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Abstract

The majority of automatic metrics for evaluat-
ing NLG systems are reference-based. How-
ever, the challenge of collecting human anno-
tation results in a lack of reliable references in
numerous application scenarios. Despite recent
advancements in reference-free metrics, it has
not been well understood when and where they
can be used as an alternative to reference-based
metrics. In this study, by employing diverse
analytical approaches, we comprehensively as-
sess the performance of both metrics across a
wide range of NLG tasks, encompassing eight
datasets and eight evaluation models. Based
on solid experiments, the results show that
reference-free metrics exhibit a higher corre-
lation with human judgment and greater sensi-
tivity to deficiencies in language quality. How-
ever, their effectiveness varies across tasks and
is influenced by the quality of candidate texts.
Therefore, it’s important to assess the perfor-
mance of reference-free metrics before apply-
ing them to a new task, especially when inputs
are in uncommon form or when the answer
space is highly variable. Our study can provide
insight into the appropriate application of auto-
matic metrics and the impact of metric choice
on evaluation performance.!

1 Introduction

Automatic evaluation metrics for generated texts
play a crucial role in the development of Natu-
ral Language Generation(NLG) techniques. Most
commonly used metrics are reference-based (Pa-
pineni et al., 2002; Banerjee and Lavie, 2005;
Zhang et al., 2019; Zhao et al., 2019). Such met-
rics provide evaluation results by measuring the
similarity between text and human-written refer-
ences (Gehrmann et al., 2023), which are widely
applied in various evaluation tasks.
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Figure 1: Evaluation mechanism of automatic evalu-
ation metrics. Reference-based metrics measure the
similarity between hyp and re fs, while reference-free
metrics instead measure how likely the hyp is in the
derived space D.

However, in the era of Large Language Models
(LLMs), we are witnessing the emergence of LLMs
with varying parameters and domain-specific varia-
tions. Although their performance can be tested us-
ing standard benchmarks, due to the lack of ground
truth reference texts, evaluating the generated texts
of language models in specific user-oriented scenar-
ios with reference-based metrics is challenging. As
a result, the assessment of coherence, consistency,
fluency, and other criteria of the language model’s
output demands substantial time and cognitive re-
sources.

In recent years, many reference-free metrics
have been proposed as a potential solution to the
aforementioned challenges (Yuan et al., 2021; Fu
etal., 2023; Zhong et al., 2022). The evaluation pro-
cedure of reference-free metrics can be viewed as a
generative process, using an underlying generation
model to assess other models (Deutsch et al., 2022),
without any reliance on human annotations. The
evaluation processes of both reference-based and
reference-free metrics are illustrated in Figure 1,
and we will give a formal definition in Section 2.2.

8580

Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pages 8580-8596
June 16-21, 2024 ©2024 Association for Computational Linguistics



Although in some tasks the evaluation results of
reference-free metrics have shown a higher correla-
tion with human assessment (Freitag et al., 2021),
when and where can they be used as a substitute
for reference-based metrics is still not well under-
stood. In order to figure out the answer, in this
study, we mainly focus on the following questions:

* On which tasks and criteria can reference-free
metrics outperform reference-based metrics?

* In case reference is necessary, what is the rea-
son behind such a requirement?

* Considering the advantages and limitations of
each metric, how can we better utilize auto-
matic evaluation techniques?

Specifically, we employ three task-independent
criteria: coherence, consistency, and fluency, to
comprehensively evaluate the differences between
the two types of metrics across various tasks. Three
reference-free and five reference-based metrics are
included, which are tested on eight datasets span-
ning three tasks: summarization, data-to-text, and
dialogue.

Our experiments reveal that, (i) Regarding the
first question, reference-free metrics exhibit a
stronger correlation with human judgment on all
three criteria and almost all tasks, and they are
more sensitive to fluency and coherence deficien-
cies. (ii) As for the second question, the perfor-
mance of reference-free metrics is constrained by
underlying models. The evaluation effectiveness of
reference-free metrics could vary across tasks and
is influenced by the quality of candidate texts. (iii)
Addressing the final question, it is crucial to assess
the performance of reference-free metrics before
applying them to a new task. They are capable of
recognizing texts with poor quality, but may not be
able to evaluate high-quality candidates.

Our contribution includes:

* We thoroughly investigate the performances
of reference-free and reference-based metrics
with numerous experiments, revealing their
inherent advantages and limitations.

* We find out reference-free metrics have better
performance but are limited by application
scenarios, and provide possible explanations,
regarding questions 1 and 2.

* We provide guidance on the proper usage of
automatic metrics to help ensure the integrity
of evaluations, addressing question 3.

2 Preliminary

2.1 Criteria

In this study, we focus on three criteria: coherence,
consistency, and fluency. Below, we present the
definitions applied in this research.

Coherence Coherence, following Dang (2005),
assesses whether models produce a well-structured
and organized body of text based on the given task,
avoiding a mere compilation of related information.

Consistency Consistency, in line with Honovich
et al. (2022), evaluates whether all factual infor-
mation in the output text aligns with the content
provided in the input.

Fluency Fluency, referring to Kann et al. (2018),
measures how naturally a sentence is perceived by
humans. In some cases, fluency is also denoted as
naturalness, grammaticality, or readability.

2.2 Standard Evaluation

As illustrated in Figure 1, the conditional text gen-
eration process takes a source text src as input and
produces a hypothesis text hyp as output, based
on the generation function G. Here, src represents
an instance sampled from the source space S. The
goal of the evaluation metric is to impartially as-
sess the quality of hyp, usually in the form of a
score. When provided with an input text, one ap-
proach to obtaining the standard response is to col-
lect answers from expert human annotators, which
can be regarded as a sample from the ground truth
space G. We denote such human-written ground
truth as a reference, represented as re f. Depend-
ing on whether the presence of ref is required for
the evaluation process, automatic metrics can be
categorized into two types: reference-based and
reference-free.

Reference-based metrics measure the similar-
ity between hyp and one or multiple refs, and a
hyp more similar to ref is considered to be bet-
ter (Gehrmann et al., 2023). We denote the function
used in similarity measurement as Mp(-).

sy = My(ref, hyp). (H

On the contrary, reference-free metrics are inde-
pendent of text re f but usually require src as the
input. Reference-free metrics can be viewed as a
generation model, conducting evaluation based on
an underlying inference procedure (Deutsch et al.,
2022). As a sample from ground truth space is not
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available, for each given src, such metrics instead
build up a derived space D, from the knowledge
stored in the underly models, and measure how
likely the hyp is in the derived space. Depend-
ing on different evaluation scenarios, the derived
space can vary. We denote the metric function for
reference-free metrics as My(-), and the output
score satisfies the following equation:

sy = My(src, hyp). 2)

It is worth noting that, when evaluating a cri-
terion indifferent to contextual information, some
metrics do not require src as the input. Though
srcis optional, it does not conflict with Equation 2.
Another point is, though we describe the working
flow of metrics with equations, metrics are cal-
culations for scoring hyps, instead of one-to-one
mathematical mapping.

