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Abstract

We introduce REPLUG, a retrieval-augmented
language modeling framework that treats the
language model (LM) as a black box and aug-
ments it with a tuneable retrieval model. Un-
like prior retrieval-augmented LMs that train
language models with special cross attention
mechanisms to encode the retrieved text, RE-
PLUG simply prepends retrieved documents
to the input for the frozen black-box LM.
This simple design can be easily applied to
any existing language models. Furthermore,
we show that the LM can be used to su-
pervise the retrieval model, which can then
find documents that help the LM make bet-
ter predictions. Our experiments demonstrate
that REPLUG with the tuned retriever signif-
icantly improves the performance of GPT-3
(175B) on language modeling by 6.3%, as
well as the performance of Codex on five-shot
MMLU by 5.1%. Code is publicly released at
github.com/swj0419/REPLUG.

1 Introduction

Large language models (LMs) such as GPT-
3 (Brown et al., 2020) and Codex (Chen et al.,
2021), have demonstrated impressive performance
on a wide range of language tasks. These models
are typically trained on very large datasets and store
a substantial amount of world or domain knowl-
edge implicitly in their parameters. However, they
are also prone to hallucination and cannot represent
the full long tail of knowledge from the training cor-
pus. Retrieval-augmented language models (Khan-
delwal et al., 2020; Borgeaud et al., 2022; Izacard
et al., 2022b; Yasunaga et al., 2023), in contrast,
can retrieve knowledge from an external datastore
when needed, potentially reducing hallucination
and increasing coverage. Previous approaches of
retrieval-augmented language models require ac-
cess to the internal LM representations (e.g., to
train the model (Borgeaud et al., 2022; Izacard
et al., 2022b) or to index the datastore (Khandelwal

Figure 1: Different from previous retrieval-augmented
approaches (Borgeaud et al., 2022) that enhance a lan-
guage model with retrieval by updating the LM’s pa-
rameters, REPLUG treats the LM as a black box and
augments it with a frozen or tunable retriever. This
black-box assumption makes REPLUG applicable to
large LMs, which are often served via APIs.

et al., 2020)), and are thus difficult to be applied
to very large LMs. In addition, many best-in-class
LLMs can only be accessed through APIs. Internal
representations of such models are not exposed and
fine-tuning is not supported.

In this work, we introduce REPLUG (Retrieve
and Plug), a new retrieval-augmented LM frame-
work where the language model is viewed as a
black box and the retrieval component is added
as a tuneable plug-and-play module. Given an in-
put context, REPLUG first retrieves relevant doc-
uments from an external corpus using an off-the-
shelf retrieval model. The retrieved documents
are prepended to the input context and fed into the
black-box LM to make the final prediction. Be-
cause the LM context length limits the number of
documents that can be prepended, we also adopt an
ensemble scheme that encodes the retrieved doc-
uments in parallel with the same black-box LM,
allowing us to easily trade compute for accuracy.
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As shown in Figure 1, REPLUG is extremely flex-
ible and can be used with any existing black-box
LM and retrieval model.

We also introduce REPLUG LSR (REPLUG with
LM-Supervised Retrieval), a training scheme that
can further improve the initial retrieval model in
REPLUG with supervision signals from a black-
box language model. The key idea is to adapt the
retriever to the LM, which is in contrast to prior
work (Borgeaud et al., 2022) that adapts language
models to the retriever. We use a training objective
which prefers retrieving documents that improve
language model perplexity, while treating the LM
as a frozen, black-box scoring function.

Our experiments show that REPLUG can im-
prove the performance of diverse black-box LMs
on both language modeling and downstream tasks,
including MMLU (Hendrycks et al., 2021) and
open-domain QA (Kwiatkowski et al., 2019; Joshi
et al., 2017). For instance, REPLUG can im-
prove Codex (175B) performance on MMLU
by 4.5%, achieving comparable results to the
540B, instruction-finetuned Flan-PaLM. Further-
more, tuning the retriever with our training scheme
(i.e., REPLUG LSR) outperforms various off-the-
shelf retrievers and leads to additional improve-
ments, including up to 6.3% increase in GPT-3
175B language modeling. To the best of our knowl-
edge, our work is the first to show the benefits of
retrieval to large LMs (>100B model parameters),
for both reducing LM perplexity and and improving
in-context learning performance. We summarize
our contributions as follows:

• We introduce REPLUG (§3), the first retrieval-
augmented language modeling framework for
enhancing black-box LMs with retrieval. Un-
like previous methods that require updating
the LM’s parameters, REPLUG could be easily
plugged into any existing LM without addi-
tional finetuning.

