. The deterministic program ex-

ecutor also helps in avoiding common errors committed
by the standalone SG module. We found the PG module
to be most useful in solving Algebra, Prealgebra and
Number Theory problems. The example presented in
Table 17 demonstrates the advantage of using the PG
module over the SG module. The primary errors of the
PG module in Intermediate Algebra and Prealgebra are
mainly due to inability of the generated python code to
express complex objects (syntax errors) and bound-
ary cases, respectively. In the case of Geometry and
Precalculus problems, a large proportion of errors are
caused due to lack of understanding the plots/figures
(expressed in latex format) accompanying the question.
Table 12 presents examples of common syntactical er-
rors (from the MATH dataset) of the PG module, and
Table 13 summarizes the different error types of PG+SG
setting. Similar to PoT (Chen et al., 2023c), we found
the PG module to be less effective for simpler arithmetic
problems (removal of Sympy improves the performance
by 2-3%). However, the overall performance of SG
and PG+SG still remains quite similar. In Table 18, we
present an example from GSM-8K where PG+SG com-
mits a reasoning error while the SG setting is correct.

6 Conclusion

We introduce a Tool-augmented Large Language Model
(TALM) framework, aka MATHSENSEI, targeted for
Mathematical Reasoning. We utilize tools for web-
based knowledge retrieval, program generation and ex-
ecution and symbolic equation solving. We perform
extensive ablations over the individual tools, along
with varying the order and combination on complex
mathematical reasoning datasets (such as MATH). Our
best configuration achieves a 13.5% improvement over
gpt-3.5-turbo (with CoT prompting) on MATH. Our
experiments with tool-sequencing methods does not im-
prove over our best configuration. We also observe that
benefit of mathematical TALMs are minimal for sim-
pler math word problems (in GSM-8k) and its benefit
increases as the required complexity and knowledge for
the problem increases through AQuA, MMLU-Math.
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Limitations

We propose a Tool-Augmented LLM framework
(TALM), uniquely targeted towards complex mathemat-
ical reasoning. Here, we discuss three types of lim-
itations: 1) choice of the set of tools, 2) variants of
the PG module for simpler problems and 3) developing
mathematical TALM-specific planning methods.

1. Here, we choose tools, which intuitively offers
knowledge about complex mathematical disciplines and
complex equation solving capabilities such as Python
with sympy library, WolframAlpha-API and Bing Web
Search API. However, we have not explored other
solvers which are targeted towards logical complexity
or adding commonsense knowledge. In future, a more
universal TALM can target adding Z3, SAT solvers and
OMCS knowledge base query capabilities.

2. Our Program Generator (PG) module is not only
inspired by the program-guided solving methods, but
also targetedly use sympy library to access complex
mathematical equation solving skills. Such skills may
not be required for simpler math word problems, as
present in GSM-8k. In future, we plan to work on
generalizing the PG module so that it is adaptive for
simpler problems and focuses mainly on representing
the problems in code, only accessing sympy capabilities
when required.

3. Lastly, we worked on vanilla adaptation of the
available planning or tool-sequencing methods directly
in the mathematical TALM (or MATHSENSEI) context.
From our experiments, it is clear that we need to develop
more efficient planners that can dynamically choose
a sequence of tools based on the problem type (say
WA+PG+SG for algebra and PG+CR+SG for Proba-
bility), striking a balance between planning beforehand
(Plan-And-Solve) and example-wise planning (REACT).
We hope our work will inspire researchers to work on
such planning methods for mathematical TALMs.
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A Planning Experiments
We explore two state-of-the-art planning strategies
based following the Chameleon (Lu et al., 2023a) and
the REACT (Yao et al., 2022) frameworks and report in
in Table 10.

