
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pages 8438–8457

June 16-21, 2024 ©2024 Association for Computational Linguistics

AnchorAL: Computationally Efficient Active Learning for Large and
Imbalanced Datasets

Pietro Lesci Andreas Vlachos
Department of Computer Science and Technology

University of Cambridge
{pl487, av308}@cam.ac.uk

Abstract
Active learning for imbalanced classification
tasks is challenging as the minority classes nat-
urally occur rarely. Gathering a large pool of
unlabelled data is thus essential to capture mi-
nority instances. Standard pool-based active
learning is computationally expensive on large
pools and often reaches low accuracy by over-
fitting the initial decision boundary, thus failing
to explore the input space and find minority
instances. To address these issues we propose
AnchorAL. At each iteration, AnchorAL chooses
class-specific instances from the labelled set,
or anchors, and retrieves the most similar un-
labelled instances from the pool. This result-
ing subpool is then used for active learning.
Using a small, fixed-sized subpool AnchorAL
allows scaling any active learning strategy to
large pools. By dynamically selecting differ-
ent anchors at each iteration it promotes class
balance and prevents overfitting the initial de-
cision boundary, thus promoting the discovery
of new clusters of minority instances. Experi-
ments across different classification tasks, ac-
tive learning strategies, and model architectures
AnchorAL is (i) faster, often reducing runtime
from hours to minutes, (ii) trains more perfor-
mant models, (iii) and returns more balanced
datasets than competing methods.

github.com/pietrolesci/anchoral

1 Introduction

The abundance of web-scale textual data1 has con-
tributed to the success of generalist language mod-
els pretrained as multi-purpose foundation models
and fine-tuned to solve downstream natural lan-
guage processing tasks (Bommasani et al., 2022).
The data used during fine-tuning critically affects
their downstream abilities (Lee et al., 2022; Gu-
rurangan et al., 2022), especially in real-world ap-
plications where performance on rare concepts, or
minority classes, is critical (He and Garcia, 2009).

1E.g. Common Crawl corpus is in the order of petabytes.

Figure 1: AnchorAL (intuition). Binary classification
task where◦,×, and • are labelled minority, labelled
majority, and unlabelled instances. The black (left)
and coloured (right) lines denote the initial and final
decision boundary. Typical AL (top) selects instances
near the current boundary. AnchorAL (bottom) anchors
the selection to labelled instance(s) (bold red ◦) and
discovers a new minority cluster.

Data collection and annotation for imbalanced
classification tasks is challenging as the minority
class(es) naturally occur(s) rarely. Gathering a
large pool of unlabelled data is often essential to
capture minority instances making manual annota-
tion prohibitively expensive. In principle, consider-
ing only a random subset of the pool is potentially
amenable to manual curation but can be subopti-
mal when the imbalance is large as instances of the
rare class might never be found. Therefore, gener-
ally, the learning challenges caused by the imbal-
ance and the computational challenges stemming
from considering a large pool are intrinsically in-
tertwined and need to be jointly addressed. Active
Learning (AL) provides an automatic mechanism
to prioritise instances by allowing a model to select
those to label, resulting in a higher label efficiency
and lower annotation costs (Hanneke, 2007, 2011;
Balcan et al., 2009, 2010). Also, it can partially
mitigate mild imbalance (Ertekin et al., 2007).

8438

mailto:pl487@cam.ac.uk
mailto:av308@cam.ac.uk
https://github.com/pietrolesci/anchoral
https://commoncrawl.org

Figure 2: AnchorAL (this paper) vs RandSub (Ertekin et al., 2007) and SEALS (Coleman et al., 2022) on an imbalanced
(<1%) binary classification task (Amazon-Agri) for the ALBERT-base model and the Entropy strategy. AnchorAL keeps
the subpool size fixed and small across iterations (x-axis) (a) which reduces computational and annotation costs
(i.e., annotators’ waiting time). The subpool is more balanced (b) and allows the AL strategy to discover minority
instances earlier (c) and reach better performance (d).

Standard pool-based active learning (AL), how-
ever, struggles with large and imbalanced pools.
First, AL can be too computationally expensive
due to its iterative nature. Specifically, the infer-
ence costs of repeatedly evaluating a model on
every unlabelled instance in each iteration can be
prohibitive, especially given the size of modern lan-
guage models (Tsvigun et al., 2022); furthermore,
the annotation costs (i.e., the man-hours per annota-
tion) can drastically increase due to the annotators’
waiting time between iterations. Second, AL can
be as good as random selection due to the imbal-
ance: diversity-based strategies can be ineffective
when minority and majority instances are not easily
separable in high-dimensional spaces (Thudumu
et al., 2020), while uncertainty-based strategies can
fail to explore the input space and discover minor-
ity clusters because they tend to keep refining the
initial decision boundary (Tomanek et al., 2009);
hybrid strategies suffer from similar limitations.
One line of prior work has proposed to subset the
pool in each iteration before running an AL strategy
to speed up instance selection (Ertekin et al., 2007;
Coleman et al., 2022). However, existing pool filter-
ing methods either do not address class imbalance
or are computationally inefficient. Therefore, it is
still an open question how to scale AL on large
datasets while addressing the imbalance.

In this paper, we propose a new method, An-
chorAL, designed to jointly address the learning
and computational challenges of applying AL to
large and imbalanced datasets. AnchorAL works by
filtering the pool before running any AL strategy,
thus reducing the inference costs and the annota-
tors’ waiting time in each iteration. Crucially, the
filtering process is designed to promote the explo-
ration of the input space and the discovery of mi-

nority instances while keeping instance selection
time constant, regardless of the original pool size.
Specifically, at each iteration, AnchorAL chooses
class-specific instances from the labelled set, which
we term anchors. Then, each unlabelled instance
is scored based on its average distance from the
anchors and the most similar are used to form the
subset of the pool, which we term subpool. While
any similarity measure works, we use the seman-
tic representation capabilities of language models
(e.g., Devlin et al., 2019) and measure similarity
based on cosine distance between instance repre-
sentations. Using a small, fixed-sized subpool An-
chorAL allows scaling any active learning strategy
to large pools while keeping the annotators’ wait-
ing time constant across iterations independently
of the size of the original pool. Optionally, the
maximum size of the subpool can be set by the
user, thus making AnchorAL suitable for different
computational budgets. Moreover, by dynamically
selecting different anchors at each iteration it pre-
vents overfitting the initial decision boundary, thus
promoting the discovery of new clusters of minor-
ity instances; the class-specific anchors promote
class balance even for AL strategies that do not
explicitly account for imbalance (Fig. 2).

We test the effectiveness of AnchorAL across 4
text classification tasks, both binary and multiclass,
3 AL strategies (i.e., uncertainty, diversity, and hy-
brid), and 6 models with different sizes and ar-
chitectures (i.e., encoder, decoder, and encoder-
decoder). Experiments show that AnchorAL is the
fastest method, reducing the total selection time
from hours to minutes; (often) the best-performing,
reaching higher performance in less time and with
fewer annotations; and discovers the most minority
instances resulting in more balanced labelled sets.

8439

2 Related Work

In this section, we provide the background on im-
balanced learning and present the challenges of
applying AL to imbalanced datasets. Then, we dis-
cuss approaches to address these challenges and
scale AL to large pools.

2.1 Learning from Imbalanced Datasets

The research on imbalanced learning (Johnson and
Khoshgoftaar, 2019; Henning et al., 2023) can be
broadly divided into two approaches. Data-level
approaches directly balance the training data dis-
tributions by generating synthetic samples (Mul-
lick et al., 2019) or resampling the available data
(Chawla et al., 2002; Van Hulse et al., 2007). Re-
weighting approaches assign a different weight to
each instance to adjust its contribution to the train-
ing loss and thus its importance in determining the
parameter updates based on the stochastic gradients
(Dong et al., 2017; Wang et al., 2017; Lin et al.,
2017; Cui et al., 2019; Park et al., 2021).

Although AnchorAL can be associated with data-
level approaches for its re-balancing effect, it dif-
fers from those in two crucial aspects. First, the
objective of AnchorAL is to choose which data to
learn from rather than optimise how to learn from
data. Second, AnchorAL targets a setting in which
the labels are not known ex-ante, that is AL. There-
fore, it cannot easily rely on data augmentation,
generation, or over/under-sampling. Instead, it
uses the semantic representation capabilities of lan-
guage models and smartly selects anchors to use
as queries to retrieve a more balanced subpool. In
Table 3 we show that which and how many anchors
are chosen strongly affects performance.

2.2 Class Imbalance in Active Learning

Standard pool-based AL, by design, tends to
explore the regions nearest to the current decision
boundary to refine the learned decision bound-
ary until it eventually approaches the optimal
one (Osugi et al., 2005). However, the initial
approximation can be distorted and converge to
a suboptimal decision boundary when the data
is imbalanced. Specifically, the class distribution
derived from the initial imbalanced labelled set
results in a rough initial decision boundary that
makes the model overconfident about predicting
the majority class everywhere as the low-certainty
regions are just around the minority instances
initially seen (Park et al., 2021). As a result, the

AL strategy fails to explore the input space (Fig. 1)
and keeps refining the known decision boundary
(Baram et al., 2004; Dligach and Palmer, 2011),
a phenomenon that we term path dependence.
Path dependence is exacerbated when minority in-
stances sparsely occupy the input space instead of
forming tight clusters. If the initial set contains mi-
nority instances that are only from a specific cluster
the AL strategy can even exhaust its budget before
discovering new clusters (Attenberg and Provost,
2010; Attenberg and Ertekin, 2013). This issue has
long been studied in AL and historically known
as missed cluster effect (Schütze et al., 2006) or
hasty generalisation (Wallace et al., 2010).

Addressing path dependence and the missed clus-
ter effect is especially relevant in the context of
language models fine-tuning because recent large
pretrained models have the potential to memorise
their entire training data (Kim et al., 2023) and
tend to overfit to the overlapping regions between
classes (Arpit et al., 2017; Zhang et al., 2021).

2.3 Actively Learning Imbalanced Datasets
To address the class imbalance issue in AL, prior
work proposes to change the interaction protocol by
allowing annotators to directly search for instances
to label (Attenberg and Provost, 2010; Balcan and
Hanneke, 2012, inter alia). Similarly, the line of
work in Active Search proposes to directly opti-
mise for the recall of minority instances rather than
model performance, as in typical AL (Garnett et al.,
2012; Jiang et al., 2018, 2019, inter alia). These
approaches propose interaction protocols or objec-
tives that differ from AL and are thus out of the
scope of our paper. Moreover, although search
has been shown to theoretically improve label effi-
ciency (Beygelzimer et al., 2016), in practice it is
significantly more expensive since the annotation
process is more challenging and thus requires more
time. Also, search can be suboptimal beyond the
initial data collection phase (Levonian et al., 2022),
crucially depends on the annotators’ ability to find
useful keywords for the specific domain of interest,
and might not be feasible in some cases: for exam-
ple it might not be possible to search for a specific
hateful sense of a word (Hartford et al., 2020).

Instead, our work finds its roots in Ertekin et al.
(2007) that originally proposed to randomly sam-
ple a fixed-sized subset of the pool at each iteration
to speed up the AL process, an approach that we
refer to as RandSub. While motivated by its purely
computational benefits, our intuition is that pool

8440

filtering can address the imbalance too: choosing a
different subset of the pool in each iteration forces
the AL strategy to explore different parts of the
input space instead of focusing on refining the ini-
tially learned decision boundary. Intuitively, a more
extensive exploration of the input space promotes
the discovery of new minority instances. Recently,
Coleman et al. (2022) showed that random subsam-
pling can be ineffective when the imbalance is high
and proposed SEALS which restricts the pool to
the k-nearest neighbours of all labelled instances.
However, SEALS suffers from computational inef-
ficiencies because the size of the subpool grows
throughout the AL process: when a new instance is
labelled its k neighbours are added to the subpool
and are not removed unless labelled. Also, when
the initial labelled set is small, the resulting initial
subpool is small too (when k is small) or redundant
(when k is large) which makes subsequent subpools
similar to each other thus limiting the exploration
of the input space due to the path dependence.

AnchorAL shares the same motivation as RandSub
and SEALS but proposes an alternative approach
that allows keeping the subpool size fixed across
iterations while still effectively promoting the ex-
ploration of the input space, thus combining the
benefits of both without none of the downsides.
Similarly to RandSub, AnchorAL chooses a different,
fixed-sized subpool at each iteration by selecting
different anchors which makes it dynamically adapt
to the changing labelled set during AL. Instead, for
SEALS the subpool size grows by k units per each
new labelled instance and after a few iterations
the subpool remains almost unchanged because the
new instances are only a small fraction of the en-
tire subpool. Similarly to SEALS, AnchorAL relies
on similarity search to discover minority instances
while RandSub can fail under extreme class imbal-
ance. However, differently from SEALS, AnchorAL
emphasises query selection (i.e., anchors) as it tar-
gets retrieval of useful instances rather than purely
maximising recall of minority instances.

