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Abstract

Knowledge graphs (KGs) consist of links that
describe relationships between entities. Due
to the difficulty of manually enumerating all
relationships between entities, automatically
completing them is essential for KGs. Knowl-
edge Graph Completion (KGC) is a task that
infers unseen relationships between entities in a
KG. Traditional embedding-based KGC meth-
ods (e.g. RESCAL, TransE, DistMult, Com-
plEx, RotatE, HAKE, HousE, etc.) infer miss-
ing links using only the knowledge from train-
ing data. In contrast, the recent Pre-trained
Language Model (PLM)-based KGC utilizes
knowledge obtained during pre-training, which
means it can estimate missing links between
entities by reusing memorized knowledge from
pre-training without inference. This part is
problematic because building KGC models
aims to infer unseen links between entities.
However, conventional evaluations in KGC
do not consider inference and memorization
abilities separately. Thus, a PLM-based KGC
method, which achieves high performance in
current KGC evaluations, may be ineffective
in practical applications. To address this issue,
we analyze whether PLM-based KGC methods
make inferences or merely access memorized
knowledge. For this purpose, we propose a
method for constructing synthetic datasets spec-
ified in this analysis and conclude that PLMs
acquire the inference abilities required for KGC
through pre-training, even though the perfor-
mance improvements mostly come from textual
information of entities and relations.

1 Introduction

A knowledge graph (KG) is graph-structured data
that includes relationships between entities as links.
KGs are useful resources to inject external knowl-
edge into NLP models. Since manually consider-
ing all possible links between entities is difficult,
it is important to use a task such as KG comple-
tion (KGC), which automatically completes unseen
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Figure 1: PLM-based KGC can reuse pre-trained knowl-
edge of unseen links instead of inferring them.

links from seen ones in a KG.

As a basic method for KGC, KG embedding
(KGE) is a popular chioce for this task. KGE em-
beds entities and their relationships as continuous
vectors and then calculates the plausibility of un-
seen links. Traditional KGE methods learn these
embeddings only from a target KG (Nickel et al.,
2011; Bordes et al., 2013; Yang et al., 2015; Trouil-
lon et al., 2016; Sun et al., 2019; Zhang et al., 2020;
Lietal.,2022). Thus, they purely infer unseen links
to complete KGs.

Similar to other NLP fields, KGC also utilizes
pre-trained language models (PLMs) (Yao et al.,
2019; Lv et al., 2022; Shen et al., 2022; Zhang
et al., 2022; Choi et al., 2021; Choi and Ko, 2023;
Wang et al., 2021a,c, 2022; Xie et al., 2022; Sax-
ena et al., 2022; Chen et al., 2022; Xie et al., 2023;
Zhu et al., 2023). Unlike traditional KGE methods,
PLM-based KGE methods can access knowledge
obtained through pre-training. This characteristic
makes PLM-based KGE methods achieve higher
KGC performance than the traditional KGE meth-
ods.

However, since the purpose of KGC is to infer
unseen links from seen links in KGs, we should sep-
arately consider the performance gain from reusing
the information of the unseen links obtained in
pre-training and inferring unseen links from the
seen links in KGs. Figure 1 shows an example
of PLM-based KGC. As we can see, PLM-based
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Pretrained Language Model (PLM)-based KGC

. o Traditional VIRTUAL ANONYMIZED  INCONSISTENT FuLLY
Available Information KGC BASE WORLD ENTITIES DESCRIPTIONS ~ ANONYMIZED
Pre. Rand. Pre. Rand. Pre. Rand. Pre. Rand. Pre. Rand.
Seen links in a KG
Descriptions of entities/relations X X X X X
Pre-trained knowledge of KGs X X X X X X X X X X
Abilities obtained by pre-training X X X X X X

Table 1: Available information for each configuration. When compared, we can reveal what improves the KGC
performance on PLMs. BASE denotes the setting on the original data, and VIRTUAL WORLD (§3.1), ANONYMIZED
ENTITIES (§3.2), INCONSISTENT DESCRIPTIONS (§3.3), and FULLY ANONYMIZED (§3.4) denote the settings
on our synthetic datasets. Pre. and Rand. denote the setting with pre-trained and randomly initialized weights,

respectively.

KGC methods can estimate unseen links without
inferring them from seen links in the target KG.
This characteristic is problematic because we can-
not estimate the inference ability of PLM-based
KGC methods for truly unseen relationships be-
tween entities in KGs.

To address this issue, we propose a method to
create synthetic datasets for KGC tasks intended to
separately evaluate KGC performance by reusing
the knowledge from pre-training corresponding to
target unseen links and inferring from seen links
in KGs. More specifically, we change the textual
information of entities and relations while main-
taining the graph structure of KGs, thereby creating
an environment different from the PLMs’ knowl-
edge corresponding to unseen links in KGs. Due to
this change, PLMs cannot rely on their pre-trained
knowledge and must rely on their pure inference
abilities. Table 1 summarizes the configurations
provided by our synthetic datasets. By comparing
these configurations, we can reveal what actually
contributes to the KGC performance of PLMs.