Plan-And-Solve Within the Plan-And-Solve (PAS)
framework, a dynamic planner (LLM), generates a plan
for a given mathematical problem before the start of exe-
cution. In our context, the plan consists of the sequence
of modules to be run. Notably, this planning approach is
inherently non-adaptive, as the strategy lacks the capa-
bility to determine the next module based on feedback
and the output of the previously executed modules. To
instruct the planner LLM, we provide input prompts
containing information about each module, along with
few-shot examples representing a possible sequence.
The prompts utilized for the planner model are detailed
in Table 22.

MATHSENSEI with REACT Planner. The previous
modular settings, have a fixed order of execution of the
modules. However, we also wish to test out settings
where there is power given to the central LLM to call
different modules as and when required. This is done
by executing (thought, action request, action execution)
triplets. The thought serves as a summary of what we
have till now in relation to answering the question, the

action request is the specific action we wish to take in
the next step, and the action execution step calls the
necessary module from the modules library to execute
the action. An overview of the REACT setting applied
to the MATH dataset is presented in Fig. 5. The results
for this setting corresponding to each problem type is
presented in Table 10.

Results. We evaluate the performance of Plan-
And-Solve and REACT on a randomly sampled
subset of the MATH dataset of 3100 examples(for
which REACT converges). The results show that
simple vanilla implementation of the above planners
is not sufficient for surpassing our best configu-
ration PG+WA+SG. In particular, the majority of
errors for REACT, were as a result of the failure
of REACT to converge to a final solution (finish
thought state). The variation of the accuracy as a
function of the level of the problem (Table 11) shows,
REACT* can surpass Plan-And-Solve (PAS) by a small
percentage, however it still lags behind our best settings.

Unlike planning in traditional closed world setup
datasets such as Blocksworld, Logistics, Depot plan-
ning, etc., the task of planning in the mathematical rea-
soning domain presents multiple differences: Firstly, the
set of possible actions is not finite as we can query each
tool/module with any input string. Moreover, there are
no preconditions that need to be satisfied for executing a
particular action which makes the planning space much
more unbounded. This can lead to long planning chains
with (thought,action,execution) triplets where there may
be multiple irrelevant actions. As seen from our work,
the strengths and limitations of each tool also varies with
the type of datasets, subdomains and difficulty levels,
which makes the problem non-trivial. Hence, it turns
out to be overwhelming to propose a novel planning
strategy in this paper. We plan to explore this issue as a
future research direction. A planner with a novel archi-
tecture and sufficient mathematical knowledge may be
required to tackle this aspect.
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Modules

Models/APIs KR BS WA PG CR SG

Bing-Web-Search-API ( ) ✗ ✓ ✗ ✗ ✗ ✗

Wolfram-Alpha-API ( ) ✗ ✗ ✓ ✗ ✗ ✗

Llama-2-7B ( ) ✓ ✗ ✗ ✗ ✗ ✗

Phind-CodeLlama-34B-V2 ( ) ✗ ✗ ✗ ✓ ✗ ✗

text-davinci-002 ( ) ✓ ✗ ✗ ✗ ✗ ✗

text-davinci-003 ( ) ✓ ✓ ✓ ✗ ✗ ✓

gpt-3.5-turbo( ) ✓ ✓ ✓ ✓ ✓ ✓

Table 8: Module Inventory.

Setting Level 1 Level 2 Level 3 Level 4 Level 5

( ) 71.8 53.1 41.0 25.6 12.2
( + ) 74.6 60.5 46.6 37.6 21.3
( + ) 83.6 62.4 52.6 40.0 19.8
( + + ) 76.4 61.5 54.0 40.2 25.2
( + + ) 79.1 62.8 53.9 41.8 26.9
( + + ) 74.6 59.3 51.0 35.6 21.0
( + + ) 76.0 60.1 52.0 39.9 24.6
( + + + ) 81.0 60.5 52.9 41.6 25.4

Table 9: Performance of different Settings across varying Levels of Complexity (1-5) on the MATH dataset.

