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Abstract

Multilingual generative models obtain remark-
able cross-lingual in-context learning capabil-
ities through pre-training on large-scale cor-
pora. However, they still exhibit a performance
bias toward high-resource languages and learn
isolated distributions of multilingual sentence
representations, which may hinder knowledge
transfer across languages. To bridge this gap,
we propose a simple yet effective cross-lingual
alignment framework exploiting pairs of trans-
lation sentences. It aligns the internal sentence
representations across different languages via
multilingual contrastive learning and aligns out-
puts by following cross-lingual instructions in
the target language. Experimental results show
that even with less than 0.1 %o of pre-training
tokens, our alignment framework significantly
boosts the cross-lingual abilities of generative
language models and mitigates the performance
gap. Further analyses reveal that it results in a
better internal multilingual representation dis-
tribution of multilingual models. '

1 Introduction

Multilingual generative language models achieve
impressive universality across many languages by
pre-training on large-scale unsupervised multilin-
gual corpora (Liu et al., 2020; Xue et al., 2021;
Lin et al., 2022; Scao et al., 2022; Soltan et al.,
2022; OpenAl, 2022). However, models still show
a strong language bias toward high-resource lan-
guages (Asai et al., 2023), even the state-of-the-art
multilingual generative models like GPT-4, exhibit-
ing a 27.5% relative performance gap between En-
glish and Telugu in MMLU (OpenAl, 2023). This
challenge partly arises from the significant linguis-
tic resource imbalance among languages, which
is hard to address solely through corpus scaling
or balancing. Given such a model with language
*Corresponding author.

'Our code is available at https://github.com/chongli17/
CrossLingual Alignment
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Figure 1: (a, b) Our method aligns the internal EN-
ZH sentence representations of XGLMjsg4n, Which are
shown in t-SNE. (c) It also mitigates the performance
gap on XNLIL

bias and the huge cost of re-training, how can we
improve its cross-lingual capabilities and alleviate
the language bias using limited data?

Previous work focused on scaling multilingual
instructions (Muennighoff et al., 2023; Zhu et al.,
2023), ignoring internal alignment and knowledge
transfer between languages in the multilingual
generative model. Through visualizing the sen-
tence representations in the multilingual generative
model by mean pooling, we find that there is a
distinct gap between the sentence representation
distributions for different languages like Figure 1(a)
(the multilingual ones are shown in Appendix B.3).
This is similar to learning representations for each
language separately in the model, which is more
challenging for multilingual models to transfer the
knowledge learned from other languages. Thus, it
is important to investigate whether the cross-lingual
ability of models will be promoted by learning a
better-aligned representation distribution.

To address the above issues, we propose a cross-
lingual alignment framework named Align aFter
Pre-training (AFP), which aims to exploit trans-
lation pairs to narrow the gap between languages
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in the multilingual generation model. To be spe-
cific, our method can be divided into the following
two modules: 1) Multilingual Contrastive Learn-
ing (MCL) on internal representations: we treat a
translation sentence pair as the positive example
for contrastive learning, and pull the sentence rep-
resentations in two languages to be closer within
the multilingual generated model. This module in-
tends to reduce the differences between languages
from the internal representations of the model. 2)
Cross-lingual Instruction Following (CIF) on the
outputs: models must learn to answer in the target
language given a prompt from the source language.
It aims at enhancing semantic coherence and knowl-
edge transfer across languages in the model.

After extensive experiments, it can be found that
AFP greatly improves the performance of multilin-
gual generative models in cross-lingual natural lan-
guage inference, multilingual reasoning, and other
tasks using less than 1M parallel samples. The
performance gap between languages is narrowed,
e.g., the relative performance gap of XGLM;sgqm
reduces 6.53% on XNLI between English and Chi-
nese (Figure 1(c)). Our method also advances the
performance on unseen languages for models, e.g.,
the Chinese performance of Llama, which is pre-
trained on the corpus mainly in English (Touvron
et al., 2023a,b). Further analyses reveal that the
representation gap has been mitigated as illustrated
in Figure 1(b) after training with AFP. In addition,
experimental results show that the cross-lingual
instruction following task is better than the multi-
lingual instruction tuning task in promoting cross-
lingual ability with the same parallel corpus.

