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Abstract

We propose Label Creative Generation (LCG),
a new paradigm in multi-label data augmenta-
tion. Beyond repeating data points with fixed
labels, LCG creates new data by exploring in-
novative label combinations. Within LCG, we
introduce Tail-Driven Conditional Augmenta-
tion (TDCA), combining tail-driven label sam-
pling and label-conditioned text generation for
balanced, consistent data augmentation. Our
approach has demonstrated a 100.21% increase
in PSP@1 across three datasets, successfully
mitigating the long-tail effect in MLTC and
markedly enhancing model performance.

1 Introduction

Multi-label Text Classification (MLTC), prevalent
in fields such as sentiment analysis and recommen-
dation systems, grapples with the dual challenges
of an extensive label space and a pronounced long-
tail distribution. This imbalance is exemplified in
Wiki10-31K dataset, where a mere 1.5% of labels
have more than 100 training instances, leaving the
vast majority with a scarcity of training data. Table
1 reveals that while numerous studies claim to have
addressed or alleviated the long-tail issue, advance-
ments in recent years, particularly on PSP@k, have
been gradual. Relying solely on advancements in
neural architectures appears to be ineffective over
time. There is a need for data augmentation.

Method Source PSP@1 PSP@3 PSP@5
PfastreXML Jain et al. (2016) 19.02 18.34 18.43
XML-CNN Liu et al. (2017) 9.39 10.00 10.20
AttentionXML You et al. (2019) 15.57 16.80 17.82
LightXML Jiang et al. (2021) 16.00 16.99 18.97
Cbolt Ge et al. (2022) 12.00 13.50 15.00
XRR Xiong et al. (2023) 11.77 16.48 21.07
TDCA ours 46.31 39.02 36.92

Table 1: Comparison of MLTC methods on Wiki10-31K
using PSP@k, a widely used metric that assigns higher
weights to tail labels for a more balanced evaluation.
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Figure 1: PSP@5 for various expansion ratios on MeSH-
12K dataset, comparing four data augmentation meth-
ods: Easy Data Augmentation (EDA), Back-Translation
(BT), Conditional Augmentation (CA), and TDCA. The
Expansion Ratio (E/R) quantifies augmentation: 1 indi-
cates no augmentation and 1 + x% shows x% augmen-
tation over the original dataset.

1.1 Inadequacies of Current DA Methods

Current data augmentation (DA) methods in text
classification have shown promise, yet their ef-
fectiveness in MLTC remains limited. Prevail-
ing DA strategies typically focus on employing
various approaches to replicate data while main-
taining labels unchanged. These methods fall
into two distinct categories: paraphrase-based
augmentation and conditional augmentation (CA).
The former includes model-free methods like
easy data augmentation (Wei and Zou, 2019), as
well as model-required techniques such as back-
translation (Sennrich et al., 2016; Edunov et al.,
2018). CA employs conditional generation (often
label-conditioned) for data augmentation to syn-
thesize texts that are more controlled yet diverse
(Li et al., 2020; Liu et al., 2020). Such strategies
offered benefits in binary or multi-class text classi-
fication, often regarded as a means to bolster model
robustness (Bayer et al., 2023). However, as illus-
trated in Figure 1, conventional approaches like
EDA and BT are seldom effective and might even
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impede model performance, particularly at greater
data expansion scales. CA shows improved perfor-
mance but remains modest.

Intrinsically marked by the existence of multi-
ple labels per instance, MLTC poses distinct chal-
lenges to conventional data augmentation methods.
Paraphrasing-based approaches, which solely alter
the text while maintaining its original intent and
keeping the labels unchanged, fail to enhance per-
formance by a large margin. Moreover, the noise in-
troduced in the paraphrasing process can adversely
affect model performance, a negative impact that
becomes more pronounced with an increasing pro-
portion of augmented data.

1.2 LLMs in MLTC
The recent validation of scaling laws in large lan-
guage models (LLMs) like GPT (Brown et al.,
2020; Bubeck et al., 2023) and LLaMa (Touvron
et al., 2023a,b) has revolutionized previously infea-
sible tasks and advanced tasks that had plateaued.
Research exploring LLMs in multi-label text clas-
sification has been emerging. For example, Kocon
et al. (2023) evaluated ChatGPT in text classifi-
cation, observing its lag behind traditional SOTA
models, with the gap widening in complex clas-
sification scenarios. However, its performance in
emotion recognition was noteworthy. Loukas et al.
(2023) corroborated this, highlighting ChatGPT’s
potential in few-shot and zero-shot classification.
This is in line with the training goal of LLMs,
which involves predicting the next token from pre-
ceding ones.

Post-training on large-scale general corpora,
their formidable understanding and common sense
skills lend them efficacy in text generation tasks
and common classification tasks with fewer cate-
gories (Ray, 2023). Nonetheless, they grapple with
issues like hallucinations and prompt sensitivity,
underperforming in knowledge-intensive tasks like
large-scale information retrieval and fine-grained
text classification (Li et al., 2023).

Given the extremely large number of labels, em-
ploying LLMs for MLTC directly is impractical.
An alternative is leveraging LLMs for data augmen-
tation, as explored in some recent works. AugGPT
(Dai et al., 2023), for instance, continued with the
conventional approach, employing ChatGPT for
paraphrasing texts while preserving the original la-
bels, yielding marginal improvements. Van Nooten
and Daelemans (2023) took a more straightforward
route. They provided ChatGPT with nine distinct

Figure 2: Tag frequency distribution post data augmen-
tation. Compared to traditional data augmentation meth-
ods (EDA, BT, and CA), TDCA demonstrates more
effective mitigation of the long-tail effect.

labels along with the corresponding examples to
generate additional text-labels pairs for tweet clas-
sification.