• We propose a training scheme (§4) to further
adapt an off-the-shelf retrieval model to the
LM, using the language modeling scores as
supervision signals, resulting in improved re-
trieval quality.

• We are the first to demonstrate that retrieval
can benefit large-scale, state-of-the-art LMs
on language modeling (§6) and in-context
learning tasks. Evaluations show that RE-
PLUG can improve the performance of var-

ious language models such as GPT, OPT and
BLOOM, including very large models with
up to 175B parameters.

2 Background and Related Work

Black-box Language Models Large language
models, such as GPT-3 (Brown et al., 2020),
Codex (Chen et al., 2021), are not open-sourced
due to commercial considerations and are only
available as black-box APIs, through which users
can send queries and receive responses. On the
other hand, even open sourced language models
such as BLOOM-176B (Scao et al., 2022) require
significant computational resources to run and fine-
tune locally. For example, finetuning BLOOM-
176B requires 72 A100 GPUs (Younes Belkda,
2022), making them inaccessible to researchers and
developers with limited resources. Traditionally,
retrieval-augmented model frameworks (Khandel-
wal et al., 2020; Borgeaud et al., 2022; Yu, 2022;
Izacard et al., 2022b; Goyal et al., 2022) have fo-
cused on the white-box setting, where language
models are fine-tuned to incorporate retrieved doc-
uments. However, the increasing scale and black-
box nature of LLMs makes this approach infeasi-
ble. To address these challenges, we investigate
retrieval-augmentation in the black-box setting,
where users only have access to the model predic-
tions and cannot access or modify its parameters.

Retrieval-augmented Models Augmenting lan-
guage models with relevant information retrieved
from knowledge stores has shown to be effective
in improving performance on various NLP tasks,
including language modeling (Min et al., 2022;
Borgeaud et al., 2022; Khandelwal et al., 2020)
and open-domain question answering (Lewis et al.,
2020; Izacard et al., 2022b; Hu et al., 2022). Specif-
ically, using the input as query, (1) a retriever first
retrieves a set of documents from a corpus and then
(2) a language model incorporates the retrieved doc-
uments as additional information to make a final
prediction. Previous retrieval-augmented LMs re-
quire updating the model parameters , which cannot
be applied to black-box LMs, which cannot be ap-
plied to black-box LMs. For example, Atlas (Izac-
ard et al., 2022b) finetunes an encoder-decoder
model jointly with the retriever by modeling docu-
ments as latent variables, while RETRO (Borgeaud
et al., 2022) changes the decoder-only architec-
ture to incorporate retrieved texts and pretrains
the language model from scratch. Another line of
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Figure 2: REPLUG at inference (§3). Given an input context, REPLUG first retrieves a small set of relevant
documents from an external corpus using a retriever (§3.1 Document Retrieval). Then it prepends each document
separately to the input context and ensembles output probabilities from different passes (§3.2 Input Reformulation).

retrieval-augmented LMs such as kNN-LM (Khan-
delwal et al., 2020; Zhong et al., 2022) retrieves
a set of tokens and interpolates between the LM’s
next token distribution and kNN distributions com-
puted from the retrieved tokens at inference. kNN-
LM requires access to internal LM representations
to compute the kNN distribution, which are not
available for black-box LMs such as GPT-3. In this
work, we investigate ways to improve large black-
box language models with retrieval. While con-
current work (Mallen et al., 2022; Si et al., 2023)
has demonstrated that using a frozen retriever can
improve GPT-3 performance on open-domain ques-
tion answering, we approach the problem in a more
general setting, including language modeling and
understanding tasks. We additionally adopt an en-
semble method to incorporate more documents and
a training scheme to further adapt the retriever to
large LMs.

3 REPLUG

We introduce REPLUG (Retrieve and Plug), a new
retrieval-augmented LM paradigm where the LM
is treated as black box and the retrieval component
is added as a potentially tuneable module.

As shown in Figure 2, given an input context,
REPLUG first retrieves a small set of relevant doc-
uments from an external corpus using a retriever
(§3.1). Then we pass the concatenation of each
retrieved document with the input context through
the LM in parallel, and ensemble the predicted
probabilities (§3.2).

