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Abstract

A central component of rational behavior is
logical inference: the process of determin-
ing which conclusions follow from a set of
premises. Psychologists have documented sev-
eral ways in which humans’ inferences deviate
from the rules of logic. Do language mod-
els, which are trained on text generated by
humans, replicate such human biases, or are
they able to overcome them? Focusing on
the case of syllogisms—inferences from two
simple premises—we show that, within the
PalLM 2 family of transformer language mod-
els, larger models are more logical than smaller
ones, and also more logical than humans. At
the same time, even the largest models make
systematic errors, some of which mirror hu-
man reasoning biases: they show sensitivity
to the (irrelevant) ordering of the variables in
the syllogism, and draw confident but incorrect
inferences from particular syllogisms (syllogis-
tic fallacies). Overall, we find that language
models often mimic the human biases included
in their training data, but are able to overcome
them in some cases.

1 Introduction

The capacity to reason deductively—that is, to de-
termine which inferences, if any, follow from a
given set of premises—is central to rational thought
(Newell and Simon, 1972; Laird et al., 1987; Fodor
and Pylyshyn, 1988; Griffiths et al., 2010). Despite
the importance of this capacity, human reasoning
often displays systematic biases (Gigerenzer and
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Gaissmaier, 2011; Marcus, 2009; Kahneman, 2013;
McClelland et al., 2010). In recent years, language
models (LMs) trained with self-supervised objec-
tives have been reported to display a range of ca-
pabilities, including the ability to reason (Brown
et al., 2020; Chowdhery et al., 2022; Bubeck et al.,
2023). Does LMs’ logical reasoning follow the
rules of logic to a greater extent than humans’?
To the extent that LMs’ reasoning deviates from
normative logic, are their biases similar to humans’
(Binz and Schulz, 2023; Dasgupta et al., 2022)?

In this work, we address these questions with
a detailed study of a particularly simple case—
inferences from pairs of premises, or syllogisms,
such as the following:

If all bakers are artists,
and some bakers are chemists,

then: some artists are chemists.

In a syllogism, each premise relates two terms
with one of four quantifiers (traditionally known as
“moods”): all, some, none and some are not. Only
one term is shared between the premises (bakers in
the example above). Inference is required to deter-
mine if there is a necessary relationship between
the two remaining terms (here, artists and chemists)
when the premises in question are true.

When human participants in experiments are
asked to make syllogistic inferences, their re-
sponses often deviate from the rules of logic; in
fact, for some syllogisms the vast majority of par-
ticipants draw incorrect inferences (Khemlani and
Johnson-Laird, 2012). This could pose a chal-
lenge to language models (LMs), as they learn from
corpora consisting primarily of human-generated
texts—texts which, in turn, reflect human beliefs
and inferences. Is there sufficient signal in the train-
ing corpus to steer LMs away from (often incorrect)
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A: Al artists are bakers I:
E: No artists are bakers

Some artists are bakers
O: Some artists are not bakers

1 2 3 4

A-B B-A A-B B-A
B-C C-B C-B B-C

Table 1: Syllogism moods (left) and variable orderings (right).

human inferences and toward a behavior consistent
with the normative rules of logic—the behavior that
is desirable for most applications?

We address this question in a detailed compar-
ison between the PalLM 2 family of transformer
LMs (Google, 2023) and studies from cognitive
psychology, as well as a replication with the
Llama 2 family of transformer LMs (Touvron et al.,
2023). We report the following results:

1. LMs draw correct inferences more often than
humans, and larger LMs tend to be more ac-
curate than smaller ones, but the accuracy of
even the best performing LM is only about 75%,
and scale does not consistently lead to accuracy
gains (Section 4.1).

2. LM errors are systematic, with very low accu-
racy on particular syllogism types (Section 4.1);
the syllogisms that LMs struggle with are a
subset of those that humans find difficult (Sec-
tion 4.2).

3. Like humans, LMs are sensitive to the ordering
of terms in the premises of a syllogism even
when it is logically irrelevant (Section 4.2; this
pattern is known as the “figural effect” in cogni-
tive psychology; Johnson-Laird and Steedman
1978).

4. LMs show many of the same syllogistic falla-
cies, characterized by high confidence and low
accuracy, as humans. Larger LMs are somewhat
more susceptible to these fallacies than smaller
ones (Section 4.2; Khemlani and Johnson-Laird
2017).

5. Using the Mental Models theory from cogni-
tive psychology, we find quantitative evidence
that larger LMs reason more deliberatively than
smaller ones (Section 5; Khemlani and Johnson-
Laird 2022).

Overall, we find that PaLM 2 LMs replicate
many of the human biases discovered in psychol-
ogy studies, consistent with the fact that LMs are

trained on human-generated text. For some syl-
logisms, however, sufficiently large models over-
come those biases and achieve dramatically better
accuracy than humans, although their overall accu-
racy is still far from the perfect logical reasoner.

2 Background and Related Work
2.1 Syllogisms

Syllogisms are logical arguments consisting of two
premises relating three variables, A, B and C (e.g.,
artists, bakers, and chemists in the example from
the introduction). Each premise relates just two
of the variables, through one of four quantifiers,
often referred to as “moods” (Table 1, left). The
variables in each of the premises can be ordered
in either of the two directions—e.g., all artists are
bakers vs. all bakers are artists—and so there are
four possible pairs of orderings (Table 1, right).
These orderings are traditionally referred to as “fig-
ures”, but we will use the more transparent term
“variable ordering”. Taking the cross product of
these building blocks yields 64 possible syllogisms:
two premises, each of which can take one of four
quantifiers and one of two possible orderings.

Though the premises only relate A and B, or
B and C—never A and C—27 of the 64 syllo-
gisms imply a quantified relationship between A
and C (e.g., some A are C). In the remaining 37
syllogisms, no relation between A and C can be
deduced; in human experiments, the expected re-
sponse to these syllogisms is “nothing follows” (see
Figure 10 in Appendix A for the full set of valid
conclusions for each syllogism).

2.2 Human Syllogistic Reasoning

Psychologists, going back to the early 20th cen-
tury, have found that the conclusions that humans
draw from the premises of a syllogism often deviate
from logical norms (for a review, see Khemlani and
Johnson-Laird 2012). These errors are systematic:
some syllogisms are much harder than others, and
the incorrect conclusions that participants tend to
draw are consistent across participants. For exam-
ple, from the two premises (1) no artists are bakers
and (2) all bakers are chemists, the vast majority of
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participants incorrectly conclude that it is the case
that no artists are chemists. We analyse such cases
in detail in Section 4.2.