Plan Method Alg P.Cal P.Alg Geom Prob N.Th Int.Alg O.Acc

PAS* 57.3 29.8 65.0 32.4 42.0 47.7 31.9 47.3
REACT* 62.9 30.6 65.1 32.1 42.0 46.1 33.7 48.9
( + + )* 61.4 32.8 65.2 33.4 45.4 54.2 37.6 50.7
( + + )* 64.4 32.1 62.8 32.1 46.9 49.4 38.3 50.6

Table 10: Comparison of planning strategies: Plan-And-Solve (PAS) and REACT with two of our best performing settings on
3072 randomly sampled examples from the MATH dataset (i.e., PG+WA+SG ( + + ) and WA+PG+SG ( + + )). Here X*
denotes the use of 3072 samples for evaluating method X.

Setting Level 1 Level 2 Level 3 Level 4 Level 5

PAS* 76.0 60.1 53.9 40.5 26.1
REACT* 78.3 62.0 55.4 41.6 27.9
( + + )* 79.3 65.3 54.3 43.9 31.1
( + + )* 78.3 65.6 55.8 43.1 30.1

Table 11: Comparing Performance of different Planning Strategies with two of our Top Performing Settings (i.e., PG+WA+SG
( + + ) and WA+PG+SG ( + + )) by varying Difficulty Level of Problems from the MATH dataset. Here X* denotes the use
of 3072 samples for evaluating method X.

Type Error message

Undefined symbols name ’x’ is not defined

Incorrect handling of
objects

’FiniteSet’ object has no at-
tribute ’subtract’

Undefined functions name ’divisible_by’ is not
defined

Use of libraries without
import

sympy package not found

Table 12: Syntactic Errors of the PG module.

Dataset Subject PG-Exec-Err PG-R-Err SG-Err Egs.

MATH

Alg 8 5 2 15
P.Cal 6 9 0 15
P.Alg 4 11 0 15
Geom 3 12 0 15
Prob 8 6 1 15
N.Th 6 7 3 16

Int.Alg 14 0 1 15

O.Cnt 51 48 7 106

GSM-8K - 1 18 1 20
AQUA - 1 6 13 20

Table 13: Summary of Error types with PG+SG ( + ) setting on a
random subset of 106 examples (MATH dataset); for GSM-8K and
AQUA we consider 20 random examples, where the setting SG ( )
is correct; PG-Exec-Err: Code generated by PG module having
syntactical errors; PG-R-Err: Executable python code (from PG )
having reasoning errors; SG-Err: Solution Generator (SG ) alters
correct output from PG to incorrect; Alg: Algebra, P.Cal: Precal-
culus, P.Alg: Prealgebra, Geom: Geometry, Prob: Probability, N.Th:
Number Theory, Int.Alg: Intermediate Algebra, O.Cnt: Overall Count,
Egs.: Examples. Here we report the absolute count of errors across
different subjects.
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{{ instruction }}

GENERATE 
CODE

{{ in-context example(s) }}
...

{{ question }}

Read the following mathematical question and write Python
code using the sympy library to answer the question or
generate an intermediate result 

A particle moves so that it is at   at time .
Find the speed of the particle, measured in units of distance
per unit of time.

  
from sympy import *

t = symbols('t') 

r = Matrix([3*sin(t/4),3*cos(t/4)])

v = diff(r, t) 

speed = simplify(v.norm())

print(\"Speed of the particle:\", speed)

PROMPT

Speed of the particle: 
3*sqrt(Abs(sin(t/4))**2 + Abs(cos(t/4))**2)/4

EXECUTE
CODE

... 

Refined Code: 
from sympy import * 
x = symbols('x') 
eq = Eq(x**4 + 5*x**3 + 9*x**2 - x - 14, 0) 
print(\"Equation:\", eq)\ 
roots =solve(eq, x) 
integer_roots = [r for r in roots if int(r) ==r] 
print(\"Integer roots:\", integer_roots) 
Changed: 'is_integer()' to 'int(r) == r' to check if the roots
are integers 
Error: Cannot convert complex to int

FINAL PG OUTPUT 

{{ instruction }}
...