2.4 Active Learning on Large Pools
The computational overhead required by the iter-
ative nature of pool-based AL when applied to
large pools, especially in combination with large
models, can make AL infeasible. Recent work in
computationally efficient AL has proposed to use
smaller models as cheap proxies (Yoo and Kweon,
2019; Coleman et al., 2020, inter alia), selecting
large batches that are both informative and diverse

to reduce the number of labelling iterations nec-
essary to reach a target performance (Sener and
Savarese, 2018; Kirsch et al., 2019; Pinsler et al.,
2019, inter alia), or generating examples (Lin et al.,
2018; Mayer and Timofte, 2020, inter alia). How-
ever, proxies and large-batch approaches still re-
quire evaluation over the entire pool, and generative
methods struggle to match the label efficiency of
traditional AL (Settles, 2012). Instead, AnchorAL
directly limits the size of the pool. Besides the re-
balancing effects discussed in the previous sections,
this approach allows scaling up to large pools any
AL strategies and models without modifications.

Advantages of AnchorAL vs Prior Work

AnchorAL promotes the exploration of the
input space by dynamically selecting differ-
ent anchors which then retrieve a different
subpool at each iteration, thus preventing
the AL strategy from overfitting to the ini-
tial labelled set. Moreover, by keeping the
size of the subpool fixed and small across
iterations, it can scale to large pools, inde-
pendently of their original size.

3 Methodology

We consider the standard pool-based AL setting for
classification tasks (Atlas et al., 1989) wherein we
are given a (large) pool of unlabelled data U and ac-
cess to an oracle f⋆ that given an instance x returns
its true2 label y ∈ {1, ..., C}. The goal is to induce
the best possible classifier f within a fixed anno-
tation budget B. The annotation process happens
iteratively over T iterations. We assume access
to a small initial labelled set D0 with at least one
instance per class used to bootstrap an initial classi-
fier f0. In each iteration, we train a new version of
the classifier ft on the available labelled instances
Dt. Then, the AL strategy Φ uses the model to
inform the selection of the set of instances to an-
notate Bt ⊂ Ut such that |Bt|=⌊B/T ⌋. Finally,
the selected instances are annotated by the oracle,
removed from the pool, and added to the labelled
set; and the cycle repeats.

3.1 AnchorAL: Anchored Pool Filtering

AnchorAL runs the AL strategy only on a subset of
the pool Ũ ⊂ U , such that |Ũ | ≤M≪|U| where
M is a fixed, user-defined upper bound on the sub-

2We do not consider noisy oracles (Settles, 2012).

8441

Algorithm 1 AnchorAL

Require: AL strategy Φ, anchor selection strategy Γ, per-class number of anchors A, per-anchor number
of neighbours K, and maximum subpool size M .

Ensure: Unlabelled pool U0, initial labelled set D0, oracle f⋆, dense index I.

1: for t to T do
2: ft = f.train(Dt) ▷ Train model on the available data
3: At = ∅
4: for c in {1, ..., C} do
5: At ← Γ

(
{x | y= c ∀ (x, y) ∈ Dt};A

)
▷ Select A anchors per class

6: end for
7: Nt = I.kNN(At,Ut;K) ▷ Retrieve K neighbours from the pool
8: Ñt = avg(Nt) ▷ Average similarity scores by instance
9: Ũt = argmax(Ñt; M̄) where M̄ = min{|Ñ |,M} ▷ Keep the top-M̄ instances

10: Bt = Φ(ft, Ũt; b) where b = ⌊B/T ⌋ ▷ Select b instances to label from the subpool
11: Dt+1 = Dt ∪ {(xu, f

⋆(xu)) | xu ∈ Bt} ▷ Label queried instances and add to training set
12: Ut+1 = Ut \ Bt ▷ Remove labelled instances from the pool
13: end for

pool size. To construct the subpool Ũ in a way that
promotes exploration and favours minority cluster
discovery beyond those present in the initial set,
AnchorAL anchors the filtering process to a set of
labelled instances At ⊂ Dt created selecting A
instances from each class, such that |At|=A×C.
These anchors are dynamically selected and differ
at each iteration. Then, the unlabelled instances
are scored based on their average distance from the
anchors and the M̄ ≤M most similar are used as
subpool (Alg. 1). In the following paragraph we
detail these two parts of the algorithm.

Intuition

AnchorAL “biases” the subpool towards
smaller regions of the input space so that
the resulting subpool only represents these
regions and forces the AL strategy to focus
on those. Since anchors are chosen accord-
ing to a diversity criterion, in each iteration
the resulting subpool represents a small and
different region of the input space, thus pro-
moting exploration and consequently selec-
tion of minority instances for labelling.

Anchor Selection (Lines 3 to 6). The anchor
selection strategy Γ can be class-specific but us-
ing only one strategy for all classes is enough in
practice. Similarly, we select the same number of
anchors A=10 per each class. To elicit the discov-
ery of new minority clusters, we choose an anchor
selection strategy that promotes diversity and use

the k-MEANS++ initialisation scheme (Arthur and
Vassilvitskii, 2007).3 It was originally proposed
to produce a good initialisation for k-MEANS clus-
tering (Steinhaus, 1956) and works by iteratively
sampling points in proportion to their squared dis-
tances from the nearest points already chosen. We
run it for each class separately and apply it to the
sentence representations derived as described in the
next paragraph. We discuss other strategies in §6.

Similarity Scoring (Lines 7 to 8). To score un-
labelled instances we need to define a similarity
measure. While any similarity measure works (e.g.,
BM25 by Robertson and Zaragoza, 2009) we use
the semantic representation capabilities of language
models and measure similarity based on cosine dis-
tance between instance representations. Thus, we
construct a dense index I, that is kept fixed for
the entire AL process, using a pre-trained encoder.
Specifically, we use MPNet (Song et al., 2020),
which is specifically trained to use cosine distances
as the similarity function, to encode all available
instances (i.e., U0 ∪ D0). Generating the embed-
dings can be computationally expensive but it is
performed once and its cost is amortised over the
entire AL process. Also, often the encoder has
a similar or smaller size than the model we train,
thus creating the embeddings has approximately
the same cost as running one iteration of standard
AL.4 Given the embeddings, we create a searchable

3As implemented in sklearn.cluster.kmeans_plusplus.
4Encoding can be sped up using efficient procedures

(optimum/fast-mteb) and new encoders (mteb/leaderboard).

8442

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.kmeans_plusplus.html
https://github.com/huggingface/optimum-benchmark/tree/57d69c61be892640d1eb665cc1fe6ab0d8f39c4e/examples/fast-mteb
https://huggingface.co/spaces/mteb/leaderboard

index I using the Hierarchical Navigable Small
World algorithm (Malkov and Yashunin, 2018),5 an
approximate nearest-neighbour search method that
can easily scale to extremely large (>1B) datasets
with retrieval times in the milliseconds (Johnson
et al., 2017; Babenko and Lempitsky, 2016).

To make the scoring mechanism efficient, in-
stead of scoring each unlabelled instance against
each anchor, we retrieve the K = 50 nearest neigh-
bours of each anchor from the pool Nt ⊂ Ut
(Line 7) and the relative similarity scores such that
|Nt| ≤ A×C ×K, where the equality is not strict
because in practice different anchors can retrieve
the same unlabelled instance. When duplicates are
retrieved, we average their similarity scores and get
a de-duplicated set of neighbours, Ñ (Line 8).

Subpool Selection (Line 9). Finally, the M̄ =
min{|Ñ |,M} pool instances with the highest sim-
ilarity score are used as the subpool Ũ to run the
AL strategy. The hyper-parameter M controls the
maximum size of the pool. In our experiments,
we show that values as small as 1k are enough to
achieve good performance. This step is responsible
for the main speed-up provided by AnchorAL.

Tips: Hyper-parameters Settings

The number of anchors per class A and the
number of neighbours retrieved per each
class K should both be set to small values.
Specifically, we suggest setting A to 5-20
and K to 20-50. The intuition is that as A
increases the subpool tends to be similar
to the labelled set, thus failing to break the
path dependence. As K increases the sub-
pool tends to be dominated by majority in-
stances due to the imbalance, thus reducing
the chance of selecting minority instances.

4 Experimental Setup

We mimic a realistic and interactive annotation set-
ting (Grießhaber et al., 2020; Yuan et al., 2020;
Maekawa et al., 2022; Schröder et al., 2022) char-
acterised by a budget of 5k6 annotations and label
25 instances per iteration.7 We start with an initial

5As implemented in the hnswlib library (App. A.1).
6Throughout the paper, we use shorthands for units, that

is, k (thousands), M (millions), and h (hours).
7Note that this setup differs from previous AL studies

(Margatina et al., 2022, 2021; Citovsky et al., 2021, inter alia)
that label a large portion of the pool per iteration (e.g., 1%)
and assume a large validation set throughout the AL process.

Type Model # Params

Encoder BERT-base (Devlin et al., 2019) 110M
BERT-tiny (Turc et al., 2019) 4.4M
ALBERT-base (Lan et al., 2019) 12M
DeBERTa-base (He et al., 2023) 86M

Decoder GPT-2 (Radford et al., 2019) 117M
Enc-Dec T5-base (Raffel et al., 2020) 220M

Table 1: Models overview. We use the checkpoints
available on the HuggingFace Hub ((linked) and loaded
using the AutoModelForSequenceClassification class.

set of 100 instancesD0, containing 5 from each mi-
nority class and the rest from the majority, chosen
randomly. We do not assume access to a validation
set. In each iteration, we re-initialise the model
and train all parameters. We limit each run (i.e.,
training, instance selection, and testing) to 6h to al-
low for thorough experimentation while complying
with our computational budget.8

Evaluation. We use the (macro-averaged) F1-
score on the minority class(es) as our predictive
accuracy metric. For completeness, we report the
majority class performance, too. We evaluate the
model on a held-out set after each iteration and
report the area under the learning curve (AUC)
computed using the trapezoidal rule.9 Moreover,
we report the total (across iterations) instance selec-
tion time as a proxy of the total annotators’ waiting
time, assuming uniform instance annotation diffi-
culty (Settles, 2012). To allow for a more robust
comparison, we use 2 random seeds for each major
source of randomness: model initialisation, data
ordering, and initial data selection resulting in 8
runs per experiment and report the median and in-
terquartile range (Liu et al., 2022).

Baselines. We compare AnchorAL with two pool
filtering methods. RandSub (Ertekin et al., 2007)
samples M̄ instances uniformly at random from the
pool; we set M̄ =10k.10 SEALS (Coleman et al.,
2022) limits the pool to the set of K =50 neigh-
bours of the currently labelled data: after every
instance is selected, its K-nearest neighbours are
added to the pool. Moreover, we compare against
standard AL (No-Op) which considers the entire
pool and random sampling (Random).

8Datasets and experimental artefacts available at hugging-
face.co/collections/pietrolesci/anchoral.

9As implemented in numpy.trapz.
10As it would be done in a real setting, we searched over

a grid of values in 5k-20k for a small budget of 200 labelled
instances and selected the best (speed and AUC) M̄ .

8443

https://github.com/nmslib/hnswlib
https://huggingface.co/bert-base-uncased
https://huggingface.co/google/bert_uncased_L-4_H-256_A-4
https://huggingface.co/albert-base-v2
https://huggingface.co/microsoft/deberta-v3-base
https://huggingface.co/gpt2
https://huggingface.co/t5-base
https://huggingface.co/docs/transformers/v4.36.0/en/model_doc/auto
https://huggingface.co/collections/pietrolesci/anchoral-66103ace42da659656c635d2
https://huggingface.co/collections/pietrolesci/anchoral-66103ace42da659656c635d2
https://numpy.org/doc/stable/reference/generated/numpy.trapz.html

Overall Budget-Matched

Dataset Pool Filtering Budget Majority Minority Time (↓) Majority Minority

Amazon-Agri AnchorAL 3.7k 142.4±0.0 78.1±1.0 4.4±0.1 119.8±0.1 64.9±0.9

RandSub 3.6k 138.3±0.1 65.0±3.2 29.0±0.2 119.6±0.1 54.3±2.0

SEALS 3.2k 123.7±0.0 65.6±0.8 85.4±1.3 119.8±0.0 63.7±1.4

No-Op 475 14.6±0.0 2.9±0.0 6h 14.6±0.0 2.9±0.0

Amazon-Multi AnchorAL 3.6k 109.2±1.7 77.9±9.9 7.8±0.2 92.7±1.7 65.3±12.4

RandSub 3.5k 106.2±0.6 74.7±14.2 26.6±0.3 92.8±0.6 65.0±12.8

SEALS 3.2k 95.3±1.6 69.2±14.7 83.8±2.7 93.2±1.6 67.8±12.6

No-Op 475 10.8±0.3 4.7±3.2 6h 10.8±0.3 4.7±3.2

WikiToxic AnchorAL 4.2k 128.1±0.6 119.0±1.2 2.6±0.0 106.6±0.5 99.0±1.1

RandSub 4.0k 119.4±0.2 107.4±0.8 20.4±0.8 104.7±0.4 94.6±1.4

SEALS 3.6k 109.6±0.7 100.6±1.8 60.9±1.5 105.9±0.5 97.6±1.3

No-Op 2.9k 88.3±0.4 80.8±1.0 6h 88.3±0.4 80.8±1.0

Agnews-Bus AnchorAL 5k 179.2±0.1 118.2±1.3 2.7±0.1

RandSub 5k 179.2±0.4 118.0±4.0 21.5±0.1 same as Overall
SEALS 5k 179.6±0.1 120.8±0.8 62.2±1.3

Table 2: AUC of the F1-score, total annotated budget, and total instance selection time for the BERT-base model and
Entropy AL strategy. Median and interquartile range across 8 runs.

