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Abstract

Zero-Shot Cross-lingual Transfer (ZS-XLT) uti-
lizes a model trained in a source language to
make predictions in another language, often
with a performance loss. To alleviate this, addi-
tional improvements can be achieved through
subsequent adaptation using examples in the
target language. In this paper, we exploit
In-Context Tuning (ICT) for One-Shot Cross-
lingual transfer in the classification task by
introducing In-Context Cross-lingual Transfer
(IC-XLT). The novel concept involves training
a model to learn from context examples and
subsequently adapting it during inference to a
target language by prepending a One-Shot con-
text demonstration in that language. Our results
show that IC-XLT successfully leverages target-
language examples to improve the cross-lingual
capabilities of the evaluated mT5 model, out-
performing prompt-based models in the Zero
and Few-shot scenarios adapted through fine-
tuning. Moreover, we show that when source-
language data is limited, the fine-tuning frame-
work employed for IC-XLT performs compa-
rably to prompt-based fine-tuning with signif-
icantly more training data in the source lan-
guage.

1 Introduction

The recent progress in the development of multi-
lingual Language Models (LMs) has allowed for
effective cross-lingual transfer (XLT) with minimal
need for architectural modifications (Pires et al.,
2019; Xue et al., 2020). By simply training a mul-
tilingual model in a language with abundant re-
sources its acquired knowledge can be extended to
target languages, in either Zero-Shot or Few-Shot
scenarios. Cross-lingual transfer is a significant
topic as it addresses the prevalent challenge of data
scarcity in languages other than widely resourced
ones, such as English (Joshi et al., 2020). The abil-
ity to leverage the extensive linguistic resources
available in high-resource languages for languages

with limited training data enables the deployment
of truly inclusive NLP systems.

Zero-Shot Cross-lingual Transfer (ZS-XLT) in-
volves transferring a model trained in a source
language to a target language without any demon-
stration of target-language examples (Chen et al.,
2021; Pires et al., 2019). This approach is highly
modular, as it requires no adaptations specific to
the target language. On the other hand, Few-Shot
Cross-lingual Transfer (FS-XLT) enhances target-
language accuracy by further fine-tuning a model
using labeled target data (Lauscher et al., 2020;
Zhao et al., 2021; Schmidt et al., 2022). How-
ever, this method faces limitations when the avail-
able target-language data is limited, especially for
higher-level tasks, leading to negligible enhance-
ments or even detrimental effects on performance
(Lauscher et al., 2020; Zhao et al., 2021). Further-
more, this approach incurs higher computational
costs due to the fine-tuning step and diminishes
the modularity that characterizes the Zero-Shot
method.

Our perspective is that adapting to a target lan-
guage should prioritize resource efficiency and
modularity, where we can seamlessly deploy a sin-
gle model trained in English (or another source lan-
guage) across different languages without any fine-
tuning. In this work, we aim to improve this aspect
for text classification –a high-level task– by leverag-
ing the language-specific abilities of a multilingual
model by prepending a One-Shot text-label target-
language demonstration to the input text to pre-
dict the correct label. Specifically, we propose In-
Context Cross-lingual transfer (IC-XLT), a simple
yet effective method for One-Shot Cross-Lingual
Transfer in Text Classification.

This novel approach employs In-Context Tun-
ing (ICT) (Chen et al., 2022) to train an encoder-
decoder model in the source language tasking it
to predict input texts with information derived
from context demonstrations. ICT is a meta-
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learning strategy that optimizes a model’s ability
to learn from in-context examples, originally de-
signed for facilitating swift adaptation to new tasks
by prepending target-task in-context demonstra-
tions to the input during the adaptation process. To
the best of our knowledge, this is the first study
of ICT application in the context of cross-lingual
transfer.

The proposed method is composed of a fine-
tuning and an adaptation stage. First, we fine-tune
on the source language through ICT, where the
model is trained for the classification task and also
to learn from context demonstrations. Then, we
adapt to the target language at inference time by
prepending a One-Shot1 demonstration in that lan-
guage to the input. This method is modular and
cost-effective at the adaptation stage as it does not
require any gradient update.

We evaluate IC-XLT on two multilingual text
classification datasets, spanning 5 and 13 target
languages, with English as the source language.
We consider two distinct settings. First, we as-
sume access to the entire source-language training
dataset. For the second setting, we deliberately con-
strain the amount of source training data available.
This limitation aims to gauge the robustness of the
proposed approach in scenarios where the avail-
ability of source data is restricted. We hypothesize
that leveraging context information may prove par-
ticularly beneficial in tasks where source data is
limited.

The contributions of this work are the following:

1. IC-XLT as an effective strategy for One-
Shot Cross-lingual transfer: By measuring
the reduction in the transfer gap of IC-XLT
against standard approaches, and the perfor-
mance improvement after introducing target-
language examples, we present empirical ev-
idence that training a model in a source lan-
guage with In-Context Tuning allows it to
leverage a One-Shot demostration through In-
Context Learning to adapt to a target language.
This results in a One-Shot XLT approach that
adapts to a target language at inference with-
out requiring gradient updates.

2. ICT improves mT5 fine-tuning when re-
sources are limited. We observe that for the
evaluated tasks, ICT training yields better per-
formance compared to traditional fine-tuning

1One-Shot per label

when (source language) training data consists
of only few-shots per label. In particular IC-
XLT models trained on this scenario (1) ben-
efit from this behavior at the adaptation and
(2) leverage target-language in-context exam-
ples, achieving comparable performance to
Prompt Tuning transfer methods with signifi-
cantly less source-language data.

2 Related work

2.1 Zero and Few-Shot Cross-lingual Transfer

Multilingual transformers, such as mBERT (De-
vlin et al., 2018), XLMR (Conneau et al., 2019),
and mT5 (Xue et al., 2020), have showcased no-
table ability in Zero-Shot Cross-lingual Transfer
(ZS-XLT) (Pires et al., 2019). In this paradigm,
these models are trained using abundant data in a
source language and subsequently undergo evalua-
tion in a target language without exposure to any
training data in that specific language. However,
this methodology is susceptible to significant per-
formance variance (Keung et al., 2020), and the
transfer performance gap is contingent upon the
linguistic proximity between the source and target
languages (Pires et al., 2019).

Furthermore, recent studies indicate that incor-
porating a small number of annotated examples
in the target language can mitigate the perfor-
mance gap between the source and target languages
(Lauscher et al., 2020; Zhao et al., 2021; Schmidt
et al., 2022). This methodology, termed Few-Shot
Cross-Lingual Transfer (FS-XLT), involves first
fine-tuning a model on an extensive source dataset
(as in ZS-XLT), and then subjecting it to a second
fine-tuning on the reduced target-language data,
facilitating its adaptation to this target language.
This approach yields a noticeable improvement in
performance at a relatively low labeling cost across
various NLP tasks (Lauscher et al., 2020).

However, empirical evidence (Lauscher et al.,
2020; Zhao et al., 2021; Schmidt et al., 2022) in-
dicates that FS-XLT yields the most significant
benefits for low-level tasks, such as Named En-
tity Recognition (NER) or Part-of-Speech (POS)
tagging. When applied to high-level tasks, like
Natural Language Inference (NLI) or text classifi-
cation, the performance only shows improvement
with a substantial number of examples from the tar-
get language. When adapted with small datasets in
the target language (<100 samples), FS-XLT tends
to offer minimal performance gains or may even
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lead to a decline in model efficacy.
Additionally, according to Schmidt et al. (2022),

sequential FS-XLT can also exhibit unreliability
in the Few-Shot scenario due to considerable vari-
ance in performance at different checkpoints during
training. To address this issue, they propose jointly
training the model using both source and target
data in the adaptation stage of the process, which
improves stability in the Few-Shot setting. This
fine-tuned FS-XLT approach, however, has two no-
table drawbacks. Firstly, it lacks modularity, as the
models are trained specifically for the selected tar-
get language during the adaptation stage. Secondly,
there is a substantial increase in computational cost
compared to Zero-Shot Cross-lingual Transfer due
to the adaptation fine-tuning, whose cost scales
with the size of the base model.