{{ in-context example(s) }}
...

Generated Code:
from sympy import *
x = symbols('x')
eq = Eq(x**4 + 5*x**3 + 9*x**2 - x - 14, 0)
print(\"Equation:\", eq)
roots = solve(eq, x)
integer_roots = [r for r in roots if r.is_integer()]
print(\"Integer roots:\", integer_roots)
Error: 'bool' object is not callable

REFINE CODE
(ROUND-1) 

Refined Code: 
from sympy import *
x = symbols('x')
eq = Eq(x**4 + 5*x**3 + 9*x**2 - x - 14, 0)
print(\"Equation:\", eq)
roots =solve(eq, x)
integer_roots = []
for r in roots:
if r.is_real and int(r) == r:
         integer_roots.append(int(r))
print(\"Integer roots:\", integer_roots)
Changed: Used the is_real() method to check if the roots are real.
Fixed the incorrect way of checking if the roots are integers.
Error: None

PROMPT

REFINE CODE
(ROUND-2) 

EXECUTE
CODE 

Equation: Eq(x**4 + 5*x**3 + 9*x**2 - x - 14, 0)
Integer roots: [-2, 1]

(a) (b)

Figure 4: Overview of (a) Python Generator Module and (b) Code Refiner Module
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{Question}

My brother is 4 times as old as I am. Six years from
now, he will be twice as old as I will be.  How old is
my brother now?

Thought 1: The first thought is always bing_search.
Let us search the web for similar questions and
background knowledge on how to solve age-related
problems using algebraic equations.

Action 1: bing_search("How to solve age-related
problems using algebraic equations?",context)

Observation 1: 
Bing search response: The problem involves
comparing two people's ages at different points in
time.One way to approach the problem is to use a
single variable to represent the age of one person
and then use that to find the age of the other
person. Another approach is to use a system of two
equations to represent the ages of both people at
different points in time. We can set up two
equations using the given information: B = 4M
(brother's age is 4 times as old as mine) and B + 6
= 2(M + 6) (six years from now, brother will be twice
as old as me).

Thought 2: From the bing_search output, we
can set up two equations to solve the problem.
Let us use algebraic equations to solve the
problem. We can use program_generator for
this.

Action 2: program_generator('Solve the age-
related problem using algebraic equations to
find the age of my brother using python
code',context)

Observation 2: Python code:

from sympy import *
# Define the variables
B = Symbol('B')
M = Symbol('M')
# Define the equations
eq1 = B - 4*M
eq2 = B + 6 - 2*(M + 6)
# Solve the equations
sol = solve((eq1, eq2), (B, M))
# Print the solution
print("My brother is currently",
sol[B], "years old.")',

Code Output:'My brother is
currently 12 years old.

{REACT Step 1}
{R

EA
C

T 
St

ep
 2

}

{REACT Step 3}

Thought 3: From the program_generator output, we find
that the age of my brother is 12 years old. Hence, the
answer is $\boxed{12}$. Let us end the solution using
finish(thought).

Action 3: finish(thought)
Observation 3: 12

Figure 5: Generated output for example from the MATH dataset for the REACT planning setting.
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Figure 6: Distribution of examples where WA+SG ( + ) is correct and SG ( ) is wrong, across problem types and
level of difficulty (1-5). The values are normalized by number of examples in each (subject - level) combination.
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Setting: WA+SG ( + )

QUESTION 1: The positive inte-
gers up to 2007 are alternately sub-
tracted and added: [1− 2 + 3− 4 +
· · ·+2001− 2002+2003− 2004+
2005 − 2006 + 2007.] What is the
value of the expression?

QUESTION 2: When the expres-
sion −2x2 − 20x− 53 is written in
the form a(x+ d)2 + e, where a, d,
and e are constants, what is the sum
a+d+e?