In addition to these specific, highly challeng-
ing syllogisms, several broader reasoning biases
have been documented. When given a syllogistic
argument where the variables in the premises are or-
dered “A-B, B-C”, participants show a bias towards
conclusions with an A-C ordering, even though
reordering the variables in the premises does not
affect the conclusions licensed by the syllogism
(Johnson-Laird and Steedman, 1978). Participants
are also more likely to produce a conclusion when it
is true in the real world, independently of whether it
follows from the premises (“‘content effects”, Evans
et al. 1983).

A number of theories have been proposed to ex-
plain human syllogistic reasoning. An influential
account that we focus on in this work is the Mental
Models Theory (Johnson-Laird and Byrne, 1991).
This theory posits that human reasoners construct
mental models populated by a small number of enti-
ties that instantiate the premises; e.g., to instantiate
the premise all artists are bakers, a reasoner might
construct a world with three specific artists, all of
whom are bakers. These worlds are constructed
based on a number of fallible heuristics, and hu-
man reasoning errors arise when those heuristics
produce incorrect conclusions (see Section 5).

2.3 Language Models and Reasoning

LMs trained with self-supervised objectives on
large text corpora have been instrumental in achiev-
ing high performance on a range of tasks. Some
of the tasks in which LMs have shown promise
have been referred to as reasoning tasks, including
commonsense reasoning, natural language infer-
ence, or question answering (e.g., Chowdhery et al.
2022). In this work, we focus more specifically on
deductive logical reasoning: drawing conclusions
that must, rather than are likely to, be true given
the premises, and where the inference is based only
on the premises, and does not rely on world knowl-
edge. Unlike work on datasets collected from text-
books or through crowdsourcing, we perform a
well-controlled analysis of a simple logical task for
which there is a wealth of human data.

Several studies have benchmarked LMs on log-
ical reasoning tasks (Han et al., 2022; BIG-bench
collaboration, 2022; Wu et al., 2023a; Betz et al.,
2020; Saparov and He, 2022; Saparov et al., 2023;
Ye et al., 2023) and examined LM reasoning biases

Choose the conclusion that logically
follows given the premises or “nothing
follows” if none of the other conclusions
logically follow, the possible conclusions
are:

' A
“all artists are chemists”,

“some artists are chemists”,
"no artists are chemists”,
“some artists are not chemists”,
“all chemists are artists”,

shuffled

“some chemists are artists”,
“no chemists are artists”,
“some are chemists not artists”,

“nothing follows".
L J

Premise 1: all artists are bakers,
Premise 2: some chemists are bakers.

Let’s think this through, step by step.

\ J

l ( nothing follows J
generate " Lo

all artists are chemists

Figure 1: The zero-shot chain-of-thought prompt we
use to assess LM syllogistic reasoning. The different
parts of the prompt are grouped together for illustration
purposes only; see also Figure 11 in the Appendix for a
purely textual representation of the prompt.

(Dasgupta et al., 2022; Razeghi et al., 2022; Wu
et al., 2023b; McCoy et al., 2023). Saparov and
He (2022) take a similarly controlled experimental
approach to ours (see also Saparov et al. 2023), but
they analyze LMs’ performance on formal logic
rather than problems phrased in natural language
as we do, and do not compare their results to
humans. The closest study to ours is Dasgupta
et al. (2022), which demonstrates content effects in
a number of logical reasoning domains, including
syllogisms. We extend their approach to study
other aspects of syllogistic reasoning.

3 Methods
3.1 Data

The human behavioral data we use is drawn from
Ragni et al. (2019), an online experiment where
139 participants responded once to each of the syl-
logisms. In each trial, a participant was presented
with a syllogism and was instructed to choose
among nine options: the eight possible conclusions
and “nothing follows”. The experimental trials
were preceded by a brief training phase where par-
ticipants were familiarized with the task.
Following Ragni et al. (2019), we generate syl-
logisms by replacing the abstract terms (A, B, C)
in each syllogism with one of 30 content triples
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Figure 2: Accuracy of PaLM 2 models, humans (red), and random guessing (grey). Random guessing accuracy
differs by syllogism as some syllogisms have more than one valid conclusion. Syllogisms are partitioned into
variable ordering (by row) and ordered by decreasing human accuracy from left to right. The top right inset shows
the average accuracy across all syllogisms. Syllogisms are identified with the letters of the moods of the premises
(Table 1, left) and the number associated with their variable ordering (Table 1, right).
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Figure 3: Correlation between PaLM 2 models’ pre-
dictions and human predictions. The oracle here is a
logically correct reasoner that samples a response at
random from all valid responses; the correlation of such
an oracle with humans is relatively low as it does not
mimic human errors.

chosen such that there is no obvious semantic
association between the terms (e.g., one of the
triplets included hunters, analysts and swimmers;
see Appendix A for the full list). This resulted in
64 x 30 = 1920 unique data points.

3.2 Models and Inference

Most of our analyses focus on the PaLM 2 family
of LMs, which are publicly available in four sizes
(XXS, XS, S, and L; Google 2023). These are
transformer LMs trained on a large corpus of multi-
lingual web documents, books, code, mathematics
and conversations. We also repeat all of our analy-

ses for the 7B-, 13B- and 70B-parameter versions
of the Llama 2 family of transformer models (Tou-
vron et al., 2023). Since, unlike for PalLM 2, we
were unable to explore the different hyperparam-
eters of our evaluation method for these models,
we regard these results as preliminary and sum-
marize them separately from the PaLM 2 results
(Section 4.3 and Appendix E). All of the models
we use are pretrained only, without additional fine-
tuning to match human preferences.

Following the emerging standard practice for
eliciting reasoning from LMs, we use zero-shot
“chain-of-thought” prompting, where the model is
instructed to “think step by step” (Kojima et al.,
2022; Wei et al., 2022). We speculate that the
more explicit reasoning process triggered by such
prompts may more closely resemble the behavior of
human participants in experiments; for an analysis
of alternative prompting strategies that we explored
before settling on this one, see Appendix B.1. The
prompt we use is illustrated in Figure 1. We ran-
domize the order of the conclusions in the prompt
to control for LMs’ sensitivity to answer ordering
(Pezeshkpour and Hruschka, 2023).