Moreover, existing methods predominantly ad-
dress the XLT task under the assumption of abun-
dant data in the source language. Although this
is a fair assumption for many cases, as in general
it is much more likely to find labeled datasets in
high resource languages, there are scenarios where
the source domain itself is limited. Instances of
this include domain-specific tasks with a scarcity
of annotated samples or tasks related to rapidly
emerging trends and language patterns originated
from social media, where due to its emerging na-
ture, there is no labeled data available. In such
cases, it might be more feasible to secure annota-
tions for high-resource languages, which can then
be transferred to other languages.

Given these considerations, we believe it is perti-
nent to investigate how the XLT performance scales
as the quantity of available source data is system-
atically reduced. The intuition behind this is that
the introduction of target-language shots may alle-
viate the performance decrease associated with a
reducing source training data.

2.2 In-Context Learning and Language
Models

LMs have demonstrated an aptitude for learning
from a small number of demonstrations through
a method known as In-Context Learning (ICL)
(Brown et al., 2020), where the model is tasked
with predicting an input prepended with labeled
examples. Particularly, (Winata et al., 2021) ob-
served that it is possible to achieve satisfactory
performance in a cross-lingual setting when eval-
uating an mT5 model with a target-language in-
put prefixed with labeled English demonstrations.

This Zero-Shot approach, although efficient, can
be sub-optimal as it does not take full advantage of
resources in the source language due to the lack of
fine-tuning.

Recent findings indicate that transformers
(Vaswani et al., 2017) can perform model selec-
tion on functions encountered during pre-training
through in-context demonstrations. Yet, they still
find it challenging in generalizing effectively to
out-of-distribution classes, as highlighted by Yad-
lowsky et al. (2023). Given that most pre-trained
LMs have not been explicitly trained for ICL, they
might exhibit sub-optimal behavior when presented
with Few-Shot demonstrations. In response to
this challenge, Chen et al. (2022) introduced In-
Context Tuning (ICT), a meta-learning approach
designed to train a model to effectively learn from
in-context demonstrations2. ICT meta-trains a lan-
guage model across a range of tasks, enhancing its
ability to swiftly adapt to new tasks through ICL.

Still, In-Context Tuning has not yet been imple-
mented for language transfer, as opposed to task
transfer. We hypothesize that fine-tuning a multi-
lingual model concurrently for learning from input
context and the downstream task can leverage mul-
tilingual knowledge acquired during pretraining.
This, we anticipate, will result in enhanced clas-
sification performance in a target language when
provided with examples in that language. There-
fore, in this study we showcase the efficacy of this
idea for One-Shot Cross-lingual Transfer, partic-
ularly, for adapting to a target language through
a One-Shot demonstration in-context. This adap-
tation method proves effective in improving the
text classification performance by better leverag-
ing target-language examples compared to the the
fine-tuned FS-XLT. Moreover, we delve into the
advantages of employing this approach in scenarios
where source task data is not abundant.

3 Our proposed approach: In-Context
Cross-Lingual Transfer

Our method aims to simultaneously train a pre-
trained multilingual encoder-decoder model for (1)
a downstream text classification task, and (2) learn-
ing from context demonstrations. Then, we expect
it to be able to generate predictions in a target lan-
guage by including context demonstrations in this

2Also, ICT consistently improves performance of ICL and
is less sensitive to the shot selection when compared to raw,
pre-trained LMs. (Chen et al., 2022)
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language. Therefore, we leverage ICT fine-tuning
to transfer between languages at inference. As de-
scribed above, our proposed procedure, called In-
Context Cross-lingual Transfer (IC-XLT), is com-
prised of two stages:

In-Context Tuning During the meta-training
stage, we fine-tune the base multilingual
model for a specific task using data from
the source language. Let the set of pairs
Dsrc = {(xsrc1 , ysrc1 ), . . . , (xsrc|D|, y

src
|D|)} represent

the source-language training dataset. The objective
is to train the model to predict the label ysrci for a
given text xsrci with the following input⇒output
format:

Xsrc, xsrci ⇒ ysrci

Here, Xsrc = ((xj1 , yj1), . . . , (xjM , yjM )) is a
random sequence of M text-label pairs randomly
sampled from Dsrc without replacement, which
excludes the pair (xsrci , ysrci ). In simpler terms, M
is the number of source-language demonstrations
prepended to each input during fine-tuning, not the
number of Ktgt-shot examples prepended during
inference.

In-Context Learning At inference, we adapt
to a target language by prepending the samples
from the target language training dataset D̃tgt =
{(x̃tgt1 , ỹtgt1 ), . . . , (x̃tgtNKtgt

, ỹtgtNKtgt
)} to each entry

xtgti of the test set to predict ytgti . Consequently,
the input format mirrors the structure observed in
the ICT stage:

X̃tgt, xtgti ⇒ ytgti

Where N is the number of classes and the se-
quence X̃tgt is a concatenation of D̃tgt entries com-
prising the Ktgt-shot samples per class, prepended
to each xtgti entry at the inference stage.

The intuitive idea for this approach is that, af-
ter the meta-training stage, we expect the model
to understand both the classification task and the
contextual relationships relevant to it. During the
adaptation stage, the model leverages its multilin-
gual pretraining to interpret context examples in
the target language. Note that the adaptation to the
target language in this context is gradient free, as it
occurs during inference, and thus no model weights
are updated.

4 Experimental Methodology

In this section, we outline the methodology em-
ployed to evaluate the proposed approach. We as-

sess IC-XLT effectiveness in adapting to a target
language for the classification task and compare its
performance in cross-lingual transfer under (1) full
training data on the source language and (2) various
source-language data budgets. We conduct these
limited data experiments to assess how much IC-
XLT improves over a traditional fine-tuning method
by leveraging the One-Shot demonstration.

4.1 Data and Evaluation Metrics
We conduct evaluations on two mutlilingual text
classification datasets. The first dataset is Aspect
Category Detection (ACD) on Restaurant Reviews
(Pontiki et al., 2016), a multi-label dataset com-
prising 12 classes representing different aspects
mentioned in reviews. The second dataset is Do-
main Classification on assistant utterances from
the MASSIVE dataset (FitzGerald et al., 2022), a
single-label classification dataset with 18 possible
domain classes. The main difference between these
datasets is that MASSIVE assigns only one label
per entry, whereas ACD allows for multiple labels
per entry, presenting a more challenging task. The
datasets were chosen for their larger number of
labels and their availability in multiple languages
with shared labels (See Appendix A.3 for further
details).

We select F1 micro as our evaluation metric, fol-
lowing Pontiki et al. (2016). For both datasets, our
model is trained in English as the source language,
and its performance is evaluated across 5 target
languages: Dutch, Turkish, Russian, French, and
Spanish for ACD, and 13 target languages for MAS-
SIVE: French, Spanish, Turkish, Russian, Thai,
Japanese, Indonesian, Icelandic, Amharic, Arabic,
Azeri, Swahili and Urdu

To evaluate the performance of our proposed
In-Context Cross-Lingual Transfer (IC-XLT) ap-
proach in a resource-constrained scenario with lim-
ited source-language data, we construct syntheti-
cally reduced datasets by sampling subsets of the
training datasets following various K-shot config-
urations, specifically Ksrc ∈ {8, 16, 32, 64}. The
objective of these evaluations is to assess IC-XLT’s
ability to leverage target-language demonstrations
for enhancing performance in situations where the
source-language task has limited resources.