2.3 Methods of Meta-evaluation

In this study, we adopt the following methods to
evaluate the effectiveness of automatic metrics.

2.3.1 Correlations with Human

One of the most common methods for automatic
metrics assessment is to measure the correlation
between human judgment and metrics score, as
human judgment is still the gold-standard ap-
proach to text evaluation (Yuan et al., 2021).
Correlation functions used in this work include
Spearman Correlation (Spearman, 1987), Pearson
Correlation (Benesty et al., 2009) and Kendall’s
Tau (Kendall, 1938). All correlation scores are
calculated at the sample level. To be specific, the
sample-level correlation is defined as:

., SN,
[hla h27 ey hN]))
where p is the correlation function, s; is the metric

score of the i-th sample in a certain dataset, and h;
is the corresponding human judgment.

correlation = p([s1, s2, . .

3)

2.3.2 Criterion-level Analysis

A single overall correlation score with human judg-
ment may not comprehensively reflect the effective-
ness of the metric (Nimah et al., 2023). Therefore,
an analysis that specifically focuses on individual
criteria is an important supplementary approach.
Intuitively, a metric capable of assessing a spe-
cific criterion should be able to distinguish sen-
tences of different quality on that certain crite-
rion. We adopt the perturbation detection test

and Kolmogorov-Smirnov (KS) score for criterion-
level analysis.

Perturbation Detection Test Perturbation detec-
tion tests help explore whether a metric can discern
the quality drop of texts. We employ perturbation
techniques outlined in Sai et al. (2021) for criteria
fluency and coherence, in order to measure met-
rics’ ability to discern perturbed sentences from the
original ones.

To be specific, we represent the score of per-
turbed text generated by metric M as s, and the
score of the corresponding original text as s. As
the quality of perturbed sentences is diminished by
manual perturbation, ideally, for a competent met-
ric, it’s expected that s > § is true, We employ the
proportion of text pairs where s > § as a statistical
measure to evaluate metric M ’s ability to detect
perturbations.

Kolmogorov-Smirnov Score Following the anal-
ysis method proposed in (Nimah et al., 2023), we
utilize the Kolmogorov-Smirnov (KS) test as a sta-
tistical index to evaluate metrics’ ability to distin-
guish sentences from different groups. The defini-
tion of KS score is as follows:

K Sy =sup |Fa(x) — Fp(x)| 4

Here, F'4 and F'p correspond to the empirical
cumulative density functions of scores produced
by metric M for sentence groups A and B, where
groups A and B consist of sentences with varying
qualities. K Sj3; = 0 means the distributions of
A and B are identical, indicating that M has poor
performance in separating high-quality and low-
quality texts.

2.3.3 Stability Analysis

An eligible metric should be stable when applied
to evaluate texts generated by different systems. To
investigate if the effectiveness of metrics fluctuates
when they are used on systems of varying qual-
ity, we utilize the meta-correlation index proposed
by Shen et al. (2023).

First, the quality of a system is measured by the
average human score for all candidate sentences
generated by the system, as shown in equation 5:

1
Qi=+ > hiy, &)
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where N represents the number of candidate sen-
tences generated by system ¢, and h; ; is the rele-
vant human judgment.

The performance of metric M on a specific sys-
tem ¢ is assessed by the correlation between the
metric score and human judgment of the system’s
output.

Py = p([si,1,8i2s -+ 8i,N]; ©)
[hi1s iy ey hiN]),

where p is the correlation function, s; ; is the metric
score of the j-th sentence generated by system 3.

Finally, the meta-correlation of metric M is cal-
culated on all k£ system:

M:p([Q1>Q27'"7Qk]7[P1aP2a-"7Pk]) (7)

3 Experiments

In this section, we first evaluate the performance
of metrics on different datasets and criteria. Then,
we conduct perturbation experiments to examine
metrics’ sensitivity concerning sentence defects
and employ the KS score for further criterion-level
analysis. Finally, we use the meta-correlation index
to explore the stability of metric performance in
relation to candidate quality.

3.1 Metrics

3.1.1 Reference-free Metrics

In this study, we select three popular reference-free
metrics for analysis. GPTScore uses conditional
probability to evaluate the quality of given texts (Fu
et al., 2023). We use checkpoint "gpt2-large" (Rad-
ford et al., 2019). BARTScore views the evalua-
tion process as a generation problem, measuring
how likely a target text can be generated based
on the given inputs (Yuan et al., 2021), and we
use the faithfulness-based variant of BARTScore.
UniEval views the evaluation task as a Boolean
Question (Zhong et al., 2022). We adopt the check-
point "summarization" for evaluation. We also take
the index "overall" for assessment on each criterion,
which is denoted as UniEval_all. Apart from flu-
ency evaluation with UniEval, which only requires
hyp, the other evaluation process accepts src and
hyp as inputs.

3.1.2 Reference-based Metrics

We select five common reference-based metrics
for analysis. BLEU (Papineni et al., 2002),
ROUGE (Lin, 2004) and METEOR(Banerjee and

Lavie, 2005) provide evaluation results by cal-
culating the statical index of n-gram overlap be-
tween ref and hyp. For ROUGE, we use ROUGE-
2. BERTScore (Zhang et al., 2019) and Mover-
Score (Zhao et al., 2019) both produce the eval-
uation result by measuring the similarity of em-
beddings between hyp and the ref. Specifically,
we use the "deberta-xlarge-mnli" checkpoint (He
et al., 2021) for BERTScore. All reference-based
metrics accept ref and hyp as inputs. (See more
implementation details in Appendix A).

3.2 Datasets

We use eight datasets related to task summarization,
data-to-text, and dialogue. Each dataset comprises
samples containing the following components:
source text src, reference text re f, system output
hyp, and human judgments across various dimen-
sions. All texts within these datasets are composed
in English. On the summarization task, we select
datasets SummEval (Fabbri et al., 2021), News-
room (Grusky et al., 2018), and QAGS (Wang et al.,
2020). Here, QAGS consists of two separate parts:
QAGS_CNN and QAGS_XSUM. On data-to-text
task, we select SFHOT and SFRES (Wen et al.,
2015), WebNLG (Shimorina et al., 2019), and
BAGEL (Mairesse et al., 2010). Specifically, we
utilize the resource assembled by Yuan et al. (2021)
for the datasets Newsroom, SummEval, QAGS,
SFHOT, and SFRES, and resource collected by
Scialom and Hill (2021) for dataset WebNLG. On
the dialogue task, we select USR (Mehri and Eske-
nazi, 2020).The USR dataset comprises two parts,
designated as USR_Topical and USR_Persona re-
spectively. Evaluation results for each criterion
contained in datasets are listed in Table 1. Please
refer to Appendix A for more details.