To sum up, our main contributions are as fol-
lows:

* We propose a simple yet effective cross-
lingual alignment framework, including the
internal representation alignment (MCL) and
external output alignment (CIF), to exploit
the parallel corpus for multilingual generative
models.

* Experimental results demonstrate that our
method greatly improves the cross-lingual
ability of generative models, including mul-
tilingual ones and models pre-trained on En-
glish corpus, by using less than 1M samples.

* Further analyses reveal that AFP promotes the
alignment and uniformity of internal multi-
lingual representation distributions. Ablation

study shows that using the internal represen-
tation alignment of AFP alone cannot boost
multilingual generative models.

2 Related Work

2.1 Multilingual Generative Language Model

Through unsupervised pre-training on the large-
scale multilingual corpus, generative language
models obtain impressive multilingual abilities,
e.g., multilingual machine translation (Liu et al.,
2020; He et al., 2021; Wang et al., 2022; Lu et al.,
2023), cross-lingual natural language understand-
ing (Xue et al., 2021) and cross-lingual in-context
learning (Lin et al., 2022; Scao et al., 2022; Wei
et al., 2023; Anil et al., 2023). Most of them ex-
tended the pre-training method developed for the
monolingual corpus (Lewis et al., 2020; Raffel
et al., 2020) and relied on a balanced sampling
method across languages, while a significant per-
formance gap between high-resource languages
and low-represented languages persists in the pre-
trained model (Asai et al., 2023). Different from
the unsupervised pre-training on the multilingual
corpus, this work attempts to alleviate the perfor-
mance gap across languages by cross-lingual align-
ment using parallel samples.

2.2 Multilingual Instruction Tuning

Large language models show better zero-shot mul-
tilingual performance and language generalization
results after multilingual instruction tuning (Muen-
nighoff et al., 2023; Zhang et al., 2023; Zhu et al.,
2023; Ranaldi et al., 2023). Our cross-lingual in-
struction following task requires the model to re-
spond in the target language and is different from
multilingual instruction tuning, where prompt and
answer in the same language for each sample.

2.3 Contrastive Learning in Natural
Langauge Processing

Most of the work in NLP adopted contrastive learn-
ing to improve the representation of sentences in
the language model (Reimers and Gurevych, 2019;
Pan et al., 2021a; Gao et al., 2021; Yang et al.,
2021; Pan et al., 2022; Ni et al., 2022; Sherborne
et al., 2023). Specifically, contrastive learning is
often applied to the sentence representations of en-
coder (Cao et al., 2020; Fang et al., 2020; Wu et al.,
2020; Pan et al., 2021b; Chi et al., 2021; Wei et al.,
2021). However, it is less explored how to promote
the representation of Transformer decoder models
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(Vaswani et al., 2017; Zhao et al., 2023). In this
work, we try to improve the internal multilingual
representation of the decoder models by multilin-
gual contrastive learning rather than the one of
encoder (Wang et al., 2021; Qin et al., 2022).

3 Method

As shown in Figure 2, our framework AFP con-
tains the following two modules: 1) Multilingual
contrastive learning (Section 3.1), which aims to
align the internal representations of models across
different languages. 2) Cross-lingual instruction
following (Section 3.2), which requires models to
align the outputs between different languages.

3.1 Multilingual Contrastive Learning

To align the internal multilingual representation of
models, we exploit the contrastive learning method,
which is generally found effective in aligning the
representations from different modalities in multi-
modal work (Radford et al., 2021; Xu et al., 2021;
Liang et al., 2022). Hence, translation pairs are
regarded as positive instances with closely aligned
semantics in multilingual contrastive learning, and
we pull their internal representations closer. The
other sentences in the same batch are taken as the
negative samples for the translation pair.

Formally, to align the [-th layer of model f(@),
the sentence representations (h;, h;") is calculated
as follows:

hi = g(fi(si;0)), hi = g(fi(s;30)) (D)

where f(-) represents the output from the [-th layer,
g(+) is the pooling method to obtain the sentence
representation for decoder models, e.g., mean pool-
ing or max pooling, and (s;, s:r) is a parallel sam-
ple from D = {(s1,5]), ..., (sn, s;7)}. We deter-
mine the specific layer to align according to the
performance of models on the dev set and find that
the first layer after embedding comes to better per-
formance (please refer to Section 4.2.2 for more
details). Then, the training objective of Multilin-
gual Contrastive Learning (MCL) is:

esim(hi,h:r)/r
L 0) = E —log| ————— 2
MCL( ) (5,57 )~D g Zj eSim(hi,hj)/T @

where sim(-) is used to determine the similarity
between representations, which is cosine similarity
in this work, h; is the sentence representation of
s in the mini-batch containing (s;, s; ), and 7 is a
temperature hyper-parameter.