We conducted experiments on various pre-
trained models under our controlled synthetic
dataset constructed from WN18RR (Dettmers et al.,
2018), FB15k-237 (Toutanova and Chen, 2015),
and Wikidata5m (Wang et al., 2021c). The results
showed that PLMs acquire the inference abilities
required for KGC in pre-training but rely more
on textual information of entities and relations in
KGs. We also observed that the KGC performance
of PLM-based KGC without pre-trained informa-
tion is comparable to or lower than that of TransE,
the traditional KGC. This finding indicates the im-
portance of both traditional and PLM-based KGC
methods.

2 Knowledge Graph Completion

2.1 Task Definition for KGs with Descriptions

We assume that a KG G includes descriptions de-
fined as a tuple, G=(E,R,T,D), where £ denotes
a set of entities, R denotes a set of relations, 7
denotes a set of triples, and D denotes descrip-
tions for the entities. Each triple is represented
as (h,r,t)€T, where h and t€€ are the head and
tail entities, respectively, and r€R is the relation.
Every entity e; €€ has a corresponding description
d;€D. KGC is a task to fill in the missing triples
in KGs. Specifically, this involves using a query, a
partial triple (h,r,?) or (?,r,t) to predict its answer,
an entity at the position of 7, within the KG. Note
that the prediction is exclusively focused on enti-
ties; predicting their corresponding descriptions is
not required.

KGC is often evaluated by rank prediction met-
rics such as Hits@k (k€{1,3,10}), mean rank
(MR), and mean reciprocal rank (MRR). Hits@k
calculates the proportion of correct entities ranked
among the top-k, MR is the average rank of all test
triples, and MRR is the average reciprocal rank of
all test triples.

2.2 KGC Methods

Traditional KGC methods, e.g., RESCAL (Nickel
et al., 2011), TransE (Bordes et al., 2013), Dist-
Mult (Yang et al., 2015), ComplEx (Trouillon et al.,
2016), RotatE (Sun et al., 2019), HAKE (Zhang
et al., 2020), and HousE (Li et al., 2022), primarily
focus on the structure of KGs, without considering
the extensive textual information.

However, recent advancements integrating
PLMs have allowed KGC methods to encode
text (Yao et al., 2019; Lv et al., 2022; Shen et al.,
2022; Zhang et al., 2022; Choi et al., 2021; Choi

8092



Entity: Relation:

Order of the Phoenix = Harry Potter opposite of = killed by
Death Eater = Order of the Phoenix founded by =
Harry Potter = member of = founded by
= Death Eater = opposite of
killed by = member of

(b) Virtual World (R&E)

...Order of the Phoenixs recognise
one another by the Dark Mark...a
sign created by Death Eater ...

The Harry Potter is a secret
organisation... to fight Death Eater...

(a) Base Dataset

The Order of the Phoenix is a
secret organisation... to fight

...Death Eaters recognise one
another by the Dark Mark...a sign

2

Harry Potter killed by Order of the Phoenix

founded by

I/,_ opposite of
Lord Voldemort ¢— member of Death Eater

created by .
...his fate is tied with that of ...Death Eater is the archenemy of
Order of the Phoenix opposite of Death Eater Death Eater...
member of founded by (c) Anonymized Entities (R&E)
N \J The aohne7ainl is a secret ...tsdsae z Inigmcs recognise one
Harry Potter killed by —  Lord Voldemort organisation... to fight another by the Dark Mark...a sign
created by
...his fate is tied with that of is the
archenemy of Harry Potter... ( aohne7ainl Je— towsl —»{ tsdsaezlnigmc )
encfuseefmi vefccr oetoocrt
Entity: Relation: D |
Order of the Phoenix =  aohne7ainl opposite of = towsl iph — . .
Death Eater = tsdsae z Inigmc founded by = vefccr oetoocrt falir avL. oiss ‘pheu NHt osaiacsol ti
H. Pott = NHt i | ti b f = fi fmi . . . .
any Forer - osaicsoltl member o - enctuseetmi ...his fate is tied with that of is the archenemy
killed by = ipheu of lalir avL oiss...

Figure 2: (a): Example of a KG with entity descriptions for PLM-based methods. Each entity has a corresponding
description. (b) and (c) are the datasets used in this study. We primarily apply two methods for creating these
datasets in VIRTUAL WORLD (§3.1) and ANONIMIZED ENTITIES (§3.2). (b) described in VIRTUAL WORLD
(§3.1) involves swapping the names assigned to entities and relations in the base dataset respectively. (c) described
in ANONIMIZED ENTITIES (§3.2) substitutes the names of entities and relations in the base dataset with random
strings. Note that in both procedures, any entities appearing within the description text are replaced with their
corresponding transformed names to maintain the graph structure within the descriptions.

and Ko, 2023; Wang et al., 2021a,c, 2022) or gen-
erate facts (Xie et al., 2022; Saxena et al., 2022;
Chen et al., 2022; Xie et al., 2023; Zhu et al., 2023),
thereby enhancing the KGC performance. These
methods can be broadly divided into two categories
based on their usage: discrimination-based meth-
ods that utilize PLM encoders, and generation-
based methods that utilize PLM decoders (Pan
et al., 2024) (see Appendix A for the details).

3 Synthetic Dataset Construction

To analyze the behavior of PLM-based KGC meth-
ods, we create synthetic data corresponding to each
setting in Table 1. These settings affect the usable
information of the PLM-based KGC methods but
do not influence the traditional KGE methods. We
explain the details for each setting in the following
subsections.

3.1 Virtual World

To separate the pre-trained knowledge of PLMs and
a target KG, we create a virtual world by shuffling
each entity and/or relation name in the KG.