Regarding the shot selection, our K-shot ap-
proach selects K examples per class. Consider-
ing the class imbalance and the multi-label nature
of the ACD dataset, the total number of examples
will be in the range [K,K ×N ]. For a detailed
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explanation on this refer to Appendix A.1

4.2 Experimental Setting

As our multilingual base model, we utilize mT5-
large (Xue et al., 2020), an encoder-decoder model
pre-trained on a diverse corpus encompassing over
100 languages. We employ LoRA (Hu et al., 2021)
for fine-tuning the model on the source-language
data with full training data and varying numbers
of shots Ksrc. During the inference stage, label
predictions are generated through text generation,
which facilitates multi-label inference. We adopt a
greedy decoding strategy as implemented in Wolf
et al. (2020).

In this work, we set Ktgt = 1, using only a
One-Shot demonstration for the proposed IC-XLT
approach3. We train the ICT models in the source
language with different number of context exam-
ples, specifically M = 10 and M = 20. All mod-
els are trained on an NVIDIA Titan RTX GPU, the
hyperparameter selection is discussed in Appendix
A.2.1.

For the experiments with reduced source-
language data, we conduct evaluations using two
seeds for each of the following: the fine-tuning pro-
cess, Ksrc shot selection, and Ktgt shot selection.
Since Zero-Shot approaches do not require select-
ing target shots, we run a total of 4 and 8 runs for
Zero-Shot and One-Shot respectively, using seeds
within {1, 2}. For the models trained with full
source-language data, we trained 5 models with
seeds for the fine-tuning process within {1, ..., 5}
and selected the best 3 in the English validation set.
At adaptation, we employ two seeds for Ktgt shot
selection in {1, 2}.

4.3 Baselines

We benchmark our proposed approach against the
following baseline methods:

(1S) One-shot Prediction Leveraging mT5’s pre-
training objective, we task the model with predict-
ing the missing span corresponding to the correct
label given an input text prepended with a One-
Shot demonstration. This is a traditional In-Context
Learning approach where we expect the model to
deduce label meanings from the examples without
undergoing source-language fine-tuning, similar to
the idea introduced in Winata et al. (2021), serving
as the lower bound when Ksrc = 0.

3We provide IC-XLT implementation in the following
repository: https://github.com/villacu/ic_xlt

(ZS-XLT) Zero Shot XLT The standard Zero-
Shot (Ktgt = 0) Cross-lingual Transfer approach,
where the model is initially trained on a source
language, and subsequent inference is conducted
on the target language without any additional tun-
ing. In this case, we train the mT5 model through
prompt-based fine-tuning (PFT), with the input-
output form:

xi ⇒ yi

Hence, training is performed at the source and in-
ference at target languages.

(1S-XLT∇ and 8S-XLT∇) 1-Shot and 8-Shot
XLT Using the same training scheme (PFT), we
continue fine-tuning on the checkpoints from ZS-
XLT, training with Ktgt = 1 and Ktgt = 8 shots
per label in the target language. This approach is
the standard gradient-based approach for adapting
to a target language in Few-Shot Cross-Lingual
Transfer (Lauscher et al., 2020). For this baseline,
the target-language shots are not prepended as in
IC-XLT and 1S, but used to further fine-tune the
model following the same input-output as ZS-XLT.

(1S-XLT∇
macro) macro-averaging In this base-

line, we build upon the methodology established
in 1S-XLT∇ with Ktgt = 1 by adopting a strategy
that incorporates fine-tuning on both source and
target-language data for adaptation to the target lan-
guage. This method follows the approach described
by Schmidt et al. (2022), where the loss for each
batch is calculated using a weighted combination
of source and target-language losses:

L = βLsrc + (1− β)Ltgt

Here, Lsrc and Ltgt represent the source and
target-language losses, respectively. We select a
value of β = 0.5 following the original implemen-
tation.

(IC-XLTSRC) IC-XLT with source-language
context We use the same models trained for IC-
XLT, however, in this method In-Context examples
are drawn from the training set of the source lan-
guage (English). In essence, this can be considered
a Zero-Shot baseline since no target language (or
unseen source language) is involved for adaptation.
Through this baseline we aim to evaluate the rel-
evance of the target language One-Shot samples
at the adaptation stage, assessing whether they are
necessary for successful transfer to that target lan-
guage.
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5 Results and analysis

IC-XLT performance at Cross-lingual trans-
fer For the first experiment, we compare our
proposed approach, IC-XLT, to the baselines de-
tailed in Section 4.3 using the full training set in the
source language. For Aspect Category Detection,
we observed a general trend where mT5 models
trained with In-Context Tuning, which employs
the input-output setting X̃, xi ⇒ yi, consistently
outperformed models subjected to prompt-based
fine-tuning with xi ⇒ yi under the same train-
ing regimes, despite both models being trained
for an equivalent number of steps and exact same
data instances. We hypothesize that this superior
performance may be attributed to the fact that the
ICT-trained models see M randomly ordered input-
output examples at each instance, even though they
are tasked with predicting only xi.

We present the F1 micro scores across five dif-
ferent languages on ACD and 13 languages on
MASSIVE in Tables 1 and 2 respectively. The
numbers in these tables represent average metrics
calculated across various seeds, as detailed in Sec-
tion 4.2. The standard deviation for each method
and language is provided in the complete tables
located in Appendix A.5. We observe that our pro-
posed approach, In-Context Cross-Lingual Trans-
fer (IC-XLT), effectively outperforms the baselines
by a substantial margin in the evaluated datasets,
greatly improving mT5 cross-lingual transfer per-
formance. A crucial observation is that for both of
the evaluated datasets there is a noticeable increase
in performance from IC-XLTSRC to IC-XLT. This
means that the proposed approach adapts success-
fully, during inference time, to the target language
by taking advantage of the One-Shot in context
demonstration.

On the other hand, the 1S-XLT∇ approach did
not improve over ZS-XLT by a considerable mar-
gin, which is consistent with previous results for
high-level tasks (Lauscher et al., 2020; Zhao et al.,
2021). Even when increasing target-language sam-
ples to Ktgt = 8 (baseline 8S-XLT∇) on this
gradient-based baseline, we observe a performance
decline in the ACD dataset for most languages ex-
cept Turkish. The MASSIVE dataset shows im-
provements across nearly all target languages with
the increased number of target shots on 8S-XLT∇,
yet, these gains are modest compared to those
achieved with IC-XLT using only Ktgt = 1, high-
lighting its superior efficiency in utilizing minimal

target-language data for improved cross-lingual
transfer.

The gradient-based adaptation that mixes target
and source languages (1S-XLT∇

macro) marginally
outperforms 1S-XLT∇ in the ACD dataset. How-
ever, it does not improve, and even drops, perfor-
mance on the MASSIVE dataset. This approach
also requires more computational resources, due
to the larger data volume when including source-
language examples.

The observed variability in the effectiveness of
gradient-based methods across datasets and lan-
guages may be related to differences between the
datasets; ACD represents a more complex, non-
parallel task with classes that are easier to confuse,
unlike the parallel and simpler nature of MAS-
SIVE. Nonetheless, IC-XLT consistently outper-
forms the baselines across languages and datasets,
demonstrating its robustness and cost-effectiveness
in terms of computational resources. We find that
M = 10 (the number of in-context demonstrations
during ICT training) performs slightly better than
M = 20 in the experiments that employ the full
training set.

