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Abstract

Traditional attempts to enhance the logical rea-
soning abilities of language models often rely
on supervised fine-tuning, limiting their gen-
eralization to new tasks or domains. Large
Language Models (LLMs), with their capac-
ity to condense vast knowledge, can effectively
tackle many tasks. Yet, our experiments reveal
a gap in their performance on logical reason-
ing benchmarks when compared to state-of-the-
art fine-tuning based models. To bridge this
gap, we present LogicLLM, a first-of-its-kind,
fully self-supervised framework for integrating
logical reasoning capabilities into LLMs, and
activating them via in-context learning. We
apply this to two LLM series, FLAN-T5 and
LLaMA, with parameter sizes from 3 billion to
33 billion. LogicLLM demonstrates its effec-
tiveness through successful improvements on
two logical reasoning benchmarks (ReClor and
LogiQA-v2). Additionally, LogicLLM based
on FLAN-T5-11B attains comparable results to
ChatGPT, and evaluations with LLaMA-based
models on three language understanding bench-
marks (RACE, MMLU and Big-Bench-Hard)
confirm that the improvements come without
compromising the model’s general language
understanding capabilities.1

1 Introduction

Logical reasoning serves as a bedrock for negotia-
tion, debate and writing, underpinning our ability
to engage with complex cognitive tasks (Yu et al.,
2020). An example of logic reasoning in natural
language is shown in Figure 1. As the complex-
ity of relations and expressions presented in this
task defy straightforward conversion into symbolic
or formal languages, perfecting logical reasoning
within language models has proven to be a signifi-
cant challenge (Zhong et al., 2021).

†Correspondence to: Nancy F. Chen and Shafiq Joty.
1The code and models are released at

https://github.com/SparkJiao/LogicLLM.

Context: Archaeologists have studied human skeletons unearthed
in the Andes from 900 to 2800 years ago. Some chemical isotopic
compositions extracted from them reflect that people there ate
corn at that time. The corn culture led to the population growth in
the Andes. Several large-scale wars at that time were also related
to the competition for scarce soil suitable for planting corn. The
war led to the continuous change and development of the social
system. Therefore, they concluded that agriculture promoted the
development of ancient Andean society.
Question: Which of the followings, if true, questions the above
conclusion most?
Options:
A: Inca civilization in the Andes experienced several major social
changes as early as 2800 years ago
B: People in the Andes mainly fished along the coast 3600 years
ago, and did not gradually migrate inland until about 2800
C: Other chemical isotopes extracted from human bones reflect
that people also ate potatoes and beans at that time
D: Social system of the Andean region has central and local
governments, and then derived a variety of social forms
Answer: A

Figure 1: An example logical reasoning task from
LogiQA-v2 dataset (Liu et al., 2020). The relations
between different constituents, e.g., agriculture and de-
velopment of Andean society, include various predicates,
and it is hard to be converted into logical form through
either first-order logic or formal language.

Past attempts to incorporate logical reasoning
into language models primarily focused on integrat-
ing knowledge about logic. For instance, Huang
et al. (2021) employed graph neural networks to
capture relational semantics, while Wang et al.
(2022) used data augmentation to implement first-
order logic. These techniques, however, are con-
strained by their need for extensive annotated train-
ing data, which hinders the model’s ability to gen-
eralize across different tasks due to disparities in
data distribution and optimization objectives.

Conversely, recent breakthroughs in Large Lan-
guage Models (LLMs) like PaLM (Chowdhery
et al., 2022), LLaMA (Touvron et al., 2023), Chat-
GPT2, GPT-4 (OpenAI, 2023), and Bard3 offer
a promising alternative. These LLMs effectively
encapsulate a vast array of knowledge and tackle
diverse tasks with minimal specialization, guided
by human instruction. Despite their potential, our

2https://openai.com/blog/chatgpt
3https://bard.google.com/
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experiments on logical reasoning benchmarks re-
vealed deficiencies in their logical reasoning capa-
bilities as shown later in our experiments.

Contemporary efforts to fortify LLMs’ specific
capabilities fall broadly into two categories. The
first employs external tools or APIs (Schick et al.,
2023; Mialon et al., 2023; Cheng et al., 2022; Gao
et al., 2022; Chen et al., 2022), aiding LLMs in
argument parsing and semantic understanding. Yet,
these tools’ utility for logical reasoning remains
limited due to the absence of a symbolic language
for problem descriptions. The second category, in-
struction tuning, relies on data augmentation or
enriched human feedback but struggles due to the
scarcity of task-specific data and high annotation
costs (Ouyang et al., 2022; Xu et al., 2023). In this
work, we pivot away from these traditional meth-
ods and introduce LogicLLM, which performs self-
supervised logic-enhanced meta-training for LLMs.
It tackles two primary challenges: 1) synthesising
logic-consistent data from raw texts ensuring fully
self-supervised training, and 2) effectively incor-
porating logic prior into LLMs while preventing
learning problems, such as memorization, forget-
ting and generalization.

To tackle the first challenge, LogicLLM empha-
sizes the necessity of understanding and exploiting
fuzzy logical consistency. As mentioned previ-
ously, strict formal logic is often absent in natural
language, we instead treat the relational consis-
tency between different perspectives of relational
expressions as an approximation to fuzzy logic con-
sistency4. In fact, ensuring logical consistency in a
discourse is a key requirement for text coherence
and effective information conveyance (Jurafsky and
Martin, 2009). We devise a method that inspects
the implicit intra-sentence relation of entity pairs
at the discourse level to extract logically consis-
tent examples from Wikipedia articles (Figure 2).
Specifically, we posit that direct and indirect rela-
tions of an anchor entity pair should be logically
consistent, as they are derived from the “same” con-
text. For the second challenge, LogicLLM adopts
an auto-regressive objective optimizing on the logi-
cally consistent relation instances directly to make
it seamlessly adapt to its pretraining objective. It
tasks the model with generating the alternative per-

4In this paper, we will use the term logical consistency to
represent consistency in fuzzy logic for simplification, which
is further described by relational consistency. This means that
the relationship between a logically consistent data pair has
a higher degree of logical consistency but cannot be strictly
proved considering the diverse expressions of relations.

spective (indirect or direct) given a direct or indirect
description of the anchor entity pair. We further
employ counterfactual data augmentation through
entity replacement to enforce relation-centric rea-
soning, which not only avoids the model’s tendency
to merely recall results from memory but also en-
sures the preservation of the logic-enhanced aspect
of the learning process.