QUESTION 3: Solve 2x2+x+3
x2+x+1 =

2x+1
x+1 for x.

GOLD ANSWER: 1004 GOLD ANSWER: 0 GOLD ANSWER: −2

WA API Query:
Sum[(−1)n ∗ n, {n, 1, 2007}]

[INCORRECT; since it finds
negative of the required answer]

CORRECT Query :
Sum[(−1)(n+1) ∗ n, {n, 1, 2007}]

WA API Query:
CompleteSquare[−2x2− 20x− 53]

[CORRECT]

WA API Query:
solve (2x2+x+3)/(x2+x+1) =
(2x+ 1)/(x+ 1) for x

[CORRECT]

WA Output:
Yes, the answer is -1004 .

[Logical errors in LLM gener-
ated WA API queries].

WA Output:
Yes, the answer from this object is:
−2(x+ 5)2 − 3

[CORRECT]

WA Output:
Yes, the answer is x = -2

[Since WA module returns a
single line answer (in many cases),
the downstream SG module fails to
provide a step-by-step reasoning.]

SG Output:
We use the Wolfram Alpha
API to evaluate the expression
Sum[(−1)n ∗ n, n, 1, 2007]. The
answer from Wolfram Alpha is
-1004. Therefore, the answer is
−1004

[INCORRECT]

SG Output:
From WolframAlpha response,
we find −2x2 − 20x − 53 =
−2(x + 5)2 − 3.Thus we have
a = −2, d = −5, and e = −3. So,
a + d + e = −2 − 5 − 3 = −10.
Therefore, the answer is −10

[INCORRECT; wrong inter-
pretation of correct WA response by
the downstream SG module. Value
of d should be +5 and not -5.]

SG Output
We call the WolframAlpha API
to solve the given equation.The
answer from Wolfram Alpha is x =
-2. Therefore, the answer is −2

[CORRECT; but lacks reason-
ing chains]

Table 14: Limitations of the WA Module in WA+SG ( + ) setting.
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WA Query

Sum[ik, {k, 1, 259}]

Solve[{725x+ 727y == 1500, 729x+ 731y == 1508}, {x, y}]

FactorInteger[3105]

maximize[y/x, (x− 3)2 + (y − 3)2 == 6]

period of cos(bx)

Table 15: Examples of generated WolframAlpha (WA ) Queries.

QUESTION 1: Find the remainder when x5 + x4 +
x3 + x2 + x is divided by x3 − 4x

QUESTION 2: Let P be the point (0, 5), let Q be the
point (6, 9), and let R be the point (12, 0). Determine
the area of right-angled △PQR.

GOLD ANSWER: 5x2 + 21x GOLD ANSWER: 39

Setting: SG ( )

Response:
The result of the division is x2 + 5x+ 5x

x3−4x

[INCORRECT; Calculation error in intermedi-
ate step]

Response:
QR =

√
(12− 6)2 + (0− 9)2 =

√
180

[INCORRECT; Error in distance calculation in
intermediate step.]

Setting: WA+SG ( + )

WA API Query:
PolynomialRemainder[x5 + x4 + x3 + x2 + x, x3 −
4x, x]
[CORRECT]

WA API Query:
triangle((0,5),(6,9),(12,0))
[CORRECT]

WA Output:
Yes, the answer is 5x2 + 21x
[CORRECT]

WA Output:
Yes, the answer is: Triangle shape: right triangle; Edge
lengths: (2

√
13, 3

√
13, 13) ≈ (7.211, 10.816, 13); -

Area: 39; Perimeter: 13 + 5
√
13 ≈ 31.027; In-

terior angles: cos−1(3/
√
13) rad; cos−1(2/

√
1) rad;

π/2 rad ≈ (0.588 rad, 0.982 rad, 1.570 rad); Interior
angle sum: 180◦ = π rad ≈ 3.142 rad.
[CORRECT]