AL Strategies. We use one AL strategy from
each type of AL approach (Dasgupta, 2011). En-
tropy (Joshi et al., 2009, uncertainty-based) se-
lects instances with the highest predictive entropy.
FT-BERTKM (Yuan et al., 2020, diversity-based)
chooses instances nearest to cluster centres ob-
tained running k-MEANS clustering with k equal to
the number of instances to label. Finally, BADGE
(Ash et al., 2020, hybrid) selects instances using
the k-MEANS++ initialisation scheme applied to
the gradient embeddings. More details in App. A.

Models. We consider 6 models of different sizes
and architectures (Table 1). Following the trans-
formers library (Wolf et al., 2020) implementation,
we add a linear layer to the model representations:
the [CLS] token for encoders, the last non-padding
token for decoders, and the end-of-sequence token
for encoder-decoders. Training details in App. A.

Datasets. We consider 4 text classification tasks,
both binary and multiclass. Using the AmazonCat-
13k dataset (McAuley and Leskovec, 2013) we con-
struct the Amazon-Agri task, selecting the “agricul-
ture” (0.09%) category as target, and the Amazon-
Multi task which also has “archaeology” (0.09%),
“audio” (0.56%), and “philosophy” (0.78%). More-
over, we consider the WikiToxic (Adams et al., 2017)
and Agnews-Bus—i.e., Agnews (Zhang et al., 2015)
binarised using the “business” topic as the target—
tasks. We make them imbalanced downsampling
their minority class to 1%. More details in App. B.

5 Results

Table 2 summarises a subset of our results for the
BERT-base model and the Entropy strategy. The full
results table in App. C provides similar insights for
the other models and AL strategies. Since we limit
the duration of each run to 6h, slow pool filtering
strategies might not be able to execute all iterations
within the time budget. Thus, we report metrics
at the end of the 6h time budget (“Overall”) and
at the biggest common iteration completed by all
methods (“Budget-Matched”).11 For each experi-
ment, we report the total annotated budget within
the 6h limit (“Budget”), the AUC of the (macro-
averaged) F1-score on the majority (“Majority”)
and minority (“Minority”) classes, and the total
instances selection time (“Time”).

Cost Efficiency. Broadly, the overall annotation
cost can be divided into the cost of the compute
needed to run inference on the pool and the cost
of the human annotation. Pool filtering methods
reduce both cost components by considering only
a subset of the pool in each iteration: fewer in-
stances require less compute and are faster to pro-
cess which makes annotators spend less time wait-
ing for instances to label resulting in more annota-
tions within the same time budget. AnchorAL is the

11For example, if SEALS only completes t̂ steps within
the available time while AnchorAL manages to complete all
iterations, the Budget-Matched performance compares the
results after t̂× b instances are annotated.

8444

Figure 3: Proportion of minority instances (y-axis) dis-
covered within 1k annotations (x-axis). Geometric aver-
age across all AL strategies considered for BERT-base.

fastest method overall, reducing the total annota-
tors’ waiting time (“Time” column) from hours to
less than 5 minutes and labelling the most instances
within the time budget (“Budget” column).

AnchorAL is faster because it returns a smaller
subpool than the other methods (Fig. 2 panel a).
For example, AnchorAL returns <1k instances at
each iteration for the binary tasks while in SEALS,
by design, the subpool grows across iterations and
for RandSub a larger subpool is required to achieve
good performance. In theory, RandSub can be made
arbitrarily fast by choosing a small M̄ but it comes
with high performance costs. For example, setting
M̄ = 1k, similar to AnchorAL, results in a dramatic
performance drop (Table 3 last row). In the limiting
case of setting M̄ = b RandSub reduces to Random.

Performance. AnchorAL is the best-performing
method for both minority and majority classes
per time- (“Overall” columns) and budget-unit
(“Budget-Matched” columns) across models and
AL strategies. The only exception is Agnews-Bus
where it slightly underperforms SEALS on the mi-
nority class(es). We hypothesise that this might
be an artefact of the downsampling procedure we
applied to this task to make it imbalanced: minority
instances may be near the initial decision boundary,

Figure 4: Proportion of minority instances (y-axis) in
the subpool at each iteration (x-axis). Geometric aver-
age across all AL strategies considered for BERT-base.

making exploration of the input space detrimental.
Furthermore, we notice that RandSub is a stronger
baseline than reported by Coleman et al. (2022).
We hypothesise that this discrepancy depends on
the fact that we train the entire model rather than
only the classification head.

Discovery of Minority Instances. Although our
primary goal in applying AL is to induce a good
predictive model, we also report the number of
minority instances discovered by each method in
Fig. 3, which is likely to be indicative of the useful-
ness of the annotations when re-used for training
other models. At every iteration, AnchorAL dis-
covers more minority instances than the baselines
resulting in a more balanced labelled set.

Contributions

AnchorAL is the fastest method, reducing
the total selection time from hours to min-
utes, thus allowing for an interactive annota-
tion setup. It is (often) the best-performing,
reaching higher performance in less time
and with fewer annotations. Finally, it dis-
covers the most minority instances resulting
in more balanced labelled sets.

8445

Γmaj Γmin A K Maj. Min. Time

kM++ kM++ 10 50 134.5 73.5 4.1

Ent kM++ 10 50 134.5 71.5 12.7
Ent Ent 10 50 134.5 71.4 12.8

kM++ kM++ 50 50 134.5 72.6 14.7
kM++ kM++ 100 50 134.5 72.2 24.8

kM++ kM++ 10 500 134.5 70.7 30.1
kM++ kM++ 10 5k 134.5 68.3 39.0

No anchoring 133.7 33.6 3.4

Table 3: Effect of hyper-parameters on AnchorAL’s per-
formance (F1-score) for the BERT-base model on the
Amazon-Agri task using the Entropy AL strategy. Defaults
in the top row, changes highlighted in grey .

6 Analysis

In this section, we study AnchorAL’s anchoring
mechanism. This mechanism is the core com-
ponent allowing AnchorAL to reach higher perfor-
mance despite using a fixed-sized, small subpool.
Everything else being equal, if the anchoring mech-
anism is turned off the performance is dramati-
cally affected, as shown in the last row of Table 3
which reports the performance of AnchorAL with
no anchoring. We analyse the composition of the
subpool at each iteration and test the effects of dif-
ferent hyper-parameters settings on performance
by experimenting with the BERT-base model on the
Amazon-Agri dataset using the Entropy strategy.

6.1 Subpool Composition

The anchoring mechanism determines the composi-
tion of the subpool. In Fig. 4 we report the propor-
tion of minority instances in the subpool returned
by the methods considered. We observe that, across
iterations, AnchorAL consistently returns subpools
with more minority instances; this results in more
balanced labelled sets, as shown in Fig. 3, and ul-
timately better performance. Therefore, the key
intuition in AnchorAL is to return a more balanced
subpool which allows any AL strategy to discover
and select minority instances more easily, without
the need for a large subpool (e.g., like RandSub)
which reduces the instance selection time.

6.2 Ablations

The anchoring mechanism is controlled by three
hyperparameters: the number of anchors selected
per class (A), the anchor selection strategy (Γ),
and the number of neighbours retrieved from the
subpool per anchor (K). Together, A and K control

the size of the resulting subpool while Γ determines
which anchors are selected and, thus, which part of
the input space to explore. In §3 we presented our
default settings; here we motivate their choice.

Anchor Selection Strategy (Γ). We experiment
with different anchor selection strategies for both
majority (Γmaj) and minority (Γmin) anchors (Ta-
ble 3 row 2-3). As the alternative strategy, we use
the entropy of the model. The reasoning is as fol-
lows: since the model knows the majority better
than the minority class(es) it might be informative
in choosing majority instances near the decision
boundary. Overall, we report a negative effect, even
more pronounced when entropy is used to select
minority anchors too. We hypothesise that using
a model-agnostic anchors selection strategy (e.g.,
k-MEANS++) avoids propagating the initial biases
of the model in the selection of the instances.

Number of Anchors (A). We vary the number of
anchors from 10 to 50 and 100 (Table 3 row 4-5).
First, note that using all the labelled data as an-
chors at each iteration becomes quickly impractical
(e.g., like SEALS); since only a few iterations are
completed within the 6h limit, the performance is
almost zero and we omit it. Second, there is a neg-
ative correlation between the number of anchors
and performance. We hypothesise this is due to
the bigger and more imbalanced resulting subpool
which decreases the benefits of AnchorAL.

Number of Neighbours (K). We change the de-
fault number of neighbours from 50 to 500 and 5k
(Table 3 row 6-7). Performance degrades as we
retrieve more neighbours from the pool. Moreover,
as the resulting subpool is bigger, instance selec-
tion time increases even though it plateaus after
500 as the anchors retrieve the same instances that
are then aggregated (Alg. 1-Line 8).

7 Conclusions

We propose AnchorAL, a novel pool filtering method
designed to scale AL to large pools while address-
ing class imbalance. AnchorAL uses the semantic
representation capabilities of language models to
explore the input space and create a fixed-sized,
smaller, more balanced, and different subpool in
each iteration. By running the AL strategy on the
subpool, AnchorAL promotes the discovery of mi-
nority instances, prevents overfitting to the initial
labelled set, and obtains a constant instance selec-
tion time, independently of the original pool size.

8446

Limitations

In this section, we discuss the limitations of the
scope of this work and the threats to the external
validity of our results.

Languages. We experimented with a limited
number of languages (only English). We do
not have experimental evidence that our method
can work for other languages for which good
embedding models are not available. Still, our
approach has been built without any language-
specific constraints or resources. Our method can
be applied to any other language for which these
resources are available.

Realism. Recent AL research emphasises the em-
pirical evaluation of classifier performance result-
ing from simulated experiments. However, this ide-
alised setting tacitly makes assumptions that cannot
be true in real-world settings (Margatina and Ale-
tras, 2023); for example, a perfect oracle, uniform
annotation difficulty, and the possibility to monitor
the performance of the AL strategy on a test set
while training (Wallace et al., 2010; Levonian et al.,
2022). Our paper suffers from these limitations too,
even though we strived to address the annotators’
waiting time issue. We leave for future work ex-
ploring methods to make AnchorAL more suited for
practical use in real-world annotation settings.

Acknowledgements

This project has received
funding from the Euro-
pean Research Council

(ERC) under the European Union’s Horizon
2020 Research and Innovation programme grant
AVeriTeC (Grant agreement No. 865958). We
thank the anonymous reviewers for their helpful
questions and comments that helped us improve
the paper. We thank Tiago Pimentel, Davide Lesci,
and Marco Lesci for their help in proofreading the
final version of the paper.

References
C.J. Adams, Jeffrey Sorensen, Julia Elliott, Lucas Dixon,

Mark McDonald, Nithum Thain, and Will Cukierski.
2017. Toxic comment classification challenge.

Devansh Arpit, Stanisław Jastrzębski, Nicolas Ballas,
David Krueger, Emmanuel Bengio, Maxinder S. Kan-
wal, Tegan Maharaj, Asja Fischer, Aaron Courville,
Yoshua Bengio, and Simon Lacoste-Julien. 2017. A

closer look at memorization in deep networks. In
Proceedings of the 34th International Conference on
Machine Learning, pages 233–242. PMLR.

David Arthur and Sergei Vassilvitskii. 2007. K-
Means++: The advantages of careful seeding. In Pro-
ceedings of the Eighteenth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA ’07, pages
1027–1035, USA. Society for Industrial and Applied
Mathematics.