1.3 Create! Don’t Repeat

The untapped potential of LLMs opens new av-
enues for conditional data generation to liberate
us from the limitations of simply repeating ex-
isting data points, enabling the synthesis of en-
tirely new ones. Hence, we introduce a new multi-
label data augmentation paradigm, Label Creative
Generation (LCG), and within LCG, we propose
Tail-Driven Conditional Augmentation (TDCA).
TDCA comprises (1) a Metropolis-Hastings algo-
rithm based tail-driven label sampling for crafting
more balanced label combinations with considera-
tion of label correlations; and (2) a contrastive label-
conditioned generation approach, which fine-tunes
LLMs to generate texts that not only accurately re-
flect each label in the sampled label combinations
but also emulate the style of the original dataset.

TDCA enables the transference of extensive cor-
relations from head labels to tail labels through
LLM. Our experimental results demonstrate a sub-
stantial alleviation of the long-tail effect, evidenced
by a 100.21% average enhancement in PSP@1
across Eurlex-4K, MeSH-12K, and Wiki10-30K
datasets. Remarkably, with increasing expansion
ratios, we observe an ascending trend in PSP@k,
devoid of the detrimental noise impact commonly
associated with traditional data augmentation meth-
ods, a finding corroborated by t-SNE visualizations
in Figure 5. Ablation studies affirm the efficacy
and validity of TCDA.

Our contributions are threefold:
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1. We introduce a new paradigm in multi-label
data augmentation, Label Creative Generation.
This approach, to the best of our knowledge,
is pioneering in the field as it does not rely
on pre-existing label combinations but instead
creates new ones.

2. Within the framework of LCG, we propose a
novel method named Tail-Driven Conditional
Augmentation. TDCA enables the generation
of balanced label combinations through the
construction of a dual-weighted label graph
and employs tail-driven label sampling based
on the Metropolis-Hastings algorithm. More-
over, it utilizes contrastive label-conditioned
generation to produce augmented texts that
are both representative of the assigned labels
and coherent with the original dataset.

3. Our experiments conducted across three
datasets show that TDCA significantly re-
duced the long-tail effect in MLTC. The re-
sults show notable improvements in PSP@1,
P@10, and N@10, with increases of
100.21%, 16.58%, and 11.65%, respectively.

2 Tail-Driven Conditional Augmentation

Multi-label Text Classification (MLTC) aims to as-
sign a subset of labels Y ⊆ L to each instance
x, where L = {l1, l2, ..., lN} represents the entire
possible label space. This task can be formalized
as learning a mapping function f(x) → 2L, pre-
dicting the power set of L. The approach of TDCA
is straightforward: It commences with tail-driven
label sampling to create label combinations and
proceeds to contrastive label-conditioned genera-
tion, synthesizing text that aligns with these labels.

2.1 Tail-Driven Label Sampling

In MLTC, two primary characteristics emerge: (1)
Each instance is associated with multiple labels,
which exhibit significant correlations; (2) As de-
picted in Table 2, multi-label datasets encounter a
pronounced long-tail effect, with tail labels dom-
inating the label space yet being represented in
only a small fraction of training instances. To
address this, a balanced and correlation-aware la-
bel sampling approach is necessary. Consequently,
we present Tail-Driven Label Sampling, which in-
corporates the Dual-Weighted Label Graph and
Metropolis-Hastings sampling.

Figure 3: Tail-driven label sampling. Vertex size shows
label frequency in the dataset, while edge thickness and
color depth indicate label co-occurrence frequency.

2.1.1 Dual-Weighted Label Graph
The Dual-Weighted Label Graph (DWLG) is for-
mally defined as G = (V,E,Wv,We). It com-
prises vertices V , each signifying a distinct label,
and edges E, linking pairs of vertices based on
their co-occurrence in the dataset. Vertex weights
are consolidated in Wv = {wv(i) | i ∈ V }, with
wv(i) representing the occurrence frequency of la-
bel i. The edge weights, denoted as we(i, j) in We,
capture the co-occurrence strength between labels
i and j. This dual-weighted architecture yields an
integrated perspective of both individual label prop-
erties and their interconnections, fundamental for
advanced label sampling and data exploration1.

2.1.2 Metropolis-Hastings Label Sampling
Employing the principles of Markov chain theory,
Metropolis-Hastings (M-H) sampling (Metropolis
et al., 1953; Hastings, 1970) can adeptly adjust to
the target distribution, which is perfectly in tune
with our aim to achieve a more balanced sampling
strategy in long-tail distributions. We initiate M-H
sampling of the DWLG by starting from a tail label,
then iteratively transitions to other labels, directed
by both the transition kernel and acceptance rate.
This procedure is maintained until an adequate
count of labels is sampled or a pre-determined step
limit is reached.