Performance with limited source-language data
We conduct experiments to quantify the ability
of IC-XLT to perform at scenarios with limited
source-language resources. For this we evalu-
ate ZS-XLT, 1S-XLT∇, IC-XLTSRC , and IC-XLT
models trained with Ksrc ∈ {8, 16, 32, 64}. We
noticed that models trained with the ICT frame-
work generally perform better compared to PFT
for low values of Ksrc. In Figures 1b and 1a, we
illustrate the average performance on the target
languages at different source-language resource
availability regimes. In both Figures, we can ob-
serve that IC-XLT makes better use of resources
than prompt-based fine-tuning specially at smaller
values for Ksrc. Furthermore, the performance
difference with the source language (English) is
visibly smaller for IC-XLT, more discussion on this
can be found below.

The F1-micro averages for the target languages
are shown in Tables 3 and 4 for ACD and MAS-
SIVE, respectively. For all the language-specific
performance metrics at different Ksrc budgets re-
fer to Appendix A.5. Results on these tables show
that IC-XLT trained on limited data (Ksrc = 64)
achieves competitive or superior performance com-
pared to baseline methods (ZS-XLT and 1S-XLT∇)
trained with full source datasets.

8322



Method (Ktgt) ENG(SRC) Target avg AMH AZE ISL SWA URD ARA IND THA TUR FRA JAP RUS SPA
1S (1) 38.54 30.48 24.26 30.38 31.19 32.78 29.48 31.15 32.26 30.83 33.24 33.34 29.69 25.80 31.90
ZS-XLT (0) 90.06 76.12 62.53 71.63 73.77 65.75 67.72 70.98 84.23 79.88 77.7 84.87 83.39 83.98 83.09
1S-XLT∇ (1) 90.08 76.21 62.78 71.63 73.9 65.85 68.34 71.11 84.17 79.95 77.68 84.86 83.45 83.89 83.15
8S-XLT∇ (8) 89.87 76.78 65.38 72.13 74.73 66.78 69.24 71.45 84.08 80.46 78.02 85.16 83.25 84.17 83.29
1S-XLT∇

macro (1) 89.93 75.8 62.53 71.05 73.48 65.42 67.9 70.49 83.8 79.33 77.17 84.71 82.87 83.78 82.86
IC-XLTM=10

SRC (0) 89.41 74.39 63.39 70.82 69.22 56.06 67.47 71.62 81.04 79.02 76.65 82.81 82.99 84.41 81.53
IC-XLTM=20

SRC (0) 89.46 74.02 61.27 71.49 68.83 53.76 68.26 70.77 81.6 78.91 76.36 83.13 82.83 83.76 81.23
IC-XLTM=10 (1) 89.41 81.24 70.68 81.73 81.07 78.23 76.34 77.28 85.6 80.98 83.63 85.53 84.68 86.18 84.18
IC-XLTM=20 (1) 89.46 80.26 68.09 81.37 80.32 75.54 76.12 76.43 85.46 81.02 82.25 84.92 83.77 84.39 83.65

Table 1: Average F1 micro in the MASSIVE Domain Detection task, trained with full data in English. The number
in parenthesis is the amount of samples per label in the target language used for the adaptation process (Ktgt).
Standard deviations over different seeds per each language are shown in Appendix A.5.

Method (Ktgt) ENG(SRC) Target avg FRA NLD RUS SPA TUR
1S (1) 37.09 28.42 31.78 20.33 34.38 34.86 20.76
ZS-XLT (0) 79.14 70.15 67.96 69.24 73.6 70.01 69.95
1S-XLT∇ (1) 79.16 70.39 67.98 69.56 73.44 70.23 70.72
8S-XLT∇ (8) 78.78 70.26 67.87 68.81 72.32 69.84 72.47
1S-XLT∇

macro (1) 79.16 70.41 68.03 69.59 73.3 70.25 70.88
IC-XLTM=10

SRC (0) 81.48 73.83 74.06 72.54 77.59 73.7 71.27
IC-XLTM=20

SRC (0) 81.76 73.11 73.49 71.89 77.52 73.14 69.51
IC-XLTM=10 (1) 81.48 75.25 74.07 73.34 78.07 75.20 75.59
IC-XLTM=20 (1) 81.76 75.05 73.5 73.00 78.01 74.46 76.26

Table 2: Average F1 micro in the Aspect Category De-
tection dataset, trained with full data in English, the
source language. Standard deviations over different
seeds per each language are shown in Appendix A.5.

Given that the target language adaptation occurs
at inference time, the improvement over the Zero-
Shot approach comes at no extra computational
cost and at a minimal data cost. This allows to
achieve good performance with limited computa-
tional and data resources.

For the experiments with limited source-
language data, M = 20 achieves a better perfor-
mance in MASSIVE. We believe that since ACD
contains only 12 labels, in this scenario a con-
text length of 20 will inevitably prepend more
repeated context examples than the MASSIVE
dataset4 when training with limited data. This re-
duced variability may hurt the model’s performance
compared to M = 10.

Measuring the transfer gap with the source lan-
guage. By measuring the performance gap be-
tween the source language and the target language,
we aim to quantify the contribution of the ICT
training framework and target-language demonstra-
tions for mitigating this gap. As we provide the
model with target-language examples, we antici-
pate a smaller decrease in performance from the
source language when evaluating on a new lan-
guage, compared to Zero-Shot approaches. We
can measure this by computing the average transfer
gap ∆̄%, which is the average percentage decrease

4Which contains 18.

Ksrc 1S
0 28.42

ZS-XLT 1S-XLT∇ IC-XLTM=10 IC-XLTM=20

8 25.40 27.12 33.34 16.64
16 30.84 32.63 48.66 47.04
32 43.56 43.36 58.91 61.00
64 55.15 53.85 65.64 65.28
Full 70.15 70.39 75.25 75.05

Table 3: Average F1 micro across 5 target languages
for Aspect Category Detection.

Ksrc 1S
0 30.48

ZS-XLT 1S-XLT∇ IC-XLTM=10 IC-XLTM=20

8 44.05 45.86 62.46 66.29
16 51.13 51.97 70.30 73.14
32 64.74 65.28 73.27 76.72
64 63.45 63.68 77.55 79.09
Full 76.12 76.21 81.24 80.26

Table 4: Average F1 micro across 13 target languages
for MASSIVE (Domain Classification).

in performance relative to the evaluations on the
test set in the source language (English). This is
defined as:

∆̄% = 100×E [PTL/PSL − 1]

Where PTL and PSL represent the evaluation
performance of the exact same method on the target
and source-language test sets, respectively. The
performance gap values are shown in Figure 2. We
can observe that for most source-language data
budgets, we obtain a reduced average transfer gap
∆̄% through IC-XLT compared to ZS-XLT, 1S-
XLT∇ and IC-XLTSRC .

Improvement due to target-language demonstra-
tions. Aiming to assess the proposed method’s
capacity to utilize demonstrations in the target lan-
guage to enhance performance in that language, we
compute the average percentage improvement in
performance δ% after introducing target-language
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(a) MASSIVE performance with different souce data avail-
ability. IC-XLT trained with M = 10.

(b) ACD performance with different souce data availability.
IC-XLT trained with M = 10.