Jordan T. Ash, Chicheng Zhang, Akshay Krishnamurthy,
John Langford, and Alekh Agarwal. 2020. Deep
batch active learning by diverse, uncertain gradient
lower bounds. In International Conference on Learn-
ing Representations.

Les Atlas, David Cohn, and Richard Ladner. 1989.
Training connectionist networks with queries and se-
lective sampling. In Advances in Neural Information
Processing Systems, volume 2. Morgan-Kaufmann.

Josh Attenberg and Şeyda Ertekin. 2013. Class imbal-
ance and active learning. In Imbalanced Learning,
chapter 6, pages 101–149. John Wiley & Sons, Ltd.

Josh Attenberg and Foster Provost. 2010. Why label
when you can search?: Alternatives to active learning
for applying human resources to build classification
models under extreme class imbalance. In Proceed-
ings of the 16th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining,
pages 423–432, Washington DC USA. ACM.

Artem Babenko and Victor Lempitsky. 2016. Efficient
indexing of billion-scale datasets of deep descriptors.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 2055–2063.

Maria-Florina Balcan, Alina Beygelzimer, and John
Langford. 2009. Agnostic active learning. Journal
of Computer and System Sciences, 75(1):78–89.

Maria Florina Balcan and Steve Hanneke. 2012. Ro-
bust interactive learning. In Proceedings of the 25th
Annual Conference on Learning Theory, pages 20.1–
20.34. JMLR Workshop and Conference Proceed-
ings.

Maria-Florina Balcan, Steve Hanneke, and Jen-
nifer Wortman Vaughan. 2010. The true sample
complexity of active learning. Machine Learning,
80(2):111–139.

Yoram Baram, Ran El Yaniv, and Kobi Luz. 2004. On-
line choice of active learning algorithms. Journal of
Machine Learning Research, 5(Mar):255–291.

Alina Beygelzimer, Daniel J Hsu, John Langford, and
Chicheng Zhang. 2016. Search improves label for
active learning. In Advances in Neural Information
Processing Systems, volume 29. Curran Associates,
Inc.

8447

https://kaggle.com/competitions/jigsaw-toxic-comment-classification-challenge
https://proceedings.mlr.press/v70/arpit17a.html
https://proceedings.mlr.press/v70/arpit17a.html
https://dl.acm.org/doi/10.5555/1283383.1283494
https://dl.acm.org/doi/10.5555/1283383.1283494
https://openreview.net/forum?id=ryghZJBKPS
https://openreview.net/forum?id=ryghZJBKPS
https://openreview.net/forum?id=ryghZJBKPS
https://proceedings.neurips.cc/paper/1989/hash/b1a59b315fc9a3002ce38bbe070ec3f5-Abstract.html
https://proceedings.neurips.cc/paper/1989/hash/b1a59b315fc9a3002ce38bbe070ec3f5-Abstract.html
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118646106.ch6
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118646106.ch6
https://doi.org/10.1145/1835804.1835859
https://doi.org/10.1145/1835804.1835859
https://doi.org/10.1145/1835804.1835859
https://doi.org/10.1145/1835804.1835859
https://www.cv-foundation.org/openaccess/content_cvpr_2016/html/Babenko_Efficient_Indexing_of_CVPR_2016_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2016/html/Babenko_Efficient_Indexing_of_CVPR_2016_paper.html
https://doi.org/10.1016/j.jcss.2008.07.003
https://proceedings.mlr.press/v23/balcan12c.html
https://proceedings.mlr.press/v23/balcan12c.html
https://doi.org/10.1007/s10994-010-5174-y
https://doi.org/10.1007/s10994-010-5174-y
https://www.jmlr.org/papers/v5/baram04a.html
https://www.jmlr.org/papers/v5/baram04a.html
https://papers.nips.cc/paper_files/paper/2016/hash/4f398cb9d6bc79ae567298335b51ba8a-Abstract.html
https://papers.nips.cc/paper_files/paper/2016/hash/4f398cb9d6bc79ae567298335b51ba8a-Abstract.html

Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ
Altman, Simran Arora, Sydney von Arx, Michael S.
Bernstein, Jeannette Bohg, Antoine Bosselut, Emma
Brunskill, Erik Brynjolfsson, Shyamal Buch, Dallas
Card, Rodrigo Castellon, Niladri Chatterji, Annie
Chen, Kathleen Creel, Jared Quincy Davis, Dora
Demszky, Chris Donahue, Moussa Doumbouya,
Esin Durmus, Stefano Ermon, John Etchemendy,
Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor
Gale, Lauren Gillespie, Karan Goel, Noah Goodman,
Shelby Grossman, Neel Guha, Tatsunori Hashimoto,
Peter Henderson, John Hewitt, Daniel E. Ho, Jenny
Hong, Kyle Hsu, Jing Huang, Thomas Icard, Saahil
Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth
Karamcheti, Geoff Keeling, Fereshte Khani, Omar
Khattab, Pang Wei Koh, Mark Krass, Ranjay Kr-
ishna, Rohith Kuditipudi, Ananya Kumar, Faisal Lad-
hak, Mina Lee, Tony Lee, Jure Leskovec, Isabelle
Levent, Xiang Lisa Li, Xuechen Li, Tengyu Ma,
Ali Malik, Christopher D. Manning, Suvir Mirchan-
dani, Eric Mitchell, Zanele Munyikwa, Suraj Nair,
Avanika Narayan, Deepak Narayanan, Ben Newman,
Allen Nie, Juan Carlos Niebles, Hamed Nilforoshan,
Julian Nyarko, Giray Ogut, Laurel Orr, Isabel Pa-
padimitriou, Joon Sung Park, Chris Piech, Eva Porte-
lance, Christopher Potts, Aditi Raghunathan, Rob
Reich, Hongyu Ren, Frieda Rong, Yusuf Roohani,
Camilo Ruiz, Jack Ryan, Christopher Ré, Dorsa
Sadigh, Shiori Sagawa, Keshav Santhanam, Andy
Shih, Krishnan Srinivasan, Alex Tamkin, Rohan
Taori, Armin W. Thomas, Florian Tramèr, Rose E.
Wang, William Wang, Bohan Wu, Jiajun Wu, Yuhuai
Wu, Sang Michael Xie, Michihiro Yasunaga, Jiaxuan
You, Matei Zaharia, Michael Zhang, Tianyi Zhang,
Xikun Zhang, Yuhui Zhang, Lucia Zheng, Kaitlyn
Zhou, and Percy Liang. 2022. On the opportunities
and risks of foundation models.

N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P.
Kegelmeyer. 2002. SMOTE: Synthetic minority over-
sampling technique. Journal of Artificial Intelligence
Research, 16:321–357.

Gui Citovsky, Giulia DeSalvo, Claudio Gentile, Lazaros
Karydas, Anand Rajagopalan, Afshin Rostamizadeh,
and Sanjiv Kumar. 2021. Batch active learning at
scale. In Advances in Neural Information Processing
Systems, volume 34, pages 11933–11944. Curran
Associates, Inc.

Cody Coleman, Edward Chou, Julian Katz-Samuels,
Sean Culatana, Peter Bailis, Alexander C. Berg,
Robert Nowak, Roshan Sumbaly, Matei Zaharia, and
I. Zeki Yalniz. 2022. Similarity search for efficient
active learning and search of rare concepts. In Pro-
ceedings of the First MiniCon Conference.

Cody Coleman, Christopher Yeh, Stephen Mussmann,
Baharan Mirzasoleiman, Peter Bailis, Percy Liang,
Jure Leskovec, and Matei Zaharia. 2020. Selection
via proxy: Efficient data selection for deep learning.
In International Conference on Learning Representa-
tions.

Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and
Serge Belongie. 2019. Class-balanced loss based
on effective number of samples. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 9268–9277.

Sanjoy Dasgupta. 2011. Two faces of active learning.
Theoretical Computer Science, 412(19):1767–1781.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North, pages 4171–4186, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Dmitriy Dligach and Martha Palmer. 2011. Good seed
makes a good crop: Accelerating active learning us-
ing language modeling. In Proceedings of the 49th
Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages
6–10, Portland, Oregon, USA. Association for Com-
putational Linguistics.

Qi Dong, Shaogang Gong, and Xiatian Zhu. 2017. Class
rectification hard mining for imbalanced deep learn-
ing. In Proceedings of the IEEE International Con-
ference on Computer Vision, pages 1851–1860.

Seyda Ertekin, Jian Huang, Leon Bottou, and Lee Giles.
2007. Learning on the border: Active learning in
imbalanced data classification. In Proceedings of the
sixteenth ACM conference on Conference on infor-
mation and knowledge management, pages 127–136,
Lisbon Portugal. ACM.

Roman Garnett, Yamuna Krishnamurthy, Xuehan
Xiong, Jeff Schneider, and Richard Mann. 2012.
Bayesian optimal active search and surveying. In
Proceedings of the 29th International Coference
on International Conference on Machine Learning,
ICML’12, pages 843–850, Madison, WI, USA. Om-
nipress.

Daniel Grießhaber, Johannes Maucher, and Ngoc Thang
Vu. 2020. Fine-tuning BERT for low-resource nat-
ural language understanding via active learning. In
Proceedings of the 28th International Conference
on Computational Linguistics, pages 1158–1171,
Barcelona, Spain (Online). International Committee
on Computational Linguistics.

Suchin Gururangan, Dallas Card, Sarah Dreier, Emily
Gade, Leroy Wang, Zeyu Wang, Luke Zettlemoyer,
and Noah A. Smith. 2022. Whose language counts
as high quality? Measuring language ideologies in
text data selection. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, pages 2562–2580, Abu Dhabi, United
Arab Emirates. Association for Computational Lin-
guistics.

Steve Hanneke. 2007. A bound on the label complexity
of agnostic active learning. In Proceedings of the
24th International Conference on Machine Learning,
ICML ’07, pages 353–360, New York, NY, USA.
Association for Computing Machinery.

8448

https://doi.org/10.48550/arXiv.2108.07258
https://doi.org/10.48550/arXiv.2108.07258
https://doi.org/10.1613/jair.953
https://doi.org/10.1613/jair.953
https://proceedings.neurips.cc/paper/2021/hash/64254db8396e404d9223914a0bd355d2-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/64254db8396e404d9223914a0bd355d2-Abstract.html
https://aaai-2022.virtualchair.net/poster_aaai12967
https://aaai-2022.virtualchair.net/poster_aaai12967
https://openreview.net/forum?id=HJg2b0VYDr
https://openreview.net/forum?id=HJg2b0VYDr
https://openaccess.thecvf.com/content_CVPR_2019/html/Cui_Class-Balanced_Loss_Based_on_Effective_Number_of_Samples_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Cui_Class-Balanced_Loss_Based_on_Effective_Number_of_Samples_CVPR_2019_paper.html
https://doi.org/10.1016/j.tcs.2010.12.054
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/P11-2002
https://aclanthology.org/P11-2002
https://aclanthology.org/P11-2002
https://openaccess.thecvf.com/content_iccv_2017/html/Dong_Class_Rectification_Hard_ICCV_2017_paper.html
https://openaccess.thecvf.com/content_iccv_2017/html/Dong_Class_Rectification_Hard_ICCV_2017_paper.html
https://openaccess.thecvf.com/content_iccv_2017/html/Dong_Class_Rectification_Hard_ICCV_2017_paper.html
https://doi.org/10.1145/1321440.1321461
https://doi.org/10.1145/1321440.1321461
https://icml.cc/2012/papers/618.pdf
https://doi.org/10.18653/v1/2020.coling-main.100
https://doi.org/10.18653/v1/2020.coling-main.100
https://aclanthology.org/2022.emnlp-main.165
https://aclanthology.org/2022.emnlp-main.165
https://aclanthology.org/2022.emnlp-main.165
https://doi.org/10.1145/1273496.1273541
https://doi.org/10.1145/1273496.1273541

Steve Hanneke. 2011. Rates of convergence in active
learning. The Annals of Statistics, 39(1):333–361.

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der
Walt, Ralf Gommers, Pauli Virtanen, David Cour-
napeau, Eric Wieser, Julian Taylor, Sebastian Berg,
Nathaniel J. Smith, Robert Kern, Matti Picus,
Stephan Hoyer, Marten H. van Kerkwijk, Matthew
Brett, Allan Haldane, Jaime Fernández del Río, Mark
Wiebe, Pearu Peterson, Pierre Gérard-Marchant,
Kevin Sheppard, Tyler Reddy, Warren Weckesser,
Hameer Abbasi, Christoph Gohlke, and Travis E.
Oliphant. 2020. Array programming with NumPy.
Nature, 585(7825):357–362.

Jason S Hartford, Kevin Leyton-Brown, Hadas Raviv,
Dan Padnos, Shahar Lev, and Barak Lenz. 2020. Ex-
emplar guided active learning. In Advances in Neural
Information Processing Systems, volume 33, pages
13163–13173. Curran Associates, Inc.