LogicLLM is task-agnostic and does not require
any annotations, making it adaptable to various
logical reasoning tasks. We have conducted ex-
periments across two distinct LLM series, FLAN-
T5 (Longpre et al., 2023) and LLaMA (Touvron
et al., 2023), encompassing a variety of parameter
sizes. These experiments are designed to investi-
gate two main questions: (1) Can the logical reason-
ing capabilities be exclusively improved through
self-supervised meta-training for LLMs, thereby
circumventing the need for task-specific supervised
fine-tuning? (2) How does the logic-enhanced meta
training affect the LLM’s language understanding
capabilities, i.e., does it suffer from forgetting or
generalization issues?

In response to the first question, our findings sug-
gest that LLMs trained with the LogicLLM objec-
tive demonstrate superior performance on logical
reasoning benchmarks, eliminating the need for fur-
ther fine-tuning. Our LogicLLM based on FLAN-
T5-11B attain comparable results to ChatGPT on
two logic reasoning benchmarks, ReClor (Yu et al.,
2020) and LogiQA-v2 (Liu et al., 2022a), highlight-
ing the feasibility of enhancing logical reasoning
abilities through self-supervised training alone.

Regarding the second question, our evaluations
with LLaMA-based models on three general lan-
guage understanding benchmarks - RACE (Lai
et al., 2017), MMLU (Hendrycks et al., 2021)
and BIG-Bench-Hard (BBH) (Suzgun et al., 2022),
confirm that the enhanced logical reasoning ca-
pabilities do not compromise the model’s overall
language understanding on MMLU and BBH. In
fact, the learned logic ability appears to boost the
model’s performance in RACE.

2 Related Work

2.1 Large Language Models

In recent years, Large Language Models with in-
context learning have emerged as a groundbreaking
paradigm in the field of NLP. Unlike the traditional
fine-tuning approach, in-context learning leverages
natural language instructions or a small number
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of annotated examples as demonstrations to pre-
dict responses for new instances. This unique ap-
proach empowers LLMs to serve as a versatile tool
for handling multiple tasks without requiring task-
specific training. However, recent evaluations of
LLMs (Qin et al., 2023; Bang et al., 2023; Jiao
et al., 2023; Laskar et al., 2023; Wang et al., 2023a)
have revealed a limitation in their ability to learn
complex skills like logic and planning through lan-
guage modeling alone. To address this, even the
training of GPT-4 has incorporated labeled match-
ing datasets to enhance its performance in solving
math word problems (OpenAI, 2023). Neverthe-
less, due to the vast amount of data used in pre-
training LLMs, annotated data for specific capabil-
ities may be severely undersampled, and the cost
of obtaining annotations should not be overlooked.
Therefore, it remains crucial to develop various self-
supervised or weakly-supervised training methods
that do not rely on human annotation. These ap-
proaches are essential for constructing more robust
and versatile LLMs that can perform a wider range
of tasks with higher proficiency and lower resource.

2.2 Reasoning in Natural Language
Previous research aimed at natural language rea-
soning tasks can be broadly classified into three
categories. The first category involves explicit
prior knowledge, such as discourse structure or
linguistic knowledge, to model implicit reasoning
processes (Gao et al., 2020; Huang et al., 2021).
The second category is neural-symbolic reason-
ing, where variables are first parsed, and then pre-
defined programs are executed to obtain final re-
sults (Wang et al., 2022; Zhong et al., 2021). How-
ever, a significant challenge with these methods is
the requirement of a robust semantic parser and a
self-contained symbolic system for extracting vari-
ables or arguments, which is impractical for logic
reasoning based on natural language. The third cat-
egory encompasses methods that focus on general
domain pre-training for reasoning via denoising
auto-encoding (Jiao et al., 2021; Deng et al., 2021;
Liu et al., 2022b). Nevertheless, restricted by the
poor task generalization of discriminative models
with few parameters, these methods are still in de-
mand of task-specific fine-tuning to activate learned
knowledge.

Our approach in this paper falls within the
third category, which improves the efforts of
MERIt (Jiao et al., 2022) by transforming it into
auto-regressive framework to better align the na-

ture of LLMs as generative model. We also drop
the usage of knowledge graph enabling enhancing
the logic of LLMs through purely self-supervised
learning.

3 LogicLLM

Figure 2 shows the framework of LogicLLM. It
involves three main steps: 1) Logic-consistent Data
Construction (Section 3.1), which synthesises the
logic-consistent data using relation discrimination
between entity pairs; 2) Counterfactual Data Aug-
mentation (Section 3.2), which augments the logic-
consistent training data by entity sampling and re-
placement; 3) LLM Training (Section 3.3), which
performs continual training of LLMs using the
training data generated by the previous two steps.

3.1 Logically consistent Data Construction

Ensuring logical consistency in discourse and prag-
matics is a fundamental prerequisite for natural lan-
guage to effectively convey information and main-
tain coherence. Consequently, logically consistent
data is prevalent in text documents and various tech-
niques can be applied to extract them. In this study,
we implement this by inspecting intra-sentence re-
lation of entity pairs at the discourse level to extract
logically consistent examples from Wikipedia.
Direct relation Given an arbitrary paragraph and
an anchor entity pair ⟨ ei, ej ⟩, we assume there
exists an implicit relation sk between ⟨ ei, ej ⟩
if one sentence directly mentioning them can
be found. This comes from the distant supervi-
sion (Mintz et al., 2009) and has been employed
and extended in self-supervised training by previ-
ous work (Deng et al., 2021). For example, the
instance ① in Figure 2 is a direct relation. To this
end, we simply treat ⟨ ei, sk, ej ⟩ as the direct rela-
tion triplet for further data construction.
Indirect relation Entities ei and ej can be in-
directly connected through multiple sentences
within the input paragraph. In such situa-
tions, we identify a chain of triplets, such as
⟨ei, si+1, ei+1, · · · , sj , ej⟩, which represents an in-
direct relation between the entity pair ⟨ ei, ej ⟩
through the relation composition of serial relation
triplets ⟨ ei, si+1, ei+1 ⟩, ⟨ ei+1, si+2, ei+2 ⟩, · · · ,
⟨ ej−1, sj , ej ⟩. For example, instance ② in Fig-
ure 2 demonstrates an indirect relation.5

5In practice, we find 87% indirect relations are composed
of two relation triplets, 12% contain three triplets, and less
than 1% have more than 4 triplets. This prevents the logical
consistency be weakened by long context.
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In 1644, Everdingen travelled to Norway and 
Sweden, a trip that was to have profound 
consequences on his art.

I

II Auto-regressive
Generative Training

IIICounterfactual
Data Augmentation

Relation Extraction In the manner of Frans Post, Everdingen took advantage of this mishap 
by making sketches of the Norwegian landscape, which would have 
seemed very exotic to his Dutch countrymen. His annotated drawings 
document visits to the south - east Norwegian coast and to Bohusland 
and the Göteborg area in western Sweden.