COH CON FLU

summarization
- Newsroom v v
- QAGS_CNN

- QAGS_XSUM

- SummEval v

ENENEN
\

data-to-text
- BAGEL

- SFHOT

- SFRES

- WebNLG

ENEN
SENENEN

dialogue
- USR_Persona v
- USR_Topical v

NN

Table 1: Datasets and available information.
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Reference-free

\ Reference-based

GPTScore BARTScore UniEval UniEval_all \ MoverScore BERTScore ROUGE Meteor BLEU

Newsroom 0.595 0.623 0.458 0.486 0.091 0.221 0.081 0.198 -0.201

COH SummEval 0.412 0.408 0.592 0.538 0.154 0.333 0.153 0.134 0.125
USR_Persona  0.046 0.006 0.221 0.185 0.237 0.260 0.097 0.179 -0.041
USR_Topic ~ 0.072 0.046 0.380 0.296 0.260 0.309 0.253 0.276 -0.172
QAGS_CNN  0.583 0.680 0.618 0.633 0.353 0.507 0418 0.326 0.082
QAGS_XSUM 0.081 0.159 0.387 0.344 0.052 -0.057 0.129 -0.015 -0.164

CON SFHOT 0.219 0.222 0.196 0.270 0.201 0.221 0.088  0.069 -0.106
SFRES 0.271 0.254 0.213 0.283 0.172 0.184 0.108 0.175 -0.073
SummEval 0.355 0.334 0.435 0.429 0.146 0.200 0.069 0.152 0.048

BAGEL 0.152 0.241 0.309 0.309 0.187 0.247 0.152  0.109 0.193
Newsroom 0.565 0.596 0.443 0.516 0.046 0.182 0.051 0.157 -0.163

SFHOT 0.135 0.164 0.312 0.324 0.155 0.164 0.042 0.015 -0.054

FLU SFRES 0.229 0.226 0.332 0.323 0.154 0.183 0.081 0.143 0.100
SummEval 0.288 0.285 0.451 0.434 0.122 0.194 0.044  0.090 -0.015
USR_Persona -0.030 0.034 0.239 0.367 0.116 0.322 0.112  0.073 -0.124
USR_Topic ~ 0.087 0.027 0.302 0.395 0.186 0.292 0.169  0.200 -0.093
WebNLG 0.072 0.330 0.521 0.565 0.429 0.499 0.277 0332 0.318

Table 2: Each row represents the Spearman’s correlations of different metrics with human judgments on a dataset.
Coherence, consistency, and fluency are written in abbreviations COH, CON, and FLU respectively. The bold
scores represent the highest correlation results for each task on each criterion.

3.3 Correlations with Human

We follow the standard procedure to obtain the
evaluation result of each metric, as depicted in Sec-
tion 2.3.1. No fine-tuning is performed during ex-
periments. The Spearman correlations between
scores generated by automatic metrics and human
judgment are shown in Table 2. See Table 7 and Ta-
ble 8 in the Appendix D for corresponding results
of Pearson correlation and Kendall’s Tau.

The outcomes show that reference-free metrics
outperform reference-based metrics across var-
ious datasets and evaluation criteria. UniEval
and BARTScore achieve the highest scores in 16
test experiments. GPTScore also outperforms five
reference-based metrics in most tasks. The poor
performance of reference-based metrics may be
attributed to their high dependence on the selec-
tion of e f. Thorough case study, we observe that
scores yielded by re fs written in different sentence
structures could vary greatly, even when they con-
tain the same meaning. Therefore, the structure of
datasets also influences the results. For example, in
data-to-text tasks, datasets SFRES and SFHOT con-
tain hyps from handcrafted NLG systems, which
are more formulaic and differ from refs, while
refs in WebNLG are similar to the hyps. The
performance thus exhibits a great variation, with
the latter having comparatively better performance.
Please refer to the Appendix B for more details.

We also observe that, the performance of some

reference-free metrics on different tasks exhibits
significant variation. That is, their advantages
over ref-based metrics are not consistent across
tasks. In the dialogue task, apart from UniEval,
the performance of other reference-free metrics is
worse than reference-based metrics. In data-to-text
tasks, their advantage is not so pronounced.

One reason could be that, without reference, the
performance of reference-free metrics completely
depends on how accurate the derived answer space
is, which relies on the generation ability of the
underlying model. When the underlying model is
not able to handle the specific type of input, the
performance of reference-free metrics will drop. In
the case of dialogue datasets, the answers of each
src exhibit great diversity, and the derived space
may not be able to cover all possible responses.
Data-to-text tasks utilize structural input, whose
meanings are more obscure than input written in
natural language, which also causes difficulty for
metrics to perform reliable assessments.

One possible solution could be to develop source-
free metrics, i.e., metrics that do not require src
as input. For example, UniEval only uses hyp for
fluency evaluation and maintains a relatively higher
correlation score, implying that for criteria that do
not rely on contextual information or in scenarios
unrelated to specific tasks, the inclusion of src may
be unnecessary. Such source-free metrics could
remain unaffected by the input’s structure, enabling
better adaptation to new tasks.
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Figure 2: Heatmap of Kolmogorov-Smirnov (KS) score on distinguishing performance of high-quality and low-
quality hyp. The number on heatmaps represents the KS score of each metric on distinguishing high and low quality
hyp on each dataset. The range of KS score is [0, 1]. The higher the score, the better the performance is.

3.4 Perturbation Experiments

We perform perturbation experiments on the Sum-
mEval and Newsroom datasets, focusing on criteria
coherence and fluency. In these experiments, we
apply perturbations to the hyp in each dataset and
assess the resulting perturbed text with each metric,
obtaining assessment scores 5. We exclude sam-
ples that have human evaluation judgment scores
below 3 to ensure the quality of the original hyp.

Following the methodology of Sai et al. (2021),
We employ "sentence reorder” and "subject-verb
disagreement" techniques for coherence and flu-
ency perturbation, respectively. We use the propor-
tion of text pairs where the original score s satisfies
s > § as the statistical index to evaluate the capa-
bility of metric M in detecting perturbations. The
results of coherence and fluency perturbation are
depicted in Figure 3a and Figure 3b, respectively.