Firstly, the transition kernel q(i→ j) calculates
the likelihood of moving from the current label i

1Our DWLG diverges from the traditional Label Correla-
tion Graph concept introduced by Mittal et al. (2021), depart-
ing from random walk-based graph construction and incorpo-
rating dual weights for a clearer depiction of label dynamics.
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Algorithm 1 Tail-Driven Label Sampling
Input:

G: Dual-Weighted Label Graph
start: Starting Label
steps: Number of M-H Steps
T : Temperature Parameter
maxLabels: Max Labels to Collect

Output:
sampled: Sampled Labels Set

1: sampled← {start}
2: current← start
3: for i← 1 to steps do
4: N ← GetNeighbors(current, G)
5: next← SampleNext(N )
6: accept← Acceptance(current, next, T )
7: if accept then
8: current← next
9: sampled← sampled ∪ {next}

10: end if
11: if |sampled| ≥ maxLabels then
12: break
13: end if
14: end for
15: return sampled

to an alternative label j within the DWLG during
sampling. Considering the inter-label correlations,
we define q(i→ j)in the following manner:

q(i→ j) =
ewe(i,j)

∑
k∈neighbors(i) e

we(i,k)
, (1)

where we(i, j) denotes the edge weight between
labels i and j in the DWLG.

Then, drawing upon the principles of informa-
tion entropy (Shannon, 1948), the target distribu-
tion p(i) is defined to encapsulate the significance
and scarcity of label i:

p(i) =
es(i)/T∑
k e

s(k)/T
. (2)

Here, s(i) = − log(wv(i)) is the importance
score of label i, and T is a temperature parameter
that moderates the distribution’s smoothness.

Finally, the acceptance rate α(i→ j) evaluates
whether to accept the transition from label i to label
j, thereby steering the sampling outcomes towards
the target distribution:

α(i→ j) = min

(
1,

p(j) · q(j → i)

p(i) · q(i→ j)

)
. (3)

2.2 Contrastive Label-conditioned Generation

Conditional generation, recognized for its capa-
bility to produce texts that are both diverse and
controlled, has improved data augmentation in bi-
nary and multi-class scenarios. However, previ-
ous studies have largely concentrated on the label-
conditioned duplication of existing data points. The
true potential of conditional generation extends far
beyond this practice.

Integrating LLMs into conditional generation in-
troduces several challenges. When dealing with a
sampled labels set: (1) An excess of labels leads
to extended input sequences, complicating LLMs’
ability to reflect each label in the generated text,
often causing omissions; (2) LLMs’ sensitivity to
prompt selection results in erratic text generation
quality; (3) Existing LLMs, enhanced with RLHF,
tend to generate superfluous explanatory content,
which can be counterproductive for data augmenta-
tion; (4) Texts generated by LLMs exhibit stylistic
discrepancies with the original dataset.

We fine-tune LLM on the original dataset to mit-
igate these issues. Inspired by Song et al. (2023)
and Rafailov et al. (2023), we devised two targeted
loss functions for multi-label classification dataset
augmentation: Label Match Loss (LLM), ensur-
ing generated texts align with each input label, and
Style Consistency Loss (LSC), which aids in pro-
ducing texts that are coherent, controllable, and in
stylistic harmony with the original dataset.

2.2.1 Style Consistency Loss

Initially, a subset {X1, Y 1; . . . ;Xn, Y n} is ran-
domly extracted from the training set, wherein
X = {x1, . . . , x|X|} denotes a text, comprising
a series of tokens x, and Y = {y1, . . . , y|Y |} rep-
resents a set of multiple labels associated with X .
Regarding Y , we concat it with a prompt to create
a composite text c(Y ), such as “Generate text for
the labels [y1, . . . , y|Y i|]” to serve as an input for
the LLM. To ensure that the text Xaug produced
by the LLM aligns with X , the Style Consistency
Loss is as follows:

LSC = −
∑

t

logPϕ(xt|c(Y ), x1,··· ,t−1). (4)

Here, ϕ signifies the parameters of the LLM.
Given the input c(Y ) and the prior tokens x1,··· ,t−1,
our goal is to fine-tune the model with greater prob-
ability to predict the next token xt.
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Figure 4: Fine-tuning LLM in Contrastive Label-conditioned Generation. LLM ensures alignment of generated
texts with input labels. LSC supports the production of similar texts with the original dataset.

2.2.2 Label Match Loss
To effectively align the augmented input Xaug

with the corresponding label combinations Y ,
we not only employ LSC to illustrate ideal gen-
eration but also aim to guide the LLM in dis-
tinguishing between good and bad ones. In
the randomly selected subset of the training set
{X1, Y 1;X2, Y 2; . . . ;Xn, Y n}, where each Y i

is unique, the Jaccard similarity (Jaccard, 1912) is
utilized to evaluate and rank the degrees of sim-
ilarity, ranging from Y 1 and Y 2, to Y 1 and Y n.
For labels Y 1, its associated text X1 is considered
a positive example, while texts ranging from X2

to Xn are deemed negative examples, exhibiting
progressively higher degrees of dissimilarity.

We generalize the InfoNCE loss (van den Oord
et al., 2018) using the Plackett-Luce model (Plack-
ett, 1975; Luce, 1959), deriving the Label Match
Loss as follows:

LLM = −
n−1∑

i=1

log
exp

(
rϕ(X

i)

T i
i

)

∑n
j=i exp

(
rϕ(Xj)

T j
i

) , (5)

where ϕ denotes the parameters of the LLM, T
represents the temperature coefficient, and rϕ(X

i)
indicates the likelihood of the LLM generating Xi.
For the set {X1, Y 1;X2, Y 2; . . . ;Xn, Y n}, we
initially compare X1 with each of X2, . . . , Xn,
followed by a comparison of X2 with X3, . . . , Xn,

aiming to align the LLM-generated Xaug with the
label Y . Specifically, rϕ(X) is defined as:

rϕ(X) =
1

|X|

|X|∑

t=1

logPϕ(xt|c(Y 1), x1,··· ,t−1), (6)

where X encompassing tokens x1, · · · , x|X|, with
c(Y 1) representing the label of the positive sample
integrated with the prompt.