3.1 Document Retrieval

Given an input context x, the retriever aims to
retrieve a small set of documents from a corpus
D = {d1...dm} that are relevant to x. Following
prior work (Qu et al., 2021; Izacard and Grave,
2021; Ni et al., 2022), we use a dense retriever
based on the dual encoder architecture, where an
encoder is used to encode both the input context
x and the document d. Specifically, the encoder
maps each document d ∈ D to an embedding E(d)
by taking the mean pooling of the last hidden rep-
resentation over the tokens in d. At query time,
the same encoder is applied to the input context x
to obtain a query embedding E(x). The similarity
between the query embedding and the document
embedding is computed by their cosine similarity:

s(d, x) = cos(E(d),E(x)) (1)

The top-k documents that have the highest simi-
larity scores when compared with the input x are
retrieved in this step. For efficient retrieval, we pre-
compute the embedding of each document d ∈ D
and construct FAISS index (Johnson et al., 2019)
over these embeddings.

3.2 Input Reformulation

The retrieved top-k documents provide rich infor-
mation about the original input context x and can
potentially help the LM to make a better prediction.
One simple way to incorporate the retrieved docu-
ments as part of the input to the LM is to prepend x
with all k documents. However, this simple scheme
is fundamentally restricted by the number of docu-
ments (i.e., k) we can include, given the language
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model’s context window size. To address this lim-
itation, we adopt an ensemble strategy described
as follows. Assume D′ ⊂ D consists of k most
relevant documents to x, according to the scoring
function in Eq. (1). We prepend each document
d ∈ D′ to x, pass this concatenation to the LM
separately, and then ensemble output probabilities
from all k passes. Formally, given the input context
x and its top-k relevant documents D′, the output
probability of the next token y is computed as a
weighted average ensemble:

p(y | x,D′) =
∑

d∈D′
p(y | d ◦ x) · λ(d, x),

where ◦ denotes the concatenation of two se-
quences and the weight λ(d, x) is based on the
similarity score between the document d and the
input context x:

λ(d, x) =
es(d,x)∑

d∈D′ es(d,x)

4 REPLUG LSR: Training the Dense
Retriever

Instead of relying only on existing neural dense
retrieval models (Karpukhin et al., 2020; Izacard
et al., 2022a; Su et al., 2023), we further propose
REPLUG LSR (REPLUG with LM-Supervised Re-
trieval), which adapts the retriever in REPLUG by
using the LM itself to provide supervision about
which documents should be retrieved.

Inspired by Sachan et al. (2023), our approach
can be seen as adjusting the probabilities of the re-
trieved documents to match the probabilities of the
output sequence perplexities of the language model.
In other words, we would like the retriever to find
documents that result in lower perplexity scores.
As shown in Figure 3, our training algorithm con-
sists of the four steps: (1) retrieving documents and
computing the retrieval likelihood (§4.1), (2) scor-
ing the retrieved documents by the language model
(§4.2), (3) updating the retrieval model parameters
by minimizing the KL divergence between the re-
trieval likelihood and the LM’s score distribution
(§4.3), and (4) asynchronous update of the datas-
tore index (§4.4).

4.1 Computing Retrieval Likelihood
We retrieve k documents D′ ⊂ D with the highest
similarity scores from a corpus D given an input
context x, as described in §3.1. We then compute

the retrieval likelihood of each retrieved document
d:

PR(d | x) = es(d,x)/γ∑
d∈D′ es(d,x)/γ

where γ is a hyperparameter that controls the temer-
ature of the softmax. Ideally, the retrieval likeli-
hood is computed by marginalizing over all the
documents in the corpus D, which is intractable in
practice. Therefore, we approximate the retrieval
likelihood by only marginalizing over the retrieved
documents D′.

4.2 Computing LM likelihood
We use the LM as a scoring function to mea-
sure how much each document could improve
the LM perplexity. Specifically, we first compute
PLM (y | d, x), the LM probability of the ground
truth output y given the input context x and a docu-
ment d. The higher the probability, the better the
document di is at improving the LM’s perplexity.
We then compute the LM likelihood of each docu-
ment d as follows:

Q(d | x, y) = ePLM (y|d,x)/β
∑

d∈D′ ePLM (y|d,x)/β

where β is another hyperparameter.

4.3 Loss Function
Given the input context x and the corresponding
ground truth continuation y, we compute the re-
trieval likelihood and the language model likeli-
hood. The dense retriever is trained by minimizing
the KL divergence between these two distributions:

L =
1

|B|
∑

x∈B
KL

(
QLM(d | x, y) ∥ PR(d | x)

)
,

where B is a set of input contexts. When minimiz-
ing the loss, we can only update the retrieval model
parameters. The LM parameters are fixed due to
our black-box assumption.