We observe that GPTScore and BARTScore out-
perform other metrics on both criteria and datasets.
The performance of UniEval on fluency is rela-
tively worse but also outperforms other reference-
based metrics. In comparison, the outcomes of
reference-based metrics on detecting coherence are
unsatisfying. On coherence perturbation detection.
ROUGE, Meteor, and BLEU could only obtain a
score far below 50%, which is the expected accu-
racy of random selection. The reason should be
that these metrics solely focus on surface-level n-
gram features and cannot distinguish changes in
shuffling sentences, as they provide the same score
for both original and perturbed text. BERTScore
and MoverScore exhibit better capability but are
also not competitive with reference-free metrics.

We owe the weakness of reference-based metrics
to the lack of semantic information contained in
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Figure 3: Accuracy of detecting perturbation with each
metric. Here accuracy is defined as the proportion of
text pairs where the original score s satisfies s > 3.

the embedding distance or n-gram difference, for a
single reference only provides a possible answer to
the given input, while more semantic knowledge is
contained in the underlying model of reference-free
metrics.

3.5 Kolmogorov-Smirnov Test

Based on metrics and criteria mentioned in Ta-
ble 1, we calculate the KS score for each met-
ric on distinguishing sentences with high human-
like quality and low human-like quality. As the
score range of human judgment varies across each
dataset, the standard of categorizing high-quality
and low-quality sentences differs, as outlined in
Table 3.

Results of KS scores are illustrated in Figure 2
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Figure 4: Meta-correlation score for Spearman correlation of each metric on SummEval dataset, which indicates
the correlation between metric performance and the quality of hyp. The red line represents the Spearman correlation

with human judgment obtained in Section 3.3

Dataset Low Quality  High Quality Range
BAGEL <3 >5 1,6
Newsroom <3 >4 1,5
QAGS <1 >1 0,1
SFHOT <3 >5 1,6
SFRES <3 >5 1,6
SummEval <3 >4 1,5
USR <2 >2 0,3
WebNLG <2 >3 1,5

Table 3: Classification standards of high-quality and
low-quality sentences for each dataset.

(See raw results in Appendix Table 10). In gen-
eral, reference-free metrics have higher KS scores
than reference-based metrics across all three crite-
ria, which indicates a better performance in iden-
tifying low-quality texts from high-quality ones.
Among reference-based metrics, embedding-based
metrics BERTScore and MoverScore have better
performance than other n-gram-based metrics. This
aligns with the correlation scores presented in Ta-
ble 2, where metrics with higher correlation scores
generally exhibit better capabilities in distinguish-
ing high-quality from low-quality sentences, and
vice versa.

3.6 Stability Analysis

We further investigate the relationship between sys-
tem quality and metrics’ human correlation score
following (Shen et al., 2023), as introduced in Sec-
tion 2.3.3. The outcome of the meta-correlation
calculated with Spearman correlation is presented
in Figure 4 (See raw data in Appendix Table 11).
We also include the result of correlations with hu-
man judgment shown in Table 2 in the figure for
better comparison.

We observe that all reference-free metrics and
BERTScore have negative meta-correlation scores,
and these metrics are also the ones that have the
highest correlations with human judgment. Meta-
correlation scores for the rest reference-based met-
rics differ widely on each criterion, with low human
correlation, indicating considerable instability.

This demonstrates that as the quality of sen-
tences increases, the assessment provided by
reference-free metrics has a weaker correlation
with human judgment, and their performance is
not stable on different criteria. Considering the
results of the criterion-level analysis in Section 3.4,
reference-free metrics are capable of identifying
lower-quality sentences and assigning lower scores
to them, but may not be reliable for handling texts
with high quality.

4 How to better utilize automatic metrics?

In this section, we discuss how to appropriately ap-
ply automatic evaluation metrics based on observed
phenomena in experiments.

If researchers want to directly apply automatic
metrics to evaluation:

¢ On task summarization and data-to-text, we
suggest using reference-free metrics.

* On task dialogue, we suggest Unieval or
BERTScore, depending on the availability of
human references.

* On new tasks, we suggest researchers use
metrics independent of source texts, such as
UniEval for fluency evaluation. This can re-
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duce the influence caused by new input and
new contextual information.

If it’s possible to collect some sample sentences
with human judgment, conducting a pre-assessment
before applying metrics to a new task is a good
choice. Here we provide an example.

1. Researchers can randomly select 50 genera-
tion texts, collect human judgments, and use
each metric to generate evaluation scores.

2. Next, for the analysis of metrics’ overall per-
formance, calculate the Spearman correlation
of human judgment and metrics output.

3. If the correlation is over 0.3, the scoring re-
sults of the metrics could be considered as
moderately correlated with human judgment.

We select 0.3 as the threshold of correlation score
because, as observed in Section 3.3, most high-
est correlations on datasets in this study are over
0.3. A more detailed experiment on the selection
of sample numbers is introduced in Appendix C,
where we find that 50 samples can effectively re-
flect the performance of metrics. More accurate
pre-assessment strategies necessitate additional ex-
perimental validation and can be set aside for future
investigations.

If metrics are not effective enough, a possible
solution is to perform task-specific fine-tuning. Re-
garding criteria indifferent to application scenarios,
developing metrics independent of source text as
inputs may decrease the influence of tasks.

It’s also worth noting that, although automatic
metrics have developed quickly in recent years,
having them replace human assessors still has a
long way to go. When it comes to fine-grained,
high-quality text evaluation tasks, their assessment
results should be taken as reference only.

5 Related Work

The rapid growth of NLG techniques and the emer-
gence of LLMs have highlighted the importance of
automatic evaluation. Numerous metrics have been
developed and are widely used in a great variety of
tasks. Apart from metrics used in this study, Sai
et al. (2022) presents a thorough survey of common
evaluation metrics for NLG systems.

Assessing the effectiveness of automatic metrics
therefore becomes an important task, and various
meta-eval approaches are proposed. Correlation

with human judgment is widely applied, however,
as it only provides an evaluation of metrics’ overall
performance, more fine-grained analyses are de-
veloped. For example, Nimah et al. (2023) and
Fomicheva and Specia (2019) present meta-eval ap-
proaches beyond correlation with human judgment.
Sai et al. (2021) presents a thorough perturbation
template for deeper investigating metrics’ ability to
detect quality defections. OpenMeva (Guan et al.,
2021) focuses on story generation, providing a test
suite for meta-evaluation from multiple dimensions,
pointing out that many metrics have a poor ability
to perceive discourse-level incoherence.
Comprehensive comparison and analysis of auto-
matic metrics are also of importance, which is also
the focus of this work. Callison-Burch et al. (2006)
shows that BLEU is not sufficient for the quality
evaluation in the translation task. TRUE (Hon-
ovich et al., 2022) focuses on the evaluation of con-
sistency, explicitly defines the meaning, and pro-
vides a standard benchmark. Deutsch et al. (2022)
select three reference-free metrics for evaluating
machine translation and summarization, indicating
that reference-free metrics tend to give texts similar
to the output of the underlying model higher scores,
instead of human-written sentences, and recom-
mending that reference-free metrics should be used
as diagnostic tools instead of evaluation metrics.
Compared with these researchs, we broaden the
types of metrics, criteria and application scenarios,
verify the pros and cons of each automatic metric
by experiments, and provide possible solutions.