Document P

Direct Relation Indirect Relationtwo entities in the 
same sentence

two entities in 
different sentences

Document Q

New Entities 
Sampling

Replace
Entities

LLMCounterfactual
Data

Figure 2: The LogicLLM framework. P and Q are two arbitrary paragraphs from Wikipedia. In Step 1, we extract
intra-sentence relations ①: ⟨ ei, sk, ej ⟩, and the compositions of them ②: ⟨ei, si+1, ei+1, · · · , sj , ej⟩ from P for an
entity pair ⟨ ei, ej ⟩; ① and ② are direct and indirection relations, respectively. Here sk is a relation, represented
by the sentence that mentions ⟨ ei, ej ⟩. ① and ② are viewed as logically consistent since both of them describe
the “same” relation between ⟨ ei, ej ⟩ from different view. In Part I of the figure, ei refers to Everdigen and ej
represents Sweden. The intermediate entity is Norwegian here. The direct relation on the left says that Everdigen
has traveled to Sweden, and the indirect relation implies the fact that Everdigen has probably visited Sweden as
well as its nearby area, otherwise he could not complete the sketches of Norwegian, demonstrating the fuzzy logic
consistency with high probability. Step 2 is the process of counterfactual data augmentation, where counterfactual
relation composition is generated by random entity replacement. ③ and ④ are the counterfactual augmentations
of ① and ②, respectively. Finally, in Step 3, the LLM is optimized to generate direct/indirect relations with their
logically consistent indirect/direct counterparts as inputs. Here, ①→ ②, ②→ ①, ③→ ④, and ④→ ③ are considered.

Logical consistency Intuitively, the direct and indi-
rect relations between ⟨ ei, ej ⟩ should be logically
consistent since they are derived from same context
and describing the same entity pairs. Instances ①

and ② in Figure 2 exemplify logically consistent
relations. By establishing implicit connections be-
tween single-step and multi-hop reasoning, LLMs
gain the ability to understand relation composition
process between sk and ⟨si+1, si+2, · · · , sj−1⟩.
This capability consequently enhances the LLMs’
logical reasoning abilities.

To retrieve logically consistent relation pairs, we
follow a two-step process. First, we recognize all
entities within each paragraph via distant anno-
tation from WikiData (Wang et al., 2021). And
secondly, we enumerate every possible entity pair
and search for a series of sentences and check if
both direct and indirect relations can be extracted.

3.2 Counterfactual Data Augmentation

The work we have described in Section 3.1 pro-
duces logically consistent data that correlates en-
tities and relations within reasoning paths. To en-
hance entity-irrelevant reasoning and ensure LLM
focuses more on the process of relational composi-
tion rather than the entities themselves, we have ad-

ditionally introduced counterfactual data augmen-
tation. This approach, similar to the method sug-
gested by Jiao et al. (2022), includes the random
replacement of entities.

To create counterfactual examples of ⟨ ei, ej ⟩
within paragraph P , we initially select a random
paragraph, denoted as Q, from a separate docu-
ment. Subsequently, we sample a new set of en-
tities, such as ea, ea+1, · · · , eb from Q. The head
and tail entities in the original relation instances
of ⟨ ei, ej ⟩ are then substituted by these randomly
sampled entities, maintaining the relationships un-
changed. For instance, after substituting ei and ej
with ea and eb, ③ and ④ become the counterfactual
augmentations of ① and ②, respectively. In our
research, we postulate that the logic-consistency
between sk and si+1, ei+1, si+2, · · · , sj−1 remains
undisturbed in the counterfactual examples. This
assertion is based on the idea that logical relation-
ships within a paragraph’s context are primarily
driven by shared entities and their interconnections
rather than the specific entities themselves.

3.3 Training Objective

During the training phase, we apply continual train-
ing to LLMs using logic-consistent data. Drawing

929



inspiration from the success of in-context learning,
we treat one relation from a logic-consistent rela-
tion pair as the in-context example and task the
LLM with generating the other relation. As de-
picted in Figure 2, using the logic-consistent pair
⟨①, ②⟩ as an example, when ① is given as the con-
ditional input, the LLM is expected to produce ② as
the output, and vice versa. This process intuitively
forces the LLM to reason the logic-consistent con-
nections between the input and output relations
since they are from the same context and the entity
pairs of ① and ② are both ei and ej .

Formally, we denote the data extracted from Sec-
tion 3.1 and Section 3.2 as D = {⟨R1

i , R
2
i ⟩}Ni=1,

where N represents the number of training ex-
amples, and ⟨R1

i , R
2
i ⟩ is the i-th logic-consistent

record. Here, R1
i refers to the direct relation-related

instance, while R2
i represents the instance with an

indirect relation. The goal of LLM training is to
minimize the negative log-likelihood function as
follows:

Llogic = −
N∑

i=1

[logP (R1
i |R2

i ) + logP (R2
i |R1

i )]

= −
N∑

i=1

[

|R1
i |∑

j=1

logP (R1
i,j |R1

i,<j , R
2
i )

+

|R2
i |∑

j=1

logP (R2
i,j |R2

i,<j , R
1
i )],

(1)

where R1
i,j , R

2
i,j denotes the j-th token of R1

i and
R2

i , respectively.
Furthermore, we incorporate the another causal

language modeling loss Llm to mitigate the catas-
trophic forgetting problem. Both Llm and Llogic

are implemented as auto-regressive decoding. The
only difference is that they sample from different
data source. Llm continuously samples data from
the subset of training corpus used during the last-
stage pre-training, i.e., Wikipedia paragraphs for
LLaMA series models, and FLAN-collection-v2
for FLAN-T5 series models. Therefore, the overall
training objective is defined as:

L = Llogic + Llm. (2)

During training, for each forward-backward, we
randomly sample two mini-batches with the same
size from the datasets for logic-enhanced training
and language modeling, respectively, and merge
them into a single one.