4.4 Asynchronous Update of the Datastore
Index

Because the parameters in the retriever are updated
during the training process, the previously com-
puted document embeddings are no longer up to
date. Therefore, following Guu et al. (2020), we
recompute the document embeddings and rebuild
the efficient search index using the new embed-
dings every T training steps. Then we use the new
document embeddings and index for retrieval, and
repeat the training procedure.
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Figure 3: REPLUG LSR training process (§4). The retriever is trained using the output of a frozen language
model as supervision signals.

5 Training Setup

In this section, we describe the details of our train-
ing procedure. We first describe the model setting
in REPLUG (§5.1) and then describe the procedure
for training the retriever in REPLUG LSR (§5.2).

5.1 REPLUG

In theory, any type of retriever, either
dense (Karpukhin et al., 2020; Ni et al., 2022) or
sparse (Robertson et al., 2009), could be used for
REPLUG. Following prior work (Izacard et al.,
2022b), we use the Contriever (Izacard et al.,
2022a) as the retrieval model for REPLUG, as it
has demonstrated strong performance.

5.2 REPLUG LSR

For REPLUG LSR, we initialize the retriever with
the Contriever model (Izacard et al., 2022a). We
use GPT-3 Curie (Brown et al., 2020) as the super-
vision LM to compute the LM likelihood.

Training data We use 800K sequences of 256 to-
kens each, sampled from the Pile training data (Gao
et al., 2021), as our training queries. Each query is
split into two parts: the first 128 tokens are used
as the input context x, and the last 128 tokens are
used as the ground truth continuation y. For the
external corpus D, we sample 36M documents of
128 tokens from the Pile training data. To avoid
trivial retrieval, we ensure that the external corpus
documents do not overlap with the documents from
which the training queries are sampled.

Training details To make the training process
more efficient, we pre-compute the document em-
beddings of the external corpus D and create a

FAISS index (Johnson et al., 2019) for fast sim-
ilarity search. Given a query x, we retrieve the
top 20 documents from the FAISS index and com-
pute the retrieval likelihood and the LM likelihood
with a temperature of 0.1. We train the retriever
using the Adam optimizer (Kingma and Ba, 2015)
with a learning rate of 2e-5, a batch size of 64, and
a warmup ratio of 0.1. We re-compute the docu-
ment embeddings every 3k steps and fine-tune the
retriever for a total of 25k steps.

6 Experiments

We perform evaluations on both language modeling
(§6.1) and downstream tasks such as MMLU (§6.2)
and open-domain QA (§6.3). In all settings, RE-
PLUG ĩmprove the performance of various black-
box language models, showing the effectiveness
and generality of our approach.

6.1 Language Modeling

Datasets The Pile (Gao et al., 2021) is a language
modeling benchmark that consists of text sources
from diverse domains such as web pages, code and
academic papers. Following prior work, we report
bits per UTF-8 encoded byte (BPB) as the metric
on each subset domain.

Baselines We consider GPT-3 and GPT-2 family
LMs as the baselines. The four models from GPT-3
(Davinci, Curie, Baddage and Ada) are black-box
models that are only accessible through API.

Our model We add REPLUG and REPLUG LSR
to the baselines. We randomly subsampled Pile
training data (36M documents of 128 tokens) and
use them as the retrieval corpus for all models. As
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Model # Parameters Original + REPLUG Gain % + REPLUG LSR Gain %

GPT-2 Small 117M 1.33 1.26 5.3 1.21 9.0
Medium 345M 1.20 1.14 5.0 1.11 7.5
Large 774M 1.19 1.15 3.4 1.09 8.4
XL 1.5B 1.16 1.09 6.0 1.07 7.8

GPT-3 Ada 350M 1.05 0.98 6.7 0.96 8.6
(black-box) Babbage 1.3B 0.95 0.90 5.3 0.88 7.4

Curie 6.7B 0.88 0.85 3.4 0.82 6.8
Davinci 175B 0.80 0.77 3.8 0.75 6.3

Table 1: Both REPLUG and REPLUG LSR consistently enhanced the performance of different language
models. Bits per byte (BPB) of the Pile using GPT-3 and GPT-2 family models (Original) and their retrieval-
augmented versions (+REPLUG and +REPLUG LSR. The gain % shows the relative improvement of our models
compared to the original language model.

the Pile dataset has made efforts to deduplicate doc-
uments across train, validation and test splits (Gao
et al., 2021), we did not do additional filtering. For
both REPLUG and REPLUG LSR, we use a length
of 128-token context to do retrieval and adopt the
ensemble method (Section 3.2) to incorporate top
10 retrieved documents during inference.