6 Conclusion

In this study, we aim to provide insights into the
appropriate usage of automatic evaluation metrics.
To achieve this goal, we thoroughly examine the
performance of reference-based and reference-free
metrics with various meta-analysis methods. Our
experiments show that, compared with reference-
based metrics, the evaluation results provided by
reference-free metrics have a closer correlation
with human judgment. Also, reference-free met-
rics are more sensitive to the semantic deficiency
in texts. However, the performance of reference-
free metrics is task-dependent and is not stable as
the quality of candidate texts increases. Therefore,
we recommend assessing metrics before applying
them to new tasks and new criteria, especially when
metrics are not explicitly designed to be used in the
specific scenario.
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Limitations

* This work focuses on evaluation experiments
conducted on three specific tasks due to lim-
ited data availability for specific criteria and
human annotations, and the language is re-
stricted to English as well. Further investi-
gation is necessary to validate the discovered
performance on more tasks and languages.

e The analysis presented in this study is
grounded in experiments, however, theoreti-
cal analysis is lacking to augment the findings.
Regrettably, we did not incorporate mathemat-
ical analysis explaining the underlying mech-
anisms and rationales behind the limitations
inherent to each metric. Such mathematical
analysis is valuable in the applications of au-
tomatic metrics within new domains.

* Regarding the weakness of automatic metrics
revealed in this study, it’s regrettable that cor-
responding solutions are proposed but are not
fully validated. Future work focusing on im-
proving metrics’ performance is required.
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A Implementation Details

A.1 Datasets

SummEval SummEval provides a collection of
summarization results generated by language mod-
els (Fabbri et al., 2021), which is trained on the
CNN/DailyMail datasets (Hermann et al., 2015)
and the corresponding reference texts. For each
generated summary, the dataset also contains score
results from both expert annotators and crowd-
workers, from four dimensions: coherence, con-
sistency, fluency, and informativeness.

NEWSROOM NEWSROOM collects 60 arti-
cles and the corresponding summarization results
of 7 models, with human-written summaries as
references (Grusky et al., 2018). Evaluation of co-
herence, fluency, relevance, and informativeness is
available.

QAGS QAGS involves reference texts and anno-
tation results for consistency on the summarization
task (Wang et al., 2020). For each sentence in a
generated summary, 3 annotations are collected and
the majority vote strategy is used to get a consis-
tency score, and the mean value of all sentences is
the final score.

SFHOT and SFRES SFHOT and SFRES pro-
vide evaluation results on the data-to-text task,
with annotation of naturalness and informative-
ness (Wen et al., 2015). Here informativeness mea-
sures the uniform degree of sources and hypotheses,
and we use this data for analysis on consistency, as
well as naturalness for fluency.

WebNLG WebNLG contains the human evalu-
ation results for the WebNLG Challenge held in
2017, which is a data-to-text task (Shimorina et al.,
2019). The candidate text is evaluated from 3 as-
pects: fluency, grammar, and semantics. Here flu-
ency measures whether a text is fluent and natural,
and we use the fluency score for experiments.

BAGEL BAGEL contains annotations on data-
to-text tasks collected from a dialogue system, with
human annotation from informativeness and nat-
uralness (Mairesse et al., 2010). Here informa-
tiveness is compared with the gold standard and
is different from our definition. We only use the
judgment results for naturalness.

USR The USR dataset provides evaluation re-
sults on the dialogue task from 5 aspects: fluency,

coherence, engagingness, groundedness, and un-
derstandability. Following the rephrasing strategy
proposed by Zhong et al. (2022), we rename the
original aspects "maintains context" and "natural”
as "coherence" and "fluency", respectively.

The resources of all datasets we used are listed
as follows.

e Newsroom, SummEval, QAGS_CNN,
QAGS_XSUM, SFHOT, SFRES are down-
loaded from source provided by Yuan
et al. (2021). The related url is https:
//github.com/neulab/BARTScore.

* WebNLG is downloaded from source pro-
vided by Scialom and Hill (2021). The
related url is https://github.com/
ThomasScialom/BEAMetrics. We
delete empty reference sentences before ap-

plying.

USR_Topical and USR_Persona are cre-
ated by Mehri and Eskenazi (2020). The
related URL is https://github.com/
shikib/usr

A2

* BARTScore is downloaded from https:
//github.com/neulab/BARTScore.
We use the faithfulness-based variant based on
"facebook/bart-large-cnn"? checkpoint (Lewis
et al., 2020).

Metrics

* BERTScore is downloaded from https://
github.com/Tiiiger/bert_score.
We use the F1 score calculated based on
checkpoint "deberta-xlarge-mnli"* (He et al.,
2021).

GPTScore is downloaded from https:
//github.com/jinlanfu/GPTScore
and we use the checkpoint "gpt2-large"* (Rad-
ford et al., 2019).

e UniEval is downloaded from https:
//github.com/maszhongming/
UniEval. We use the "summarization"
variant developed based on checkpoint

https://huggingface.co/facebook/
bart-large—cnn

*https://huggingface.co/microsoft/
deberta-xlarge-mnli

*https://huggingface.co/gpt2-large
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"MingZhong/unieval-sum"> (Zhong et al.,
2022).

* For metric BLEU and Meteor, we use the im-
plementation provided by the python package
NLTK (Bird et al., 2009).

* For metric ROUGE, we use the implementa-
tion provided by the python package rouge®.
In this study, we present the results of
ROUGE-2-f.

* All implementations adhere to the licenses
and terms of each artifact and are in alignment
with their intended usage.

B Study on the Influences of r¢ fs

Some datasets used in this study contain multi-
ple references and thus provide a good resource to
study whether sentence structure would reflect eval-
uation results. In the SFHOT and SFRES datasets,
we compare the evaluation results of RB metrics
using different references. We find that, though
humans can identify that the references contain the
same meaning, the outcomes of reference-based
metrics vary greatly. In one case in the SFHOT
dataset (id=3), the system output "Can I double
check you do not care if dogs are allowed at the ho-
tel?" receives a high score of 0.93 from BERTScore
when using the reference "Can I confirm that you
do not care if dogs are allowed at the hotel?", while
it receives a generally low score of 0.665 with
the reference "You do not care whether they allow
dogs?". This variation is even worse when using
n-gram-based metrics. In another example in the
SFRES dataset (id=16), the form of the references
is similar, and we obtain stable output from RB
metrics. This phenomenon suggests that the evalu-
ation quality of reference-based metrics is highly
dependent on the references and poses a potential
risk in applications.