Each comparison involves modulation of sup-
pression for negative samples at varying degrees
through temperature coefficients T :

T j>i
i =

1

s(Y 1, Y i)− s(Y 1, Y j)
, (7)

T i
i = min

j>i
T j
i . (8)

Here, s(Y i, Y j) denotes the Jaccard similarity
between the label sets Y i and Y j .

2.2.3 Optimization Objective
Combining the label match loss and style consis-
tency loss, the final loss function is:

L = LLM + λLSC . (9)

The hyperparameter λ balances the importance
of label matching and style consistency. Optimiz-
ing L ensures that the generated text is not only
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Dataset NTrain NTest WAvg LAvg LTotal L>100 L<10

Eurlex-4K 15,449 3,865 1,237.88 5.32 3,956 233 2,396
MeSH-12K 9,996 3,500 178.47 12.27 12,784 211 9,951
Wiki10-30K 14,145 6,616 2,086.01 18.37 29,973 461 25,178

Table 2: Summary of datasets in Eurlex-4K, MeSH-12K, and Wiki10-30K. NTrain: Number of training instances,
NTest: Number of test instances, WAvg: Average words per instance, LAvg: Average labels per instance, LTotal:
Total number of labels, L>100: Labels with more than 100 instances, L<10: Labels with less than 10 instances.

relevant to the sampled labels Y but also stylisti-
cally coherent with the actual text X , striking a
balance between accuracy and authenticity.

3 Experiments

3.1 Datasets

We employ three benchmark datasets: Eurlex-
4K, MeSH-12K, and Wiki10-30K (“K” denotes
the label count within each dataset). Eurlex-4K
(Loza Mencía and Fürnkranz, 2008) comprises a
corpus of European Union legal documents. We
utilize its raw text, as provided in Ye et al. (2020),
without applying stemming or stop-word removal.
MeSH-12K, a subset culled from the BioASQ
datasets2(Tsatsaronis et al., 2015), is composed of
article titles and abstracts from PubMed, annotated
with Medical Subject Headings (MeSH) as their la-
bels. Wiki10-30K, originating from Wikipedia, is
a refined iteration of Wiki10-31K3 (Zubiaga, 2012).
While prior studies merely utilized the label IDs
in Wiki10-31K for classification, we undertook a
meticulous review and cleansing of this dataset.
This entailed the exclusion of content-lacking in-
stances and labels constituted solely of punctua-
tions (e.g., “.”, “!”, “!!!”) or NLTK-listed stopwords
(e.g., “and”, “or”). More statistical information can
be found in Table 2.

3.2 Evaluation Metrics

To assess the performance of each method, we use
the following evaluation metrics: P@k, PSP@k,
and N@k.

Precision at k (P@k) measures the precision
of the top k predicted labels in matching the true
labels. For an instance with its top-k predicted label
set Ŷ@k and actual label set Y , P@k is defined as:

P@k =
|Ŷ@k ∩ Y |

k
, (10)

2http://participants-area.bioasq.org
3https://www.csie.ntu.edu.tw/~cjlin/

libsvmtools/datasets/multilabel.html

where |Ŷk∩Y | is the number of correct predictions
in the top k labels. On the Wiki10-30K, if a model
accurately predicts the head labels (L>100 = 461)
and ignores the rest, it would achieve a P@1 of
90.8%. This high precision, however, overlooks
the informative tail labels.

Propensity Scored Precision at k (PSP@k)
mitigates this limitation by modifying precision to
give higher weights to less frequent labels. Given
the top-k predicted label set Ŷk and the actual label
set Y , PSP@k is defined as:

PSP@k =

∑
y∈Ŷ@k∩Y

1
πy

k
. (11)

Here, πy represents the propensity score of label
y, quantifying the likelihood of encountering label
y in the training dataset.

Normalized Discounted Cumulative Gain at k
(N@k) evaluates the ranking quality of predicted
labels, considering both the relevance of the labels
and their ranking positions. The Discounted Cumu-
lative Gain (DCG) for a predicted label ŷi at rank i
is calculated as:

DCG@k =

k∑

i=1

I(ŷi ∈ Y )

log2(i+ 1)
, (12)

where I(·) is an indicator function. N@k is the
ratio of DCG@k to iDCG@k:

iDCG@k =

min(k,|Y |)∑

i=1

1

log2(i+ 1)
. (13)

N@k =
DCG@k

iDCG@k
. (14)

3.3 Experiment Settings

We compare TDCA with three data augmenta-
tion baselines: EDA, BT, and CA. EDA (Wei
and Zou, 2019) involves synonym replacement
and random insertion/swap/deletion. In BT, we
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Dataset Methods E/R PSP@1 PSP@3 PSP@5 P@1 P@3 P@5 P@10 N@3 N@5 N@10

EurLex

Raw 1 42.65 50.46 53.89 85.56 73.11 60.91 38.35 76.48 70.46 73.82
EDA 1+100% 42.33 50.50 54.53 85.54 72.77 60.84 38.33 76.18 70.33 73.78
BT 1+25% 42.77 50.73 54.42 86.03 73.42 61.15 38.61 76.84 70.79 74.34
CA 1+150% 43.53 52.30 55.89 86.70 74.04 61.66 38.93 77.48 71.33 74.86
TDCA 1+400% 49.67 57.87 61.19 88.15 76.49 64.04 40.68 79.75 73.79 77.70