As shown in Figure 2(b), we shuffle the textual
information associated with each entity and/or re-
lation while keeping the graph structure within the

Algorithm 1: Derangement by Bipartite
Graph

Data: Input array arr of size n, Set of removed
edges removed_edges
Result: Generated array res
Create an empty graph G;
for i<—0 to n—1 do
for j<—0ton—1do
if arr[i]£arr(j] and (arr[i],arr[j]) is not
in removed_edges then
| addedge (i,n+j) in G;
end

AW N =

end

match <— maximum matching(G)
10 Tes<— an empty list of size n;
1 fori<-0ton—1do

5
6
7 end
8
9

12 index<matchli]—n;
13 resli]<arr[index];
14 end

15 return res

created synthetic dataset. To ensure there are no un-
shuffled elements, we shuffle the entities using the
derangement algorithm by Martinez et al. (2008).
However, there are dramatically fewer relations
compared to entities (e.g., ten relations for ten thou-
sand entities), and if relations are shuffled, the triple
remains unchanged in many cases.! To address

'In the case of (Johann Bernoulli, wasBornIn, Basel) and
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these cases, we apply a derangement based on a bi-
partite graph (Iradmusa and Praeger, 2019; Horsley
et al., 2020) in Algorithm 1 for relations.

In Algorithm 1, we introduce removed_edges,
a set to the bipartite graph-based derangement.
Lines 4-6 in Algorithm 1 delete edges leading
to multiple relations in a triplet (h,*,t), thereby
preventing transitions to these relations.” We use
the Hopcroft-Karp algorithm (Hopcroft and Karp,
1971) for maximum bipartite matching.

Additionally, we use Trie search (Yata, 2013) to
comprehensively search for entity representations
within each description in Figure 2 and change
them into their post-shuffled text representations.
This procedure treats the relationships between enti-
ties within the descriptions while maintaining their
original graph structure in the descriptions.

3.2 Anonymized Entities

VIRTUAL WORLD can separate the pre-trained
knowledge of PLMs and a target KG. However,
this setting may underestimate the KGC perfor-
mance caused by the overwrap of the entity and/or
relation names between pre-trained knowledge and
the target KG.

The ANONYMIZED ENTITIES setting can solve
this problem by replacing the textual information
associated with each entity and/or relation with
a random string while keeping the original graph
structure within the dataset, as in Figure2(c). Af-
terward, we also replace the entity representa-
tions within the description with these random
strings using Trie search, the same as VIRTUAL
WORLD (§3.1).

Since the random strings should follow language
characteristics, we first construct character-level
unigram language models P(s;), including space
characters from the set of textual information of
each entity and relation.

Next, we generate random strings s$=s1,S2,
...,Sn, based on the character-level unigram lan-
guage model p(s), i.e., the product of the prob-
abilities of unigram character in the strings:

p(s)=] [r(si). )
i=1

We stop the generation of strings when an end-
of-sequence symbol is sampled. The strings are
treated as a series of independent characters, allow-
(Johann Bernoulli, diedIn, Basel), the swapping of the rela-

tions wasBornln and diedIn does not change the triples.
2f removed_edges is empty, it is a normal derangement.

(d) Inconsistent Descriptions (R&E&D)

The Order of the Phoenix is a secret
organisation... to fight

( Harry Potter ¢ killed by —( Order of the Phoenix )

opposite of

...his fate is tied with that of

L —

Lord Voldemort

—

<— member of — Death Eater

recognise one another by the

is the archenemy
Dark Mark...a sign created by

of Harry Potter...

Figure 3: Example of a synthetic dataset created in
INCONSISTENT DESCRIPTIONS (§3.3). Compared
to Figure2(b) which shows an example of VIRTUAL
WORLD (§3.1), the descriptions here also move to the
same positions as the entities. Also, the entities in the
descriptions do not change. At first glance, it appears
the description explains the real-world relationships of
the corresponding entities, but the relationships between
entities within the synthetic dataset are actually broken.

ing us to generate entirely random strings without
using information about co-occurrence between
characters. However, we preserve information for
the randomly sampled sequences across the entire
dataset so that each entity or relation is replaced
with a unique sequence avoiding duplicates.

3.3 Inconsistent Descriptions

To measure the effect of descriptions on PLM-
based KGC, we isolate the entity and relation
knowledge from the description by breaking the
consistency between the graph structure and de-
scriptions in addition to the shuffle of entity and/or
relation names.

INCONSISTENT DESCRIPTIONS has two varia-
tions, one in which only the descriptions are shuf-
fled and the other in which both the descriptions
and entities/relations are shuffled. In the first vari-
ation, we derive the scenario in which there is no
correspondence between an entity and its descrip-
tion by shuffling the set of descriptions via a de-
rangement to get a new set '€ D’. Then, we assign
for each entity the new descriptions from D', i.e.,
VeieE,ei:di—ml;.

The second variation considers the descriptions
and entities presented in Figure 3. The difference
from Figure 2(b) for VIRTUAL WORLD (§3.1) lies
in the way it handles the descriptions. In INCONSIS-
TENT DESCRIPTIONS, descriptions are also shuf-
fled together with the corresponding textual infor-
mation when performing VIRTUAL WORLD, but
the entities in the descriptions are preserved. In
other words, when we map from e; to e;, we simi-
larly map from d; to d;.