Results Table 1 reports the results of the origi-
nal baselines, baselines augmented with the RE-
PLUG, and baselines augmented with the REPLUG

LSR. We observe that both REPLUG and REPLUG

LSR significantly outperform the baselines. This
demonstrates that simply adding a retrieval mod-
ule to a frozen language model (i.e., the black-box
setting) is effective at improving the performance
of different sized language models on language
modeling tasks. Furthermore, REPLUG LSR con-
sistently performs better than REPLUG by a large
margin. Specifically, REPLUG LSR results in 7.7%
improvement over baselines compared to 4.7% im-
provement of REPLUG averaged over the 8 models.
This indicates that further adapting the retriever to
the target LM is beneficial.

6.2 MMLU
Datasets MMLU (Hendrycks et al., 2021) is a
multiple choice QA dataset that covers exam ques-
tions from 57 tasks including mathematics, US
history and etc. The 57 tasks are grouped into 4
categories: humanities, STEM, social sciences and
other. Following Chung et al. (2022a), we evaluate
REPLUG in the 5-shot in-context learning setting.

Baselines We consider two groups of strong
previous models as baselines for comparisons.
The first group of baselines is the state-of-
the-art LLMs including Codex1 (Chen et al.,

1Code-Davinci-002

2021), PaLM (Chowdhery et al., 2022), and Flan-
PaLM (Chung et al., 2022b). According to Chung
et al. (2022b), these three models rank top-3 in the
leaderboard of MMLU. Additionally, we include
strong open-source LMs such as LLaMA (Touvron
et al., 2023). The second group of baselines con-
sists of retrieval-augmented language models. We
only include Atlas (Izacard et al., 2022b) in this
group, as no other retrieval-augmented LMs have
been evaluated on the MMLU dataset. Atlas trains
both the retriever and the language model, which
we consider a white-box retrieval LM setting.

Our model We add REPLUG and REPLUG LSR
to Codex and LLaMA because other models such
as PaLM and Flan-PaLM are not accessible to the
public. We use the test question as the query to
retrieve 10 relevant documents from Wikipedia
(2018, December) and prepend each retrieved doc-
ument to the test question, resulting in 10 separate
inputs. These inputs are then separately fed into
the language models, and the output probabilities
are ensemble together. The retriever interacts with
Codex and LLaMA through black-box access.

Results Table 2 presents the results from the base-
lines, REPLUG, and REPLUG LSR on the MMLU
dataset. We observe that both the REPLUG and RE-
PLUG LSR improve the original Codex model by
4.5% and 5.1%, respectively. In addition, REPLUG

LSR largely outperforms the previous retrieval-
augmented language model, Atlas, demonstrating
the effectiveness of our black-box retrieval lan-
guage model setting. Although our models slightly
underperform Flan-PaLM, this is still a strong re-
sult because Flan-PaLM has three times more pa-
rameters. We would expect that the REPLUG LSR
could further improve Flan-PaLM, if we had access
to the model.
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Model # Parameters Humanities Social. STEM Other All

Codex 175B 74.2 76.9 57.8 70.1 68.3
PaLM 540B 77.0 81.0 55.6 69.6 69.3
Flan-PaLM 540B - - - - 72.2
LLaMA 13B - - - - 55.6

Atlas 11B 46.1 54.6 38.8 52.8 47.9

Codex + REPLUG 175B 76.0 79.7 58.8 72.1 71.4
Codex + REPLUG LSR 175B 76.5 79.9 58.9 73.2 71.8
LLaMA + REPLUG 13B - - - - 58.8
LLaMA + REPLUG LSR 13B - - - - 59.3

Table 2: REPLUG and REPLUG LSR improves Codex by 4.5% and 5.1% respectively. Performance on MMLU
broken down into 4 categories. The last column averages the performance over these categories. All models are
evaluated based on 5-shot in-context learning with direct prompting.

Another interesting observation is that the RE-
PLUG LSR outperforms the original model by
1.9% even in the STEM category. This suggests
that retrieval may improve a language model’s
problem-solving abilities.

6.3 Open Domain QA
Lastly, we conduct evaluation on two open-
domain QA datasets: Natural Questions
(NQ) (Kwiatkowski et al., 2019) and Trivi-
aQA (Joshi et al., 2017).