For each of the 1920 reasoning problems, we es-
timated the distribution over conclusions for each
LM with a rejection sampling approach. Samples
were rejected if no conclusion was identified via
uncased exact string match, and we took the LMs’
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Figure 4: Variable ordering effects in PaLM 2 models and humans. Left: The marginal probabilities of A-C and
C-A ordered conclusions. Right: The magnitude of the variable ordering effect (the absolute value of the difference

between the C-A probability and the A-C probability).

response to be the conclusion with the highest prob-
ability in this distribution. Each distribution was
estimated with 30 such proposals generated with
a temperature of 0.5 and a maximum decoding
length of 75 tokens. See Appendix B for further
details and an exploration of the impact of different
prompts and decoding parameters.

4 Results'

4.1 Do LMs Reason Accurately?

We first examine the PaLM 2 LMs’ behavior on
each of the 64 syllogism types separately. In prac-
tice the LMs rarely produced the output “nothing
follows”, which is the correct conclusion for 37 of
the syllogisms. We return to this behavior briefly
in Section 4.2, but in most of the following analy-
ses, we restrict ourselves to the 27 syllogisms that
license conclusions other than “nothing follows”
(see Figure 2 for the full pattern of results on each
of those 27 syllogisms). We compute the LMs’ ac-
curacy for each syllogism by dividing the number
of logically valid conclusions produced by the LM
by the total number of responses; note that some
syllogisms have more than one valid conclusion
(as many as four) and so the random baseline in
Figure 2 varies by syllogism.

When averaged across all syllogisms, LM accu-
racy generally improves with scale, with the two
largest models exceeding human accuracy. The
relationship between scale and accuracy is not un-
ambiguous, however: the largest model has some-
what lower accuracy than the second-largest one.
There is considerable variation across syllogisms;
for multiple syllogisms, accuracy is very low for all
model sizes and can even decrease as model size
increases (this is the case, for example, for EA1:
no A are B, all B are C).

'An earlier version of this work, which was shared on
arXiv, reported slightly different results for the experiments
discussed due to a sampling bug.

4.2 Do LMs Reason Like Humans?

Human accuracy averaged across all syllogisms is
roughly 50% (Figure 2; red dashed line); as such,
high LM accuracy on this dataset does not neces-
sarily imply humanlike reasoning. A comparison
by syllogism type reveals that the syllogisms that
PalLM 2 models struggle with are syllogisms that
humans also find challenging, but the inverse is not
true: multiple syllogisms that are hard for humans
are solved correctly by larger models. For exam-
ple, for the syllogism IE4 (some B are A, no B are
C), human accuracy is barely above chance, but
PalLM 2 Small and PalLM 2 Large are substantially
more accurate.

Comparing the distribution over responses. So
far we have focus on the proportion of correct re-
sponses. There are eight possible conclusions; is
the distribution over all responses, including in-
correct ones, similar across humans and PalLM 2
models? To compute the probability distribution
over conclusions for each syllogism, we aggregate
response counts for each syllogism and normalize
them into a probability distribution as in Khem-
lani and Johnson-Laird (2016). We then corre-
late the probability estimates from humans with
the estimates from PaLLM 2 models across the en-
tire dataset (Figure 3; for a by-syllogism break-
down, see Figure 14 in Appendix C). The correla-
tion is fairly high across models, and is highest for
PalLM 2 Small.

PalLM 2 Small and Large display both a high
correlation with human responses and a higher-
than-human accuracy. This suggests that the mis-
calibration to human data that models accrue due to
higher accuracy is offset by a better fit to humans
elsewhere in the dataset. The next analyses test this
hypothesis, zooming in on two specific biases.

Variable ordering effects. Humans’ syllogistic
inferences are sensitive to variable ordering, even
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Figure 5: Right: Each syllogism plotted by accuracy (y-axis) and entropy (x-axis) and the regression line relating
the two. Dashed lines black lines show the residuals for each of the top three human syllogistic fallacies. Left: The
result of correlating PaLLM 2’s regression residuals with residuals estimated from human data.

when the ordering is logically irrelevant (Johnson-
Laird and Steedman, 1978). Specifically, humans
produce more conclusions with an A-C variable
ordering when reasoning in response to a syllo-
gism presented in ordering 1 (A-B, B-C); and
they produce more conclusions with a C-A or-
dering when presented with a syllogism in order-
ing 2 (B-A, C-B). We aggregate the human and
LM responses across all (A-B, B-C) syllogisms
and across all (B-A, C-B) syllogisms separately
and normalize the aggregated response counts.
All four PaLM 2 models show an ordering ef-
fect in the same direction as humans (Figure 4,
left). We compute the magnitude of the effect as
|P (A-C) — P (C-A) |, where P (A-C) is the prob-
ability placed on conclusions with the order A-C.
All models display a moderately larger bias than
humans (Figure 4, right). We do not find a clear
trend in the magnitude of the bias as model size
increases; if anything, the largest model shows a
slightly weaker bias than the second-largest one.

Syllogistic fallacies. In general, humans are well-
calibrated syllogistic reasoners—their accuracy is
inversely correlated with the entropy of their re-
sponses (Figure 5; see also Khemlani and Johnson-
Laird 2012). In other words, for most syllogisms
where humans give incorrect answers, the particu-
lar incorrect answers they give vary substantially
across individuals and trials. However, there are
exceptions to this tendency: in some cases, humans
confidently and consistently choose a particular in-
correct answer (that is, low entropy coincides with
low accuracy). For example, given the syllogism
no artists are bakers, all bakers are chemists, hu-
mans overwhelmingly respond with the logically
invalid conclusion no artists are chemists; the cor-
rect conclusion, some chemists are not artists, is

L nothing follows other(s)
)
2 .75 1 g
co
°3
2% 54 g
oD
8  |mmmmmmmmmmmmoe
s g .25 | E
S N
s 0 ./‘\' | oo

XXS
XS

Figure 6: The proportion of “nothing follows” responses
from humans and PalLM 2 models on the 37 syllogisms
whose only valid conclusion is “nothing follows” (left)
and the syllogisms that license conclusions other than
“nothing follows” (right).

produced only 3% of the time, and the distribution
over responses elicited from humans for this syllo-
gism has one of the lowest entropies in the Ragni
et al. (2019) dataset. We refer to such cases as
syllogistic fallacies (Newsome and Johnson-Laird,
2006; Khemlani and Johnson-Laird, 2017).