Another piece of evidence is the evaluation re-
sult of the WebNLG datasets. The target of the task
is transferring a triple into fluent description texts,
thus the variation of answers is small, and the refer-
ence texts are similar. From the experiment result
shown in Table 2, we can see that the performance
of reference-based metrics, including the n-gram-
based ones, is better than other tasks, obtaining
higher correlation scores with human judgments.

Shttps://huggingface.co/Mingzhong/

unieval-sum
*https://pypi.org/project/rouge/

In comparison, some reference-free metrics have
unsatisfying outcomes, probably because they are
incapable of handling the input structure.

The above examples are all from the data-to-text
task, and we also observe similar phenomena in
other tasks. Here we use SummEval datasets for
further analysis, as it contains 11 references for
all 1600 instances, while the reference numbers of
other datasets are not so consistent. We randomly
select one reference for each instance, calculate the
correlation, and repeat this process 5000 times to
obtain the distribution of correlation. The results
are depicted in Figure 5.

The wide range of distribution indicates that
the selection of references can significantly im-
pact evaluation quality. Therefore, when using
reference-based metrics, researchers should be
careful in the creation of references, to ensure that
the measurement of similarity between ref and
hyp can reflect the quality of hyps.

C Study of Sample Number in
Pre-assessment

This experiment focuses on how the number of
sample sentences influences the pre-evaluation ef-
fectiveness before applying a metric to a new eval-
uation task. Here, the number of sample sentences
is denoted as n. On each criterion ¢ and dataset d,
where d contains evaluation results on ¢, we ran-
domly select n sentences and calculate the Spear-
man correlation pg . following Equation 6. We
repeat the sampling process for 100 times and cal-
culate the mean value and variance of py.. The
results are shown in Table 4, Table 5 and Table 6.
When the sample number is set to 50, the vari-
ance of results is relatively small, close to n = 100,
while n = 20 is not enough. We should also note
that the total number of sentences in each dataset
is different, while the variance results are similar.
A more accurate study on the sampling strategy for
pre-assessing is welcomed for future work.

D Supplementary Experiment Results

The raw results of each experiment in this study
are listed as follows.
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Figure 5: The distribution of correlation scores when using a single reference.
BARTScore | GPTScore | UniEval-single | UniEval-all
all mean  std all mean  std all mean std all mean std
Newsroom 0.623 0.594 0.158| 0.595 0.558 0.168 | 0.458 0.454 0.177 |0.486 0.480 0.173
COH SummEval 0.408 0.390 0.196| 0.412 0.410 0.203]0.592 0.557 0.158]0.538 0.522 0.167
USR_persona 0.006 0.017 0.181 | 0.046 0.049 0.209|0.221 0.212 0.187 |0.185 0.181 0.188
USR _topic 0.046 0.024 0.211] 0.072 0.064 0.203 | 0.380 0.349 0.200 | 0.296 0.242 0.226
QAGS_CNN 0.680 0.660 0.123] 0.583 0.564 0.174|0.575 0.569 0.144 | 0.633 0.627 0.136
QAGS_XSUM 0.159 0.171 0.214| 0.081 0.089 0.221]0.369 0.379 0.203 | 0.344 0.360 0.211
SFHOT 0.222 0.233 0.205| 0.219 0.216 0.208 | 0.185 0.185 0.2130.270 0.293 0.198
CON SFRES 0.254 0.268 0.224| 0.271 0.299 0.210]0.238 0.239 0.215]0.283 0.278 0.188
SummEval 0.334 0.346 0.219] 0.355 0.368 0.215]0.415 0.415 0.174 0429 0.433 0.173
USR_persona -0.019 -0.005 0.201|-0.099 -0.080 0.226 | 0.063 0.030 0.231|0.050 0.014 0.246
USR _topic  -0.125 -0.133 0.223 |-0.189 -0.194 0.230|0.181 0.167 0.230|0.127 0.105 0.264
BAGEL 0.241 0.244 0.240| 0.152 0.200 0.219]0.282 0.293 0.234|0.309 0.313 0.222
Newsroom 0.596 0.591 0.164| 0.565 0.560 0.156|0.486 0.467 0.182]0.516 0.507 0.179
SFHOT 0.164 0.144 0.244| 0.135 0.105 0.2480.138 0.112 0.252]0.324 0.327 0.221
FLU SFRES 0.226 0.189 0.225| 0.229 0.200 0.212]0.153 0.117 0.242]0.323 0.296 0.218
SummEval 0.285 0.300 0.233] 0.288 0.302 0.236 | 0.346 0.331 0.227 | 0.434 0.409 0.235
USR_persona 0.034 0.054 0.220 |-0.030 0.003 0.231|0.362 0.376 0.177|0.367 0.367 0.189
USR_topic 0.027 0.042 0.214| 0.087 0.112 0.229 | 0.425 0.394 0.185]0.395 0.374 0.177
webnlg 0.330 0.330 0.227| 0.072 0.058 0.252]0.480 0.475 0.180]0.565 0.555 0.184

Table 4: The mean and standard deviation of correlation scores using reference-free metrics with n = 20.