Haibo He and Edwardo A. Garcia. 2009. Learning from
imbalanced data. IEEE Transactions on Knowledge
and Data Engineering, 21(9):1263–1284.

Pengcheng He, Jianfeng Gao, and Weizhu Chen.
2023. DeBERTaV3: Improving DeBERTa us-
ing ELECTRA-style pre-training with gradient-
disentangled embedding sharing. In The Eleventh
International Conference on Learning Representa-
tions.

Sophie Henning, William Beluch, Alexander Fraser, and
Annemarie Friedrich. 2023. A survey of methods for
addressing class imbalance in deep-learning based
natural language processing. In European Chapter of
the Association for Computational Linguistics (EACL
2023).

Shali Jiang, Roman Garnett, and Benjamin Moseley.
2019. Cost effective active search. In Advances in
Neural Information Processing Systems, volume 32.
Curran Associates, Inc.

Shali Jiang, Gustavo Malkomes, Matthew Abbott, Ben-
jamin Moseley, and Roman Garnett. 2018. Efficient
nonmyopic batch active search. In Advances in Neu-
ral Information Processing Systems, volume 31. Cur-
ran Associates, Inc.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2017.
Billion-scale similarity search with GPUs.

Justin M. Johnson and Taghi M. Khoshgoftaar. 2019.
Survey on deep learning with class imbalance. Jour-
nal of Big Data, 6(1):27.

Ajay J. Joshi, Fatih Porikli, and Nikolaos Pa-
panikolopoulos. 2009. Multi-class active learning
for image classification. In 2009 IEEE Conference
on Computer Vision and Pattern Recognition, pages
2372–2379.

Jaeyoung Kim, Dongbin Na, Sungchul Choi, and Sung-
bin Lim. 2023. Bag of tricks for in-distribution cali-
bration of pretrained transformers. In Findings of the

Association for Computational Linguistics: EACL
2023, pages 551–563, Dubrovnik, Croatia. Associa-
tion for Computational Linguistics.

Andreas Kirsch, Joost van Amersfoort, and Yarin Gal.
2019. BatchBALD: Efficient and diverse batch ac-
quisition for deep bayesian active learning. In Ad-
vances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. ALBERT: A lite BERT for self-supervised
learning of language representations. In Interna-
tional Conference on Learning Representations.

Katherine Lee, Daphne Ippolito, Andrew Nystrom,
Chiyuan Zhang, Douglas Eck, Chris Callison-Burch,
and Nicholas Carlini. 2022. Deduplicating training
data makes language models better. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 8424–8445, Dublin, Ireland. Association for
Computational Linguistics.

Zachary Levonian, Chia-Jung Lee, Vanessa Murdock,
and F. Maxwell Harper. 2022. Trade-offs in sampling
and search for early-stage interactive text classifica-
tion. In 27th International Conference on Intelligent
User Interfaces, IUI ’22, pages 566–583, New York,
NY, USA. Association for Computing Machinery.

Christopher Lin, Mausam Mausam, and Daniel Weld.
2018. Active learning with unbalanced classes
and example-generation queries. Proceedings of
the AAAI Conference on Human Computation and
Crowdsourcing, 6:98–107.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He,
and Piotr Dollar. 2017. Focal loss for dense object
detection. In Proceedings of the IEEE International
Conference on Computer Vision, pages 2980–2988.

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mo-
hta, Tenghao Huang, Mohit Bansal, and Colin A. Raf-
fel. 2022. Few-shot parameter-efficient fine-tuning
is better and cheaper than in-context learning. Ad-
vances in Neural Information Processing Systems,
35:1950–1965.

Ilya Loshchilov and Frank Hutter. 2018. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Seiji Maekawa, Dan Zhang, Hannah Kim, Sajjadur Rah-
man, and Estevam Hruschka. 2022. Low-resource
interactive active labeling for fine-tuning language
models. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2022, pages 3230–3242,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Yu A. Malkov and D. A. Yashunin. 2018. Efficient
and robust approximate nearest neighbor search us-
ing hierarchical navigable small world graphs. IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence, 42(4):824–836.

8449

https://doi.org/10.1214/10-AOS843
https://doi.org/10.1214/10-AOS843
https://doi.org/10.1038/s41586-020-2649-2
https://proceedings.neurips.cc/paper/2020/hash/993edc98ca87f7e08494eec37fa836f7-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/993edc98ca87f7e08494eec37fa836f7-Abstract.html
https://doi.org/10.1109/TKDE.2008.239
https://doi.org/10.1109/TKDE.2008.239
https://openreview.net/forum?id=sE7-XhLxHA
https://openreview.net/forum?id=sE7-XhLxHA
https://openreview.net/forum?id=sE7-XhLxHA
https://doi.org/10.48550/arXiv.2210.04675
https://doi.org/10.48550/arXiv.2210.04675
https://doi.org/10.48550/arXiv.2210.04675
https://proceedings.neurips.cc/paper_files/paper/2019/file/df0e09d6f25a15a815563df9827f48fa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/a7aeed74714116f3b292a982238f83d2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/a7aeed74714116f3b292a982238f83d2-Paper.pdf
https://doi.org/10.48550/arXiv.1702.08734
https://doi.org/10.1186/s40537-019-0192-5
https://doi.org/10.1109/CVPR.2009.5206627
https://doi.org/10.1109/CVPR.2009.5206627
https://aclanthology.org/2023.findings-eacl.40
https://aclanthology.org/2023.findings-eacl.40
https://proceedings.neurips.cc/paper_files/paper/2019/file/95323660ed2124450caaac2c46b5ed90-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/95323660ed2124450caaac2c46b5ed90-Paper.pdf
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://doi.org/10.18653/v1/2022.acl-long.577
https://doi.org/10.18653/v1/2022.acl-long.577
https://doi.org/10.1145/3490099.3511134
https://doi.org/10.1145/3490099.3511134
https://doi.org/10.1145/3490099.3511134
https://doi.org/10.1609/hcomp.v6i1.13334
https://doi.org/10.1609/hcomp.v6i1.13334
https://openaccess.thecvf.com/content_iccv_2017/html/Lin_Focal_Loss_for_ICCV_2017_paper.html
https://openaccess.thecvf.com/content_iccv_2017/html/Lin_Focal_Loss_for_ICCV_2017_paper.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/0cde695b83bd186c1fd456302888454c-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/0cde695b83bd186c1fd456302888454c-Abstract-Conference.html
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://aclanthology.org/2022.findings-emnlp.235
https://aclanthology.org/2022.findings-emnlp.235
https://aclanthology.org/2022.findings-emnlp.235
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.1109/TPAMI.2018.2889473

Katerina Margatina and Nikolaos Aletras. 2023. On
the limitations of simulating active learning. In Find-
ings of the Association for Computational Linguis-
tics: ACL 2023, pages 4402–4419, Toronto, Canada.
Association for Computational Linguistics.

Katerina Margatina, Loic Barrault, and Nikolaos Ale-
tras. 2022. On the importance of effectively adapting
pretrained language models for active learning. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 825–836, Dublin, Ireland. As-
sociation for Computational Linguistics.

Katerina Margatina, Giorgos Vernikos, Loïc Barrault,
and Nikolaos Aletras. 2021. Active learning by ac-
quiring contrastive examples. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 650–663, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Christoph Mayer and Radu Timofte. 2020. Adversarial
sampling for active learning. In 2020 IEEE Win-
ter Conference on Applications of Computer Vision
(WACV), pages 3060–3068, Snowmass Village, CO,
USA. IEEE.

Julian McAuley and Jure Leskovec. 2013. Hidden fac-
tors and hidden topics: Understanding rating dimen-
sions with review text. In Proceedings of the 7th
ACM Conference on Recommender Systems, RecSys
’13, pages 165–172, New York, NY, USA. Associa-
tion for Computing Machinery.

Sankha Subhra Mullick, Shounak Datta, and Swagatam
Das. 2019. Generative adversarial minority oversam-
pling. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 1695–1704.

T. Osugi, Deng Kim, and S. Scott. 2005. Balancing
exploration and exploitation: A new algorithm for
active machine learning. In Fifth IEEE International
Conference on Data Mining (ICDM’05), pages 8–16.

Seulki Park, Jongin Lim, Younghan Jeon, and Jin Young
Choi. 2021. Influence-balanced loss for imbal-
anced visual classification. In Proceedings of the
IEEE/CVF International Conference on Computer
Vision, pages 735–744.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. PyTorch:
An imperative style, high-performance deep learning
library. In Advances in Neural Information Process-
ing Systems, volume 32. Curran Associates, Inc.

Robert Pinsler, Jonathan Gordon, Eric Nalisnick, and
José Miguel Hernández-Lobato. 2019. Bayesian
batch active learning as sparse subset approxima-
tion. In Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for Com-
putational Linguistics.

Stephen Robertson and Hugo Zaragoza. 2009. The
probabilistic relevance framework: Bm25 and be-
yond. Found. Trends Inf. Retr., 3(4):333–389.

Christopher Schröder, Andreas Niekler, and Martin
Potthast. 2022. Revisiting uncertainty-based query
strategies for active learning with transformers. In
Findings of the Association for Computational Lin-
guistics: ACL 2022, pages 2194–2203, Dublin, Ire-
land. Association for Computational Linguistics.

Hinrich Schütze, Emre Velipasaoglu, and Jan O. Peder-
sen. 2006. Performance thresholding in practical text
classification. In Proceedings of the 15th ACM Inter-
national Conference on Information and Knowledge
Management, CIKM ’06, pages 662–671, New York,
NY, USA. Association for Computing Machinery.

Ozan Sener and Silvio Savarese. 2018. Active learn-
ing for convolutional neural networks: A core-set
approach. In International Conference on Learning
Representations.

Burr Settles. 2012. Active Learning. Synthesis Lec-
tures on Artificial Intelligence and Machine Learning.
Springer International Publishing, Cham.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-
Yan Liu. 2020. MPNet: Masked and permuted pre-
training for language understanding. In Advances in
Neural Information Processing Systems, volume 33,
pages 16857–16867. Curran Associates, Inc.

H. Steinhaus. 1956. Sur la division des corps matériels
en parties. Bull. Acad. Polon. Sci. Cl. III., 4:801–804.

Srikanth Thudumu, Philip Branch, Jiong Jin, and Jug-
dutt (Jack) Singh. 2020. A comprehensive survey of
anomaly detection techniques for high dimensional
big data. Journal of Big Data, 7(1):42.

Katrin Tomanek, Florian Laws, Udo Hahn, and Hin-
rich Schütze. 2009. On proper unit selection in Ac-
tive Learning: Co-selection effects for named entity
recognition. In Proceedings of the NAACL HLT 2009
Workshop on Active Learning for Natural Language

8450

https://doi.org/10.18653/v1/2023.findings-acl.269
https://doi.org/10.18653/v1/2023.findings-acl.269
https://doi.org/10.18653/v1/2022.acl-short.93
https://doi.org/10.18653/v1/2022.acl-short.93
https://doi.org/10.18653/v1/2021.emnlp-main.51
https://doi.org/10.18653/v1/2021.emnlp-main.51
https://doi.org/10.1109/WACV45572.2020.9093556
https://doi.org/10.1109/WACV45572.2020.9093556
https://doi.org/10.1145/2507157.2507163
https://doi.org/10.1145/2507157.2507163
https://doi.org/10.1145/2507157.2507163
https://openaccess.thecvf.com/content_ICCV_2019/html/Mullick_Generative_Adversarial_Minority_Oversampling_ICCV_2019_paper.html
https://openaccess.thecvf.com/content_ICCV_2019/html/Mullick_Generative_Adversarial_Minority_Oversampling_ICCV_2019_paper.html
https://doi.org/10.1109/ICDM.2005.33
https://doi.org/10.1109/ICDM.2005.33
https://doi.org/10.1109/ICDM.2005.33
https://openaccess.thecvf.com/content/ICCV2021/html/Park_Influence-Balanced_Loss_for_Imbalanced_Visual_Classification_ICCV_2021_paper.html
https://openaccess.thecvf.com/content/ICCV2021/html/Park_Influence-Balanced_Loss_for_Imbalanced_Visual_Classification_ICCV_2021_paper.html
https://proceedings.neurips.cc/paper_files/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2019/file/84c2d4860a0fc27bcf854c444fb8b400-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/84c2d4860a0fc27bcf854c444fb8b400-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/84c2d4860a0fc27bcf854c444fb8b400-Paper.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.18653/v1/2022.findings-acl.172
https://doi.org/10.18653/v1/2022.findings-acl.172
https://doi.org/10.1145/1183614.1183709
https://doi.org/10.1145/1183614.1183709
https://openreview.net/forum?id=H1aIuk-RW
https://openreview.net/forum?id=H1aIuk-RW
https://openreview.net/forum?id=H1aIuk-RW
https://doi.org/10.1007/978-3-031-01560-1
https://papers.nips.cc/paper_files/paper/2020/hash/c3a690be93aa602ee2dc0ccab5b7b67e-Abstract.html
https://papers.nips.cc/paper_files/paper/2020/hash/c3a690be93aa602ee2dc0ccab5b7b67e-Abstract.html
https://mathscinet.ams.org/mathscinet/article?mr=0090073
https://mathscinet.ams.org/mathscinet/article?mr=0090073
https://doi.org/10.1186/s40537-020-00320-x
https://doi.org/10.1186/s40537-020-00320-x
https://doi.org/10.1186/s40537-020-00320-x
https://aclanthology.org/W09-1902
https://aclanthology.org/W09-1902
https://aclanthology.org/W09-1902

Processing, pages 9–17, Boulder, Colorado. Associa-
tion for Computational Linguistics.