8094



(e) Fully Anonymized (R&E&D)

sgtdhi rsRnwA sitrceoe fn.a ialoi ioSiaisdr
fevru eyCic Lms t.f i a fant cd . gnnairp..

| usw Msa gniaoa moOgat ore,ata |
il oo .-

towsl tsdsae z Inigmc

vefccr oetoocrt

encfuseefmi

— /
ipheu — NHt osaiacsol ti

...tin0aoerlomOe-aGloliu teapenrdse v
iiarentsklvea ce Is,daeltiorat2udnz te...

Figure 4: Example of a synthetic dataset created in
FULLY ANONIMIZED (§3.4). Compared to Figure
2(c), which shows an example of ANONYMIZED EN-
TITIES (§3.2), the descriptions are here also changed
into random strings. The descriptions become noisy
information, and it becomes impossible to utilize any
information from them.

Even though the descriptions explain the entities
in the real world, they diverge from the relation-
ships among entities in the dataset after the shuffle
operation. Thus, if the model relies too much on
the descriptions, it will be confused by this incon-
sistency.

3.4 Fully Anonymized

Figure 4 shows an example of FULLY
ANONYMIZED, which is similar to ANONYMIZED
ENTITIES (§3.2) in Figure 2(c) but differs in
whether or not there is an operation on the
descriptions. We replace the descriptions with
random strings using the character-level unigram
model utilized in ANONYMIZED ENTITIES (§3.2),
while we keep the original structure of the KGs.
This setting aims to mitigate underestimating the
KGC performance caused by the overlap of the
entity and/or relation names between pre-trained
knowledge and the target KG. Note that the
random string generation is applied independently
to entities, relations, and descriptions. The key
difference between FULLY ANONYMIZED and
INCONSISTENT DESCRIPTIONS (§3.3) lies in
whether the descriptions are readable sentences
or not; if they are not, the PLMs in FULLY
ANONYMIZED cannot rely on any pre-trained
knowledge.

4 Experiments

4.1 Settings

Metrics We analyze how the inference capabili-
ties are affected by each synthetic dataset (§3) mea-
sured with the Hits @ 10 metric on the test dataset

Dataset #entity #relation #train  #valid #test

WNISRR | 40,943 11 86,835 3,034 3,134
FB15k-237 | 14,541 237 272,115 17,535 20,466
Wikidata5m|4,594,485 822 20,614,279 5,163 6,894

Table 2: Dataset statistics.

and the validation dataset in the KGC task.?

Datasets We used WN18RR, FB15k-237, and
WikidataSm* as the base datasets; the details are
shown in Table 2.> We applied VIRTUAL WORLD
(83.1) and ANONYMIZED ENTITIES (§3.2) to
the entities and/or relations for creating synthetic
datasets, resulting in a total of six types of datasets.
Furthermore, we applied INCONSISTENT DE-
SCRIPTIONS (§3.3) with and without VIRTUAL
WORLD for entities and/or relations. INCONSIS-
TENT DESCRIPTIONS (§3.4) is also applied with
and without ANONYMIZED ENTITIES, and thus,
we obtained additional six types of datasets. In
total, we have 13 types of datasets, including the
original one for each base dataset.

Comparison Methods We employ SimKGC
(Wang et al.,, 2022) and kNN-KGE (Zhang
et al., 2022) as Discriminative-based methods, and
KGTS5 (Saxena et al., 2022) and GenKGC (Xie
et al., 2022) as Generation-based methods. We use
the LambdaKG framework (Xie et al., 2023) as the
base implementation, with hyper-parameters set to
their default values. The seed value is fixed for all
experiments.® We set early stopping for WN18RR
and FB15k-237 when the Hits@10 value on the
validation data did not improve for four epochs.
For WikidataSm, we conducted training only one
epoch.” We also compare two cases: using pre-
trained weights and setting weights randomly.

3We also measured Hits@ 1, Hits@3, MRR, and MR, and
all showed similar trends. In this paper, we present the results
using hits@10 for brevity.

*We follow the transductive setting in Wang et al. (2021c).

SWe use the datasets with textual information provided by
Yao et al. (2019) for WN18RR, FB15k-237, and by Wang et al.
(2021c¢) for Wikidata5Sm.

®We conducted pilot studies with various seeds for sev-
eral datasets and models. The variance observed was around
0.02, so a fixed seed value was chosen. For example, the
Hits@10 scores in kNN-KGE on WNI18RR applied with
FULLY ANONYMIZED (§3.4) to all descriptions, entities, and
relations were 0.426 + 0.001 with three different seeds.