4 Experiment

We integrate our pre-training approach into two
prominent LLMs: LLaMA (Touvron et al., 2023)

ReClor LogiQA-v2
Model / Dataset Dev Test Dev Test

Acc. Acc. Acc. Acc.
ChatGPT 56.6 61.2 54.5 52.7
LLaMA-7B 30.2 30.3 27.4 28.1

w/ LogicLLM 32.4 31.0 27.7 28.6
LLaMA-13B 30.4 33.5 33.0 32.1

w/ LogicLLM 37.4 36.3 34.1 34.0
LLaMA-33B 45.2 50.3 41.2 41.6

w/ LogicLLM† 50.2 54.4 45.9 42.6
Falcon-40B 38.4 37.1 35.9 36.1

w/ LogicLLM† 41.4 43.0 38.6 37.2
FLAN-T5-3B 54.6 52.5 48.7 48.7

w/ LogicLLM & FLAN 55.8 54.1 50.8 50.1
FLAN-T5-11B 57.4 59.9 55.3 53.1

w/ LogicLLM & FLAN 61.2 61.1 56.0 54.0

Table 1: The results on logical reasoning benchmarks.
Better results are annotated in bold. † refers that the cor-
responding model is trained through QLoRA (Dettmers
et al., 2023).

and FLAN-T5 (Wei et al., 2022a). These mod-
els boast parameter sizes ranging from 3 billion to
30 billion. To thoroughly evaluate the capability
of LLMs from various angles, we have carefully
selected five datasets representing three distinct
categories. ReClor (Yu et al., 2020) and LogiQA-
V2 (Liu et al., 2020) are two logical reasoning
benchmarks sourced respectively from standard-
ized graduate admission examinations and logical
examination papers intended for reading compre-
hension. RACE (Lai et al., 2017) is a reading
comprehension task that assesses general reasoning
abilities. MMLU (Hendrycks et al., 2021) is used
for measuring the learned knowledge and massive
multitask language understanding, and BIG-Bench-
Hard (BBH) (Suzgun et al., 2022) is a collection of
multiple challenging tasks where LLMs fall behind
human being. By employing MMLU and BBH,
we aim to verify whether the logic-oriented meta-
training negatively impacts the models’ ability to
generalize across a wide range of tasks. Due to
space limitation, more implementation details can
be found in Appendix A.

5 Results and Analysis

5.1 Logical Reasoning

Table 1 shows the results on ReClor and LogiQA-
v2 under zero-shot setting. From the table we can
find that the performance of LLaMA-based models
is notably lower compared to ChatGPT. By train-
ing LLaMA models with LogicLLM, we observe
significant enhancement in their zero-shot logical
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RACE MMLU
Model / Dataset Dev Test 0-shot 5-shot

Acc. Acc. Acc. Acc.
LLaMA-7B 31.3 32.3 33.3 36.2

w/ LogicLLM 37.3 37.9 34.6 36.6
LLaMA-13B 55.8 54.5 41.1 46.7

w/ LogicLLM 57.7 55.6 43.3 47.3
LLaMA-33B 68.4 68.1 54.3 58.3

w/ LogicLLM† 68.8 68.1 54.4 58.3

Table 2: The results of LLaMA models on RACE and
MMLU. † means training through QLoRA.

reasoning capabilities. For instance, on LLaMA-
13B and LLaMA-33B, the average improvements
across the four dataset splits are 3.2 and 3.7 points,
respectively. The benefits are more substantial than
those observed in the 7B models (0.9 points), which
aligns with the findings on emergent abilities (Wei
et al., 2022b). This could be attributed to the fact
that larger models possess stronger generalization
abilities and better apply their learned capabilities
to different tasks. We also conducted experiments
on Falcon-40B (Penedo et al., 2023), and found
that LogicLLM brings an average improvement of
3.2 points.

Consistent with LLaMA-based models, we can
draw similar conclusions for those based on FLAN-
T5, where logic-oriented meta-training also yields
improvements for both FLAN-T5-3B and FLAN-
T5-11B. For FLAN-T5-11B, our model achieves
accuracies of 61.2 and 61.1 on the development and
test sets of ReClor, respectively. On the develop-
ment and test sets of LogiQA-v2, our logic-oriented
FLAN-T5-11B model achieves accuracies of 56.0
and 54.0, respectively. Notably, on the develop-
ment set of ReClor, our logic-oriented FLAN-T5-
11B model outperforms ChatGPT by a significant
margin of 4.8 accuracy points. Similarly, on the
development and test sets of LogiQA-v2, our logic-
oriented FLAN-T5-11B model surpasses ChatGPT
by 1.5 and 1.3 accuracy points, respectively. These
overall results indicate that instruction tuning on
multiple supervised datasets, such as the FLAN
collection, can still be improved for learning logic.
We hypothesize that this may be attributed to the
sparsity of reasoning-relevant data in the entire col-
lection and the conflicts between different tasks.

5.2 Hybrid Reasoning and Application
In addition to logical reasoning in text, we are also
curious about whether logic-enhanced training con-
tributes to general language understanding (RACE),

ReClor LogiQA-v2
Model / Dataset Dev Test Dev Test

Acc. Acc. Acc. Acc.
LLaMA-13B 30.4 33.5 33.0 32.1

w/ LogicLLM (ctr) 33.4 33.3 33.1 32.7
w/ LogicLLM (ar) 37.4 36.3 34.1 34.0

LLaMA-33B 45.2 50.3 41.2 41.6
w/ LogicLLM† (no aug.) 49.4 53.0 44.2 40.8
w/ LogicLLM† (1 aug.) 50.8 52.7 45.6 41.5
w/ LogicLLM† 50.2 54.4 45.9 42.6

Table 3: The effect of different training objectives.
Ctr refers contrastive learning and ar means the auto-
regressive variant. no aug. means the counterfac-
tual data augmentation is removed from the Logi-
cLLM framework. † means that the model is trained
with QLoRA.

and maintain the general capabilities on massive
knowledge based tasks (MMLU). To investigate
this, we evaluate the performance of the enhanced
LLaMA models on these two datasets.

As shown in Table 2, from 7B to 33B, Logi-
cLLM can consistently improve the performance
on RACE, except the one of LLaMA-33B w/ Log-
icLLMon the test set. Specifically, LLaMA-7B
w/ LogicLLM obtain around 4.2 absolute improve-
ments, and LLaMA-13B w/ LogicLLM achieves
1.5 improvements, which has verified that the logic-
enhanced training is also beneficial to general rea-
soning and reading comprehension. Additionally,
we find that LogicLLM can also benefits the mas-
sive multitask language understanding (MMLU)
on LLaMA-7B and 13B. We find that the improve-
ments of both RACE and MMLU on LLaMA-33B
are marginal, probably because low-rank adapta-
tion have restricted the generalization.