SG Output:
The answer from Wolfram Alpha is found to be 5x2 +

21x. Therefore, the answer is 5x2 + 21x
[CORRECT]

SG Output:
We call the Wolfram Alpha API to find the area of the
triangle formed by the points (0, 5), (6, 9), and (12, 0);
The answer from Wolfram Alpha is found to be 39;
Therefore, the answer is 39
[CORRECT]

Table 16: Utility of the WA module in WA+SG ( + ) setting.
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QUESTION: The average of Amys, Ben, and Chris’s ages is 6. Four years ago, Chris was the same age as Amy
is now. In four years, Ben’s age will be 35 of Amy’s age at that time. How many years old is Chris now?

GOLD ANSWER: 10

Setting: SG ( )

Response:

1
3 (a+ b+ c) = 6; c− 4 = a; b+ 4 = 3

5 (a+ 4).

Simplifying the third equation, we get 5b + 20 = 3a + 12. Substituting c = a + 4 into the first equation and
simplifying, we get a+ b = 10.

[INCORRECT; Correct equation: 2a +b =14]

Setting: PG+SG ( + )

Response:

from sympy import *
a, b, c = symbols(’a b c’)
eq1 = Eq((a+b+c)/3, 6)
eq2 = Eq(c-4, a)
eq3 = Eq(b+4, Rational(3,5)*(a+4))
sol = solve((eq1, eq2, eq3), (a, b, c))
print("Chris’s age is", sol[c], "years old")

[Leverages the classes Rational, Eq and method solve from Sympy]

PG Output: Chris’s age is 10 years old

SG Output: Let Amy’s age be a, Ben’s age be b, and Chris’s age be c. The average of their ages is a+b+c
3 = 6,

Four years ago, Chris’s age was c-4, which was the same as Amy’s age at that time, so c− 4 = a, In four years,
Ben’s age will be b+ 4, which will be 3

5 of Amy’s age at that time, so b+ 4 = 3
5 (a+ 4), Solving the system of

equations gives a = 6, b = 2, and c = 10. Therefore, the answer is 10 years old.

[CORRECT]

Table 17: Utility of the PG module in PG+SG ( + ) setting.
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Figure 7: Distribution of examples where PG+SG ( + ) is correct and SG ( ) is wrong, across problem types and
level of difficulty (1-5). The values are normalized by number of examples in each (subject - level) combination.

Figure 8: Distribution of examples where PG+WA+SG ( + + ) is correct and SG ( ) is wrong, across problem
types and level of difficulty (1-5). The values are normalized by number of examples in each (subject - level)
combination.
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QUESTION: Uriah’s book bag is getting too heavy for him. He needs to remove 15 pounds from it. His comic
books weigh 1/4 pound each and his toys weigh 1/2 pound each. If he removes 30 comic books, how many toys
does he need to remove?

GOLD ANSWER: 30 comic books weigh 7.5 pounds because 30 x .25 = «30*.25=7.5»7.5 He needs to remove
7.5 more pounds because 15 - 7.5 = 7.5 He needs to remove 15 toys because 7.5 / .5 = 15

Setting: SG ( )

Response:

We know that Uriah needs to remove a total of 15 pounds from his bag. He removes 30 comic books, which
weigh a total of 30*(1/4) = 7.5 pounds. So he still needs to remove 15 - 7.5 = 7.5 pounds.Let the number of toys
he needs to remove be x.The weight of x toys is x*(1/2) = 0.5x pounds. We need to solve the equation 0.5x = 7.5
to find x. Solving for x, we get x = 15. Therefore, Uriah needs to remove 15 toys from his bag. The answer is 15.
[CORRECT]

Setting: PG+SG ( + )

Response:

from sympy import *
x = symbols(’x’)
eq = Eq((1/4)*(30-x) + (1/2)*x, 15) [Wrong equation - reasoning error]
print("Equation:",eq)
sol = solve(eq, x)
print("Solution x:",sol)
ans = 30 - sol[0]
print("Toys to remove:",ans)

PG Output: Equation: Eq(0.25*x + 7.5, 15); Solution x: [30.0000000000000]; Toys to remove: 0;

SG Output: From Python code we get that Uriah needs to remove 0 toys. The answer is 0. [INCORRECT]

Table 18: Demonstration of a Reasoning Error committed by the PG module in PG+SG ( + ) setting in a GSM-8K
problem.
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INSTRUCTION

Read the following question, generate the background knowledge or relevant mathematical information as the
context information that could be helpful for answering the question.