NQ TQA

Model k-shot Full k-shot Full

Chinchilla 35.5 - 64.6 -
PaLM 39.6 - - -
Codex 40.6 - 73.6 -
LLaMA 29.0 - 69.6

RETRO† - 45.5 - -
R2-D2† - 55.9 - 69.9
Atlas† 30.9 60.4 74.5 79.8

Codex + REPLUG 44.7 - 76.8 -
Codex + REPLUG LSR 45.5 - 77.3 -
LLaMA + REPLUG 36.1 - 73.3 -
LLaMA + REPLUG LSR 37.2 - 74.1 -

Table 3: Performance on NQ and TQA. We report re-
sults for both k-shot (64 shots for Chinchilla, PaLM, and
Atlas; 16 shots for Codex-based models) and full data
settings. Note that models with † are finetuned using
training examples, while others use in-context learning.

Datasets NQ and TriviaQA are two open-domain
QA datasets. Following prior work (Izacard and
Grave, 2021; Si et al., 2023), we report Exact
Match for the filtered set of TriviaQA. We con-
sider the k-shot setting where the model is only
given a few training examples and full data setting
where the model is given all the training examples.

Baselines We compare our model with several
state-of-the-art baselines, both in a few-shot set-

ting and with full training data. The first group
of models consists of powerful large language
models, including Chinchilla (Hoffmann et al.,
2022), PaLM (Chowdhery et al., 2022), Codex and
LLaMA 13B (Touvron et al., 2023). These models
are all evaluated using in-context learning under
the few-shot setting, with Chinchilla and PaLM
evaluated using 64 shots, and Codex using 16 shots.
The second group of models for comparison in-
cludes retrieval-augmented language models such
as RETRO (Borgeaud et al., 2022), R2-D2 (Fajcik
et al., 2021), and Atlas (Izacard et al., 2022b). All
of these retrieval-augmented models are finetuned
on the training data, either in a few-shot setting
or with full training data. Specifically, Atlas is
finetuned on 64 examples in the few-shot setting.

Our model We add REPLUG and REPLUG LSR
to Codex and LLaMA 13B with Wikipedia as the
retrieval corpus and evaluate them in a 16-shot in
context learning. We incorporate top-10 retrieved
documents using our proposed ensemble method.

Results As shown in Table 3, REPLUG LSR sig-
nificantly improves the performance of the original
Codex by 12.0% on NQ and 5.0% on TQA. It out-
performs the previous best model, Atlas, which was
fine-tuned with 64 training examples, achieving a
new state-of-the-art in the few-shot setting. How-
ever, this result still lags behind the performance of
retrieval-augmented language models fine-tuned on
the full training data. This is likely due to the pres-
ence of near-duplicate test questions in the training
set (e.g., Lewis et al. (2021) found that 32.5% of
test questions overlap with the training sets in NQ).

7 Analysis

7.1 REPLUG is applicable to diverse models
Here we further study whether REPLUG could en-
hance diverse language model families that have
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Figure 4: GPT-2, BLOOM and OPT models of varying sizes consistently benefit from REPLUG. The x-axis
indicates the size of the language model and the y-axis is its perplexity on Wikitext-103.

been pre-trained using different data and methods.
Specifically, we focus on three groups of language
models with varying sizes: GPT-2 (117M, 345M,
774M, 1.5B parameters) (Brown et al., 2020),
OPT (125M, 350M, 1.3B, 2.7B, 6.7B, 13B, 30B,
66B) (Zhang et al., 2022) and BLOOM (560M,
1.1B, 1.7B, 3B and 7B) (Scao et al., 2022). We
evaluate each model on Wikitext-103 (Merity et al.,
2017) test data and report its perplexity. For
comparison, we augment each model with RE-
PLUG that adopts the ensemble method to incorpo-
rate top 10 retrieved documents. Following prior
work (Khandelwal et al., 2020), we use Wikitext-
103 training data as the retrieval corpus.

Figure 4 shows the performance of different-
sized LMs with and without REPLUG. We observe
that the performance gain brought by REPLUG

stays consistent with model size. For example,
OPT-125M achieves 6.9% perplexity improvement,
while OPT-66B achieves 5.6% perplexity improve-
ment. Additionally, REPLUG improves the perplex-
ity of all the model families, which indicates that
REPLUG is applicable to diverse language models
with different sizes.