5.3 Pre-training Strategy

LogicLLM draws inspiration from the contrastive
learning framework for logical reasoning, i.e.,
MERIt, which has demonstrated its efficacy in fine-
tuning based approaches. As mentioned earlier,
we hypothesize that contrastive learning may be
inadequate for LLM with in-context learning. To
validate this assumption, we examine the effects of
contrastive learning (ctr) and auto-regressive gen-
eration (ar). In the case of contrastive learning, we
adopt the methodology of MERIt to construct logi-
cally inconsistent instances and optimize the model
by maximizing the distance between logically con-
sistent instances and the inconsistent counterparts.
Referring to the table, it can be observed that Logi-
cLLM (ctr) fails to yield significant improvements
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compared to LLaMA-13B, except for the dev set
of ReClor. Conversely, the auto-regressive mod-
els consistently outperform both the baseline mod-
els and the contrastive methods by considerable
margins across all dataset splits. We propose two
primary reasons to explain the superiority of auto-
regressive models over the contrastive approach.

First, the heuristic construction process for neg-
ative candidates used in contrastive learning fails
to identify true contradictory relations, resulting in
randomly chosen negative samples that lack log-
ically opposite relationships with the positive in-
stances. To this end, the contrastive learning pro-
cess can degrade into a positive-only optimization
process, which is similar to auto-regressive learn-
ing but receives less token-level supervision.

Second, the divergence between the training ob-
jectives of contrastive learning and auto-regressive
generation undermines the model’s ability to effec-
tively do in-context reasoning. Contrastive learn-
ing primarily focuses on discriminating positive
pairs from negative pairs based on a global se-
mantic perspective. Auto-regressive models, on
the other hand, accumulate their ability through
local token prediction. During inference, LLMs
are expected to understand instruction, and jointly
consider the logical relations between different hy-
pothesises within single input. By placing empha-
sis on fine-grained relations, the auto-regressive
objective can better support in-context learning,
enabling the model to grasp the nuanced connec-
tions and reasoning processes required for logical
understanding.

Moreover, the auto-regressive objective signifi-
cantly reduces computation costs during training by
eliminating the need for negative candidates encod-
ing. The streamlining of training process leads to
more efficient and resource-friendly training with-
out sacrificing performance. We also add another
experiment by adjusting the ratio between counter-
factual data and the normal ones as 1:1, and the
comparison reveal that mixing more counterfactual
data can also benefit the performance, which could
be especially useful for low-resource domain, like
finance and multi-lingual LLMs.

In summary, considering the advantages in both
performance and training cost, the auto-regressive
variant proves to be a superior choice for incorpo-
rating logic reasoning into LLMs.

ReClor LogiQA-v2
Model / Dataset Dev Test Dev Test
FLAN-T5-3B

w/ FLAN 53.6 53.8 49.5 49.5
w/ LogicLLM & FLAN 55.8 54.1 50.8 50.1

FLAN-T5-11B
w/ FLAN 58.0 60.5 56.9 53.6
w/ LogicLLM & FLAN 61.2 61.1 56.0 54.0

LLaMA-13B
w/ GPT4ALL 37.4 36.1 37.2 34.3
w/ LogicLLM & GPT4All 39.2 37.7 37.2 35.1

Table 4: Ablation study to explore if LogicLLM can be
combined with instruction tuning. For FLAN-T5 , we
use the subset of FLAN collection. For LLaMA, we
introduce GPT4All (Anand et al., 2023).

5.4 Factors Relevant to Logic Prior

In Table 3, we also present the ablation results on
LLaMA-33B when the counterfactual data augmen-
tation strategy is omitted. Without the inclusion
of counterfactual data, LogicLLM degrades into
a conditional generative task that can be solved
through memorization, as each sample has its own
prototypes within Wikipedia.

As indicated in the table, even without the aug-
mentation (no aug.), LogicLLM still contributes
to the enhancement of logical reasoning abilities,
albeit with more limited improvements. However,
the introduction of counterfactual data augmenta-
tion to eliminate memorization effects can further
amplify the benefits. The overall experimental re-
sults point out that relation construction serves as
effective supervision signal for introducing logic
prior. We leave the work about developing novel
techniques to prevent memorization but less involve
factual noise as future work.

5.5 Compatibility with Instruction Tuning

Instruction tuning has served as a critical step to
make LLMs better in following human instruction,
and/or generating with less toxic. In this section,
we hope to study if LogicLLM can be well inte-
grated with supervised instruction tuning so that
LogicLLM has the potential to serve as a basic ap-
proach to train logic-enhanced foundation model
before building applications. For FLAN-T5, we di-
rectly use the same subset of FLAN collection with
our approach as the instruction tuning data. For
LLaMA models, we introduce GPT4All (Anand
et al., 2023) data for extra supervision. During
training, we simply sum the loss of instruction tun-
ing and LogicLLM in multitask training manner to
keep the same data ratio.

932



Model Normal Normal (Anony.) C.F. C.F. (Anony.)

ChatGPT 94% 77.4% (-16.6%) 49.2% 65.0% (+14.8%)
GPT-4 99.8% 99.2% (-0.6%) 71.4% 94.2% (+22.8%)

Table 5: The ratio of consistent data deemed by Chat-
GPT and GPT-4. Anony. refers to anonymization and
C.F. is the simplification of Counterfactual.

As shown in Table 4, on most dataset splits, Log-
icLLM can achieve additional improvements com-
pared with the instruction tuning-only baselines.
Specifically, we find that the improvements are
more significant on ReClor that those on LogiQA-
v2. One possible reason is that the language style
in LogiQA-v2 is more close to formal language,
leaving a gap with the natural user questions.

5.6 Data Assumption Auto-Verification

In order to verify the rationality of our assumption
that the direct and indirect relations are logically
consistent, we employ ChatGPT and GPT-4 for
automatic evaluations. Specifically, we randomly
sample 1,000 examples from the development set
for our pre-training with the ratio of normal data
and counterfactual ones as 1:1. For each data pair,
we ask ChatGPT/GPT-4 to determine if the relation
between the target entities are logically consistent.
The prompt we used is shown in Appendix E. We
have involved four different settings. Beside the
normal data and the counterfactual ones, we have
also applied anonymization (Qiu et al., 2020) to
them to decouple the background knowledge from
entity. Specifically, the target entities are replaced
with [X] and [Y], and for counterfactual data, the
other replaced entities during data augmentation
are not further anonymized. Some cases can also
be found in Appendix E for clearer understanding.

Our results are shown in Tabel 5, from which
we can observe that: (1) for normal data, Chat-
GPT and GPT-4 deem that the logically consis-
tent data occupie high ratios, which has initially
verified the rationality of our data construction as-
sumption. (2) For counterfactual data, the ratios
significantly decrease. Yet, in the view of GPT-4,
there is still more than 70% of logically consis-
tent data in the whole corpus. (3) When combined
with entity anonymization, the ratios become much
higher for counterfactual data, i.e., nearly 15% ab-
solute improvements for ChatGPT and 23% for
GPT-4. Besides, the ratio of normal data decreases
significantly for ChatGPT, but is less perturbed for
GPT-4. The observation further demonstrates that

Figure 3: Results of 5 experiments with different option
input orders across different model sizes on the test set
of LogiQA-v2. Brown circular marker: outlier, green
triangle: arithmetic mean value.

most counterfactual data should also hold the as-
sumption since the anonymization only remove the
backgrounds of entities, yet leaving the context
as original. And the great variation brought by
counterfactual data augmentation also reveals the
potential weakness of current LLMs on identifying
the true causal relations.