3.2 Cross-lingual Instruction Following

To further align the output of multilingual genera-
tive models, we introduce a method named Cross-
lingual Instruction Following (CIF), which imposes
models to respond in the target language given the
source language as the context. It is more diffi-
cult than the multilingual instruction tuning task,
which prompts and answers in the same language
for each sample, and requires a better cross-lingual
understanding and generation ability for multilin-
gual generative models.

Specifically, given a pair of context and response
(c?,re) from a Dataset D in the same language
a, e.g., an English instruction tuning dataset like
FLAN or Alpaca (Wei et al., 2022; Wang et al.,
2023; Taori et al., 2023), response 1 is first trans-
lated into the target language b by the translator
t27b(.). We append a prompt p” informing the tar-
get language b, e.g., “Answer in German” in Figure
2, at the end of context to construct the training
sample (7% = ¢ + pb,rl = t27%(r¢)) for CIF.
Therefore, the loss function of CIF for the multilin-
gual generative model f(6) comes to:

Legp(0) = (C?’T%LE)NDQ [; —log (P(T?jkfﬁbﬂ“?,q; 9))]

©))
where the target language b has the possibility
pse € [0,1] to be set the same as the source
language a, which is a hyper-parameter and in-
vestigated in Section 4.2.3. When the target lan-
guage is always the source language of the context
(psre = 1), it degenerates into the vanilla multilin-
gual instruction tuning method.

With the two modules of aligning methods men-
tioned before, Multilingual Contrastive Learning
(MCL) and Cross-lingual Instruction Following
(CIF), we obtain the following loss function of
our alignment framework AFP:

Larp(0) = Lycr(0) + aLcrr(0) “4)

where o € Ra“ is a hyper-parameter to balance the
two alignment methods.

4 Experiments

4.1 Experiments Settings

Parallel Corpora To cover more parallel sam-
ples from different domains and languages, we
adopt a multilingual instruction tuning dataset
named Bactrian-X (Li et al., 2023), which is trans-
lated into 52 languages from Alpaca (Taori et al.,
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(I) Multilingual Contrastive Learning

Chance favors the prepared mind. ( EN

Multilingual Generative Model

Decoder Layer

Sentence Representation

Le hasard ne favorise que les esprits préparés FR

Failing is not always a failure. [ EN

(II) Cross-lingual Instruction Following

‘What are the synonyms of “hot” ?

Positive Sample

<> Negative Sample

Zu den Synonymen fiir

I
1
1
1
1 Answer in German:
1
1
1
1
1

’

I

: Lheif* gehdren ,,warm* und
N} brihend*.

1

1

1

1

1

1

(Google Translate: Synonyms for
“hot ” include “warm” and
" “scalding”.)

Figure 2: Illustration of how to align the internal representations and outputs of multilingual generative models
with AFP. (I) Given a translation parallel sample as the positive sample, multilingual contrastive learning pulls their
representations together and pushes apart the ones from other samples. (II) Multilingual generative models are
required to answer in the target language to align the outputs across languages.

2023) and Dolly (Conover et al., 2023) by Google
Translate, and a multilingual machine translation
dataset, OPUS-100 (Zhang et al., 2020), to align
the models evaluated. Only 100k parallel samples
are selected from OPUS-100 in our experiments to
match the amount of Bactrian-X, which contains
67k samples for each language. The number of to-
kens used is about 20M, which is nearly 0.05 %o of
tokens used in the pre-training of BLOOM (Scao
etal., 2022).

Language models We apply AFP on two multi-
lingual generative model structures, XGLM (Lin
etal., 2022) and BLOOM (Scao et al., 2022), across
three different parameter amounts. The models
fine-tuning with multilingual instruction tuning,
“+MIT” or BLOOMZ (Muennighoff et al., 2023),
are taken as the baseline. Llama (Touvron et al.,
2023a), which is mainly pre-trained on English cor-
pus, is also included for comprehensive evaluation.
Training settings and hyperparameters are reported
in Appendix A.