To identify potential fallacies in LMs, we fit a
regression line relating entropy (in nats) and ac-
curacy, and then compute the distance from this
line (the residual) for each syllogism (Figure 5,
right; for alternaitve calibration measures, see Guo
et al. 2017). The top three human syllogistic falla-
cies, defined as the top three outliers when plotting
accuracy against entropy, are also outliers for the
PalLM 2 models. We also correlate the residuals
for all 27 syllogisms across humans and LMs, and
find that larger models display stronger correlations
(Figure 5, left).

LMs avoid responding “nothing follows”. An
important divergence from human behavior is that
LMs rarely produce the response “nothing follows”,
even for the 37 syllogisms for which this is the
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some artists are bakers
some bakers are chemists
;

mental model ¢

artist baker chemist
artist baker

artist revised mental model

artist—baker fremist
artist baker

baker chemist |q--- -~
artist baker
artist

conclude |

v
X some artists are chemists H
v/ nothing follows

B
>| counterexamples? I

Figure 7: Schematic of mReasoner deducing an incor-
rect conclusion before finding counterexamples (“Sys-
tem 2" processes shown in green) and updating to the
correct conclusion, “nothing follows”.

correct conclusion. Humans are also reluctant to
conclude “nothing follows” (Ragni et al., 2019), but
the LMs’ aversion to this response is much stronger
than humans’—we observe accuracies close to 0%
(Figure 6). This issue is particularly severe with the
zero-shot chain-of-throught prompting method we
use; in Appendix B.3, we describe an evaluation
paradigm that can be used to elicit that conclusion,
and leave further analysis of this behavior to future
work.

4.3 Llama 2 Results

Llama 2 models’ overall accuracy, when aggre-
gated across all syllogisms, was similar to hu-
man accuracy, with a modest increase in accuracy
as scale increases (Figure 18 in the Appendix).
However, the breakdown by syllogism shows that
this pattern masks substantial differences between
humans and Llama 2: unlike PaLM 2 models,
Llama 2 models struggle with some syllogisms
that humans find easy, such as some A are B, all
B are C. Llama 2 models do, however, display a
human-like variable ordering effect (Figure 20 in
the Appendix). We refer the reader to Appendix E
for plots of the results and additional analyses of
Llama 2 models.

5 Interpreting Language Models Using
Mental Models Theory

We next analyze the behavior of PalLM 2 models
using the Mental Models theory of human logical
reasoning (Johnson-Laird, 1983), which has been

developed over decades to account for human data.
The theory takes humans to be resource-limited and
simulation-based reasoners (Craik 1967; Lake et al.
2017; Lieder and Griffiths 2019; Johnson-Laird
1983, i.a.), with a potentially high degree of vari-
ability across individuals. The implementation we
use—mReasoner? (Khemlani and Johnson-Laird,
2022)—captures these aspects of human reasoning
with a small set of interpretable hyperparameters
that enable it to construct, refine, and draw conclu-
sions from internal mental models of the situations
described in a syllogism.

Mental models consist of sets of entities instanti-
ating the premises, where an entity is represented
by a conjunction of logical properties. For example,
Figure 7 illustrates a mental model corresponding
to the syllogism some artists are bakers, some bak-
ers are chemists. This model consists of just three
entities, the first of whom is an artist who is also
a baker and a chemist, the second is an artist and
a baker who may or may not be a chemist (this
uncertainty is represented in the figure with a blank
space), and so on. The reasoner constructs and
maintains its mental model with a set of actions
parameterized by four hyperparameters:

* LEN (A € [1, 00)): The number of entities gener-
ated by the reasoner is sampled from a Poisson
distribution with a mean of LEN.

* BROAD (¢ € [0, 1]): Determines the set of individ-
uals that mReasoner samples from. There are two
possible sets: a broader set of all individuals con-
sistent with the premises, and a smaller, canoni-
cal set of individuals consistent with the premises.
The canonical sets were determined from human
experiments (Khemlani and Johnson-Laird 2022;
for an example, see Figure 15 in Appendix D).

* SYSTM2 (0 € [0,1]): The reasoner’s propensity
to reconsider its conclusion and search for coun-
terexamples. Search is conducted by adding an
entity to the model, moving a property from one
entity to another, or decomposing one entity into
two (these strategies are illustrated in Figure 16
in Appendix D).

WEAKEN (w € [0, 1]): Determines the model’s
reaction to finding a counterexample. The rea-
soner’s options in this case are either to respond
“nothing follows” or to weaken its response (i.e.,
amending erroneous global conclusions such as

https://github.com/skhemlani/mReasoner
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Figure 8: Correlations between the four principal com-
ponents resulting from our analysis and mReasoner’s
original parameters (top four rows) as well as accuracy
(bottom row).

all A are C to weaker particular conclusions such
as some A are C). When WEAKEN is higher, mRea-
soner is more likely to weaken its response and
less likely to answer “nothing follows".

Figure 7 illustrates how mReasoner might pro-
cess the syllogism some artists are bakers, some
bakers are chemists. First, it constructs a men-
tal model, with length governed by LEN and con-
tent governed by BROAD, consisting of the entities
mentioned above: an artist-baker-chemist, an artist-
baker, and an artist. The conclusion some artists
are chemists is consistent with this particular model
(i.e., the first entity is both an artist and a chemist).
This conclusion is not true in every model that
is consistent with the premises, and as such it is
not logically valid; however, if the reasoner does
not trigger a System 2 process, it will (incorrectly)
take this conclusion as valid and return it. Alter-
natively, with probability SYSTM2 mReasoner will
scrutinize the conclusion by amending its model in
an attempt to find a counterexample. In this case,
mReasoner successfully finds a counterexample
by breaking the first entity into two entities that
are still consistent with the premises but are not
consistent with some artists are chemists; conse-
quently, mReasoner corrects its answer to “nothing
follows”.

Mapping LM predictions onto cognitively mean-
ingful dimensions. Syllogistic reasoning behav-
ior is high-dimensional; in the set of syllogisms and
conclusions we consider, there are 27 syllogisms
and eight possible responses to each, for a total of
216 dimensions. We instantiate 1296 mReasoner
models, one for each point in a parameter grid, and
analyze the 923 of them that finished simulations

PC1 (acc = 0)
1.4

0.2

1.4

0.4 o 0.4 A -0.8 o

XXS ® XS @ S @ L ® Human

Figure 9: Left and right: Projecting PaLLM 2 models
onto the first two principal components of the feature
space resulting from the behavior of simulations using
mReasoner. Center: Projecting PaLLM 2 models onto
the same space when only their errors are taken into
account.

before timing out (for the details of the parameter
grid, see Table 3 in Appendix D.2). We evaluate
each instance on each syllogism and represent the
instance as a vector in a 216-dimensional space. Fi-
nally, we use PCA to identify the top four principal
components in this space.