5.7 Robustness

By training LLMs on logic-consistent data and
counterfactual augmentations, they are exposed to a
wide range of input variations. This exposure helps
them become less sensitive to minor perturbations
such as shuffling of input options. To determine
the robustness of LogicLLM , we conducted experi-
ments on LogiQA-v2 using models of varying sizes.
We shuffled the input order of different options and
reperformed the inference process.

Figure 3 illustrates the findings of our experi-
ments. We observed that LLaMA exhibited higher
variance across different input option orders, as in-
dicated by the greater spread in results. The circu-
lar outlier values that indicate specific input orders
causing significant variations, leading to substan-
tially higher or lower performance results. Our
observation is consistent with the recent findings
of Wang et al. (2023b), suggesting that the normal
LLMs heavily suffer from position bias. In con-
trast, when LLaMA is enhanced with LogicLLM, it
achieves more stable performance across different
parameter sizes. Moreover, the averaged perfor-
mance of LLaMA w/ LogicLLM is significantly su-
perior to that of LLaMA alone. These results show
that LogicLLM produces consistent and improved
results compared to traditional LLMs, demonstrat-
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Figure 4: The averaged log-likelihood value of different
models on the self-constructed logically consistent and
inconsistent instances, respectively. w/ L. refers to the
models augmented with LogicLLM.

ing the value of incorporating logic-enhanced train-
ing techniques into LLMs.

5.8 Training Quality Analysis

In order to analyze the quality of our meta-training,
we have constructed a test set using the framework
of MERIt (Jiao et al., 2022), which contains both
logically consistent and inconsistent data. We have
measured the log-likelihood on each sample as il-
lustrated by Equation 1, and report the averaged
results in Figure 4.

As shown in the figure, for logically consistent
data, LogicLLM significantly reduced the negative
log-likelihood. Moreover, the 7B-based model with
LogicLLM surpasses the performance of LLaMA-
13B. Notably, the disparity between the negative
log-likelihood of logically consistent and incon-
sistent instances is further amplified, highlighting
the effectiveness of LogicLLM in logical relation
reconstruction. Furthermore, our experiments sug-
gest a decrease in the negative log-likelihood for
logically inconsistent data. This observation ex-
poses a weakness in the contrastive learning-based
method, i.e., MERIt, wherein the heuristic process
for generating negative candidates introduces con-
siderable noise. Consequently, some negative in-
stances may not genuinely present contradictory
logical relations.

6 Conclusion

In this paper, we have explored the feasibility and
effectiveness of enhancing logical reasoning of
LLMs via purely self-supervised training. We eval-
uate the performance based on two LLM series, i.e.,
FLAN-T5 and LLaMA. The experimental results
on two logical reasoning benchmarks, LogiQA-v2
and ReClor, demonstrate the effectiveness of our
method. And the performance on RACE, MMLU

and Big-Bench-Hard have also verified that the
framework do not hurt the generalization of LLMs.
Finally, we have analyzed the factors relevant to
logic during training, and the compability with su-
pervised instruction tuning. We hope the analysis
could bring new insights to future research.
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Limitations

In this paper, we have explored the feasibility to
introduce logical reasoning capability into LLMs
via purely self-supervised meta-training. Though
the results have demonstrated significant improve-
ments on logical reasoning benchmarks, there are
also some limitations:
Randomness from Diverse Prompt/Instruction.
In our experiments, we find that the performance
of LLMs, especially those never optimized by in-
struction tuning, is varying to different prompts.
We try to reduce the variance by (1) using simpler
prompt (as shown in Section D or (2) using the re-
leased prompt by commonly accepted benchmark
or leaderboard, e.g., MMLU, Big-Bench-Hard and
Chain-of-Thought Hub (Fu et al., 2023). Neverthe-
less, this still cannot entirely keep the certainty of
the experimental results.
Non-uniform Evaluation Strategy. Currently,
there is no de facto technical standard for LLMs
evaluation. Some work just let language models
generate the response and match the content. How-
ever, this can be unfair for non-instruction-tuned
models since they often cannot generate meaning-
ful and complete sentences, especially those under
13 billion parameters.
Scaling. Due to the resource limitation, we can
only scale the method into models with 40 billion
parameters under the help of low-rank adaptation.
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ReClor LogiQA-v2
Model / Dataset Dev Test Dev Test

Acc. Acc. Acc. Acc.
RoBERTa-L. 62.6 55.6 59.8 57.0
MERIt (RoBERTa-L) 69.4 61.6 62.6 59.3
MERIt (DeBERTa-XXL) 80.6 78.1 — —
LLaMA-7B 28.8 28.3 24.4 23.7
LLaMA-13B 31.6 34.4 31.6 31.1
LLaMA-33B 45.2 50.3 41.2 41.6
GPT-3.5-turbo 56.6 61.2 54.5 52.7
w/ CoT 58.8 57.7 — 53.1

Table 6: The overall accuracy of LLMs, i.e., ChatGPT
(GPT-3.5-turbo) and LLaMA, and existing state-of-the-
art methods (Jiao et al., 2022) on logical reasoning
benchmarks. The evaluation of LLMs follows zero-
shot in-context learning setting, where the models are
expected to decode the answer based on the given in-
struction, context, and question.

A Implementation Details

A.1 LLM Prompting

In order to evaluate the generalization capabilities
of LLMs across different tasks after post-training,
we adopt a prompting-based approach. Here, the
input to the LLMs is structured as Instruction
[Exemplars] Task input. The instruction is tai-
lored to the specific task at hand, while exemplars
are utilized only in a few-shot setting. Each ex-
emplar comprises both the task input and its corre-
sponding output. For tasks such as multiple-choice
question answering, the task input is a concatena-
tion of the context, the question, and all potential
options. The correct option index is used as the
output. Besides, in a Chain-of-Thought (CoT) set-
ting, we include a reasoning process formulated in
natural language between the task input and output.