"We only report the results from SimKGC, as kNN-KGE
could not be executed due to computational resource limita-
tions, and both KGT5 and GenKGC did not produce scores
under these settings. We conducted all experiments on a single
NVIDIA A100 (40GB) or a single NVIDIA A6000 (48GB).
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Figure 5: The hits@10 results on WN18RR. “E”, “R”, and “D” represent entity, relation, and description, respectively.
For example, “E&R” denotes the application of the method to both entities and relations. For comparison, we
have also included the hits@ 10 results on WN18RR by TransE reported by Nathani et al. (2019), which are the
same score because the TransE model does not require textual information. The graphs on the left represent
Discrimination-Based Methods, while those on the right represent Generation-Based Methods.
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Figure 6: Hits@ 10 results on FB-15k-237. The supplementary explanation is the same as in Figure 5.
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Figure 7: Hits@ 10 results on WikidataSm by SimKGC.  — miral i) /o ra-seatant watipte, — = snonpetend (3R wio preceieioed vetshe
We have also included the Hits@ 10 results on WN18RR
by TransE reported by Wang et al. (2021c¢). Figure 8: The plots show Hits@ 10 scores on WN18RR

for the validation data at each epoch. The solid line
represents using pre-trained weights, and the dashed

4.2 Results and Analysis line represents initializing weights randomly.

4.2.1 Effect of knowledge in PLMs

The results for each model and dataset on WN18RR  with the pre-trained weights were better than those
and FB15k-237 are shown in Figures 5 and 6, without them. When the models are trained with-
and the results from SimKGC on WikidataSm are  out pre-training weights, they have to infer unseen
shown in Figure 7. In the “Base” setting, all models  links based only on information within the training
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Correlation Matrix

SIMKGC WN18RR

KNNKGE WN18RR KGTS WN18RR GenKGC WN18RR

Figure 9: The correlation matrix (Pearson’s correlation) shows the hits@ 10 values for the validation data for each
dataset and each model.“Virtual”, “Anonymized”, “Inconsistent”, and “Fully Anonym.” represent the methods
applied in Sections 3.1, 3.2, 3.3, and 3.4, respectively. “E”, “R”, and “D” represent entity, relation, and description,
respectively. For example, “ER” denotes the application of the method to both entities and relations. “w/o wts”
means training from scratch with random initial values. The two graphs on the left are Discrimination-Based
Methods, and the two on the right are Generation-based Methods.

#Relation WNI18RR (%) FB15k-237 (%) WikidataSm (%)

Train | Valid | Test Total | Train | Valid | Test Total | Train | Valid | Test Total

1 60.09 | 97.55 | 97.51 | 57.68 | 13.52 | 65.26 | 61.64 | 12.56 | 24.23 | 98.58 | 98.73 | 24.22

2 3539 | 241 249 | 3731 | 14.02 | 2444 | 25.61 | 1298 | 17.23 | 1.98 0.93 | 17.21

3 421 0.02 - 4.61 11.39 | 7.39 8.90 | 10.88 | 21.88 | 0.21 0.28 | 21.88

4 0.30 0.02 - 0.38 | 10.01 | 2.08 2.67 9.53 | 11.95 | 0.01 0.05 | 11.95

5 0.02 - - 0.02 9.06 0.51 0.76 8.85 7.94 0.01 0.01 7.94
Over - - - - 42.00 | 0.31 0.41 | 45.19 | 16.78 - - 16.79

Table 3: The number of relations assigned to each entity in each dataset. Note that some entities may be associated
with multiple entities under certain entity and relation queries.

data of the KGC dataset.

Comparing “Base”, “Virtual”, and “Anonymized”
settings, we can see performance degradations by
restricted access to knowledge for entity names
obtained in pre-training. However, the models
without the pre-trained weights achieved better
or at least comparable results, especially when
changes were made to both entities and their de-

1977), and the result show the significant perfor-
mance gap between models with and without pre-
trained weights only when entity names and their
descriptions were unchanged. This finding indi-
cates that PLM knowledge significantly contributes
to the model’s inference, especially in WikidataSm.

4.2.2 Biases caused by PLM knowledge on

scriptions, as you can see in the “Inconsistent” and
“Fully Anonym.” settings. From the result, we hy-
pothesize that the performance gain by pre-trained
weights in “Virtual” and “Anonymized” settings
comes from the pre-trained ability to read textual
information.

Figure 7 shows the importance of pre-trained
knowledge for entity names in WikidataSm. For
the further analysis, we applied the interquartile
range (IQR), an outlier detection method (Tukey,

inference for unseen links

We discussed the benefit of PLM knowledge in
Section 4.2.1, but on the other hand, PLM knowl-
edge may adversely affect the inference for unseen
entities. Especially in Figures 5 and 6, it is clear
that the difference between with and without pre-
trained knowledge significantly affected the scores,
particularly in the case of entity changes in KGTS5.

Figure 8 shows the training curves of Hits@ 10
on WN18RR for the validation data. Remarkable
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results were observed for the VIRTUAL WORLD
and ANONYMIZED ENTITIES methods in KGTS5:
namely the models using pre-trained weights could
not learn well, even with sufficient epochs of
training, whereas the models without pre-trained
weights exhibited inference capability for unknown
entities. These results suggest that while PLM
knowledge helps infer unseen links, it may pre-
vent the learning of new relationships due to the
relationships included in the PLM knowledge.

4.2.3 Which factors (entity, relation,
description) affect inference ability?

Figure 9 shows the correlation matrix of Hits@10
scores on the validation data for each dataset and
model. In Figures 5, 6, and 9, the results from
the base dataset and changes to relations indicate
strong correlations in the learning process and
Hits@10 scores in the test data. Therefore, the
model is not affected by changes to relations when
inferring unseen links. As shown in Table 2, the
number of relations is significantly smaller than
that of entities. Moreover, Table 3 reveals entities
with only one assigned relation in the KGC dataset:
12% in FB15k-237 and over 50% in WN18RR.
This suggests that the models can infer connections
between entities without considering their actual
relations.