Figure 1: Comparison of IC-XLT and 1S-XLT∇ performance at different source-language data budgets. Pink lines
employ target-language examples for adaptation while blue lines do not. We can observe that, in general, the
IC-XLT models yield better performance compared to ZS-XLT and 1S-XLT∇. This is especially notable at lower
resource scenarios.

<5 B 5-100 B > 100B
Method (Ktgt) Target avg AMH AZE ISL SWA URD ARA IND TUR THA FRA JAP RUS SPA

δ%
8S-XLT∇ (8) 0.87 4.56 0.7 1.3 1.57 2.24 0.66 -0.18 0.41 0.73 0.34 -0.17 0.23 0.24
IC-XLT (1) 9.81 11.5 15.41 17.12 39.55 13.15 7.9 5.63 9.11 2.48 3.28 2.04 2.1 3.25

Table 5: δ% in MASSIVE. The first row refers to the number of tokens of the target languages in mT5 pretraining
corpora. We use IC-XLT with M = 10.

Method (Ktgt) Target avg FRA NLD RUS SPA TUR

δ%
1S-XLT∇ (1) 0.34 0.03 0.46 -0.22 0.31 1.10
IC-XLT (1) 1.92 0.01 1.1 0.62 2.04 6.06

Table 6: δ% in the Aspect Category Detection dataset.
In here we use IC-XLT with M = 10.

shots. The formula for computing this value is
described in Appendix A.4.

For the MASSIVE dataset, since 1S-XLT∇ of-
fers minimal improvements with Ktgt = 1, we con-
duct a comparison between IC-XLT with Ktgt = 1
and 8S-XLT∇ with Ktgt = 8.

Values for δ% are detailed in Tables 6 and 5 for
the Aspect Category Detection (ACD) and MAS-
SIVE datasets, respectively. We observe that IC-
XLT consistently achieves the highest (δ%) com-
pared to the fine-tuned approaches. This result
underscores IC-XLT’s effectiveness for Few-Shot
Cross-lingual text classification, a high-level task
where methods that involve fine-tuning for lan-
guage adaptation underperform when the amount
of target-language data is limited.

mT5 pretraining Ling. Dist. vs ENG
IC-XLTM=10

SRC -0.786∗∗ 0.232
8S-XLT∇ -0.874∗∗ 0.331

Table 7: Improvement per language correlation (δ%)
with Linguistic Distance and language representation in
mT5 pretraining corpora (MASSIVE dataset).

Correlation of methods, pretraining data and
linguistic distance. By analyzing results is the
MASSIVE dataset across the 13 target languages,
we observe that by introducing target-language
demonstrations some languages, such as French,
Japanese, or Russian, show modest enhancements
of around 2%, while others, like Azeri, Icelandic,
and Swahili, benefit from increases exceeding 15%.
To understand the underlying factors contributing
to these differences, we explore the relationship
between the improvement observed (δ%) and two
variables: (1) the number of tokens representing
each language in mT5 pretraining corpora (Xue
et al., 2020), and (2) the linguistic distance between
each target language and English, the source lan-
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Figure 2: The average transfer gap ∆̄% of IC-XLT, IC-XLTSRC , 1S-XLT∇ and ZS-XLT at different source-
language data budgets. (IC-XLT M = 10). We can observe that, for most cases, IC-XLT yields the smallest drop in
performance after transfering to a target language compared to the baselines.

guage, according to the URIEL database (Malaviya
et al., 2017). The analysis is limited to the MAS-
SIVE dataset because the ACD dataset includes
only 5 target languages, mostly European and all
well-represented in mT5 pretraining data, with no
languages having low representation. This limits
the scope for obtaining reliable correlation mea-
sures.

To quantitatively assess these relationships, we
measure the Spearman Correlation to identify how
the token counts of pretraining data and the linguis-
tic proximity to English correlate with the effective-
ness of target-language demonstrations in improv-
ing cross-lingual transfer performance. From the
correlations presented in Table 7 we can observe
that both IC-XLT and 8S-XLT∇ exhibit a statis-
tically significant negative Spearman correlation
between the improvement (δ%) and the represen-
tation of target languages in the mT5 pretraining
corpora. This pattern indicates that languages with
less representation in the pretraining data will ex-
perience more substantial improvements through
target-language adaptation. Correlation with lin-
guistic distance, on the other hand, is weaker and
not statistically significant.

6 Conclusion

In this paper, we investigated the application of In-
Context Tuning for One-Shot Cross-lingual trans-
fer, introducing In-Context Cross-lingual Transfer
(IC-XLT). Our evaluations conducted on a multi-
lingual encoder-decoder model (mT5) demonstrate
the efficacy of the proposed method in effectively
adapting at inference time to target languages using
only a One-Shot demonstration in-context, all with-

out incurring additional computational expenses
(gradient free). Furthermore, in comparison to ZS-
XLT and 1S-XLT∇, IC-XLT demonstrated superior
performance and smaller transfer gap for the task of
text classification, a high-level task where FS-XLT
tends to underperform.

In scenarios with limited source-language train-
ing data, we provide empirical evidence that IC-
XLT learns better the source language at the meta-
training stage and demonstrates a smaller trans-
fer gap at the adaptation stage with the One-
Shot demonstration, compared to ZS-XLT and 1S-
XLT∇. This makes IC-XLT a valuable tool for
cross-lingual transfer in resource-limited scenarios.
Our findings also show a significant correlation be-
tween the performance improvements in target lan-
guages and their token count in the mT5 pretraining
corpus, indicating that languages with lesser repre-
sentation tend to benefit more from target-language
adaptation through IC-XLT.

To our knowledge, this study represents the first
exploration of In-Context Tuning for Cross-Lingual
Transfer. For future work, we aim to explore the
potential and limitations of this approach by evalu-
ating its applicability to other architectures, such as
decoder-only or encoder-only models, and examin-
ing the impact of training with a greater number of
examples in-context.

7 Limitations

In this study, we implement our approach using an
mT5-large encoder-decoder model. However, an
evaluation of its applicability to encoder-only or
decoder-only models remains unexplored and it is
left for future work. Furthermore, due to storage

8325



and compute constraints and the need to conduct
experiments across diverse seeds and training data
budgets, we opted to fine-tune the models using
LoRA (Hu et al., 2021). While some variability
compared to the fully trained model is expected
with this architectural choice, empirical evidence
from Hu et al. (2021) suggests that its impact is
minimal. In this work, we do not compare with
methods that translate the source-language training
set into target languages. Such approaches require
a separate machine translation system and thus are
more expensive, falling beyond the scope of our
research. Our focus remains on utilizing a single
model in an end-to-end manner. Finally, it is im-
portant to outline that due to the maximum input
length of mT5 (1024 tokens), scaling IC-XLT is
to a larger number of target-language shots (e.g
Ktgt ∈ {4, 8, 16}) may prove difficult using the
current approach. This challenge is particularly
pronounced in scenarios with a substantial number
of labels, where input text may need to be truncated.
Consequently, there is a need to devise a strategy to
either reduce input length or integrate information
from different example batches in order to address
this limitation.
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A Appendix

A.1 Shot selection
Similar to Zhao et al. (2021), with "K-shot" we
refer to selecting K examples for each of the N
classes. The examples are randomly sampled from
the training splits of the datasets. Note that the
number of shots per label may not precisely be K
due to underrepresented classes in the training set.
This holds true for the ACD dataset, where certain
classes may have insufficient samples to meet the
per-class K value. In such cases, the total number
of shots per i-th class is determined as min (K,Ni),
where Ni represents the total number of samples
for the i-th class in the dataset.