MeSH

Raw 1 18.04 21.56 23.32 90.46 74.64 63.61 46.04 78.32 69.84 58.44
EDA 1+200% 18.13 21.93 24.04 89.31 74.65 63.66 45.90 78.06 69.70 58.20
BT 1+200% 18.16 21.66 23.64 89.20 73.89 62.70 45.18 77.45 68.91 57.49
CA 1+500% 19.33 24.14 26.65 90.03 77.85 66.99 49.07 80.74 72.63 61.34
TDCA 1+1000% 35.84 42.08 46.45 90.20 82.67 75.61 59.92 84.42 79.23 70.57

Wiki

Raw 1 16.22 16.66 17.33 87.89 77.42 68.06 51.79 79.84 72.77 60.47
EDA 1+50% 16.67 17.30 18.13 87.24 76.43 67.00 50.82 78.92 71.78 59.52
BT 1+50% 16.66 17.50 18.28 87.32 76.98 67.59 51.42 79.37 72.29 60.07
CA 1+200% 17.83 19.15 20.34 87.09 76.48 67.52 51.20 78.97 72.16 59.89
TDCA 1+3000% 46.31 39.02 36.92 87.12 78.27 72.03 58.79 80.31 75.48 65.88

Table 3: Performance comparison of DA techniques (EDA, BT, CA, TDCA) against raw dataset on Wiki10-30K,
EurLex-4K, and MeSH-12K. Metrics for each method are reported at their optimal E/R (Expansion Ratio).

(a) Back-Translation (b) EDA (c) TDCA

Figure 5: A t-SNE (van der Maaten and Hinton, 2008) visualization of the MeSH-12K dataset comparing various
text data augmentation methods: (a) BT, (b) EDA, and (c) our proposed TDCA, where represents original data,
and represents augmented data.

select French, Chinese, Russian, Italian, and Span-
ish as intermediate languages for English para-
phrasing via nllb-200-distilled model (Costa-
jussà et al., 2022). CA and TDCA utilize LLaMa-
based LLM, Qwen-7B-Chat (Bai et al., 2023), for
label-conditioned text generation. For MLTC,
we utilized LightXML (Jiang et al., 2021) with
bert-base-uncased (Devlin et al., 2019). The
EurLex-4K setup included a 1e-4 learning rate, 15
epochs, batch size of 16, and max token length
of 512, with SWA (Izmailov et al., 2018) applied
post 10 epochs (step size 200). For Wiki10-30K,
we extended training to 30 epochs (SWA step size
300), maintaining other parameters. MeSH-12K
followed the Wiki10-30K settings, with a batch
size of 8 and a max token length of 256. TDCA
utilized Metropolis-Hastings sampling from labels
with <100 instances, with a 1000-step limit and
temperature of 10. Fine-tuning involved a λ value
of 0.2 for loss balance, 2 epochs, a 512 sequence
length, and a 5e-6 learning rate. All experiments
were conducted on 8 NVIDIA A100 GPUs.

4 Results

4.1 Performance Comparison

Performance assessments were carried out on the
EurLex-4K, MeSH-12K, and Wiki10-30K on vari-
ous expansion ratios to evaluate the effectiveness
of our proposed TDCA compared to EDA, BT,
and CA. As Table 3 indicates, all methods miti-
gated the long-tail effect in MLTC datasets to vary-
ing degrees: EDA and BT marginally enhanced
PSP@k(k = 1, 3, 5) by 1.89% and 1.95%, respec-
tively. CA’s diverse text generation led to a 9.45%
increase, limited by unchanged labels. TDCA, inte-
grating tail-driven sampling, impressively reduced
the long-tail effect with an 85.61% improvement.

Moreover, data augmentation’s effectiveness cor-
relates with the number of dataset labels. TDCA
enhanced PSP@1 by 16.46% on EurLex-4K,
98.78% on MeSH-12K, and 185.51% on Wiki10-
30K. This result aligns with the expectation that
more labels intensify the long-tail effect, enhancing
the utility of data augmentation.
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EDA BT CA w/o F-T CA (TDCA w/o M-H) TDCA w/o F-T TDCA
PSP P N PSP P N PSP P N PSP P N PSP P N PSP P N

1+25% 53.94 60.58 70.04 54.42 61.15 70.79 54.85 61.53 71.08 54.42 61.17 70.74 54.06 61.05 70.77 55.61 61.73 71.31
1+50% 54.25 60.94 70.46 53.57 60.26 69.95 55.21 61.61 71.18 54.51 61.07 70.71 54.28 61.16 71.03 56.57 62.03 71.77
1+100% 54.53 60.84 70.33 53.97 60.63 70.12 55.15 61.31 70.81 55.39 61.50 71.21 55.73 61.92 71.82 58.97 63.37 73.17
1+200% 53.60 59.91 69.14 53.85 60.42 69.82 56.04 61.76 71.39 56.36 62.01 71.55 57.21 62.76 72.59 60.31 63.72 73.36