Characterizing the space of reasoning behaviors
described by mReasoner. Although mReasoner
is characterized by four parameters, we find a sin-
gle principal component (PC 1) that captures 77%
of the variance in the model’s behavior. This com-
ponent loads heavily on SYSTM2 and, to a lesser
degree, on WEAKEN (Figure 8). Following the termi-
nology of Khemlani and Johnson-Laird (2016), we
view this dimension as representing deliberative
reasoning. Similarly, PC 2 loads heavily on BROAD.
This dimension, however, describes much less of
the behavioral variance of mReasoner.

LMs show signatures of deliberative reasoning.
We project the 216-dimensional vectors describing
the human data as well as the behavior of each of
our LMs into the PC space. This allows us to in-
terpret the LMs’ behavior, in particular as model
size increases, in terms of reasoning strategies (Fig-
ure 9). We find that larger LMs behave more like
mReasoner instantiations with high SYSTM2 and
WEAKEN values, as indicated by the fact that their
first principal component is higher; in the terminol-
ogy of Khemlani and Johnson-Laird (2016), they
show a stronger behavioral signature of deliberative
reasoning.

Deliberative reasoning is partly dissociable from
accuracy. PC 1 is strongly correlated not only
with SYSTM2, but also with accuracy. Can the
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changes in coordinates assigned to PaLM 2 be ex-
plained simply by differences in accuracy? To test
this, we repeat our analysis, this time setting the
probabilities of the correct answers to O for all
mReasoner instantiations, LMs and renormalizing
(Figure 9, center). In this control analysis, the ac-
curacy of all models is 0% (by design), but larger
models still display more deliberative reasoning.
Here the deliberative component (PC 1) has zero
correlation with accuracy but a correlation of 0.6
with SYSTM2; correlations with all other parame-
ters are below 0.15. This indicates that even the
models’ errors become more consistent with delib-
erative reasoning.

6 Discussion

Human-like reasoning or accurate reasoning?
Because of humans’ systematic reasoning errors,
syllogistic reasoning is a particularly clear demon-
stration of the tension between the two central aims
of artificial intelligence: human-likeness and accu-
racy. We hypothesize that for most applications,
accuracy is more important than human-likeness;
one notable exception is cognitive modeling, where
the goal is to better understand human reasoning
by developing models that reason like humans. We
consider this application to be an important direc-
tion for future work.

Why are LMs more accurate than humans?
LMs learn from human-generated text, which is
likely to reflect human beliefs and biases; it is
natural to hypothesize that the language model-
ing objective would incentivize LMs to replicate
those biases. We find only partial support for this
hypothesis. While the largest model’s responses
are indeed slightly more correlated with human re-
sponses than the smaller ones, for some syllogisms
where humans reason very poorly, the models over-
come human biases and reason correctly. One pos-
sible explanation for this finding is that the data
that PaLLM 2 models were trained on includes not
only natural language text, but also source code
(Chowdhery et al., 2022), which may teach models
to reason more effectively. The effect of the com-
position of the LM’s training corpus can be tested
in a controlled comparison in the future.

Cognitive science for LM interpretation. We
have used cognitive science to shed light on LM
reasoning in two ways. First, we used the biases
documented in the cognitive psychology literature

as hypotheses for the biases that LMs might ac-
quire. This approach is motivated by the hypothesis
that because LMs are trained on human-generated
texts, which reflect human biases and beliefs, they
will be incentivized to replicate those biases to im-
prove perplexity. We found partial support for this
hypothesis: larger LMs were more calibrated to
human responses in some cases, in particular in our
analysis of the correlation between accuracy and
entropy (Section 4.2).

The second and more novel way in which we use
cognitive science is in interpreting LM behavior
using a computational cognitive model developed
to explain human reasoning. Under the assump-
tion that LM reasoning follows the same heuristic
strategies as humans do (Section 5)—an assump-
tion which, again, is informed by the fact that LMs
learn from text generated by humans—we con-
cluded from this analysis that LMs become more
deliberative as their size increases.

7 Conclusion

Do LMs learn to reason correctly from self-
supervised learning alone, even though much of
their training data was produced by humans, whose
reasoning often deviates from normative logic? We
have addressed this question through a detailed
examination of the syllogistic reasoning behavior
of the PaL.M 2 family of LMs. We find that the
largest LMs make significantly fewer mistakes than
humans but still display systematic errors (Sec-
tion 4.1), and that while their mistakes are only
partly aligned with human errors, LMs are suscep-
tible to several qualitative reasoning biases shown
by humans (Section 4.2).
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Ethical Considerations and Limitations

Part of this work’s motivation is to extend the un-
derstanding of similarities and differences between
humans and current LMs, and we hope our work
will have broader positive impacts, such as facili-
tating cognitively informed and ethical model de-
velopment. Our results are limited, however, with
challenges in directly comparing LM and human
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behavior, and we comment on specific limitations
below.

Eliciting LM reasoning. The space of possible
ways to evaluate LMs on paradigms from human
experiments is fairly large. One can generate from
the model (Aina and Linzen, 2021), as we did;
elicit meta-level judgements (Hu and Levy, 2023;
Begus et al., 2023); or simply compare the probabil-
ities assigned by the LM to possible continuations
(Linzen et al., 2016; Dasgupta et al., 2022). Evalu-
ations can be done in a zero-shot way, as we did, or
in a few-shot way, which may better approximate
the training phase used in some human reasoning
experiments, such as Ragni et al. (2019); for discus-
sion, see Lampinen (2022). Finally, generative ap-
proaches can rely on a large set of possible prompts,
and can be used with or without “chain-of-thought”
statements encouraging the model to reveal its rea-
soning process (Kojima et al., 2022). Following
preliminary experiments (Appendix B), we focused
on zero-shot chain-of-thought; a more systematic
evaluation of the different elicitation approaches
would be an important direction for future work.