Furthermore, since the ACD task involves a
multi-label dataset, multi-label examples may add
to more than one of the N buckets simultaneously.
Hence, the total number of examples in a K-shot
dataset is in the range [K,K ×N ].

A.2 Hyperparameter selection
Here, we outline the hyperparameters utilized for
fine-tuning models across the two stages of our
pipeline. Initially, we detail the hyperparame-
ters specific to fine-tuning models in the source
language for both PFT and ICT methods. Sub-
sequently, we address those employed for the
gradient-based XLT methods. The LoRA (Hu
et al., 2021) parameters are r = 16, α = 32,
with dropout of 10%. For all cases, we employ an
AdamW optimizer (Loshchilov and Hutter, 2017)
with a linear scheduler and a batch size of 8.

A.2.1 Fine-tuning on source data
For the fine-tuning process on both datasets, we
explored learning rates within the range of lr ∈
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{3, 4, 5, 6, 7, 8, 10}× 10−4, selecting 4× 10−4 for
as it performed adequately on both datasets in the
source language.

Regarding the number of epochs for training
on the full datasets: for the MASSIVE dataset, we
fine-tuned models for 10 epochs under both prompt-
based Fine-Tuning (PFT) and In-Context Tuning
(ICT) training schemes. For the Aspect Category
Detection (ACD) dataset, which is considerably
smaller, we extended the training duration to 15
epochs for ICT and 25 epochs for PFT. The deci-
sion to train the PFT models for more epochs in the
ACD dataset was taken because it underperformed
when only 15 epochs were used.

For models trained with a reduced quantity of
source-language data, we standardized the training
process by setting the learning rate to 5× 10−4 for
all models across both datasets. Given the similar
volume of data in these constrained scenarios, we
extended the training period to 35 epochs for both
datasets to expose the models to sufficient training
data.

A.2.2 Fine-tuned XLT baselines
hyperparameter selection.

For the fine-tuned XLT baselines, we use the model
checkpoint fine tuned in the source language, used
for ZS-XLT. Training focuses only on the target lan-
guage, incorporating only the specified number of
target-language shots Ktgt, and for 1S-XLT∇

macro,
an equal amount of source-language shots is added.

We evaluated the following learning rates lr ∈
{0.5, 1, 5} × 10−5. We observed that the limited
target-language examples often led to overfitting
and reduced performance (notably when Ktgt = 1)
with a large number of epochs, especially in some
languages such as Russian. For the reported results,
the selected learning rates and training durations
are as follows:

• For both 1S-XLT∇ and 1S-XLT∇
macro, a learn-

ing rate of 5 × 10−5 is used, training for
1 epoch for models trained with the full
source-language dataset and 5 epochs for
those trained with limited source-language
data.

• For the 8S-XLT∇ baseline, given the in-
creased number of examples, we opt for a
learning rate of 1× 10−5 across 10 epochs.

All adaptations used a batch size of 8 and a con-
stant scheduler.

Train Test
English 2000 676
Spanish 2070 881
French 1664 668
Turkish 1232 144
Russian 3655 1209
Dutch 1722 575

Table 8: Length of the training and test partitions in the
Aspect Category Detection Dataset.

A.3 Dataset description

In this Section we provide descriptive information
of the employed datasets. MASSIVE features par-
allel language splits, each comprising 11.5k sam-
ples in the training partition and 2.97k in the test
partition.

However, for the Aspect Category Detection
dataset, which is non-parallel, the sample counts
vary across languages. Detailed information on
these counts is presented in Table 8.

A.4 Computing the improvement due to
target-language demonstrations

By computing δ%, we aim to measure the aver-
age improvement on performance of the evaluated
methods after introducing target-language demon-
strations. For this we compute the ratio between
the model with target-language demonstrations and
the Zero-Shot approach. This value is computed
using the following formula:

δ% = 100×
[
P few−shot
TL /P zero−zhot

TL − 1
]

Where P few−shot
TL and P zero−shot

TL represent the av-
erage evaluation performance of the model under
the same training scheme (ICT or PFT), with and
without the target-language (TL) examples, re-
spectively. Hence, for prompt-based fine-tuning
P few−shot
TL is 1S/8S-XLT∇ and P zero−shot

TL is ZS-
XLT, while for In-Context Tuning P few−shot

TL is
IC-XLT and P zero−shot

TL is IC-XLTSRC .

A.5 Performance metrics per language of the
evaluated method on different source
language budgets.

This section presents the comprehensive results of
our evaluations across different target languages
and different source data availability settings of ZS-
XLT, 1S-XLT∇, and IC-XLT, with English serv-
ing as the source language. Detailed performance
metrics for cross-lingual transfer on the Aspect
Category Detection (ACD) dataset are depicted in
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Table 9 and results for the MASSIVE dataset are
provided in Tables 10 and 11.

Additionally, we illustrate the language-wise per-
formance at different Ksrc values on Figures 3 and
4. Furthermore, for the MASSIVE dataset we illus-
trate the different behavior of groups of languages
with different representation in the mT5 pretrain-
ing corpus. Figures 5a and 5b illustrate the per-
formance metrics for languages with high repre-
sentation (over 100 billion tokens) and low repre-
sentation (under 100 billion tokens) in the mT5
pretraining data, respectively. We also include the
Average Transfer Gaps ∆% per language at the
different source-language budgets in Figures 6 and
7.

A.6 Ethics Statement
The proposed method helps to improve down-
stream cross-lingual performance on languages un-
derrepresented in the multilingual model pretrain-
ing. However, we believe that data collection for
low-resource languages should continue to be a
priority for the NLP research community. It re-
mains very important to better integrate linguistic
diversity in multilingual models to avoid techno-
logical biases and avoid hindering technological
development in societies whose language has a lim-
ited number of speakers, or limited funding for
developing linguistic resources.

On the other hand, we acknowledge the chal-
lenge posed by language variants, including re-
gional dialects, which often suffer from underrep-
resentation. This may result in multilingual models
biased towards variants with a larger digital foot-
print, excluding linguistic features of communities
less present in digital spaces. We wish to acknowl-
edge this aspect and warn that it could increase the
exclusion of these communities from integration
into the digital content ecosystem and information
technology tools.

A.7 Licences of systems and datasets
In this work, the tools utilized include an mT5
model and the transformers library (Wolf et al.,
2020), both of which use the Apache 2.0 license.
The MASSIVE dataset, on the other hand, oper-
ates under a CC by 4.0 license. As for the Aspect
Category Detection dataset, it employs a MS-NC-
No ReD license, which limits its usage strictly to
an academic scope. Since the aim of this work is
to evaluate the performance of a proposed cross-
lingual system, we adhere to all the licenses of the

utilized material.
The research presented in this paper is intended

for academic purposes, and therefore, we adhere to
the licenses governing all utilized materials.
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Figure 3: F1-micro for each of the 5 evaluated languages in the Aspect Category Detection dataset at different
source-language data budget.

Figure 4: F1-micro for each of the 13 evaluated languages in the MASSIVE dataset at different source-language
data budget.
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(a) Mean F1-micro in the the MASSIVE dataset across
the target languages with large representation in mT5
pretraining corpora (> 100B). In this scenario, the gap
between One-Shot (pink) and Zero-Shot (blue) lines is
similar as the one observed for ACD in the Figure 1b.

(b) Mean F1-micro in the the MASSIVE dataset across the
target languages with smaller representation in mT5 pre-
training corpora (< 100B). We can observe a larger im-
provement when introducing target-language demonstra-
tions than the one observed for languages well-represented
in pretraining (left).