EurLex

1+500% 54.47 60.40 69.46 53.96 60.51 69.90 56.42 61.92 71.52 56.43 62.00 71.50 60.77 63.75 73.45 61.21 64.08 73.63
1+25% 23.34 63.12 69.37 23.55 63.66 69.67 23.95 63.94 70.02 24.27 64.25 70.36 24.38 64.20 70.15 24.70 64.65 70.55
1+50% 23.64 63.31 69.44 23.67 63.41 69.61 24.64 64.65 70.63 24.68 65.07 70.95 24.98 64.78 70.69 25.80 65.65 71.44
1+100% 23.90 63.27 69.38 23.60 63.07 69.28 25.30 65.09 71.04 25.31 65.61 71.34 26.65 66.15 71.78 27.61 66.93 72.28
1+200% 24.04 63.66 69.70 23.64 62.70 68.91 25.96 65.69 71.52 26.16 66.52 72.14 29.24 68.19 73.49 31.60 69.86 74.71

MeSH

1+500% 24.50 64.31 69.88 23.30 61.81 67.93 26.36 66.09 71.70 26.65 66.99 72.63 36.22 72.21 76.58 38.79 73.76 78.00
1+25% 17.89 67.73 72.42 17.95 68.03 72.61 18.16 68.33 72.93 18.14 68.40 73.01 17.73 68.01 72.75 17.85 68.54 73.17
1+50% 18.13 67.00 71.78 18.28 67.59 72.29 18.73 68.24 72.80 18.80 68.27 72.82 18.04 68.12 72.77 18.39 68.69 73.31
1+100% 18.23 65.92 70.58 18.35 66.43 71.26 19.50 67.74 72.34 19.63 67.82 72.34 19.03 68.86 73.46 19.17 69.07 73.66
1+200% 18.17 65.00 69.68 18.03 64.74 69.54 20.03 66.89 71.57 20.34 67.52 72.16 20.97 69.51 73.80 21.38 70.24 74.49

Wiki

1+500% 17.83 63.99 68.64 17.51 63.92 68.53 19.85 65.07 69.73 20.64 66.84 71.39 25.75 70.79 74.73 26.35 70.98 74.91

Table 4: Performance comparison of EDA, BT, TDCA, and three TDCA variants: CA (TDCA w/o M-H), TDCA
w/o F-T, and CA w/o F-T across various expansion ratios in terms of PSP@5, P@5, and N@5. In the table, deeper
shades of red indicate higher values, while deeper shades of green denote lower values.

Regarding P@K and N@K(k = 1, 3, 5, 10),
label-conditioned augmentation methods, CA and
TDCA, consistently improved performance, with
CA increasing P@K by 1.42% and N@K by
1.09% on average, and TDCA by 8.16% and 5.95%.
EDA and BT, however, had a marginal negative im-
pact: EDA decreased P@k and N@K by 0.63%
and 0.64%, while BT showed similar declines by
0.52% and 0.49%. This is further supported by
t-SNE visualizations (Figure 5), where TDCA’s
augmented data demonstrate better integration with
original data, unlike EDA and BT.

TDCA not only effectively counters the long-tail
effect in MLTC datasets but also bolsters prediction
precision and ranking quality. The improvements
are progressive with larger values of k in all metrics,
which indicates that label-conditioned augmenta-
tion is more adaptable to MLTC’s extremely large
label space. Furthermore, the quantitative experi-
ments (Table 4) reveal that TDCA outperforms tra-
ditional methods at equivalent ratios. While EDA
and BT exhibit increasingly negative effects with
more augmented data, TDCA’s benefits progres-
sively amplify. For comprehensive details, refer to
training logs in Appendix B.

The case study in Appendix A uncovers an in-
triguing aspect: the original dataset often exhibits
an implicit link between labels and text, signifi-
cantly challenging the learning process of models.
The LLM-based CA and TDCA render these labels
more explicit in the generated texts, facilitating an
easier learning of correspondences.

4.2 Ablation Analysis

Table 4 presents the results of TDCA and its three
variant models under different expansion ratios.

These variants are: CA (TDCA without M-H
based tail-driven sampling, i.e., TDCA w/o M-H),
TDCA w/o F-T (TDCA without contrastive label-
conditioned fine-tuning), and CA w/o F-T (TDCA
w/o M-H & F-T ).

The varying shades of red (high) and green (low)
in the table illustrate that TDCA and TDCA w/o
F-T significantly outperform both CA (TDCA w/o
M-H) and CA w/o F-T (TDCA w/o F-T & M-H)
across all metrics. This highlights the pivotal role
of M-H based tail-driven sampling in TDCA, val-
idating our proposed Label Creative Generation.
Furthermore, the comparison between TDCA and
TDCA w/o F-T, as well as between CA and CA
w/o F-T, confirms the effectiveness of contrastive
fine-tuning. Overall, these results demonstrate that
each component of the TDCA structure is effective
and contributes to its overall performance.

5 Conclusion

In this paper, we introduce a new multi-label
data augmentation paradigm named Label Creative
Generation (LCG). Under LCG, we propose Tail-
Driven Conditional Augmentation (TDCA). TDCA
facilitates the creation of balanced label combina-
tions by dual-weighted label graph and tail-driven
label sampling. Furthermore, TDCA employs a
contrastive label-conditioned generation to produce
augmented texts that match each label and main-
tain consistency with the original dataset. Empir-
ical evaluations on three datasets with varying la-
bel counts demonstrate the effectiveness of TDCA.
Our approach significantly surpasses existing data
augmentation methods, effectively mitigates the
long-tail effect, and enhances model prediction per-
formance in MLTC.
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Limitations

• This method is primarily effective for textual
labels with semantic content. It is less suited
for labels represented by numerical IDs or
non-descriptive identifiers.