Akim Tsvigun, Artem Shelmanov, Gleb Kuzmin,
Leonid Sanochkin, Daniil Larionov, Gleb Gusev,
Manvel Avetisian, and Leonid Zhukov. 2022. To-
wards computationally feasible deep active learning.
In Findings 2022, pages 1198–1218, Seattle, United
States. Association for Computational Linguistics.

Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. Well-read students learn better: On
the importance of pre-training compact models.

Jason Van Hulse, Taghi M. Khoshgoftaar, and Amri
Napolitano. 2007. Experimental perspectives on
learning from imbalanced data. In Proceedings of
the 24th International Conference on Machine Learn-
ing, ICML ’07, pages 935–942, New York, NY, USA.
Association for Computing Machinery.

Guido Van Rossum and Fred L. Drake. 2009. Python 3
Reference Manual. CreateSpace, Scotts Valley, CA.

Byron C. Wallace, Kevin Small, Carla E. Brodley, and
Thomas A. Trikalinos. 2010. Active learning for
biomedical citation screening. In Proceedings of
the 16th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages
173–182, Washington DC USA. ACM.

Yu-Xiong Wang, Deva Ramanan, and Martial Hebert.
2017. Learning to model the tail. In Advances in
Neural Information Processing Systems, volume 30.
Curran Associates, Inc.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Donggeun Yoo and In So Kweon. 2019. Learning loss
for active learning. In 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 93–102, Long Beach, CA, USA. IEEE.

Ronghui You, Zihan Zhang, Ziye Wang, Suyang Dai,
Hiroshi Mamitsuka, and Shanfeng Zhu. 2019. At-
tentionXML: Label tree-based attention-aware deep
model for high-performance extreme multi-label text
classification. In Advances in Neural Information
Processing Systems, volume 32. Curran Associates,
Inc.

Michelle Yuan, Hsuan-Tien Lin, and Jordan Boyd-
Graber. 2020. Cold-start active learning through self-
supervised language modeling. In Proceedings of the
2020 Conference on Empirical Methods in Natural

Language Processing (EMNLP), pages 7935–7948,
Online. Association for Computational Linguistics.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin
Recht, and Oriol Vinyals. 2021. Understanding
deep learning (still) requires rethinking generaliza-
tion. Communications of the ACM, 64(3):107–115.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in Neural Information Pro-
cessing Systems, volume 28. Curran Associates, Inc.

8451

https://doi.org/10.18653/v1/2022.findings-naacl.90
https://doi.org/10.18653/v1/2022.findings-naacl.90
https://doi.org/10.48550/arXiv.1908.08962
https://doi.org/10.48550/arXiv.1908.08962
https://doi.org/10.1145/1273496.1273614
https://doi.org/10.1145/1273496.1273614
https://doi.org/10.1145/1835804.1835829
https://doi.org/10.1145/1835804.1835829
https://papers.nips.cc/paper_files/paper/2017/hash/147ebe637038ca50a1265abac8dea181-Abstract.html
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.1109/CVPR.2019.00018
https://doi.org/10.1109/CVPR.2019.00018
https://papers.nips.cc/paper_files/paper/2019/hash/9e6a921fbc428b5638b3986e365d4f21-Abstract.html
https://papers.nips.cc/paper_files/paper/2019/hash/9e6a921fbc428b5638b3986e365d4f21-Abstract.html
https://papers.nips.cc/paper_files/paper/2019/hash/9e6a921fbc428b5638b3986e365d4f21-Abstract.html
https://papers.nips.cc/paper_files/paper/2019/hash/9e6a921fbc428b5638b3986e365d4f21-Abstract.html
https://doi.org/10.18653/v1/2020.emnlp-main.637
https://doi.org/10.18653/v1/2020.emnlp-main.637
https://doi.org/10.1145/3446776
https://doi.org/10.1145/3446776
https://doi.org/10.1145/3446776
https://papers.nips.cc/paper_files/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html
https://papers.nips.cc/paper_files/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html

A Experimental Details

In addition to the information already present in §4,
here we add more specific implementation details.

A.1 Index Construction

We embed each document using the MPNet en-
coder (Song et al., 2020)12 available on the
HuggingFace Hub and implemented through the
Sentence-Transformers13 library (Reimers and
Gurevych, 2019). Embedding a batch of 1,024
documents of size on our hardware (App. A.5)
takes circa 5.5 seconds. For efficient dense re-
trieval, we use Hierarchical Navigable Small World
(HNSW) approximate nearest neighbour search al-
gorithm proposed by Malkov and Yashunin (2018)
and available through the hnswlib14 library. When
building the index we use cosine similarity as the
distance metric and the following standard settings:
ef_construction = 200, ef = 200, and M = 64
to control the speed/accuracy trade-off during the
index construction, query time/accuracy trade-off,
and the maximum number of outgoing connections
in the graph, respectively.

A.2 Training Details

We use the AdamW optimiser (Loshchilov and Hut-
ter, 2018) with the default hyperparameters—as
implemented in Pytorch, that is β1= .9, β2= .999,
weight_decay= .01, eps=10−8—and set the
learning rate to 4× 10−5 (2× 10−4 for BERT-tiny)
with a constant schedule and a batch size of 32. We
truncate the input sequences to 512 tokens. We do
not assume access to a validation set and, instead,
train for 10 epochs selecting the best model based
on the training F1-score on the minority class(es).
Since the number of batches in the initial iterations
is limited (3≈ 100/32), to allow the model to con-
verge we set the minimum number of optimisation
steps to 100 and use early stopping with a mini-
mum delta of 10−5.

A.3 Reproducibility

We implement all experiments using the PyTorch
(Paszke et al., 2019) framework. We assign a dif-
ferent pseudo-random number generator to data
shuffling, model initialisation, AL strategy, and
pool subsampling strategy. In addition, we use
CUDA deterministic operations and set the seeds

12huggingface.co/sentence-transformers/all-mpnet-base-v2.
13sbert.net.
14github.com/nmslib/hnswlib.

for pseudo-random number generators in PyTorch,
Numpy (Harris et al., 2020), the Python Random
module (Van Rossum and Drake, 2009), and for
each multi-processing worker.

A.4 Active Learning Strategies
In this section we provide an overview of the AL
strategy used in the paper.

Entropy. The Entropy strategy scores instances
by computing the predictive entropy of the proba-
bility distribution assigned by the model, that is

H(x) = −
C∑

c=1

f(x)c log f(x)c

FT-BERTKM. The FT-BERTKM strategy com-
putes instance representations using the trained
model. These representations correspond to the
output of the penultimate layer of the model h(x),
which is the input to the classification layer. Once
these representations are computed for each unla-
belled instance and l2-normalised, it runs k-MEANS

setting k equal to the number of instances to select
in each iteration. Finally, the cluster centres (or
the closest instances in the embedding space) are
selected.

BADGE. The goal of BADGE is to sample a di-
verse and uncertain batch of points for training
neural networks. The algorithm transforms data
into representations that encode model confidence
and then clusters these transformed points. First,
an instance x is passed through the trained model
to obtain its predicted label

ŷ = argmax f(x)

Next, a gradient embedding of the last layer of
the model gx is obtained with respect to the loss
computed using the predicted labels as the target,
that is

gx = ∇θL (fθ(x) , ŷ)

where L is the cross-entropy loss and θ are param-
eters of the last layer of the model. The gradient
embeddings can be computed in closed form as

(gx)c = [fθ(x)c − 1(ŷ = c)] hθ(x)

where h(·) computes the model representation that
feeds into the last layer. The gradient embedding
is a multi-dimensional tensor since we are comput-
ing the gradient with respect to all possible classes

8452

https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://www.sbert.net/
https://github.com/nmslib/hnswlib

c ∈ {1, ..., C}. Thus, the c-th block of gx is the
hidden representation h(x) scaled by the difference
between model confidence score f(x)c and an indi-
cator function that indicates whether the predicted
class ŷ is label c. Finally, BADGE chooses a batch
to sample by applying k-MEANS++ on these (flat-
tened) gradient embeddings. These embeddings
consist of model confidence scores and hidden rep-
resentations, so they encode information about both
uncertainty and the data distribution. By applying
k-MEANS++ on the gradient embeddings, the cho-
sen examples differ in feature representation and
predictive uncertainty.

A.5 Hardware Details

We use a server with one NVIDIA A100 80GB
PCIe, 32 CPUs, and 32 GB of RAM for all experi-
ments. Below, we report a subset of the output of
the lscpu command:

Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 46 bits physical,

48 bits virtual
Byte Order: Little Endian
CPU(s): 32
On-line CPU(s) list: 0-31
Vendor ID: GenuineIntel
Model name: Intel(R) Xeon(R)

Silver 4210R CPU
@ 2.40GHz

CPU family: 6
Model: 85
Thread(s) per core: 1
Core(s) per socket: 1
Socket(s): 8
Stepping: 7
BogoMIPS: 4800.11

B Data

Our data pipeline is divided into two steps: sourc-
ing and preparation.

B.1 Data Sourcing

We download the raw datasets from their original
sources or other comparable faithful source (e.g.,
HuggingFace Hub only when the dataset is created
by the original authors or the HuggingFace team).

AmazonCat-13k. The AmazonCat-13k dataset
was released by McAuley and Leskovec (2013)
and is composed of product descriptions and re-
views classified into 13k multi-label categories.
The dataset is split into 1.2M train and 300k evalu-
ation instances. It is commonly used as an extreme

Test Train
Dataset Label # % # %

Amazon-Agri
Negative 5,000 94.61% 1,185,188 99.91%
Positive 285 5.39% 1,051 0.09%

5,285 100% 1,186,239 100%

Amazon-Multi

agriculture 285 2.92% 1,051 0.09%
archaeology 256 2.62% 1,010 0.09%
audio 1,759 18.03% 6,651 0.56%
others 5,000 51.26% 1,168,266 98.48%
philosophy 2,454 25.16% 9,261 0.78%

9,754 100% 1,186,239 100%

Agnews-Bus
Negative 5,700 75.00% 90,000 99.00%
Positive 1,900 25.00% 910 1.00%

7,600 100% 90,910 100%

WikiToxic
non 5,000 44.47% 114,722 99.00%
tox 6,243 55.53% 1,159 1.00%

11,243 100% 115,881 100%

Table 4: Data statistics of the task considered.

classification benchmark (You et al., 2019)15 where
the goal is to classify an item into its categories.
We download the raw data from the original data
source.16

Agnews. The AG dataset17 consists of more than
1M news articles written in English. The arti-
cles have been collected from more than 2k news
sources by ComeToMyHead, an academic news
search engine running since July 2004, over a pe-
riod of more than one year. The Agnews topic
classification dataset is a curated version proposed
in Zhang et al. (2015) and is constructed by choos-
ing the 4 largest classes from the original corpus:
World, Sports, Business, Sci/Tech. The dataset is
split into 120k train and 7.6k evaluation instances.
We use the version available on the HuggingFace
Hub.18

WikiToxic. The WikiToxic dataset is an updated
version of the Kaggle Toxic Comment dataset
used in the homonymous 2017/2018 challenge.19

It contains comments in English collected from
Wikipedia forums and classifies them into two cat-
egories, Toxic and Non-toxic. The dataset is split
into 128k train, 32k validation, and 64k test in-
stances. We download the data from the Hugging-
Face Hub.20

15manikvarma.org/downloads/XC/XMLRepository.html.
16drive.google.com/u/0/uc?id=17rVRDarPwlMpb3l5zof9h34FlwbpTu4l.
17groups.di.unipi.it/ gulli/AG_corpus_of_news_articles.html.
18huggingface.co/datasets/ag_news.
19kaggle.com/competitions/jigsaw-toxic-comment-

classification-challenge/overview.
20huggingface.co/datasets/OxAISH-AL-LLM/wiki_toxic.