IN-CONTEXT EXAMPLES

Question: The smallest distance between the origin and a point on the graph of [y = 1
2x

2 − 9] can be expressed
as a. Find a2.
Modules used till now: []
Mathematics Problem Type: Algebra
Level of Problem: Level 5
Knowledge:
- The question involves the concept of distance between two points in a coordinate system.
- The distance between the origin and a point (x, y) on the graph is given by the formula

√
(x2 + y2).

- Minimizing (x2 + y2) is same as minimizing
√

(x2 + y2).
- Substitute y = 1/2x2 − 9 into the equation to get x2 + (1/2x2 − 9)2.
- Take derivative of above equation and set it to 0.

... [More few shot examples]

INPUT QUESTION

Question: What is the following value when expressed as a common fraction: 1
21 +

1
22 +

1
23 +· · ·+ 1

28 +
1
29 +

1
210 ?

Mathematics Problem Type: Algebra
Level of Problem: Level 4

OUTPUT

Knowledge:
- The question involves understanding of geometric series in mathematics.
- A geometric series is a series of numbers where each term is obtained by multiplying the previous term by a
fixed constant, called the common ratio.
- The sum of the first n terms of a geometric series is given by the formula Sn = a(1− rn)/(1− r), where a is
the first term and r is the common ratio.
- In this case, the first term is 1/2 and the common ratio is also 1/2.
- We need to find the sum of the first 10 terms of the series, which can be calculated using the above formula.

Table 19: LLM-based Knowledge Retrieval Prompt
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INSTRUCTION

Read the following question to generate thought, Query for searching Bing Web Search API, that will help to
solve the entire problem or specific subproblems in the question.

IN-CONTEXT EXAMPLES

Question: When the expression −2x2 − 20x− 53 is written in the form a(x+ d)2 + e, where a, d, and e are
constants, what is the sum a+ d+ e?
Modules used till now: []
Mathematics Problem Type: Algebra
Level of Problem: Level 5
Thought: Since the question involves completing the square let us search how to complete the square.
Query: How do we complete the square of a quadratic equation?

Question: A circle is circumscribed about an equilateral triangle with side lengths of 6 units each. What is the
area of the circle, in square units? Express your answer in terms of π.
Modules used till now: []
Mathematics Problem Type: Geometry
Level of Problem: Level 5
Thought: To solve this problem, we can search how to find the circumradius of an equilateral triangle.
Query: How to find the circumradius of an equilateral triangle?

... [More few shot examples]

INPUT QUESTION

Question: The point P = (1, 2, 3) is reflected in the xy-plane, then its image Q is rotated by 180◦ about the
x-axis to produce R, and finally, R is translated by 5 units in the positive-y direction to produce S. What are the
coordinates of S?
Mathematics Problem Type: Precalculus
Level of Problem: Level 3

OUTPUT

Thought: To solve this problem, we can search the web for formulas related to reflection, rotation and translation.
Query: What are the formulas for reflection, rotation, and translation in 3D space?

Table 20: Bing Web Search Query generator Prompt for Concepts Search
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INSTRUCTION

Read the following question to generate thought, answer and final query for searching Wolfram Alpha API, that
is being used to solve the problem or specific subproblems.