The focus on Mental Models Theory. In Sec-
tion 5, we used a particular cognitive model, the
Mental Models Theory, to interpret LM reasoning
behavior. This is not the only possible mechanism
that might underlie LM reasoning. Other accounts
of human reasoning have argued that people do,
in fact, apply normative logic rules (Rips, 1994),
perform probabilistic inference with constrained
resources (Chater and Oaksford, 1999), or combine
probabilistic, heuristic and pragmatic reasoning
(Tessler et al., 2022); and it is possible that LMs
reason in a way that does not match any of these
theories. We leave a systematic comparison of the
fit of each of these theories to LM reasoning for
future work.
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Figure 10: Valid conclusions for each syllogism. Con-
clusion identifiers show the conclusion mood (see Ta-
ble 1) followed by ‘ac’ if the first variable in the conclu-
sion is A and the second is C and ‘ca’ in the opposite
case.

A Further Details on Syllogism Dataset

Table 2 displays the full list of the content triples
used in our experiments. The words in each triple
were chosen to have minimal semantic associations
with each other.

B Prompting and Evaluation

Before settling on the generative chain-of-thought
evaluation strategy that we focus on in this paper
(described in detail in Section B.1), we explored
two additional strategies for eliciting and scoring
syllogistic inferences from LMs. First, we explored
a multiple-choice approach, where, following the
prompt, we computed the mutual information be-
tween the prompt and each of the nine possible
conclusions (eight valid conclusions plus “nothing
follows”; Section B.2); and second, we explored a
simplified binary discrimination approach, where,
following the prompt and a particular conclusion,
we computed the mutual information between the
prompt and each of the strings “valid” and “invalid”
(Section B.3). Of these three methods, chain-of-
thought prompting achieved the highest accuracy
generally and had qualitatively similar performance
across a range of hyperparameters, so we use it in
the main text. That being said, the binary discrim-
ination approach has the highest correlation with
humans and is the only method that consistently
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actuaries, sculptors, writers
chemists, drivers, dancers
dancers, bankers, riders
farmers, surfers, writers
hunters, analysts, swimmers
linguists, skaters, singers
models, tailors, florists
riders, agents, waiters
scientists, novelists, florists
students, hikers, designers

assistants, poets, scientists
chemists, workers, painters
doctors, riders, investors
gamblers, cleaners, models
joggers, actors, carpenters
managers, clerks, butchers
nurses, scholars, buyers
riders, novelists, linguists
skaters, barbers, cooks
surfers, painters, porters

athletes, assistants, chefs
clerks, butchers, athletes
drivers, porters, chemists
golfers, cyclists, assistants
linguists, cooks, models
miners, tellers, poets
planners, sailors, engineers
runners, opticians, clerks
students, cashiers, doctors
therapists, hikers, opticians

Table 2: The 30 content word triples we use to construct syllogisms (e.g., for the first entry in the table, the variables
A, B and C in the syllogism are replaced with actuaries, sculptors and writers, respectively). The words in each
triple were chosen to be minimally semantically associated with each other.

provides the response “nothing follows” when ap-
propriate, and as such is a promising method to
explore in future work. The remainder of this ap-
pendix provides additional details about the differ-
ent elicitation methods and the variations on those
methods that we explored. All of the empirical
results in this appendix are based on PaLM 2.

B.1 Generative Evaluation with a Zero-Shot
Chain-of-Thought Prompt

The zero-shot chain-of-thought approach is illus-
trated in Figure 1. We first describe the inference
task to the model: “Choose the conclusion that
necessarily follows from the premises or “nothing
follows” if none of the other conclusions logically
follow, ”. We then define the conclusion space,
with the string “the possible conclusions are: ”
followed by the list of all possible conclusions,
including “nothing follows”; the possible conclu-
sions are provided in a randomized order. Next,
we provide the two premises for the syllogism be-
ing queried in the format: “Premise 1: PREMISE1,
Premise 2: PREMISE?2, . Finally, we add the string
“Let’s think this through, step by step”, which is
intended to instruct the LM to produce a reason-
ing trace. We then generate from the LM, and
determine for each of the conclusions whether they
appear in the text generated by the LM. The conclu-
sion that was detected most often, across content
triples and samples, is taken to be the answer pro-
duced by the model.

B.1.1 Robustness to Prompt and Decoding
Hyperparameters

The analyses presented in the main text are based
on a decoding process in which we sequentially

generate 75 tokens from the LM, with a temper-
ature of 0.5, and take 30 such samples for each
combination of syllogism type and content triple.
Due to compute limitations, we are unable to con-
duct a systematic exploration of different variations
on these hyperparameters for all model sizes; as
such, we focus on PalLM 2 XS. As in the main text,
we only report accuracy for the 27 syllogisms that
have valid conclusions, and exclude the syllogisms
for which “nothing follows” is the correct response.

Prompts. In addition to the prompt we used in
the main text, which we refer to as stepxstep,
we consider three variations on this prompt (Fig-
ure 11):

1. logically: The same as stepxstep, except
the zero-shot reasoning trigger “Let’s think this
through, step by step” is replaced by “Think log-
ically” (like stepxstep, this prompt is inspired
by a prompt from Kojima et al. 2022).

2. empty: This prompt does not include any zero-
shot reasoning trigger (that is, “Let’s think this
through, step by step” is replaced with the empty
string).

3. alt: We created this prompt in an attempt to
mitigate the LMs’ reluctace to produce “noth-
ing follows™; here the possibility of a “nothing
follows” response is highlighted closer to the
end of the prompt and in a more verbose way.
This prompt also encourages the model to use
the exact wording included in the prompt, and
replaces “Let’s think this through, step by step”
with the slight variation “Let’s think step by
step”.
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stepxstep
Choose the conclusion that necessarily follows from the premises

empty
Choose the conclusion that necessarily follows from the premises
or "nothing follows" if none of the other conclusions logically

or "nothing follows" if none of the other conclusions logically
follow,

the possible conclusions are:

"all artists are chemists",

"some artists are chemists",

"no artists are chemists",

"some artists are not chemists",

"all chemists are artists",

"some chemists are artists",

"no chemists are artists",

"some are chemists not artists",
"nothing follows".

Premise 1: all artists are bakers,
Premise 2: some chemists are bakers.
Let's think this through, step by step.

follow,

the possible conclusions are:

"all artists are chemists",

"some artists are chemists",

"'no artists are chemists",

"'some artists are not chemists",
"all chemists are artists",

"some chemists are artists",

"no chemists are artists",

"'some are chemists not artists",
"nothing follows".

Premise 1: all artists are bakers,
Premise 2: some chemists are bakers.

alt

Output the conclusion or conclusions that are logically true given the
premises.