Figure 5: Comparison of IC-XLT and 1S-XLT∇ performance on the MASSIVE datasets at different source-language
data budgets on languages with high representation (left), and with low representation (right) in the base model
pretraining.

Figure 6: Average Transfer Gap ∆̄% per language on the Aspect Category Detection dataset.
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Figure 7: Average Transfer Gap ∆̄% per language on the MASSIVE dataset.
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Ksrc ENG FRA NLD RUS SPA TUR
ZS-XLT (Ktgt = 0)

8-shot 29.49±2.06 26.1±1.46 21.19±3.74 29.32±2.84 31.99±2.46 18.4±4.34

16-shot 33.73±4.12 32.24±3.63 28.73±6.76 33.02±3.22 34.96±4.48 25.27±7.68

32-shot 49.05±5.33 45.41±4.68 40.44±4.68 45.31±5.9 43.37±4.73 43.28±3.93

64-shot 60.45±3.3 55.07±2.46 53.49±1.88 56.35±1.23 53.9±3.4 56.96±3.02

Full 79.14±0.91 67.96±0.77 69.24±1.24 73.6±1.61 70.01±0.44 69.95±1.13

1S-XLT∇ (Ktgt = 1)
8-shot 28.97±1.66 26.65±1.09 25.87±1.56 29.21±0.56 33.23±1.33 20.66±1.42

16-shot 37.62±4.98 33.37±1.98 32.44±4.32 33.86±2.48 33.22±4.23 30.28±2.66

32-shot 51.94±4.06 45.07±4.69 41.88±2.26 45.18±5.88 37.69±4.04 46.97±3.1

64-shot 62.32±2.53 54.5±3.37 53.62±2.33 55.34±1.48 48.09±3.17 57.68±2.65

Full 79.16±0.78 67.98±0.74 69.56±0.63 73.44±1.55 70.23±0.47 70.72±1.43

IC-XLTM=20
SRC (Ktgt = 0)

8-shot 23.66±6.16 17.3±1.76 19.9±2.78 19.05±4.89 22.01±4.31 16.09±5.24

16-shot 41.19±9.22 44.39±5.39 38.9±7.11 43.25±6.66 40.82±8.55 36.22±13.0

32-shot 63.25±2.36 60.92±1.71 55.11±2.28 59.7±2.02 59.69±1.32 56.42±2.91

64-shot 70.01±1.77 65.67±1.3 60.08±2.27 64.09±2.19 63.55±0.34 62.23±4.69

Full 81.76±0.81 73.49±0.37 71.89±0.38 77.52±0.38 73.14±0.82 69.51±1.04

IC-XLTM=20 (Ktgt = 1)
8-shot 23.66±6.16 17.12±13.05 15.17±6.96 16.58±11.33 13.49±8.87 20.83±13.2

16-shot 41.19±9.22 48.24±4.75 44.89±6.13 49.64±4.95 47.26±8.59 45.17±8.6

32-shot 63.25±2.36 61.37±2.49 58.01±1.44 62.05±1.53 61.74±1.3 61.85±5.97

64-shot 70.01±1.77 65.86±1.28 63.1±0.79 65.12±0.96 65.34±1.18 66.98±2.66

Full 81.76±0.81 73.5±0.61 73.0±0.59 78.01±0.41 74.46±0.48 76.26±1.02

IC-XLTM=10
SRC (Ktgt = 0)

8-shot 34.71±7.33 34.05±9.33 32.13±6.46 38.42±5.92 37.47±7.7 25.75±6.15

16-shot 52.08±11.85 48.49±10.46 45.12±11.08 50.81±8.61 46.89±11.15 44.34±16.01

32-shot 60.45±8.84 57.6±5.95 53.42±6.53 58.15±5.02 57.32±5.48 57.22±10.22

64-shot 69.84±1.32 66.96±1.43 60.41±0.79 65.14±1.08 64.17±1.5 62.31±2.33

Full 81.48±0.37 74.06±1.03 72.54±0.82 77.59±0.85 73.7±0.72 71.27±1.17

IC-XLTM=10 (Ktgt = 1)
8-shot 34.71±7.33 32.24±4.16 30.62±6.04 40.4±7.85 31.04±12.53 32.41±8.23

16-shot 52.08±11.85 49.71±11.04 45.86±9.55 54.83±5.18 48.69±9.92 44.2±9.68

32-shot 60.45±8.84 59.38±5.55 55.23±5.6 60.21±2.98 59.06±5.06 60.66±9.33

64-shot 69.84±1.32 67.2±1.49 62.32±1.1 65.32±0.62 66.33±0.98 67.04±2.92

Full 81.48±0.37 74.07±0.55 73.34±0.82 78.07±0.76 75.2±1.33 75.59±2.84

Table 9: Average per language across the different runs for evaluations under different resource budgets for the
Aspect Category Detection dataset. In here, ± refers to the standard deviation of the performance on the conducted
runs.
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Ksrc ENG AMH ARA AZE FRA IND ISL JAP
ZS-XLT (Ktgt = 0)

8-shot 62.93±1.5 32.53±0.42 36.81±0.93 40.3±0.82 52.11±0.77 47.24±0.64 44.9±0.99 50.96±0.67

16-shot 70.52±7.24 39.27±7.79 43.38±6.55 47.55±6.48 59.71±7.75 56.42±8.62 51.42±6.8 57.27±6.1

32-shot 81.72±1.39 52.4±1.73 58.98±2.25 59.58±1.63 73.72±1.88 71.08±1.46 63.67±3.83 71.65±1.33

64-shot 81.71±2.81 49.68±6.32 56.19±4.85 58.49±6.41 72.78±5.1 71.34±2.6 63.23±4.88 70.85±3.34

Full 90.06±0.45 62.53±0.79 70.98±1.95 71.63±1.87 84.87±0.25 84.23±0.09 73.77±0.62 83.39±0.66

1S-XLT (Ktgt = 1)
8-shot 63.3±1.4 34.26±0.62 37.67±0.9 41.96±0.3 53.41±1.02 49.6±0.57 46.48±1.34 53.53±0.32

16-shot 70.52±5.74 39.33±5.89 44.65±5.74 48.4±4.75 59.49±5.58 57.42±5.93 51.4±4.01 60.13±4.87

32-shot 81.7±1.06 52.87±1.07 58.56±1.65 60.66±1.92 73.61±1.31 71.58±2.2 64.26±2.96 72.56±1.24

64-shot 81.17±2.61 50.49±4.91 56.37±3.92 58.99±5.67 72.6±4.53 71.11±1.85 63.67±4.49 71.46±2.95

Full 90.08±0.4 62.78±0.82 71.11±1.77 71.63±1.67 84.86±0.18 84.17±0.16 73.9±0.53 83.45±0.63

IC-XLTM=20
SRC (Ktgt = 0)

8-shot 73.24±2.71 51.95±2.84 56.6±3.29 58.92±3.18 65.75±3.04 64.79±3.74 59.41±3.12 66.87±3.61

16-shot 82.0±1.37 57.2±2.99 62.97±2.75 65.03±3.15 74.38±2.1 71.95±3.03 65.89±3.72 73.25±2.3

32-shot 85.03±0.52 62.5±1.5 68.45±1.87 69.26±1.61 78.52±1.14 77.93±1.89 70.62±1.53 77.94±1.11

64-shot 87.18±0.66 63.94±1.44 70.06±1.4 71.18±1.89 81.37±1.14 80.31±1.44 71.16±1.45 80.6±1.19

Full 89.46±0.43 61.27±2.66 70.77±2.18 71.49±2.12 83.13±1.88 81.6±2.15 68.83±3.72 82.83±2.19