• Compared to EDA and other non-model-based
data augmentation techniques, our approach
is more resource-intensive. However, its re-
source consumption is comparable to seq2seq
model-based methods like back-translation.

• Due to computational resource constraints,
we were unable to fully explore the upper
limits of TDCA’s performance improvements.
On the EurLex dataset, we observed opti-
mal expansion ratios between 400% to 500%.
Beyond this range, performance tended to
plateau or slightly decrease. In contrast, on the
MeSH-12K and Wiki10-30K datasets, with
more extensive labels, we experimented with
expansion ratios up to 1000% and 3000%, re-
spectively, without reaching an apparent per-
formance ceiling.

• Our exploration did not extend to closed-
source LLMs such as ChatGPT, Bard, or
Claude, limited by API access. Nonetheless,
considering the promising results achieved
with the un-tuned Qwen-7B model (i.e.,
TDCA w/o F-T in ablation study), we believe
that employing closed-source LLMs via API
calls can yield comparable or superior results.

• We observed limitations in fine-tuning (FT),
potentially due to the simplicity of our data
synthesis task (generating text from labels),
where using prompts alone could teach a LLM
this task. However, we believe that the LCG
extends beyond this. For instance, in recom-
mendation systems, LCG could be used on the
MovieLens dataset to generate diverse user in-
formation for movie recommendations, such
as address, age, postal code, etc. Nevertheless,
relying solely on prompts for an LLM might
fall short, whereas FT ensures this capability.
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A Case Study

MeSH terms (labels) 
Community Health Planning; Consultants; Data Collection; Delivery of Health Care, Integrated; Evaluation Studies as Topic; 

Health Care Surveys; Health Plan Implementation; Health Services Needs and Demand; Iowa; Public Health Administration; 

State Health Plans; United States

ORIGINAL
Determinants of successful community health system planning. Needs assessment and other community health planning projects are 

being conducted in many parts of the country. Whether these projects are successful, in that they lead to implementation of 

recommendations, has not been systematically assessed. This study describes how local public health officials in Iowa view the 

planning projects that were conducted in their communities. Planning projects occurred in over half of the counties in the state. Most 

were led by local public health agencies. Hospitals were participants in three-fourths of the projects. Successful implementation was 

associated with the number of planning techniques used and the breadth of representation on the steering committee. The most 

common recommendations related to the expansion of prevention/promotion services and community health nursing. Public health 

nursing had been integrated with local hospitals in one-third of the counties, with no reductions in performance.

EDA
determinants of the community health system other needs assessment and planning community health planning projects are being 

conducted in many parts of the country whether health the are successful assessed that they lead to implementation of 

recommendations has not been on in related study describes how local public health officials in iowa view agencies planning 

projects that were conducted in their systematically planning projects services in over half of the counties in the state most 

successful led by local public techniques this hospitals were participants in three fourths of the projects successful implementation 

was associated with third number of planning these used and the breadth of representation communities the steering committee 

projects most common recommendations the to the expansion of prevention promotion occurred and community health nursing 

public health nursing had been integrated with local hospitals in one the of were counties with no reductions in performance

BT
Determinants of successful community health system planning. Needs assessment and other community health planning projects are 

being carried out in many parts of the country. The success of these projects, because they lead to the implementation of 

recommendations, has not been systematically evaluated. This study describes how local public health officials in Iowa view 

planning projects in their communities. More than half of the counties in the state have planned projects. Most of them are led by 

local public health institutions. Hospitals are involved in three-quarters of the projects. The successful implementation is related to 

the number of planning technologies used and the representativeness of the steering committee. The most common suggestions 

involve expanding prevention/publicity services and community health care. In one third of counties, public health care has been 

integrated with local hospitals, but the performance has not declined.

CA
Evaluation of Community Health Planning Consultants in Iowa: A Survey of Data Collection and Delivery of Integrated Health 

Care Services. Community health planning consultants play a critical role in the implementation of state health plans and addressing 

the health services needs of communities. This study aimed to evaluate the effectiveness of community health planning consultants 

in Iowa in facilitating the delivery of integrated health care services. A survey was conducted among community health planning 

consultants to collect data on their roles, responsibilities, and experiences in implementing state health plans. The survey also 

assessed the challenges faced by consultants in collecting and analyzing data, delivering integrated health care services, and 

evaluating the impact of their interventions. The results showed that community health planning consultants in Iowa are effective in 

facilitating the delivery of integrated health care services, but face challenges in data collection and evaluation. The study 

recommends the development of standardized data collection tools and training programs for consultants to enhance their skills in 

data collection and analysis. Additionally, the study highlights the need for ongoing evaluation of the effectiveness of community 

health planning consultants in addressing the health services needs of communities and implementing state health plans.