7.2 REPLUG performance gain does not
simply come from the ensembling effect

The core of our method design is the use of an en-
semble method that combines output probabilities
of different passes, in which each retrieved docu-
ment is prepended separately to the input and fed
into a language model. To study whether the gains
come solely from the ensemble method, we com-
pare our method to ensembling random documents.
For this, we randomly sample several documents,
concatenated each random document with the input,
and ensemble the outputs of different runs (referred

to as "random"). As shown in Figure 5, we evalu-
ated the performance of GPT-3 Curie on Pile when
augmented with random documents, documents
retrieved by REPLUG, and documents retrieved
by REPLUG LSR. We observed that ensembling
random documents leads to worse performance, in-
dicating that the performance gains of REPLUG

do not come from the ensembling effect. Instead,
ensembling the relevant documents is crucial for
the success of REPLUG. Additionally, as more doc-
uments were ensembled, the performance of RE-
PLUG and REPLUG LSR improved monotonically.
However, a small number of documents (e.g., 10)
was sufficient to achieve large performance gains.

7.3 LSR retriever outperforms other
off-the-shelf retrievers

We investigate the effectivenss of tunable retriever
(LSR) compared with off-the-shelf retrievers.
Specifically, we compare LM-supervised contriever
(LSR) with other dense retrievers such as BERT-
base (Borgeaud et al., 2022), DPR (Karpukhin
et al., 2020) and a sparse retriever BM25 (Robert-
son et al., 2009). Figure 6 shows Wikitext-
103 perplexity of GPT-2 XL (1.5B) and GPT-2
Large (774M) augmented with different retrievers.
Among all off-the-shelf retrievers, the sparse re-
triever BM25 performs best. However, it still lags
behind our LM supervised retriever (Contriever
LSR), demonstrating the effectiveness of our train-
ing scheme that adapts the retriever to LMs.

8 Conclusion

We introduce REPLUG, a retrieval-augmented LM
paradigm that augments black-box LMs with a
tuneable retriever. This work opens up new possi-
bilities for integrating retrieval into large black-box
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Figure 5: Ensembling random documents does not
result in improved performance. BPB of Curie aug-
mented with different methods (random, REPLUG and
REPLUG LSR) when varying the number of documents.

Figure 6: LM-supervised retriever (Contriever LSR)
outperforms other off-the-shelf retrievers.

LMs and is the first to demonstrate even the state-
of-the-art LLMs could benefit from retrieval.

9 Limitations

Interpretability REPLUG exhibits limitations in
interpretability. It’s unclear when the model re-
lies on retrieved knowledge or on knowledge en-
coded within its own parameters. Future research
could work towards the development of more in-
terpretable retrieval-augmented language models.
Such models could trace the source of the gener-
ated answers, whether it’s from retrieved data or
internal parameters, thus providing a clear knowl-
edge provenance.

On-demand retrieval REPLUG always perform
retrieval no matter if the external information is
needed. This approach runs the risk of presenting
irrelevant documents, which can potentially dis-
tract the models, while also incurring additional
computational overheads. Future studies could ex-
plore methods that allow the language model to
determine when external knowledge is required.

Database size In line with prior research, RE-
PLUG uses Wikipedia and Pile as the targeted
search databases. However, these resources might
only encompass a minor fraction of the exter-
nal knowledge needed by LMs. Future research
should explore methods to efficiently expand these
databases and examine how an LM’s performance
scales with the size of the database.
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A Qualitative Analysis: Rare Entities
Benefit from Retrieval

To understand why the REPLUG improves lan-
guage modeling performance, we conducted man-
ual analysis of examples in which the REPLUG

results in a decrease in perplexity. We find that
REPLUG is more helpful when texts contain rare
entities. Figure 7 shows a test context and its con-
tinuation from the Wikitext-103 test set. For RE-
PLUG, we use the test context as a query to retrieve
a relevant document from Wikitext-103 training
data. We then compute the perplexity of the contin-
uation using the original GPT-2 1.5B and its RE-
PLUG enhanced version. After incorporating the
retrieved document, the perplexity of the continu-
ation improves by 11%. Among all tokens in the
continuation, we found that REPLUG is most help-
ful for the rare entity name "Li Bai". This is likely
because the original LM does not have sufficient
information about this rare entity name. However,
by incorporating the retrieved document, REPLUG

was able to match the name with the relevant in-
formation in the retrieved document, resulting in
better performance.

Figure 7: Rare entities benefit from retrieval. After
incorporating the retrieved document during inference,
the entity "Li Bai" and the token "greatest" in the contin-
uation show the most improvement in perplexity (15%
for "Li Bai" and 5% for "greatest"). Other tokens’ per-
plexity changes are within 5%.