IC-XLTM=20 (Ktgt = 1)
8-shot 73.24±2.71 58.17±3.39 61.45±3.41 66.0±3.14 67.26±3.72 70.46±3.35 67.16±2.72 69.77±3.16

16-shot 82.0±1.37 63.5±3.67 67.55±1.93 72.78±1.86 75.98±1.83 77.77±1.79 74.27±2.1 76.95±1.29

32-shot 85.03±0.52 67.12±2.39 72.76±1.33 75.42±1.79 80.06±1.06 81.6±1.21 77.81±1.06 80.13±0.86

64-shot 87.18±0.66 70.14±1.6 74.69±0.98 78.02±1.65 83.29±0.79 83.9±0.84 79.74±1.08 82.09±0.7

Full 89.46±0.43 68.09±4.07 76.43±1.87 81.37±1.99 84.92±1.4 85.46±1.62 80.32±1.1 83.77±1.72

IC-XLTM=10
SRC (Ktgt = 0)

8-shot 73.36±0.92 48.95±1.98 52.93±1.57 55.65±1.65 65.77±1.16 60.89±2.12 59.64±0.97 62.74±1.29

16-shot 80.54±0.99 55.99±3.32 60.75±3.44 62.65±2.91 73.17±2.18 70.08±2.66 65.99±2.78 70.86±2.6

32-shot 84.22±0.62 59.47±1.84 64.83±1.4 66.48±1.8 77.22±0.99 74.92±1.29 68.99±1.54 74.61±1.08

64-shot 86.75±0.29 62.92±1.28 68.55±1.43 69.91±1.7 80.21±0.78 78.86±1.54 72.37±1.16 77.97±1.69

Full 89.41±0.4 63.39±3.54 71.62±2.13 70.82±3.95 82.81±1.8 81.04±2.38 69.22±3.4 82.99±1.53

IC-XLTM=10 (Ktgt = 1)
8-shot 73.36±0.92 51.7±1.88 57.18±2.67 61.04±2.01 67.12±1.62 67.44±2.98 66.48±1.45 64.99±1.72

16-shot 80.54±0.99 60.89±3.56 65.16±2.89 68.59±2.67 74.81±1.81 75.34±1.74 73.26±1.39 73.03±2.16

32-shot 84.22±0.62 61.26±1.67 66.91±1.4 70.99±0.92 80.0±0.73 79.44±1.07 75.56±1.17 76.27±0.44

64-shot 86.75±0.29 66.93±1.62 72.2±1.22 74.91±0.94 82.99±0.78 83.11±1.18 79.7±0.67 80.51±0.78

Full 89.41±0.4 70.68±2.94 77.28±0.45 81.73±1.13 85.53±1.11 85.6±0.92 81.07±0.89 84.68±0.44

Table 10: Average performance for English, Amharic, Arabic, Azeri, French, Indonesian, Icelandic, and Japanese
across the different runs for evaluations under different resource budgets in the MASSIVE Domain Classification
Task. In here, ± refers to the standard deviation of the performance on the conducted runs.
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Ksrc RUS SPA SWA THA TUR URD
ZS-XLT (Ktgt = 0)

8-shot 48.8±1.05 51.05±0.8 36.46±0.58 46.05±0.15 48.24±0.99 37.22±0.65

16-shot 57.1±7.63 58.39±7.04 41.78±6.38 53.49±7.93 53.6±5.47 45.26±7.81

32-shot 72.15±2.0 72.12±1.64 52.09±2.37 69.0±2.74 66.26±1.79 58.88±2.03

64-shot 72.11±5.17 71.83±4.43 50.36±5.54 67.6±5.01 63.97±5.46 56.4±4.64

Full 83.98±0.49 83.09±0.79 65.75±2.19 79.88±2.37 77.7±1.19 67.72±0.96

1S-XLT (Ktgt = 1)
8-shot 50.65±1.06 52.26±1.06 37.31±0.61 49.75±0.38 49.86±0.89 39.4±0.32

16-shot 58.79±6.61 58.37±5.28 42.03±4.64 55.46±6.02 54.14±3.8 46.04±5.9

32-shot 72.77±2.13 72.65±1.03 52.88±2.07 69.34±2.89 66.52±1.94 60.4±1.36

64-shot 71.95±4.93 71.64±3.48 51.26±4.19 66.78±4.84 63.44±5.25 58.09±3.61

Full 83.89±0.42 83.15±0.58 65.85±1.84 79.95±1.93 77.68±1.09 68.34±0.74

IC-XLTM=20
SRC (Ktgt = 0)

8-shot 64.98±3.46 63.79±3.12 51.51±4.17 63.69±3.56 62.52±3.31 57.68±2.64

16-shot 74.26±2.59 72.2±2.17 55.0±4.2 69.61±2.29 68.52±2.35 63.29±2.7

32-shot 79.78±0.82 75.58±1.77 59.21±3.66 75.42±1.86 73.58±1.65 68.19±1.2

64-shot 81.58±1.05 78.44±1.66 60.89±2.89 77.9±1.3 76.14±1.75 70.03±0.95

Full 83.76±1.68 81.23±2.55 53.76±5.18 78.91±1.62 76.36±2.95 68.26±2.45

IC-XLTM=20 (Ktgt = 1)
8-shot 69.41±3.01 67.04±3.46 65.27±3.1 66.53±2.65 70.03±3.31 63.22±2.82

16-shot 77.11±1.51 75.4±1.5 71.36±2.28 72.55±0.81 76.18±1.43 69.46±1.98

32-shot 81.43±1.16 78.68±1.2 74.61±1.26 76.1±2.19 78.46±1.28 73.13±1.19

64-shot 83.24±0.8 81.06±1.33 76.78±1.47 79.36±0.97 80.75±1.52 75.13±0.97

Full 84.39±2.2 83.65±1.84 75.54±5.14 81.02±1.67 82.25±2.51 76.12±1.38

IC-XLTM=10
SRC (Ktgt = 0)

8-shot 62.66±1.71 61.93±1.47 48.24±3.18 60.16±1.59 59.48±1.44 54.15±1.66

16-shot 70.82±3.03 69.05±2.3 54.17±4.41 68.4±2.33 65.58±2.76 61.64±2.6

32-shot 76.48±0.93 74.15±1.1 54.89±3.2 72.85±1.34 70.25±1.89 65.48±1.62

64-shot 81.02±0.89 78.2±1.22 58.61±3.63 76.28±0.93 73.64±0.57 67.74±1.23

Full 84.41±0.93 81.53±2.17 56.06±3.33 79.02±1.86 76.65±2.32 67.47±3.35

IC-XLTM=10 (Ktgt = 1)
8-shot 65.57±2.6 65.0±1.37 61.48±1.71 61.81±2.62 63.79±2.42 58.32±2.48

16-shot 73.95±2.8 71.74±2.7 69.91±2.1 70.48±2.28 70.72±2.4 66.05±2.08

32-shot 76.83±0.94 76.54±0.66 70.82±1.86 74.33±1.03 74.68±0.97 68.89±1.27

64-shot 82.49±0.89 80.75±1.2 75.7±2.2 78.26±0.56 78.02±0.9 72.57±1.3

Full 86.18±0.39 84.18±1.54 78.23±1.87 80.98±0.48 83.63±1.1 76.34±0.61

Table 11: Average performance for Russian, Spanish, Swahili, Thai, Turkish, and Urdu across the different runs for
evaluations under different resource budgets in the MASSIVE Domain Classification Task. In here, ± refers to the
standard deviation of the performance on the conducted runs.
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