The possible conclusions are as follows (your output should use this
exact wording): "all artists are chemists",

"some artists are chemists",

"no artists are chemists",

"'some artists are not chemists",

"all chemists are artists",

"some chemists are artists",

"no chemists are artists",

"'some are chemists not artists",

"nothing follows".

Premise 1: all artists are bakers,

Premise 2: some chemists are bakers.

In some cases, none of these conclusions will be logically valid,
output the words 'nothing follows' in this case.

Let’s think step by step.

logically

Choose the conclusion that necessarily follows from the premises
or "nothing follows" if none of the other conclusions logically
follow,

the possible conclusions are:

"all artists are chemists",

"some artists are chemists",

"no artists are chemists",

"some artists are not chemists",

"all chemists are artists",

"some chemists are artists",

"no chemists are artists",

"some are chemists not artists",

"nothing follows".

Premise 1: all artists are bakers,

Premise 2: some chemists are bakers.

Think logically.

Figure 11: Variations on the prompt we used for the generative elicitation method; the prompt used in the main text
is stepxstep.

In the experiments varying the prompt, we hold
the decoding temperature at 0.5 and the maximum
number of decoded tokens at 75. We find that the

1
prompt variants show broadly similar patterns (Fig- o7
ure 12), though stepxstep achieves moderately g 051 ® o o o e © °
higher accuracy than the other prompts. ® 025 ¢ e

o
Decoding hyperparameters Next, we hold the R ;w”t o*t 4°d d«* t p$°

. . & * emperature ecode steps

stepxstep prompt used in the main paper con- prompt

stant, and independently vary decoding length
and temperature. First, we use the temperatures
{0.25,0.5,0.75}, holding the decoding length at
75. Second, we vary the number of tokens decoded
between 50, 75 and 100, keeping the temperature at
0.5. Here, we observe a slight increase in accuracy
as the number of decoded tokens increases, which
is expected (Figure 12).

Figure 12: Accuracy for the chain-of-thought prompt-
ing method, with different prompts, temperatures and
number of decoding steps.

such as its length and prior probability, we use the
mutual information between the prompt (p) and the
conclusion (c) as the score (Holtzman et al., 2021):

MI(c;p) = log P(clp) — log P(c|) (1)

We then renormalise these scores to compute a
distribution over the conclusions (indexed by #):

exp (MI (ci; p))
> exp (MI(cj;p))’

and take the conclusion with the highest
P (conclusion;) to be the LM’s prediction for a
given combination of syllogism and content triple.
Results obtained using this method are shown in
Figure 13.

B.2 Multiple-Choice Discriminative
Evaluation

In this approach to evaluating LM reasoning, we
replace the generative evaluation with a discrimi-
native scoring of each of the possible conclusions.
The prompt is very similar: we remove the zero-
shot chain-of-thought trigger from stepxstep and
replace it with “The conclusion that necessarily
follows is: ”, then feed the prompt to the models
and score each of the conclusions. To normalize
for the idiosyncratic features of each conclusion,
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Figure 13: Comparison across reasoning elicitation methods with PalLM 2 models: the CoT generation method
used in the main text (generative), as well as the binary and multiple-choice methods. We show accuracy among
syllogisms with a valid conclusion (top), correlation with humans (middle), and accuracy among syllogisms where
the correct response is “nothing follows” (bottom). The accuracy of the generative method is highest on the valid
syllogisms, but the binary discrimination method achieves markedly higher accuracy on the “nothing follows”
syllogisms. Both outperform the multiple-choice method substantially.
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B.3 Simplified Binary Evaluation

While the multiple-choice format is most similar to
the paradigm used in human experiments, it poses a
significantly harder task than simple binary discrim-
ination (Dasgupta et al., 2022), which may be more
sensitive. In the validity discrimination evaluation
method, we present the LM with the prompt “Is
this conclusion valid given the premises:” followed
by the premises and a single conclusion (we refer
to the concatenation of the prompt and conclusion;
as prompt, below). We do this for all eight possi-
ble conclusions (omitting “nothing follows”). We,
again, use the mutual information to score and com-
pute the binary probability of “valid” as:

P (“valid”

Ci) =
exp (MI (“valid”; p;))
exp (MI (“valid”; p;)) + exp (MI (“invalid”; p;))

We compute discrete conclusion decisions by
normalizing P(“valid”) for each conclusion into a
probability distribution:

P (“valid”|c;)

Plei) = >2; P (“valid”[c;)’ )
and taking the conclusion with the largest prob-
ability according to Equation 3 to be the LM’s
selected conclusion for a syllogism (the conclusion
most likely to be valid according to the LM). In this
approach, the LM’s prediction is taken to be “noth-
ing follows™ if P (“valid”|conclusion) does not ex-
ceed 50% for any of the conclusions. We note that
this method is the only one that successfully elic-
its “nothing follows” conclusions for a substantial

proportion of the syllogisms (Figure 13).

C By-Syllogism Correlations with Human
Responses

Figures 14 provides correlations between LMs and
humans at the individual syllogism level. While
larger LMs are generally more human-like, we ob-
serve a diversity of relationships between model
scale and human-likeness, including cases such as
IE2 where larger models are in fact less correlated
with humans.

D Mental Models Simulations:
Additional Details

D.1 Model details

This section provides additional details on mRea-
soner. Figure 15 shows an example of the “canoni-

LEN | 20 25 3.0 35 40 45
BROAD | 0.0 02 04 06 0.8 09
SYystM2 | 0.0 02 04 06 08 09
WEAKEN | 0.0 02 04 06 08 09

Table 3: Parameter grid used to instantiate our mRea-
soner models.

cal sets” that mReasoner uses to heuristically sam-
ple entities, and Figure 16 illustrates the subrou-
tines used to revise mental models.

D.2 mReasoner instantiations

We instantiate one mReasoner model for every pa-
rameter vector in the grid shown in Table 3. This
resulted in a total of 1,296 models. As the model’s
reasoning process is stochastic, we evaluate each
model 100 times for each syllogism to estimate
the distribution over responses. Due to resource
constraints, we discarded models that did not finish
these 100 iterations in 60 seconds, leaving us with
923 models spaced relatively evenly over the grid
(i.e., this timeout criterion did not systemtically
favor some hyperparameter values).

Each of the 923 models is represented by a 216-
dimension vector, with eight possible conclusions
for each of the 27 valid syllogisms (27 x 8 = 216).
We perform a standard PCA—the probabilistic
PCA of Tipping and Bishop (1999) on the cen-
tered dataset, using scikit-learn (Pedregosa et al.,
2011)—on these 923 vectors.