Figure 9 also shows a correlation between VIR-
TUAL WORLD and ANONYMIZED ENTITIES, in-
dicating that which kind of textual information
is used for inference is less important than than
the consistency in relationships between entities in
each triplet. Additionally, when changing both the
entity and the description, the score decreases in
Figures 5 and 6. Table 4 shows how many entities
to predict are included in the description of query
entities; in WN18RR, about 15 % of the entities
may be able to solve the KGC task just by extract-
ing information from the description. Changes to
the description only are less likely to be affected,
but changing both the entity and the description
eliminates clues to the answer from both, leading to
a decrease in the inference capabilities with PLM.

4.2.4 Effect of model structures on
performance

When comparing Generation-based methods with
Discrimination-based methods, the former are sub-
stantially affected by random strings of entities. As
shown in Figure 5, KGT5 and GenKGC without the
pre-trained weights learn better than those that have

Train (%) | Valid (%) | Test (%) | Total (%)
WNISRR | 15.03 15.62 | 1534 | 15.06
FB15k-237 | 6.11 4.68 4.50 5.92
WikidataSm | 4.58 4.99 4.58 4.58

Table 4: Percentage of target entities to predict is in-
cluded in the description of the query entity for each
dataset. These triplets can be solved by simply extract-
ing information from the descriptions without perform-
ing any inference in the KGC tasks.

them. Furthermore, Figure 8 shows that scores do
not improve even with sufficient training, which
suggests that the difference in scores is not due
to the early stopping. Thus, PLM knowledge pre-
vents learning new relationships from descriptions
in Generation-based methods.

Kwon et al. (2023) point out a benefit of predict-
ing structured labels by Generation-based meth-
ods is handling the relationship of labels through
implicitly infused label embeddings (Xiong et al.,
2021; Zhang et al., 2021) on the decoder. However,
the current usage of Generation-based methods in
KGC only predicts a single entity without its de-
scription for each query. Therefore, in the current
usage, Generation-based methods cannot handle
relationships between entities and consider their
description information.

Moreover, Generation-based methods are in-
fluenced by the string of the output entity, as
seen in Figures from 5 to 7. On the other hand,
Discrimination-based methods are less affected by
the textual information, in contrast to Generation-
based methods that are affected by random strings
that lack the characteristics of language and are
thus unsuitable for generation (see Appendix B for
further analysis).

5 Related Work

KG Knowledge Graphs (KGs) are fundamental
resources for knowledge-intensive NLP tasks such
as dialog (Moon et al., 2019), question answer-
ing (Reese et al., 2020), named entity recogni-
tion (Liu et al., 2020), open-domain questions (Hu
et al., 2022), and recommendation systems (Gao
et al., 2020). Recently, the target of KGs has ex-
panded to vision and language (V&L) fields (Zhu
et al., 2024). Based on the expansion, KGs are ex-
pected to support knowledge-intensive V&L tasks
like knowledge-intensive visual question answer-
ing (Yue et al., 2023), image generation (Kamigaito
et al., 2023), explanation generation (Saito et al.,
2024; Hayashi et al., 2024), etc. In contrast to the
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increase in KGs’ importance, the sparsity problem,
which is an essential issue of KGs, still remains. As
a solution, Knowledge Graph Completion (KGC)
has a great role to fill in uncovered links in KGs.

Traditional KGC As introduced in §2.2, the tra-
ditional KGC methods, represented as RESCAL
(Nickel et al., 2011), TransE (Bordes et al., 2013),
DistMult (Yang et al., 2015), ComplEx (Trouillon
et al., 2016), RotatE (Sun et al., 2019), HAKE
(Zhang et al., 2020), and HousE (Li et al., 2022)
only focus on the structure of KGs, without consid-
ering the extensive textual information of KGs and
pre-trained information. Thus, these models need
to complete KGs only by their inference abilities.
Instead of the extensive information, the model-
ing and training methods for the traditional KGC
are well studied empirically (Ruffinelli et al., 2020;
Ali et al., 2021) and theoretically (Kamigaito and
Hayashi, 2021, 2022a,b; Feng et al., 2023b, 2024)
due to their simplicity. This characteristic sup-
ports the robustness and reliability of the traditional
KGC.

PLM-based KGC As introduced in §2.2, PLM-
based KGC methods encode text (Yao et al., 2019;
Lvetal., 2022; Shen et al., 2022; Zhang et al., 2022;
Choi et al., 2021; Choi and Ko, 2023; Wang et al.,
2021a,c, 2022) or generate facts (Xie et al., 2022;
Saxena et al., 2022; Chen et al., 2022; Xie et al.,
2023; Zhu et al., 2023) based on pre-trained infor-
mation to enhance KGC performance. There are
two major categories, discrimination-based meth-
ods that utilize PLMs encoders and generation-
based methods that utilize PLMs decoders (Pan
et al., 2024). However, it is uncertain whether the
performance improvement is actually caused by the
enhanced ability of inference through pre-training
or data leakage from pre-trained data. We aim to
reveal that in our work.

Data Leakage in PLMs Some existing datasets
for the downstream tasks are often directly mixed
into the pre-training data (Magar and Schwartz,
2022; Kapoor and Narayanan, 2022; Sainz et al.,
2023), and general PLMs are not able to answer
questions correctly in downstream tasks that re-
quire domain-specific knowledge excluded from
the pre-trained data (Wang et al., 2023; Jullien et al.,
2023; Nair and Modani, 2023).