Figure 6: Case study on the MeSH-12K dataset evaluating three traditional data augmentation methods: EDA, BT,
and CA. Head labels (over 100 instances in training) are marked in red; tail labels (under 10 instances) in blue. The
study finds that paraphrasing methods, EDA and BT, although effective in diversifying data, inadvertently add noise.
CA-generated text is smooth and aligns with all MeSH terms (labels). Notably, the original dataset’s text-label
correspondence is often implicit, posing challenges in classifier training. For instance, Consultants are indirectly
implicated through “local public health agencies” and “hospitals,” and Data Collection is inferred from the context
of health planning. The term United States is indirectly indicated by mentioning “Iowa.” These nuances complicate
classification, which is not simplified by mere paraphrasing. In contrast, CA’s label-conditioned generation directly
incorporates labels into the text, significantly aiding the classification of rare tail labels.
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MeSH terms (labels) 
Fanconi Anemia; Stress, Mechanical; Surface Properties; Syndrome; Chromosomes, Human, Pair 13; Founder Effect; 

Mites; Thromboxane-A Synthase; Benzoquinones; Female; Thromboxane B2; Leukotrienes

TDCA
Exploring the Role of Mechanical Stress and Surface Properties in Fanconi Anemia Syndrome: Insights from the Founder Effect, 

Chromosomes, and Mites. Fanconi Anemia (FA) is a rare genetic disorder characterized by chromosomal instability, bone marrow 

failure, and an increased risk of cancer. Previous studies have highlighted the involvement of oxidative stress in FA pathogenesis, 

but the role of mechanical stress and surface properties remains unclear. This review aims to examine the impact of mechanical 

stress and surface properties on FA, particularly in the context of the founder effect, chromosomes, and mites. We discuss the 

potential mechanisms through which these factors may contribute to FA, such as the activation of thromboxane-A synthase and the 

production of benzoquinones and leukotrienes. Additionally, we explore the role of gender in FA and the potential differential 

effects of these factors in female patients. By synthesizing current knowledge with insights from various research fields, this review 

sheds light on the complex interplay between mechanical stress, surface properties, and FA pathogenesis, providing a foundation for 

future investigations in this area.

MeSH terms (labels) 
Electronics; Blood Urea Nitrogen; Income; Oregon; Personal Autonomy; Ethnic Groups; Hypercholesterolemia; Hospital 

Administration; Computers; Health Knowledge, Attitudes, Practice; Research Subjects; Cardiac Care Facilities

TDCA
The Association between Income and Health Outcomes among Various Ethnic Groups in Oregon: A Study of Personal 

Autonomy, Hypercholesterolemia, and Hospital Administration Using Electronics and Computers: This study aimed to 

investigate the relationship between income and various health outcomes among different ethnic groups residing in Oregon. 

The study utilized electronic data and computer technology to analyze data from multiple sources, including hospital 

administration records, research subjects' health knowledge, attitudes and practices, and cardiac care facilities. Specifically, 

the study examined the impact of income on personal autonomy, blood urea nitrogen levels, and the prevalence of 

hypercholesterolemia within different ethnic groups. Results showed a significant association between income and personal 

autonomy, with lower income groups experiencing higher levels of restriction in decision-making about their health. 

Additionally, income was found to be positively correlated with blood urea nitrogen levels and the prevalence of 

hypercholesterolemia, suggesting that higher income may play a protective role against these health concerns. The 

implications of these findings for hospital administrations and future research on health disparities among various ethnic 

groups are discussed.

MeSH terms (labels) 
Polyethylene Glycols; Bacterial Proteins; Point Mutation; Regulon; Antigens, CD4; Transplantation Immunology; 

Calorimetry; Deoxycholic Acid; T-Lymphocytes; Receptors, Lymphocyte Homing; Surface Properties; Mice, Inbred CBA

TDCA
Investigating the Impact of Polyethylene Glycols on Bacterial Proteins and Point Mutation in the Regulon of CD4 Antigens in 

Transplantation Immunology using Calorimetry and Deoxycholic Acid in CBA Mice. This study aims to explore the effects of 

polyethylene glycols (PEGs) on bacterial proteins and point mutation in the regulon of CD4 antigens in transplantation 

immunology. Through the use of calorimetry and deoxycholic acid, we will investigate how PEGs alter the surface properties 

of T-lymphocytes and receptors involved in lymphocyte homing. The study will be conducted in CBA mice, a commonly 

used model for transplantation research. Results from this study will provide valuable insights into the role of PEGs in 

modifying the immune response, potentially leading to the development of targeted therapies for transplantation immunology.

Figure 7: Illustration of TDCA performance on the MeSH-12K dataset. Similar to Figure 6, red indicates head labels
(with over 100 instances in the training set), and blue denotes tail labels (with fewer than 10 instances). But TDCA
exhibits fewer red head labels and a greater number of blue tail labels. Despite the low frequency of occurrence, the
labels are still related due to the construction of the Dual-Weighted Label Graph and Tail-Driven Label Sampling, as
seen in the first example: Fanconi Anemia is linked to Chromosomes, Human, Pair 13 due to mutations causing
this inherited disease. Similarly, Syndrome is a term that includes conditions like Fanconi Anemia. The enzyme
Thromboxane-A Synthase is crucial in producing Thromboxane B2. Furthermore, Leukotrienes, known for their
role in inflammation, can interact with Thromboxane B2 during certain physiological or pathological conditions.
These interrelations facilitate the LLMs’ task of generating coherent texts, and the augmented data is meaningful in
real-world contexts.
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Figure 8: Training logs of TDCA at different expansion ratios for PSP, P, and N metrics on MeSH-12K.
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Figure 9: Training logs of CA at different expansion ratios for PSP, P, and N metrics on MeSH-12K.
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Figure 10: Training logs of EDA at different expansion ratios for PSP, P, and N metrics on MeSH-12K.
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Figure 11: Training logs of BT at different expansion ratios for PSP, P, and N metrics on MeSH-12K.
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