B Dense Retriever vs. Sparse Retriever

The proposed model uses Contriever, a dense re-
triever, as its retriever backbone. Additionally, we
investigate the performance of a sparse retriever in
comparison to the dense retriever. For our sparse
model, we employ BM25. As depicted in Figure
8, we observe that BM25 consistently outperforms
Contriever but falls short when compared to LM-
supervised Contriever, thus highlighting the effec-

Figure 8: PPL of GPT-2 models on Witext-103
with no retrieval (Origin), Contriever (REPLUG), LM-
supervised Contriever (REPLUG LSR) and BM25.

tiveness of our proposed training scheme.

C Prompts used for MMLU and
open-domain QA

Please see Table 4 and Table 5.
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Knowledge: Arctic Ocean. Although over half of Europe’s original forests disappeared through the centuries of deforestation,
Europe still has over one quarter of its land area as forest, such as the broadleaf and mixed forests, taiga of Scandinavia
and Russia, mixed rainforests of the Caucasus and the Cork oak forests in the western Mediterranean. During recent times,
deforestation has been slowed and many trees have been planted. However, in many cases monoculture plantations of conifers
have replaced the original mixed natural forest, because these grow quicker. The plantations now cover vast areas of land, but
offer poorer habitats for many European
Question: As of 2015, since 1990 forests have in Europe and have in Africa and the Americas.
A. "increased, increased" B. "increased, decreased" C. "decreased, increased" D. "decreased, decreased"
Answer: B

Knowledge: Over the past decades, the political outlook of Americans has become more progressive, with those below the age of
thirty being considerably more liberal than the overall population. According to recent polls, 56% of those age 18 to 29 favor gay
marriage, 68% state environmental protection to be as important as job creation, 52% "think immigrants śtrengthen the country
with their hard work and talents,"́ 62% favor a "tax financed, government-administrated universal health care" program and 74%
"say ṕeopleś willśhould have more influence on U.S. laws than the Bible, compared to 37%, 49%, 38%, 47% and 58% among the
Question: As of 2019, about what percentage of Americans agree that the state is run for the benefit of all the people?
A. 31% B. 46% C. 61% D. 76%
Answer: B
...
Knowledge: last week at a United Nations climate meeting in Germany, China and India should easily exceed the targets they
set for themselves in the 2015 Paris Agreement... India is now expected to obtain 40 percent of its electricity from non-fossil fuel
sources by 2022, eight years ahead of schedule." Solar power in Japan has been expanding since the late 1990s. By the end
of 2017, cumulative installed PV capacity reached over 50 GW with nearly 8 GW installed in the year 2017. The country is a
leading manufacturer of solar panels and is in the top 4 ranking for countries
Question: Which of the following countries generated the most total energy from solar sources in 2019?
A. China B. United States C. Germany D. Japan

Table 4: Prompt for MMLU

Knowledge: received 122,000 buys (excluding WWE Network views), down from the previous yearś 199,000 buys. The event
is named after the Money In The Bank ladder match, in which multiple wrestlers use ladders to retrieve a briefcase hanging
above the ring. The winner is guaranteed a match for the WWE World Heavyweight Championship at a time of their choosing
within the next year. On the June 2 episode of "Raw", Alberto Del Rio qualified for the match by defeating Dolph Ziggler. The
following week, following Daniel Bryan being stripped of his WWE World Championship due to injury, Stephanie McMahon
changed the
Question: Who won the mens money in the bank match?
Answer: Braun Strowman

Knowledge: in 3D on March 17, 2017. The first official presentation of the film took place at Disneyś three-day D23 Expo in
August 2015. The world premiere of "Beauty and the Beast" took place at Spencer House in London, England on February
23, 2017; and the film later premiered at the El Capitan Theatre in Hollywood, California, on March 2, 2017. The stream was
broadcast onto YouTube. A sing along version of the film released in over 1,200 US theaters nationwide on April 7, 2017. The
United Kingdom received the same version on April 21, 2017. The film was re-released in
Question: When does beaty and the beast take place
Answer: Rococo-era
...
Knowledge: Love Yourself "Love Yourself" is a song recorded by Canadian singer Justin Bieber for his fourth studio album
"Purpose" (2015). The song was released first as a promotional single on November 8, 2015, and later was released as the albumś
third single. It was written by Ed Sheeran, Benny Blanco and Bieber, and produced by Blanco. An acoustic pop song, "Love
Yourself" features an electric guitar and a brief flurry of trumpets as its main instrumentation. During the song, Bieber uses a
husky tone in the lower registers. Lyrically, the song is a kiss-off to a narcissistic ex-lover who did
Question: love yourself by justin bieber is about who
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