BARTScore | GPTScore | UniEval-single | UniEval-all

all mean  std all mean  std all mean std all mean std
Newsroom 0.623 0.620 0.087 | 0.595 0.593 0.082|0.458 0.450 0.109 | 0.486 0.477 0.105
COH SummEval 0.408 0.379 0.117| 0.412 0.409 0.117]0.592 0.570 0.101|0.538 0.512 0.104
USR_persona 0.006 0.013 0.128 | 0.046 0.046 0.121|0.221 0.225 0.1190.185 0.182 0.121
USR_topic 0.046 0.047 0.118| 0.072 0.077 0.122]0.380 0.374 0.099 |0.296 0.285 0.114
QAGS_CNN 0.680 0.667 0.075| 0.583 0.561 0.091|0.575 0.553 0.081 | 0.633 0.610 0.081
QAGS_XSUM 0.159 0.132 0.138 | 0.081 0.061 0.143]0.369 0.363 0.104 | 0.344 0.340 0.106
SFHOT 0.222 0.220 0.135] 0.219 0.228 0.134|0.185 0.188 0.153 | 0.270 0.266 0.118
CON SFRES 0.254 0.251 0.125| 0.271 0.259 0.120]0.238 0.243 0.1230.283 0.272 0.118
SummEval 0.334 0.299 0.128 ] 0.355 0.325 0.114|0.415 0.387 0.115]0.429 0.393 0.126
USR_persona -0.019 -0.017 0.134 |-0.099 -0.095 0.138|0.063 0.068 0.124 | 0.050 0.052 0.122
USR _topic ~ -0.125 -0.139 0.123 |-0.189 -0.186 0.138|0.181 0.166 0.122]0.127 0.115 0.126
BAGEL 0.241 0.255 0.137| 0.152 0.162 0.133]0.282 0.301 0.129]0.309 0.316 0.129
Newsroom 0.596 0.596 0.104| 0.565 0.569 0.107 |0.486 0.499 0.110|0.516 0.529 0.098
SFHOT 0.164 0.151 0.133| 0.135 0.122 0.138 | 0.138 0.157 0.147|0.324 0.335 0.131
FLU SFRES 0.226 0.232 0.136| 0.229 0.236 0.130|0.153 0.173 0.139(0.323 0.352 0.143
SummEval 0.285 0.287 0.117| 0.288 0.281 0.127 [ 0.346 0.339 0.112]0.434 0.416 0.114
USR_persona  0.034 0.034 0.115|-0.030 -0.030 0.118 | 0.362 0.367 0.114 |0.367 0.366 0.114
USR_topic 0.027 0.010 0.125| 0.087 0.067 0.133]0.425 0.428 0.102]0.395 0.395 0.102
webnlg 0.330 0.339 0.135] 0.072 0.069 0.163|0.480 0.481 0.118 |0.565 0.567 0.092

Table 5: The mean and standard deviation of correlation scores using reference-free metrics with n = 50.
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BARTScore

GPTScore | UniEval-single | UniEval-all

all mean std all mean std all mean std all mean std
Newsroom 0.623 0.618 0.055] 0.595 0.595 0.053]0.458 0.453 0.067 | 0.486 0.481 0.063
SummEval 0.408 0413 0.077| 0412 0.413 0.085|0.592 0.584 0.063 |0.538 0.534 0.071
USR_persona 0.006 0.013 0.080 | 0.046 0.040 0.074|0.221 0.224 0.076|0.185 0.187 0.074
USR_topic 0.046 0.041 0.077| 0.072 0.065 0.080 | 0.380 0.383 0.066|0.296 0.295 0.064

QAGS_CNN  0.680 0.676 0.048| 0.583 0.570 0.057|0.575 0.566 0.052|0.633 0.628 0.049
QAGS_XSUM 0.159 0.154 0.083| 0.081 0.078 0.080|0.369 0.362 0.071|0.344 0.337 0.074
SFHOT 0222  0.212 0.091 | 0.219 0.211 0.090| 0.185 0.170 0.103 | 0.270 0.268 0.092

CON SFRES 0.254 0.260 0.091 | 0.271 0.280 0.085|0.238 0.228 0.086 | 0.283 0.272 0.086
SummEval 0.334 0.344 0.078 | 0.355 0.362 0.074 | 0.415 0.416 0.080 | 0.429 0.431 0.078
USR_persona -0.019 -0.021 0.078 | -0.099 -0.104 0.084 | 0.063 0.077 0.078 | 0.050 0.058 0.077
USR_topic ~ -0.125 -0.113 0.081 | -0.189 -0.177 0.073 |0.181 0.198 0.076 | 0.127 0.143 0.073

BAGEL 0241 0.250 0.103| 0.152 0.164 0.092|0.282 0.287 0.092 | 0.309 0.323 0.088
Newsroom  0.596 0.585 0.067 | 0.565 0.554 0.064|0.486 0.468 0.063 |0.516 0.496 0.061
SFHOT 0.164 0.151 0.093| 0.135 0.124 0.091 | 0.138 0.124 0.096 | 0.324 0.328 0.088
SFRES 0226 0.211 0.089 | 0.229 0.211 0.087|0.153 0.151 0.093 |0.323 0.313 0.080
SummEval  0.285 0.278 0.098 | 0.288 0.290 0.101 | 0.346 0.336 0.093 | 0.434 0.426 0.092
USR_persona  0.034 0.037 0.078 | -0.030 -0.029 0.077|0.362 0.360 0.068 | 0.367 0.364 0.065
USR_topic ~ 0.027 0.015 0.087 | 0.087 0.081 0.093|0.425 0.423 0.059 |0.395 0.386 0.063
webnlg 0.330 0.329 0.091| 0.072 0.075 0.101|0.480 0.477 0.075]0.565 0.560 0.074

COH

FLU

Table 6: The mean and standard deviation of correlation scores using reference-free metrics with n = 100.

Reference-free \ Reference-based

GPTScore BARTScore UniEval UniEval_all \MoverScore BERTScore ROUGE Meteor BLEU

Newsroom 0.613 0.640 0.473 0.488 0.070 0.164 0.030  0.108 -0.067

COH SummEval 0.430 0.434 0.533 0.498 0.164 0.349 0.149 0.144 0.011
USR_Persona  0.040 0.008 0.210 0.173 0.235 0.259 0.121 0.188 -0.037
USR_Topic 0.069 0.030 0.385 0.284 0.230 0.263 0.188 0.266 -0.112
QAGS_CNN  0.673 0.735 0.635 0.630 0.412 0.585 0.468 0.280 0.071
QAGS_XSUM 0.096 0.184 0.333 0.317 0.075 -0.058 0.121 0.035 -0.159

CON SFHOT 0.259 0.270 0.324 0.324 0.209 0.236 0.101 0.125 -0.098
SFRES 0.316 0.310 0.231 0.326 0.196 0.228 0.106  0.193 -0.028
SummEval 0.383 0.377 0.634 0.568 0.168 0.227 0.075 0.179 0.026
BAGEL 0.268 0.355 0.338 0.438 0.205 0.260 0.166  0.121 0.038
Newsroom 0.571 0.592 0.424 0.512 0.050 0.139 0.019 0.079 -0.069

SFHOT 0.167 0.207 0.385 0.436 0.177 0.187 0.056  0.043 -0.078

FLU SFRES 0.278 0.282 0.356 0.394 0.186 0.216 0.108 0.152  0.042
SummEval 0.326 0.354 0.597 0.633 0.147 0.247 0.055 0.118 0.015
USR_Persona  -0.010 0.039 0.355 0.398 0.107 0.326 0.099 0.066 -0.120
USR_Topic 0.106 0.021 0.318 0.411 0.201 0.287 0.177 0.227 -0.112
WebNLG 0.093 0.318 0.511 0.560 0.424 0.494 0.289 0.338 0.292