IN-CONTEXT EXAMPLES

Question: When the expression −2x2 − 20x− 53 is written in the form a(x+ d)2 + e, where a, d, and e are
constants, what is the sum a+ d+ e?
Modules used till now: []
Mathematics Problem Type: Algebra
Level of Problem: Level 5
Thought: To find the answer to the problem, we need to rewrite the quadratic expression −2x2 − 20x − 53
in the form a(x + d)2 + e, where a, d, and e are constants. Then, we find the sum a+d+e. Do you know the
Wolfram Alpha command to do this?
Answer: Yes, the Wolfram Alpha command to factor the given quadratic expression is: factor(−2x2−20x−53)
Final Query: factor(−2x2 − 20x− 53)

Question: Harold tosses a nickel four times. What is the probability that he gets at least as many heads as tails?
Modules used till now: []
Mathematics Problem Type: Counting and Probability
Level of Problem: Level 5
Thought: To find the probability that Harold gets at least as many heads as tails when tossing a nickel four times,
we can use combinatorial techniques to count the favorable outcomes. However, to simplify the calculations, we
can leverage Wolfram Alpha to compute the probability efficiently. Do you know the Wolfram Alpha command
to find the probability for this problem?
Answer: Yes, the Wolfram Alpha command to find the probability of getting at least as many heads as tails when
tossing a nickel four times is: Binomial[4, k] ∗ (1/2)4, where k ranges from 2 to 4 (inclusive).
Final Query: Sum[Binomial[4, k] ∗ (1/2)4, k, 2, 4]

... [More few shot examples]

INPUT QUESTION

Question: Find the constant c such that (x2 − 4x+ 3)(x+ 5)− (x2 + 4x− 5)(x− c) = 0 for all x.

OUTPUT

Thought: To find the constant c such that the given expression is equal to zero for all x, we can expand the
expression and collect like terms. Do you know the Wolfram Alpha command to do this?

Answer: Yes, the Wolfram Alpha command to expand the given expression and set it equal to zero is: expand
((x2 − 4x+ 3)(x+ 5)− (x2 + 4x− 5)(x− c)) = 0

Final Query: expand ((x2 − 4x+ 3)(x+ 5)− (x2 + 4x− 5)(x− c)) = 0

Table 21: Wolfram Alpha API Query generator Prompt
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INSTRUCTION

You need to act as a policy model, that given a question, determines the sequence of modules that can be executed
sequentially to solve the question.

The modules are defined as follows:
- wolfram-alpha-search: Calls the Wolfram-Alpha API to solve the given question or intermediate steps in the
question.
- bing-search: Retrieves similar questions, background knowledge, useful information using the Bing Web Search
API.
- python-generator: This module generates an executable python program that can solve the given question using
the Sympy library.
- solution-generator: This module generates a detailed solution to the question based on the already generated
context. Normally, solution-generator will incorporate the information from wolfram-alpha-search, bing-search,
python-generator. It is always the last module to be executed.

IN-CONTEXT EXAMPLES

Question: Determine the number of ways to arrange the letters of the word ELEVEN.
Modules: [’bing-search’,’solution-generator’]

INPUT QUESTION

Question: If the numbers 4, 5 and 6 are each used exactly once to replace the letters in the expression A(B −C),
what is the least possible result?

OUTPUT

Modules: [’python-generator’, ’solution-generator’]

Table 22: Example of Planner Prompt and Output in Plan-And-Solve (PAS).

Resource URL

open-source icons https://iconduck.com/icons/

llama-2 icon https://llama-2.ai/wp-content/uploads/2023/08/
Llama-2-icon-150x150.png

codellama icon https://codellama.dev/icons/black-transparentbg.png

python icon https://s3.dualstack.us-east-2.amazonaws.com/
pythondotorg-assets/media/community/logos/python-logo-only.png

azure openai service https://azure.microsoft.com/en-us/products/ai-services/
openai-service/

bing web search api service https://www.microsoft.com/en-us/bing/apis/bing-web-search-api

Table 23: Online Resources
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