Inference Ability of PLMs Several stud-
ies (Zhou et al., 2021; Wang et al., 2021b; Zhu

et al., 2023; Zheng et al., 2023; Yu et al., 2024; La-
ban et al., 2023; Qin et al., 2023) evaluate the infer-
ence abilities of PLMs, but they ignored the impact
of the PLMs’ memorization abilities in inference.
Therefore, the inference abilities of PLMs remain
unclear. While the memorization abilities of PLMs
are beneficial (Petroni et al., 2019; Roberts et al.,
2020; Heinzerling and Inui, 2021; Wei et al., 2022;
Carlini et al., 2023), they can introduce bias (Vig
et al., 2020; Kaneko et al., 2022a,b; Meade et al.,
2022; Deshpande et al., 2023; Feng et al., 2023a;
Ladhak et al., 2023) or cause errors due by the
contamination in the pre-training data as hullucina-
tions (Dziri et al., 2022b,a; McKenna et al., 2023;
Ji et al., 2023). This suggests the memorization
and inference abilities of PLMs are strongly re-
lated, and the pre-trained knowledge of the PLMs
influences their inference abilities.

6 Conclusion

In this study, we proposed a method for evaluating
the inference ability of PLM-based KGC methods
by separately considering the information related
to unseen links in KGs. Using this method as a
basis, we developed synthetic datasets that focused
on the structure of KGs and changed only textual
information, maintaining graph structure. Then, we
compared PLM-based KGC methods using these
datasets.

The comparison results show that PLMs acquire
the inference abilities for KGC in pre-training,
whereas in KGs, they rely more on the textual in-
formation of entities and relations. Further, we
observed that the KGC performance of PLM-based
KGC without pre-trained knowledge is compara-
ble to or lower than that of TransE, the traditional
KGC. This highlights the importance of using both
traditional and PLM-based KGC methods.

Please see Appendix C for more detailed infor-
mation on improving the current KGC evaluation
based on the insights from our work.

7 Limitations

In this study, we investigated the inference abilities
of PLM-based KGC methods empirically, without
focusing on theoretical verification. Furthermore,
while our focus was on KGC, we did not verify
whether these findings could be applied to other
downstream tasks. Therefore, our future work will
aim to generalize this empirical study and perform
verification across various downstream tasks.
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8 Ethical Considerations

In this study, we have created synthetic datasets de-
rived from existing KG datasets that have cleared
ethical issues following published conferences’
policies. Therefore, our created datasets do not
introduce any ethical problems.
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A Details of PLM-based KGC Methods

A.1 Discrimination-based Methods

The early PLM-based KGC methods such as KG-
BERT (Yao et al., 2019), utilize an encoder-only
PLMs like BERT (Devlin et al., 2019) to encode
triples. They perform binary classification to as-
sess the plausibility of a given triplet. KG-BERT
transforms a triple (h,r,t) as follows:

x=[CLS]Text,[SEP]Text, [SEP] Text.[SEP],
2
where Text,, represents textual representations of
n. The PLM takes x as input and conducts binary
classification using the [CLS] token e|cy g from the
final hidden state. It calculates the plausibility of
the triples, which is formulated as follows:

Score(h,r,t)=Sigmoid(MLP(e(cLs)))- (3)

Zhang et al. (2022); Choi et al. (2021); Choi and
Ko (2023) involve filling the missing part of a triple
with a [MASK] token and predicting it. The input
sequence z is represented as follows:

x=[CLS]Text [SEP]Text, [SEP][MASK][SEP].

“4)
Nonetheless, simply predicting the [MASK] token
does not facilitate direct entity prediction. Conse-
quently, it introduces special tokens into the vo-
cabulary to represent the corresponding entities for
prediction. In the case of kKNN-KGE (Zhang et al.,
2022), an initial learning process is undertaken
when introducing these special tokens to establish
the relationship between the special tokens and the
entities.

The prompt shown in Equation (5) is used to
mask the special tokens that represent each entity
e;. With all other parameters fixed, the masked
entity e; is predicted using cross-entropy loss. This
approach optimizes the embeddings of these enti-
ties, which are initially set to random values.

x;=[CLS] the description of [MASK] is d; [SEP],
(5)
Afterwards, a sentence similar to Eq. (4) is fed

into the model, which then fine-tunes the model to
predict the masked entity, as formulated:

P(t/h,r)=P([MASK |=t[2,0),  (6)

where O denotes the parameters of the model.
Finally, SimKGC (Wang et al., 2022), the state-
of-the-art method employs two encoders. SimKGC
splits the triple (h,r,t) into a question (h,r) and its
answer t and uses their respective PLMs to encode
them into vector space, which can be expressed as:

z(p,=[CLS] Text, [SEP] Text, [SEP], (7)
z¢=[CLS] Text; [SEP] . ®)

Then, the [CLS] tokens from the final hidden state
are extracted, with the embedding of z, ) rep-
resented as e(y, ;) and the embedding of z; repre-
sented as e;. The final plausibility of the triples is
scored as follows:

Score((h,r),t)=cos(er).€t)- )

Essentially, the introduced model originally em-
ploys the BERT-base model, but it can use variants
of BERT such as RoBERTa (Liu et al., 2019).