8453

http://manikvarma.org/downloads/XC/XMLRepository.html
https://drive.google.com/u/0/uc?id=17rVRDarPwlMpb3l5zof9h34FlwbpTu4l
http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
https://huggingface.co/datasets/ag_news
https://www.kaggle.com/competitions/jigsaw-toxic-comment-classification-challenge/overview
https://www.kaggle.com/competitions/jigsaw-toxic-comment-classification-challenge/overview
https://huggingface.co/datasets/OxAISH-AL-LLM/wiki_toxic

B.2 Data Preparation
Data preparation refers to the process of converting
a dataset into a task, that is preparing the data for
training and evaluation which entails encoding the
labels to integers and tokenising the documents.
First, we only use the respective training and test
sets for all the datasets since we do not assume
access to a fixed validation set when training the
model in each iteration. Second, we tokenise the
documents using the model-specific tokeniser avail-
able in the tokenizers21 library (Wolf et al., 2020).
Third, we encode the labels by mapping each class
to an integer. Finally, we optionally downsample
the minority class to increase the imbalance. Below
we report the process of creating the classification
tasks we use in our experiments from the original
datasets. In Table 4, we report statistics about the
prepared datasets used in our experiments.

Since AmazonCat-13k is a multilabel dataset,
we choose some of the labels and create binary and
multiclass classification tasks. We create one bi-
nary classification task, Amazon-Agri, by choosing
labels referring to the “agricultural sciences” topic:
246. If any of the topic-specific labels appear in
the label set of a document we assign the document
to the minority class. We create the multiclass
task, Amazon-Multi, by using the “agriculture” la-
bel; the “philosophy” label corresponding to the
indices 413, 3999, 4044, 5881, 8900, 8901, 10990,
13319; the “archaeology” label with indices 538,
539, 8601; and the “audio” label with index 677.

For Agnews we choose a label and treat it as
the minority class and we downsample it in the
training set to increase the imbalance. We choose
the “Business” class and create the Agnews-Bus
task. We make the minority class account for only
1% of the training set.

Finally, for WikiToxic, being already a binary
classification task, we only downsample the “tox”
class to only account for 1% of the training set.

C Full Table of Results

The table follows in the next pages and reports
the AUC of the F1-score, total annotated budget,
and total instance selection time for the BERT-base
model and Entropy AL strategy. Median and in-
terquartile range across 8 runs. Results at the end
of the 6h budget for each run (Overall) and at the
biggest common annotated budget by all pool fil-
tering strategies (Budget-Matched) differences in

21github.com/huggingface/tokenizers.

budget highlighted in grey .