A.2 Data

We have constructed our self-supervised logic-
enhanced training data from Wikipedia, where we
directly used the paragraph corpus pre-processed
by Qin et al. (2021). We have constructed around
200K logically consistent sample pairs. After that,
we further performed counterfactual data augmen-
tation with the ratio of 1:3, and finally induced
800K training sample pairs in total. The data con-
struction process mainly follows the original set-
ting of Jiao et al. (2022) except two differences.
First, we remove the usage of knowledge graph for
relation annotation to enable fully self-supervision
and simplify the construction workflow. Secondly,
we have dropped the negative candidates since we
employed auto-regressive training.
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High Middle Weighted
LLaMA-7B 46.9 61.1 51.0
LLaMA-7B (Ours) — — 32.3
LLaMA-13B 47.2 61.6 51.4
LLaMA-13B (Ours) — — 54.5
LLaMA-33B 48.3 64.1 52.9
LLaMA-33B (Ours) — — 68.1

Table 7: The comparison on RACE dataset between our
reproduced results and those reported by the opriginal
paper of LLaMA.

For language modeling, we employed different
dataset with respect to the data used in their last
stage training. For FLAN-T5 series models, we
used the subset of FLAN-collection-v2 (Longpre
et al., 2023); while for LLaMA series models, we
used the same Wikipedia paragraphs from the cor-
pus of Qin et al. (2021).

A.3 Hyper-parameters of Training

During the pre-training process, we set the batch
size to 4,096, which is implemented using gradi-
ent accumulation. The maximum sequence length
is truncated at 1,024 for the FLAN collection and
512 for the MERIt corpus. For the FLAN-T5 se-
ries models, we conduct training steps for 200 it-
erations, while for the LLaMA series models, we
perform training steps for 500 iterations. The learn-
ing rates are set as follows: 1e-4 for FLAN-T5-3B,
5e-5 for FLAN-T5-11B, 1e-5 for LLaMA-7B, and
5e-6 for LLaMA-13B. To carry out the training pro-
cess, we utilize 8 NVIDIA A100 80G GPUs. How-
ever, due to hardware limitations, models larger
than 13B are trained using QLoRA (Dettmers et al.,
2023), a low-rank adaptation approach specifically
designed for quantized LLMs. We follow the set-
ting used in QLoRA with α as 16 and r as 64. All
linear layers are used for adaptation and the LoRA
dropout is 0.05. The learning rate for LLaMA-33B
and Falcon-40B is set as 5e-4.

A.4 Evaluation

To ensure a fair comparison, we maintain consis-
tency across different models for each dataset. This
involves using identical instructions and few-shot
samples. We use accuracy as the evaluation metric
across all experiments. The prompts for different
dataset can be found in Appendix D.

Model / Dataset Zero-shot Direct CoT
LLaMA-7B 24.9 30.4 27.0

w/ LogicLLM 25.2 30.8 25.9
LLaMA-13B 25.0 34.7 32.3

w/ LogicLLM 26.3 35.0 33.9
FLAN-T5-3B 38.0 40.2 35.1

w/ LogicLLM & FLAN 40.5 41.2 36.7
FLAN-T5-11B 43.0 42.6 40.9

w/ LogicLLM & FLAN 44.1 36.2 40.2

Table 8: The accuracy of LLaMA and FLAN-T5 based
models on BIG-Bench-Hard. Direct refer to few-shot
setting through direct prompting, where only the final
answer is given. Instead, in CoT setting, the reasoning
process is also concatenated. The exemplars used for
direct few-shot prompting and CoT prompting are con-
sistent in each task, which are officially provided.

B Interpretation for Different Results on
RACE

In this section, we will discuss the different re-
sults on RACE between ours and those reported
by the original paper of LLaMA. Specifically, Tou-
vron et al. (2023) do not report the weighted re-
sults, so we convert them by ourselves. The re-
sults are shown in Table 7. From the table we can
find that only LLaMA-7B cannot match the perfor-
mance reported by the authors. On LLaMA-13B
and LLaMA-33B, our reproduced accuracies are
much higher than the reported ones, which can
help address the concern of unfair comparison, and
demonstrate the effectiveness of our proposed Log-
icLLM.

C Logic-enhanced Meta-training for
Complex Task Understanding

We evaluated the performance of logic-enhanced
pre-trained models on BIG-Bench-Hard, a bench-
mark comprising challenging tasks where human
performance surpasses that of LLMs. Table 8
presents the results achieved by the LLaMA and
FLAN-T5 models under three evaluation settings:
zero-shot, direct few-shot, and CoT.

In the zero-shot setting, our logic-enhanced
meta-training significantly improves all four inves-
tigated models. For instance, the zero-shot accu-
racies of LLaMA-13B and FLAN-T5-T5-11B are
25.0% and 38.0%, respectively. When combined
with the LogicLLM model, the accuracy scores of
LLaMA-13B and FLAN-T5-11B improve to 26.3%
and 44.1%, respectively. Some tasks included in
BBH require free-form answers thus we cannot
evaluate the models by selecting the candidate with
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lowest perplexity or log likelihood. Instead, we
need to follow the evaluation of API-based models,
which employs regularization expression to capture
the answer from the response. However, smaller
language models, especially those without being
instruction tuned, fail to accept diverse instruction,
and generate structured response. As a result, the
absolute performance under zero-setting setting of
LLaMA-based models are relatively limited.

On the other hand, the direct few-shot results
outperform the zero-shot results in three out of
four models, with the exception of FLAN-T5-11B.
Similarly, logic-enhanced meta-training boosts the
performance of models, except for FLAN-T5-11B.
In the CoT setting, our method further enhances
the performances of LLaMA-13B and FLAN-T5-
3B. However, the best direct few-shot and CoT
results (42.6% and 40.9%, respectively) are both in-
ferior to the best zero-shot result (44.1%). Notably,
the CoT results on FLAN-T5-3B are significantly
worse than the zero-shot and direct few-shot results.
These observations suggest the potential drawback
that learning CoT from annotated training data, i.e.,
FLAN collection, has difficulty in generalizing to
different task categories, for example, learning CoT
from math word problem solving and solving logi-
cal puzzles. We provide further discussion on these
findings in Appendix G.

D Prompt Template

D.1 ReClor
Answer the following question with the

given context through logical reasoning:

Context: #Context

Question: #Question

Options:

A: #Option A.

B: #Option B.

C: #Option C.

D: #Option D.

The answer is

D.2 LogiQA-v2 & RACE
Answer the following question with the

given context:

Context: #Context

Question: #Question

Options:

A: #Option A.

B: #Option B.

C: #Option C.

D: #Option D.

The answer is

D.3 MMLU
The following are multiple choice

questions (with answers) about #Subject.

#Question

A: #Option A.

B: #Option B.

C: #Option C.

D: #Option D.