A.2 Generation-based Methods

Recently, novel KGC-based methods have been
introduced that utilize Encoder-Decoder models,
e.g., GenKGC (Xie et al., 2022), KGTS (Saxena
et al., 2022), or Decoder-only Large Language
Models (LLMs), e.g., LambdaKG (Xie et al., 2023),
AutoKG (Zhu et al., 2023), to directly generate
the tail entity ¢. Unlike traditional KGC methods
and discrimination-based methods, which can only
complete the KGs using a predefined set of entity
candidates, these generation-based methods have
the potential to predict unknown entities not in-
cluded in the candidate list. This capability unlocks
the ability to predict any and all entities in the KGs.
When predicting the missing triple (h,t,?), the
model converts z(; ,y into a prompt specific to the
models, then it into the encoder and generates x;.
While there is potential to predict any and all
entities, in practice, certain restrictions are put
in place to focus the prediction towards entities
within the KGs. For example, GenKGC intro-
duces an entity-aware hierarchical decoder to place
constraints on x;. Furthermore, KGTS5 utilizes
generation-based PLMs, pre-trained with text de-
scriptions specifically for KG representation. No-
tably, this is done from scratch with random initial-
ization, rather than leveraging pre-trained models,
indicating the effectiveness of a tailored approach
for each dataset.® Regarding the foundational mod-

8The authors mention that using pre-trained weights can
improve accuracy in some cases (https://github.com/
intfloat/SimKGC/issues/1). They also discuss the chal-
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Figure 10: The results of Hits@ 10 using vicuna-13B
and Llama2-13B in the LLMs KGC methods (Xie et al.,
2023). The LLMs select 1 entity from selected 100
candidate entities by BM25. It generates 10 sentences,
and it is checked whether the correct entity is included
in these. The chance rate is 0.1 because it generated
total 10 entities from 100 candidates.

els, GenKGC employs BART-base (Lewis et al.,
2020), while KGTS5 utilizes T5-small (Raffel et al.,
2020).

Finally, some experimental KGC methods use
decoder-only LLMs. These methods employ well-
designed prompts to induce in-context learning.
LambdaKG employs the information retrieval algo-
rithm (BM25) (Biittcher et al., 2010) to construct
prompts. It selects the top 100 most relevant enti-
ties from the dataset as potential answer candidates.
Similarly, it retrieves the top 5 relevant triples as
examples for few-shot learning. This information
is aggregated into a single prompt, which is then
used by LLMs to select and generate an answer.
AutoKG addresses the KGC task in a 0-shot or
1-shot setting without employing an information
retrieval algorithm. It treats the missing entity as
a [MASK] token in the prompt and generates the
corresponding value for the [MASK] token using
LLM:s.

B Inference capabilities under a zero-shot
setting with LLMs

We evaluate the inference capabilities in a zero-
shot setting by LLMs. We evaluate WN18RR
and FB15k-237 using the LambdaKG method (Xie
et al., 2023) described in Appendix A.2.° Fig-

lenge of training models on small datasets (https://github.
com/apoorvumang/kgt5/issues/4).

9Original LambdaKG uses GPT-3 (Brown et al., 2020), but
we employ Vicuna-13B and Llama2-13B for reproducibility.
These models have shown competitiveness to GPT-3 on the
MT-bench Reasoning benchmark (Zheng et al., 2023). Fur-
thermore, while the original setting calculates only Hits@1,

ure 10 shows the results using Vicuna-13B (Zheng
etal.,2023) and Llama2-13B (Touvron et al., 2023).
The base dataset yields high hits@10 scores, but
when entities are changed, the impact is high, and
it is small when only descriptions are changed.
However, LLMs don’t know how the entity was
changed, so the chance rate serves as an upper
limit. Therefore, it is clear that inference by LLMs
is based on pre-trained knowledge.

C Exhortation to KGC

Datasets As discussed in Section 4.2.3, the infor-
mation for relations has very little impact. Some
entities are assigned only one relation, as shown in
Table 3. Thus, if only the entity is known, it may
be possible to infer the unknown entities without
relation information. Traditional KGC methods
without PLMs can learn the graph structure from
scratch. In contrast, PLMs’ knowledge can help
with completion without relation information, as
discussed in Section B. The current dataset focuses
on entities, but it cannot accurately measure the
effect of relations. Therefore, a dataset that specifi-
cally focuses on relations is needed.

Next, according to Table 4, it has become clear
that the missing entity information is included in
the descriptions of queries. Therefore, if we use
descriptions in the KGC task, it can be considered
a cheat setting, as it utilizes the information extrac-
tion capability from the text data in PLMs. The
descriptions are indeed useful for disambiguation
in entities, but they also provide too much informa-
tion for inference, thus demonstrating information
extraction capabilities. In the future, to measure
the pure inference capabilities for unknown entities,
descriptions should not be used in the KGC task
for fair comparison.

Models As discussed in Section 4.2.1, PLMs’
knowledge helps inferences for unknown entities.
Therefore, when we evaluate filling in truly un-
known links in KGs by KGC in the future, we
should avoid using pre-trained weights. This sug-
gests that PLM-based KGC methods with pre-
trained weights create a cheat setting because they
utilize external knowledge not included in datasets,
which does not measure the pure inference capabil-
ities for unknown entities in KGC tasks. It is essen-
tial to evaluate the model’s performance based on
the target KGC dataset only for a fair comparison.

this study calculates Hits @ 10 by considering the top 10 output
probabilities.
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