8454

https://github.com/huggingface/tokenizers

O
ve

ra
ll

B
ud

ge
t-

M
at

ch
ed

D
at

as
et

M
od

el
A

L
St

ra
te

gy
Po

ol
Fi

lte
ri

ng
B

ud
ge

t
M

aj
or

ity
M

in
or

ity
Ti

m
e

B
ud

ge
t

M
aj

or
ity

M
in

or
ity

Ti
m

e

A
gn

ew
s-

B
us

A
LB

E
R

T-
ba

se
E

nt
ro

py
A

nc
ho

rA
L

5
.0
k

1
7
6
.5

±
0
.7

9
6
.9

±
1
0
.0

2
.7

±
0
.1

5
.0
k

1
7
6
.5

±
0
.7

9
6
.9

±
1
0
.0

2
.7

±
0
.1

R
an

dS
ub

5
.0
k

1
7
6
.7

±
1
.8

9
8
.3

±
5
.5

2
2
.4

±
0
.5

5
.0
k

1
7
6
.7

±
1
.8

9
8
.3

±
5
.5

2
2
.4

±
0
.5

S
E

A
LS

5
.0
k

1
7
6
.3

±
1
.2

9
8
.3

±
4
.1

6
6
.5

±
1
.2

5
.0
k

1
7
6
.3

±
1
.2

9
8
.3

±
4
.1

6
6
.5

±
1
.2

B
E

R
T-

ba
se

B
A

D
G

E
A

nc
ho

rA
L

5
.0
k

1
7
9
.1

±
0
.3

1
1
6
.9

±
2
.3

2
.9

±
0
.1

5
.0
k

1
7
9
.1

±
0
.3

1
1
6
.9

±
2
.3

2
.9

±
0
.1

R
an

dS
ub

5
.0
k

1
7
9
.3

±
0
.4

1
1
8
.8

±
2
.8

2
3
.7

±
0
.1

5
.0
k

1
7
9
.3

±
0
.4

1
1
8
.8

±
2
.8

2
3
.7

±
0
.1

S
E

A
LS

5
.0
k

1
7
9
.6

±
0
.3

1
2
1
.1

±
2
.9

7
4
.0

±
1
.4

5
.0
k

1
7
9
.6

±
0
.3

1
2
1
.1

±
2
.9

7
4
.0

±
1
.4

E
nt

ro
py

A
nc

ho
rA

L
5
.0
k

1
7
9
.2

±
0
.1

1
1
8
.2

±
1
.3

2
.7

±
0
.1

5
.0
k

1
7
9
.2

±
0
.1

1
1
8
.2

±
1
.3

2
.7

±
0
.1

R
an

dS
ub

5
.0
k

1
7
9
.2

±
0
.4

1
1
8
.0

±
4
.0

2
1
.5

±
0
.1

5
.0
k

1
7
9
.2

±
0
.4

1
1
8
.0

±
4
.0

2
1
.5

±
0
.1

S
E

A
LS

5
.0
k

1
7
9
.6

±
0
.1

1
2
0
.8

±
0
.8

6
2
.2

±
1
.3

5
.0
k

1
7
9
.6

±
0
.1

1
2
0
.8

±
0
.8

6
2
.2

±
1
.3

FT
-B

E
R

TK
M

A
nc

ho
rA

L
5
.0
k

1
7
8
.2

±
0
.5

1
1
0
.3

±
5
.4

2
.9

±
0
.1

5
.0
k

1
7
8
.2

±
0
.5

1
1
0
.3

±
5
.4

2
.9

±
0
.1

R
an

dS
ub

5
.0
k

1
7
6
.6

±
0
.3

9
5
.9

±
3
.4

2
5
.1

±
0
.2

5
.0
k

1
7
6
.6

±
0
.3

9
5
.9

±
3
.4

2
5
.1

±
0
.2

S
E

A
LS

5
.0
k

1
7
6
.5

±
0
.6

9
6
.2

±
6
.9

8
4
.4

±
4
.6

5
.0
k

1
7
6
.5

±
0
.6

9
6
.2

±
6
.9

8
4
.4

±
4
.6

R
an

do
m

N
o-

O
p

5
.0
k

1
7
2
.4

±
1
.2

5
9
.4

±
1
2
.9

0
.0

±
0
.0

5
.0
k

1
7
2
.4

±
1
.2

5
9
.4

±
1
2
.9

0
.0

±
0
.0

B
E

R
T-

tin
y

E
nt

ro
py

A
nc

ho
rA

L
5
.0
k

1
7
2
.6

±
1
.2

5
4
.3

±
1
4
.4

1
.4

±
0
.0

5
.0
k

1
7
2
.6

±
1
.2

5
4
.3

±
1
4
.4

1
.4

±
0
.0

R
an

dS
ub

5
.0
k

1
6
8
.3

±
0
.7

4
.0

±
9
.6

7
.5

±
0
.1

5
.0
k

1
6
8
.3

±
0
.7

4
.0

±
9
.6

7
.5

±
0
.1

S
E

A
LS

5
.0
k

1
6
8
.1

±
0
.3

1
.6

±
3
.8

2
6
.3

±
0
.6

5
.0
k

1
6
8
.1

±
0
.3

1
.6

±
3
.8

2
6
.3

±
0
.6

D
eB

E
R

Ta
-b

as
e

E
nt

ro
py

A
nc

ho
rA

L
3
.5
k

1
2
5
.3

±
0
.3

7
5
.8

±
2
.4

2
.3

±
0
.0

2
.9
k

1
0
2
.4

±
0
.5

6
0
.8

±
3
.6

1
.9

±
0
.1

R
an

dS
ub

3
.1
k

1
1
0
.8

±
0
.1

6
6
.0

±
1
.1

2
1
.0

±
0
.3

2
.9
k

1
0
2
.7

±
0
.3

6
1
.5

±
2
.7

1
9
.4

±
0
.2

S
E

A
LS

2
.9
k

1
0
2
.6

±
0
.2

6
0
.5

±
2
.0

4
0
.1

±
0
.7

2
.9
k

1
0
2
.6

±
0
.2

6
0
.5

±
2
.0

4
0
.1

±
0
.7

G
P

T-
2

E
nt

ro
py

A
nc

ho
rA

L
5
.0
k

1
6
8
.0

±
0
.0

0
.0

±
0
.0

2
.6

±
0
.0

4
.7
k

1
5
8
.6

±
0
.0

0
.0

±
0
.0

2
.5

±
0
.0

R
an

dS
ub

5
.0
k

1
6
8
.0

±
0
.0

0
.0

±
0
.0

2
0
.0

±
0
.1

4
.7
k

1
5
8
.6

±
0
.0

0
.0

±
0
.0

1
9
.0

±
0
.1

S
E

A
LS

4
.7
k

1
5
8
.6

±
0
.0

0
.0

±
0
.0

7
3
.4

±
0
.7

4
.7
k

1
5
8
.6

±
0
.0

0
.0

±
0
.0

7
3
.4

±
0
.7

T5
-b

as
e

E
nt

ro
py

A
nc

ho
rA

L
3
.7
k

1
3
1
.6

±
0
.2

7
7
.9

±
2
.0

4
.0

±
0
.0

3
.3
k

1
1
6
.2

±
0
.3

6
9
.1

±
2
.4

3
.5

±
0
.1

R
an

dS
ub

3
.6
k

1
2
8
.3

±
0
.1

6
9
.5

±
1
.3

3
7
.5

±
1
.6

3
.3
k

1
1
5
.4

±
0
.3

6
1
.2

±
2
.3

3
5
.2

±
0
.2

S
E

A
LS

3
.3
k

1
1
5
.2

±
0
.3

5
8
.9

±
3
.0

9
6
.3

±
6
.5

3
.3
k

1
1
5
.2

±
0
.3

5
8
.9

±
3
.0

9
6
.3

±
6
.5

A
m

az
on

-A
gr

i
A

LB
E

R
T-

ba
se

E
nt

ro
py

A
nc

ho
rA

L
3
.6
k

1
3
4
.2

±
0
.7

4
6
.7

±
2
.9

4
.9

±
0
.1

3
.1
k

1
1
5
.9

±
0
.9

4
3
.5

±
1
.4

4
.1

±
0
.1

R
an

dS
ub

3
.4
k

1
2
9
.6

±
0
.5

2
7
.5

±
1
6
.7

3
1
.2

±
0
.0

3
.1
k

1
1
6
.0

±
0
.4

2
5
.5

±
1
3
.4

2
7
.9

±
0
.0

S
E

A
LS

3
.1
k

1
1
6
.4

±
0
.3

4
5
.4

±
2
.2

9
3
.1

±
1
.2

3
.1
k

1
1
6
.4

±
0
.3

4
5
.4

±
2
.2

9
3
.1

±
1
.2

B
E

R
T-

ba
se

B
A

D
G

E
A

nc
ho

rA
L

3
.7
k

1
4
2
.4

±
0
.1

7
6
.3

±
3
.3

4
.5

±
0
.1

3
.1
k

1
1
9
.8

±
0
.1

6
3
.5

±
2
.8

3
.8

±
0
.1

N
o-

O
p

4
2
5

1
2
.7

±
0
.0

2
.6

±
1
.0

6
h

4
2
5

1
2
.7

±
0
.0

2
.6

±
1
.0

6
h

R
an

dS
ub

3
.6
k

1
3
8
.2

±
0
.1

6
0
.8

±
2
.0

3
0
.5

±
0
.4

3
.1
k

1
1
9
.5

±
0
.1

5
0
.6

±
3
.3

2
6
.3

±
0
.4

S
E

A
LS

3
.2
k

1
2
1
.8

±
0
.0

6
4
.4

±
0
.5

9
1
.5

±
3
.4

3
.1
k

1
1
9
.8

±
0
.0

6
3
.1

±
0
.5

8
9
.2

±
3
.8

E
nt

ro
py

A
nc

ho
rA

L
3
.7
k

1
4
2
.4

±
0
.0

7
8
.1

±
1
.0

4
.4

±
0
.1

3
.1
k

1
1
9
.8

±
0
.1

6
4
.9

±
0
.9

3
.6

±
0
.1

N
o-

O
p

4
7
5

1
4
.6

±
0
.0

2
.9

±
0
.0

6
h

4
7
5

1
4
.6

±
0
.0

2
.9

±
0
.0

6
h

R
an

dS
ub

3
.6
k

1
3
8
.3

±
0
.1

6
5
.0

±
3
.2

2
9
.0

±
0
.2

3
.1
k

1
1
9
.6

±
0
.1

5
4
.3

±
2
.0

2
5
.1

±
0
.1

8455

S
E

A
LS

3
.2
k

1
2
3
.7

±
0
.0

6
5
.6

±
0
.8

8
5
.4

±
1
.3

3
.1
k

1
1
9
.8

±
0
.0

6
3
.7

±
1
.4

8
1
.3

±
2
.4

FT
-B

E
R

TK
M

A
nc

ho
rA

L
3
.8
k

1
4
3
.3

±
0
.0

7
3
.8

±
1
.5

4
.5

±
0
.1

3
.1
k

1
1
9
.7

±
0
.0

5
9
.8

±
1
.7

3
.7

±
0
.1

N
o-

O
p

4
2
5

1
2
.7

±
0
.0

2
.0

±
0
.0

6
h

4
2
5

1
2
.7

±
0
.0

2
.0

±
0
.0

6
h

R
an

dS
ub

3
.6
k

1
3
8
.0

±
0
.1

5
2
.0

±
8
.0

3
1
.6

±
0
.3

3
.1
k

1
1
9
.4

±
0
.1

4
5
.8

±
6
.2

2
7
.5

±
0
.4

S
E

A
LS

3
.1
k

1
1
9
.6

±
0
.1

5
6
.5

±
5
.6

1
0
1
.6

±
0
.9

3
.1
k

1
1
9
.6

±
0
.1

5
6
.5

±
5
.6

1
0
1
.6

±
0
.9

R
an

do
m

N
o-

O
p

3
.7
k

1
4
0
.2

±
0
.1

2
0
.8

±
2
.6

0
.3

±
0
.0

3
.1
k

1
1
8
.8

±
0
.1

1
7
.0

±
2
.4

0
.2

±
0
.0

B
E

R
T-

tin
y

E
nt

ro
py

A
nc

ho
rA

L
5
.0
k

1
9
1
.7

±
0
.4

6
3
.7

±
2
1
.3

2
.5

±
0
.2

3
.6
k

1
3
6
.7

±
0
.4

3
3
.0

±
1
9
.9

1
.6

±
0
.1

N
o-

O
p

3
5
0

9
.7

±
0
.0

0
.0

±
0
.0

6
h

3
5
0

9
.7

±
0
.0

0
.0

±
0
.0

6
h

R
an

dS
ub

4
.7
k

1
7
7
.6

±
0
.1

4
0
.5

±
5
.6

1
4
.2

±
0
.1

3
.6
k

1
3
6
.6

±
0
.1

2
7
.5

±
3
.8

1
0
.9

±
0
.1

S
E

A
LS

3
.6
k

1
3
6
.9

±
0
.1

4
8
.1

±
8
.9

3
9
.6

±
1
.4

3
.6
k

1
3
6
.9

±
0
.1

4
8
.1

±
8
.9

3
9
.6

±
1
.4

D
eB

E
R

Ta
-b

as
e

E
nt

ro
py

A
nc

ho
rA

L
1
.1
k

4
1
.1

±
0
.0

1
8
.1

±
1
.1

1
.9

±
0
.1

1
.1
k

4
0
.2

±
0
.0

1
7
.6

±
1
.2

1
.9

±
0
.1

R
an

dS
ub

1
.1
k

4
0
.9

±
0
.2

5
.7

±
1
2
.0

1
4
.0

±
0
.1

1
.1
k

4
0
.0

±
0
.2

5
.4

±
1
1
.6

1
3
.7

±
0
.1

S
E

A
LS

1
.1
k

4
0
.2

±
0
.0

1
8
.0

±
1
.5

2
5
.7

±
1
.4

1
.1
k

4
0
.2

±
0
.0

1
8
.0

±
1
.5

2
5
.7

±
1
.4

G
P

T-
2

E
nt

ro
py

A
nc

ho
rA

L
3
.6
k

1
3
6
.1

±
0
.0

0
.0

±
0
.0

3
.7

±
0
.0

3
.2
k

1
1
9
.6

±
0
.0

0
.0

±
0
.0

3
.7

±
1
.0

R
an

dS
ub

3
.5
k

1
3
1
.3

±
0
.0

0
.0

±
0
.0

3
3
.2

±
0
.1

3
.2
k

1
1
9
.6

±
0
.0

0
.0

±
0
.0

3
0
.3

±
0
.2

S
E

A
LS

3
.2
k

1
1
9
.6

±
0
.0

0
.0

±
0
.0

8
2
.1

±
0
.4

3
.2
k

1
1
9
.6

±
0
.0

0
.0

±
0
.0

8
2
.1

±
0
.4

T5
-b

as
e

E
nt

ro
py

A
nc

ho
rA

L
2
.3
k

8
6
.0

±
0
.1

2
4
.1

±
2
.6

4
.3

±
0
.1

2
.2
k

8
2
.1

±
0
.1

2
3
.2

±
5
.9

4
.2

±
0
.2

R
an

dS
ub

2
.4
k

8
9
.5

±
0
.0

0
.0

±
0
.0

4
3
.9

±
0
.2

2
.2
k

8
1
.7

±
0
.0

0
.0

±
0
.2

4
0
.2

±
0
.2

S
E

A
LS

2
.2
k

8
1
.7

±
0
.0

0
.0

±
0
.0

1
0
6
.5

±
1
.9

2
.2
k

8
1
.7

±
0
.0

0
.0

±
0
.0

1
0
6
.5

±
1
.9

A
m

az
on

-M
ul

ti
B

E
R

T-
ba

se
B

A
D

G
E

A
nc

ho
rA

L
3
.6
k

1
1
0
.5

±
1
.1

8
2
.3

±
1
4
.2

8
.6

±
0
.2

3
.1
k

9
3
.8

±
1
.9

6
8
.1

±
1
3
.5

7
.2

±
0
.2

N
o-

O
p

4
2
5

9
.6

±
0
.2

5
.0

±
3
.0

6
h

4
2
5

9
.6

±
0
.2

5
.0

±
3
.0

6
h

R
an

dS
ub

3
.5
k

1
0
6
.0

±
1
.2

7
6
.6

±
1
4
.6

3
0
.7

±
0
.3

3
.1
k

9
3
.0

±
1
.0

6
5
.5

±
1
6
.1

2
6
.9

±
0
.1

S
E

A
LS

3
.1
k

9
3
.2

±
0
.8

6
6
.6

±
1
4
.3

9
7
.4

±
2
.3

3
.1
k

9
3
.2

±
0
.8

6
6
.6

±
1
4
.3

9
7
.4

±
2
.3

E
nt

ro
py

A
nc

ho
rA

L
3
.6
k

1
0
9
.2

±
1
.7

7
7
.9

±
9
.9

7
.8

±
0
.2

3
.1
k

9
2
.7

±
1
.7

6
5
.3

±
1
2
.4

6
.7

±
0
.4

N
o-

O
p

4
7
5

1
0
.8

±
0
.3

4
.7

±
3
.2

6
h

4
7
5

1
0
.8

±
0
.3

4
.7

±
3
.2

6
h

R
an

dS
ub

3
.5
k

1
0
6
.2

±
0
.6

7
4
.7

±
1
4
.2

2
6
.6

±
0
.3

3
.1
k

9
2
.8

±
0
.6

6
5
.0

±
1
2
.8

2
3
.4

±
0
.4

S
E

A
LS

3
.2
k

9
5
.3

±
1
.6

6
9
.2

±
1
4
.7

8
3
.8

±
2
.7

3
.1
k

9
3
.2

±
1
.6

6
7
.8

±
1
2
.6

8
1
.6

±
3
.6

FT
-B

E
R

TK
M

A
nc

ho
rA

L
3
.6
k

1
0
8
.8

±
1
.1

7
5
.6

±
2
0
.7

7
.8

±
0
.3

3
.1
k

9
1
.2

±
2
.8

6
2
.7

±
2
1
.3

6
.4

±
0
.3

N
o-

O
p

4
0
0

8
.6

±
0
.3

3
.5

±
3
.1

6
h

4
0
0

8
.6

±
0
.3

3
.5

±
3
.1

6
h

R
an

dS
ub

3
.5
k

1
0
5
.0

±
1
.1

7
2
.3

±
1
3
.2

2
9
.1

±
0
.6

3
.1
k

9
1
.8

±
0
.7

6
1
.9

±
1
1
.5

2
5
.8

±
0
.6

S
E

A
LS

3
.1
k

9
4
.2

±
1
.5

6
7
.4

±
1
8
.3

8
8
.2

±
1
.1

3
.1
k

9
2
.6

±
1
.5

6
6
.3

±
1
8
.1

8
5
.8

±
1
.5

R
an

do
m

N
o-

O
p

3
.6
k

1
0
4
.0

±
3
.7

6
3
.9

±
3
7
.0

0
.3

±
0
.0

3
.1
k

8
9
.4

±
3
.5

5
4
.2

±
3
2
.7

0
.2

±
0
.0

W
ik

iT
ox

ic
B

E
R

T-
ba

se
B

A
D

G
E

A
nc

ho
rA

L
4
.1
k

1
2
6
.2

±
0
.3

1
1
8
.2

±
0
.9

2
.7

±
0
.0

3
.5
k

1
0
6
.6

±
0
.7

9
9
.4

±
1
.5

2
.2

±
0
.0

N
o-

O
p

2
.9
k

8
5
.8

±
0
.0

7
7
.0

±
0
.0

6
h

2
.9
k

8
5
.8

±
0
.0

7
7
.0

±
0
.0

6
h

R
an

dS
ub

3
.9
k

1
1
9
.5

±
0
.4

1
0
9
.0

±
0
.9

2
1
.8

±
0
.1

3
.5
k

1
0
4
.8

±
0
.7

9
4
.6

±
1
.5

1
9
.3

±
0
.1

S
E

A
LS

3
.6
k

1
1
0
.0

±
0
.6

1
0
1
.7

±
1
.4

6
7
.1

±
0
.5

3
.5
k

1
0
5
.9

±
0
.6

9
7
.7

±
1
.4

6
3
.6

±
0
.5

E
nt

ro
py

A
nc

ho
rA

L
4
.2
k

1
2
8
.1

±
0
.6

1
1
9
.0

±
1
.2

2
.6

±
0
.0

3
.5
k

1
0
6
.6

±
0
.5

9
9
.0

±
1
.1

2
.1

±
0
.0

N
o-

O
p

2
.9
k

8
8
.3

±
0
.4

8
0
.8

±
1
.0

6
h

2
.9
k

8
8
.3

±
0
.4

8
0
.8

±
1
.0

6
h

8456

R
an

dS
ub

4
.0
k

1
1
9
.4

±
0
.2

1
0
7
.4

±
0
.8

2
0
.4

±
0
.8

3
.5
k

1
0
4
.7

±
0
.4

9
4
.6

±
1
.4

1
7
.8

±
0
.1

S
E

A
LS

3
.6
k

1
0
9
.6

±
0
.7

1
0
0
.6

±
1
.8

6
0
.9

±
1
.5

3
.5
k

1
0
5
.9

±
0
.5

9
7
.6

±
1
.3

5
7
.0

±
1
.1

FT
-B

E
R

TK
M

A
nc

ho
rA

L
4
.0
k

1
2
2
.3

±
0
.5

1
1
3
.9

±
1
.3

2
.6

±
0
.0

3
.5
k

1
0
6
.8

±
1
.1

9
9
.9

±
2
.5

2
.2

±
0
.0

N
o-

O
p

2
.5
k

7
3
.5

±
0
.8

6
2
.0

±
3
.0

1
9
8
.2

±
2
.2

2
.5
k

7
3
.5

±
0
.8

6
2
.0

±
3
.0

1
9
8
.2

±
2
.2

R
an

dS
ub

3
.8
k

1
1
3
.4

±
0
.3

1
0
0
.4

±
0
.7

2
2
.8

±
0
.1

3
.5
k

1
0
3
.2

±
0
.4

9
1
.3

±
0
.8

2
0
.8

±
0
.2

S
E

A
LS

3
.5
k

1
0
4
.1

±
0
.6

9
2
.9

±
2
.1

7
5
.7

±
1
.1

3
.5
k

1
0
4
.1

±
0
.6

9
2
.9

±
2
.1

7
5
.7

±
1
.1

R
an

do
m

N
o-

O
p

4
.0
k

1
0
8
.6

±
0
.6

7
2
.4

±
2
.1

0
.0

±
0
.0

3
.5
k

9
3
.5

±
0
.5

6
0
.6

±
2
.4

0
.0

±
0
.0

8457