E Llama 2: Additional Results and Plots

As we mentioned in Section 4.3, while the overall
accuracy of Llama 2 models is similar to that of
humans, this aggregate pattern masks large discrep-
ancies with humans, and in particular poor accuracy
on some syllogisms where humans rarely make mis-
takes, as well as high accuracy on syllogisms that
humans struggle with. Consequently, these models
exhibit a substantially lower correlation with hu-
man behavior across the board (Figure 21) than do
PalLM 2 models (cf. Figure 14). Llama 2 models
also demonstrate a slight decrease in correlation
with human behavior as a function of model size
in our analysis of the correlation between accuracy
and entropy in syllogistic fallacies (Figure 19; cf.
Figure 5 for PaLM 2 models).

We also repeated the mReasoner analysis (de-
scribed in Section 5) to analyze Llama 2 mod-
els’ behavior. Although the Llama 2 models, like

8440



. AllAare B . Some Aare B LAllAare B . Some Aare B . NoAareB .NoAareB
AELiNoBarec AL QiBaec  AAlimigaec  IEL! RoBaec  EIl someBarec EALiiBarec Overall 1
14 *——o . —e *—o—o - e—e *—o—o . —e
I o= .F“'—_.F"““M.
e 1 S —
54 01 TTTTTTT==
104
No B are A AllBare A All B are A No B are A All B are A oracle - 0.5
EA2:jicares  Al2 Somecares AA2iAicaes  E120 someCares AE2: o C are B o o ———
14 ’—o—o o e—e o —e—e ”—eo—o o —eo—e
s el et o
o e random
S TTTTTTEEEEL O e o ———— —— - ——— - Lo
104
.NoAareB LAllAare B LAllAare B .Some A not B . SomeAareB . NoAareB
P EA3:jicares  AE3iNocaes  AO3iomecnots OA3:AiCares  IE3' NoCaeB  EI3' SomeCareB
1 o——o *—o—o o —eo—e o e—e —eo—o
5 ] oo (OO0 o000 »
o e P L I — T T T T -0.5
I XXS XS S L
104
. AllBare A . Some Bare A LAll B are A .Some B not A LAllBare A . Some B are A . NoBare A L AllBare A .NoBareA
Ald: SomeBarec A4 QiBarec  AO%Somesnotc OA%AiBaec = AP4igarec B4 NoBaec  EM4 someBaec AE4Noparec  EA4 AlBarec
14 » o—*—o *—0—9 *—o—o - e—e o —e [ . o——0
s —.\. ==, o—0—o —o—e
L3 e [ (N i [ E o T Tt u pht il R
5 R i
104

——— ——— ——T— — ——— ——— ——— —— ———
XXS XS S L XXS XS S L XXS XS S L XXS XS S L XXS XS S L XXS XS S L XXS XS S L XXS XS S L XXS XS S L
® Human ® random XXS e XS e S o L

Figure 14: Correlation between PaLM 2 models’ distribution over responses and the probabilities derived from
normalizing human responses, broken down by syllogism. Syllogisms are partitioned into variable ordering type (by
row) and ordered by decreasing human accuracy from left to right. Chance performance (dashed grey line) reflects
random guessing. The top right inset shows correlation across the entire dataset.

all artists are bakers no artists are bakers
{artist baker)} {artist  —baker,
—artist baker }
some artists are bakers some artists are not bakers
{artist  Dbaker, {artist  —baker,
artist } artist baker ,
baker }

Figure 15: The “canonical sets” used by mReasoner. The canonical set for a syllogism depends on the moods of the
syllogism’s premises. We show the possible individuals each premise contributes to a syllogism’s canonical set here
for the hypothetical content words artists and bakers.

g == artist baker chemist ======«_
I' baker \I
1 chemist '
; (oo ] . (e | (e )
v v v
artist baker chemist artist—baker——chemist artist baker chemist
baker artist baker baker c1hem:'!.st
chemist baker chemist clremist
baker baker
chemist

Figure 16: Subroutines used by mReasoner to revise mental models in order to check for counterexamples. We
denote these subroutines as ADD, BREAK, and MOVE, following (Khemlani and Johnson-Laird, 2022). ADD adds one
more entity to a mental model. BREAK decomposes an entity’s properties into constituent entities with subsets of
those properties. MOVE simply moves a property from one entity to another.
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PalLM 2, exhibit increased signatures of delibera-
tive reasoning compared to mReasoner when all of
their predictions are considered (Figure 17b, left),
when we control for accuracy by setting the proba-
bility of the correct answer to zero for all Llama 2
models, we find no significant correlation between
model size and signatures of deliberative reasoning
(Figure 17b, center; cf. Figure 9 for PaLM 2, where
we do find such signatures even after controlling
for accuracy).
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Figure 17: (a) Llama 2’s behavior on the 37 syllogisms whose only valid conclusion is “nothing follows” (left)
and the syllogisms that license conclusions other than “nothing follows” (right). (b) Llama 2’s behavior when
analyzed using the principal components of the mReasoner space (see Section 5). We find an increased signature of
deliberative reasoning as a function of model size, but we no longer observe this effect when we control for accuracy
(setting the probability of the correct answers to zero before projecting the models’ behavior into this space).
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Figure 18: Accuracy of Llama 2 models, humans (red), and random guessing (grey). Random guessing accuracy
differs by syllogism as some syllogisms have more than one valid conclusion. Syllogisms are partitioned into
variable ordering (by row) and ordered by decreasing human accuracy from left to right. The top right inset shows
the average accuracy across all syllogisms. Syllogisms are identified with the letters of the moods of the premises
(Table 1, left) and the number associated with their variable ordering (Table 1, right).
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Figure 19: Analysis of Llama 2 models’ handling of syllogistic fallacies. Right: Each syllogism plotted by accuracy
(y-axis) and entropy (x-axis) and the regression line relating the two. Dashed lines black lines show the residuals for
each of the top three human syllogistic fallacies. Left: The result of correlating Llama 2’s residuals with residuals

estimated from human data.
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Figure 21: Correlation between the Llama 2 model’s distribution over responses and the probabilities derived from
normalizing human responses, broken down by syllogism. Syllogisms are partitioned into variable ordering type (by
row) and ordered by decreasing human accuracy from left to right. Chance performance (dashed grey line) reflects
random guessing. The top right inset shows correlation across the entire dataset.
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