Table 7: Pearson correlations of different metrics with human judgments on three criteria in each dataset.
Coherence, consistency, and fluency are written in abbreviations COH, CON, and FLU respectively. The bold
scores represent the highest correlation results for each task on each criterion.
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Reference-free \ Reference-based

GPTScore BARTScore UniEval UniEval_all \MoverScore BERTScore ROUGE Meteor BLEU

Newsroom 0.440 0.466 0.330 0.351 0.063 0.157 0.061 0.141 -0.146

COH SummEval 0.297 0.292 0.425 0.386 0.109 0.236 0.106  0.096 0.089
USR_persona  0.035 0.007 0.164 0.138 0.174 0.195 0.083  0.131 -0.030
USR_topic 0.053 0.033 0.271 0.209 0.184 0.216 0.192  0.196 -0.126
QAGS_CNN  0.470 0.557 0.492 0.500 0.278 0.405 0.331  0.256 0.065
QAGS_XSUM  0.066 0.130 0.317 0.281 0.042 -0.047 0.105 -0.012 -0.136
CON SFHOT 0.167 0.170 0.148 0.206 0.154 0.170 0.068  0.053 -0.085
SFRES 0.207 0.193 0.163 0.215 0.130 0.141 0.082  0.134 -0.057
SummEval 0.282 0.264 0.349 0.343 0.114 0.157 0.054  0.119 0.038
BAGEL 0.110 0.177 0.232 0.233 0.139 0.184 0.113  0.079 0.142
Newsroom 0.419 0.448 0.320 0.378 0.031 0.127 0.037  0.110 -0.119
SFHOT 0.098 0.120 0.233 0.242 0.114 0.121 0.031 0.010 -0.042

FLU SFRES 0.167 0.165 0.246 0.240 0.113 0.135 0.059  0.106 0.075
SummEval 0.226 0.223 0.354 0.343 0.095 0.151 0.034  0.070 -0.012
USR_persona  -0.025 0.026 0.187 0.289 0.088 0.248 0.101  0.056 -0.096
USR_topic 0.065 0.018 0.215 0.284 0.129 0.208 0.130  0.140 -0.065
WebNLG 0.050 0.238 0.382 0.415 0.313 0.367 0.201  0.240 0.232

Table 8: Kendall’s Tau of different metrics with human judgments on three criteria in each dataset. Coherence,
consistency, and fluency are written in abbreviations COH, CON, and FLU respectively. The bold scores represent
the highest correlation results for each task on each criterion.

‘ Coherence ‘ Fluency

‘ Newsroom SummEval ‘ Newsroom SummEval

GPTScore 0.912 0.851 0.866 0.957
BARTSCore 0.932 0.851 0.866 0.956
Unieval 0.667 0.791 0.762 0.948
Unieval_all 0.673 0.791 0.701 0.947
MoverScore 0.585 0.628 0.502 0.746
BERTScore 0.639 0.682 0.732 0.877
ROUGE 0.299 0.095 0.352 0.739
Meteor 0.442 0.365 0.594 0.747
BLEU 0.218 0.020 0.360 0.305

Table 9: Accuracy of detecting perturbation with each metric.
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Reference-free \ Reference-based
GPTScore BARTScore UniEval UniEval_all \MoverScore BERTScore ROUGE Meteor BLEU

Newsroom 0.710 0.741 0.648 0.683 0.372 0.135 0.183  0.289 0.447

COH SummEval 0.440 0.393 0.621 0.535 0.335 0.158 0.173  0.154 0.110
USR-Persona  0.058 0.122 0.271 0.232 0.238 0.212 0.066  0.105 0.044
USR-Topic 0.160 0.090 0.220 0.200 0.305 0.220 0.250  0.235 0.100
QAGS_CNN  0.447 0.526 0.586 0.576 0.367 0.299 0295 0.267 0.256
QAGS_XSUM 0.106 0.173 0.353 0.343 0.120 0.064 0.185 0.098 0.208

CON SFHOT 0.485 0.480 0.759 0.660 0.534 0.519 0435 0442 0.218
SFRES 0.442 0.440 0.437 0.476 0.453 0.422 0252 0384 0.189
SummEval 0.489 0.482 0.700 0.630 0.333 0.242 0.133  0.251 0.103

BAGEL 0.444 0.445 0.519 0.512 0.357 0.194 0210  0.219 0.143
Newsroom 0.636 0.681 0.534 0.642 0.316 0.099 0.152 0275 0.359

SFHOT 0.348 0.389 0.559 0.577 0.318 0.296 0.150  0.128 0.161

FLU SFRES 0.371 0.358 0.555 0.564 0.326 0.283 0.200  0.289 0.218
SummEval 0.435 0.485 0.784 0.733 0.402 0.223 0.128  0.171 0.209
USR-Persona  0.201 0.159 0.551 0.545 0.413 0.150 0.072  0.185 0.102
USR-Topic 0.231 0.149 0.261 0.294 0.229 0.186 0.149  0.204 0.083
WebNLG 0.135 0.363 0.553 0.615 0.538 0.441 0285 0.353 0.266

Table 10: Kolmogorov-Smirnov (KS) score on distinguishing performance of high-quality and low-quality hyp.

‘ Coherence ‘ Consistency ‘ Fluency

Spear. Pear.  Kend. ‘ Spear. Pear.  Kend. ‘ Spear. Pear.  Kend.

GPTScore -0.829 -0.787 -0.683 | -0.688 -0.871 -0.483 | -0.378 -0.412 -0.243
BARTScore | -0.741 -0.759 -0.617 | -0.641 -0.902 -0.483 | -0.233 -0.580 -0.209
UniEval -0.276  -0.250 -0.200 | -0.668 -0.662 -0.483 | -0.817 -0.791 -0.661
UniEval-ALL | -0.356 -0.427 -0.250 | -0.762 -0.711 -0.617 | -0.653 -0.718 -0.510

MoverScore | -0.424 -0.455 -0.367 | 0.265 -0.012 0.200 | 0.047 -0.436 0.092
BERTScore | -0.556 -0.616 -0.433 | -0.359 -0.637 -0.183 | -0.169 -0.718 -0.109
ROUGE-2 | -0.468 -0.591 -0.350 | -0.047 -0.375 -0.017 | 0.313 -0.006 0.276
Meteor -0.226 -0.334 -0.217 | 0.176 -0.172 0.150 | 0.469 0.119 0.393
BLEU -0.044 0.044 -0.050 | -0.282 0.161 -0.217 | -0.066 -0.227 -0.025

Table 11: Meta-correlation scores of each metric on the SummEval dataset. Spearman correlations, Pearson
correlations, and Kendall’s Tau are abbreviated as Spear., Pear., and Kend., respectively.
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