Answer:

E Auto-Verification Cases for Logical
Consistency

E.1 Prompt Template
[User]:

Determine whether the relation between

"[Entity A]" and "[Entity B]" in

the given two sentences are logically

consistent.

Directly give the answer from either Yes

or No.

Sentence 1:

[Sentence(s) 1]

Sentence 2:

[Sentence(s) 2]

[ChatGPT/GPT-4]:

Yes/No.

E.2 Normal Version
[User]:

Determine whether the relation between

"Everdingen" and "Sweden" in the given

two sentences are logically consistent.

Sentence 1:

In the manner of Frans Post, Everdingen

took advantage of this mishap by making

sketches of the Norwegian landscape,

which would have seemed very exotic to

his Dutch countrymen. His annotated

drawings document visits to the south

- east Norwegian coast and to Bohusland

and the Göteborg area in western Sweden.
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Sentence 2:

In 1644 Everdingen travelled to Norway

and Sweden, a trip that was to have

profound consequences on his art.

The output should either be Yes or No.

[ChatGPT]:

Yes.

E.3 Counterfactual Version
[User]:

Determine whether the relation between

"Nicholas Roerich" and "Master" in

the given two sentences are logically

consistent.

Sentence 1:

In the manner of Frans Post, Nicholas

Roerich took advantage of this mishap by

making sketches of the Canal del Dique

landscape, which would have seemed very

exotic to his Dutch countrymen. His

annotated drawings document visits to

the south - east Canal del Dique coast

and to Bohusland and the Göteborg area

in western Master.

Sentence 2:

In 1644 Nicholas Roerich travelled to

Norway and Master , a trip that was to

have profound consequences on his art .

The output should either be Yes or No.

[ChatGPT]:

No.

Entity replacement:

• Everdingen → Nicholas Roerich;

• Sweden → Master;

• Norwegian (connecting entity) → Canal del
Dique;

E.4 Anonymized Version
[User]:

Determine whether the relation between

"[X]" and "[Y]" in the given two

sentences are logically consistent.

Sentence 1:

In the manner of Frans Post, [X]

took advantage of this mishap by

ReClor LogiQA-v2
Model / Dataset Dev Test Dev Test

Acc. Acc. Acc. Acc.
zero-shot
ChatGPT 56.6 61.2 54.5 52.7
w/ CoT 58.8 57.7 54.5 53.1

5-shot
ChatGPT 61.0 63.0 55.1 54.5
w/ CoT 62.0 62.5 47.6 55.6
w/ CoT + Cate. N/A N/A 55.8 55.0

Table 9: The results on logical reasoning benchmarks
with enhanced Chain-of-Thought prompting.

making sketches of the Canal del Dique

landscape , which would have seemed very

exotic to his Dutch countrymen. His

annotated drawings document visits to

the south - east Canal del Dique coast

and to Bohusland and the Göteborg area

in western [Y].

Sentence 2:

In 1644 [X] travelled to Norway and

[Y], a trip that was to have profound

consequences on his art .

The output should either be Yes or No.

[ChatGPT]:

Yes.

F Discussion about Different Perspectives
of Logical Reasoning

In our opinion, logic can be reflected through mul-
tiple aspects. Here, we use a simple logic rule to
discuss the different perspectives:

(α → β) ∧ (β → γ) ↔ α → γ. (3)

The above equation shows the simplest case of
first-order logic reasoning, where α, β and γ are
different variables, and ∧ is logical and. We can
also introduce the necessary logical connectives in
natural language to make it easier for understand-
ing:

IF α → β AND β → γ, THEN α → γ. (4)

It should be noted that, in symbolic logic, we often
ignore the actual meaning of relations. However,
we can always find a path, i.e., a series of rela-
tion triplets from knowledge graph to transform the
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above symbolic form into natural language based
logical reasoning process:

IF α
r1−→ β AND β

r2−→ γ, THEN α
r3−→ γ.

(5)
One example here can be: r1 refers to is the father
of, r2 refers to is the mother of, and r3 refers to is
the grandpa of.

From the above discussion, we can conclude that
(1) logical connectives focus on discourse-level
connections, (2) symbolic logic can be viewed as
the simplified version of logical reasoning in natu-
ral language, where we focus more on the formal
rules of atomic logic operations, and (3) relational
reasoning concentrates on the actual logic opera-
tions built on world knowledge. Both of what we
have discussed in the paper and the reviewers have
mentioned in comments, i.e., logical connectives,
are indeed different perspectives of logical reason-
ing. They do not contradict to each other, and
discussing them separately is beneficial to make
the problem easier. Besides, there are also several
studies also discuss logical reasoning from the rela-
tional reasoning perspective (Wong et al., 2023; Xu
et al., 2021; Zeng et al., 2021; Wang et al., 2022).
And Figure 1 also shows the case emphasizing re-
lational reasoning.

G Weakness of LLMs on Logical
Reasoning

Table 9 showcases the evaluation results of LLMs’
performance in both few-shot and CoT settings.
The intermediate reasoning process is automat-
ically generated by ChatGPT using the prompt

“Let’s think step by step.” In the case of zero-shot
CoT, we include the suffix prompt “So the answer
is” to guide the models in summarizing and con-
cluding the answer. For few-shot CoT, the reason-
ing process is initially generated for each sample in
the training set. Subsequently, we retain the sam-
ples where the final prediction is correct, following
the steps outlined in zero-shot CoT. During testing,
we randomly select samples from the retained can-
didates, as well as the automatically generated CoT,
to serve as exemplars.

However, our observations indicate that both
few-shot learning and the use of CoT do not sig-
nificantly improve the models’ performance. For
example, ChatGPT w/ CoT performs much worse
than that without CoT on the development set of
LogiQA-v2. One potential reason for this is that the
selected samples differ substantially from the tar-

get example. To investigate further, we incorporate
reasoning category information during exemplar
selection. In LogiQA-V2, each question is anno-
tated with a reasoning category, such as categorical
reasoning, sufficient conditional reasoning, or nec-
essary conditional reasoning. For few-shot CoT
prompting, we only consider candidates that share
at least two common reasoning categories. This
particular variant is denoted as “ChatGPT w/ CoT
+ Cate.” in the table.

Despite these efforts, we find that carefully se-
lecting prompting exemplars only provides limited
improvement. The results indicate that LLMs strug-
gle to comprehend the reasoning structure from
a limited number of observed examples. Conse-
quently, they face challenges in effectively learn-
ing the mapping between input-label and input-
rationale-label. Additionally, as shown in Table 1,
we observe that LogicLLM also contributes min-
imally to addressing this issue. We recognize the
need for further investigation in this area and leave
it as a potential avenue for future research.
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