Multilingual Tasks We evaluate the performance
of models on the following benchmarks:

* Natural Language Inference We use XNLI
(Conneau et al., 2018) in this task.

* Paraphrase Detection PAWS-X (Yang et al.,
2019) is evaluated for this task.

* Reasoning We adopt XCOPA (Ponti et al.,
2020), XStoryCloze (Lin et al., 2022) and
XWinograd (Tikhonov and Ryabinin, 2021)
in this task.

¢ Machine Translation For this task, we use
FLORES-101 (Goyal et al., 2022).

The detailed descriptions and prompt formats for
each task during evaluation are presented in Ap-
pendix C. We keep the same prompt formats across
all multilingual generation models for a fair com-
parison.

4.2 Bilingual Results and Analyses

To make a comprehensive analysis of the influence
on performance and representations in models, we
first conduct bilingual alignment experiments in En-
glish and Chinese. Then we extend to the condition
of multilingual alignment (Section 4.3).

Table 1 shows the experimental alignment re-
sults on EN-ZH parallel samples. These generative
models, including three architectures with differ-
ent amounts of parameters, are consistently im-
proved by our method. The average improvement
is up to 3.31% using only 167k parallel samples,
and the models with 7B parameters surpass the
GPT-3 with comparable parameters after alignment.
Specifically, models improve 4.28% on the first two
natural language understanding tasks (XNLI and
PAWS-X), and 2.67% on the other three reasoning
tasks. After alignment using AFP, BLOOM shows
a better performance than the BLOOMZ model
with the same amount of parameters, which is
fine-tuned on 78M multilingual instructions (Muen-
nighoff et al., 2023).

It is interesting to find that the model Llama
pre-trained on mainly English corpus, also obtains
improvement after bilingual alignment using AFP.
The performance on the unseen language Chinese
is even comparable with the one pre-training on an
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XNLI PAWS-X XCOPA XStoryCloze XWinograd
Model EN-0/5 ZH-0/5 EN-0/5 ZH-0/5 EN-0/5 ZH-0/5 EN-0/5 ZH-0/5 EN-0/5 ZH-0/5  Avg
GPT-3678 | 55.3/52.8|42.4/45.9|60.6/59.7 | 53.2/54.1| 73.6/74.5 | 55.0/57.7 | 73.6/74.5 | 55.9/54.5 | 64.6/68.1 | 71.5/72.2 | 61.0
XGLMsesm | 45.5/41.2|37.6/35.6 | 50.4/46.6 | 50.9/47.8 | 56.4/59.6 | 52.8/52.2 | 59.6/60.8 | 54.3/52.9 | 54.8/56.7 | 67.1/66.9 | 52.5
+MIT | 46.6/43.9 |37.5/41.6 | 53.5/53.1 | 52.3/51.0 | 57.6/61.0 | 57.2/55.4 | 61.1/61.3 | 54.5/54.5 | 55.6/57.7 | 66.7/65.3 | 54.4
+AFP | 48.1/46.5 | 41.6/42.5 | 54.2/53.8 | 53.2/52.8 | 62.0/62.2 | 59.0/58.8 | 62.2/62.5 | 56.3/56.1 | 55.6/59.0 | 67.5/67.3 | 56.1
XGLMj 55 54.1/49.9|45.4/44.2 | 58.9/56.3 | 52.9/55.8 | 69.4/74.6 | 62.4/63.2 | 69.2/73.7| 59.5/59.2 | 62.8/66.4 | 73.8/73.2| 61.2
+MIT | 54.3/54.1|47.8/44.8 |63.1/57.3 | 54.4/55.0 | 69.4/75.0 | 63.2/64.6 | 71.1/74.3 | 60.1/61.7 | 64.5/67.5 | 74.4/73.4 | 62.5
+AFP | 55.0/54.7 | 48.0/48.8 | 64.8/61.2 | 57.8/56.4 | 72.2/75.6 | 64.4/66.8 | 72.0/74.7 | 62.7/63.4 | 65.2/68.2 | 75.8/74.0 | 64.1
BLOOMZsgou | 43.8/44.5 | 41.5/40.7 | 52.4/51.2 | 54.1/52.9 | 54.8/57.2 | 52.0/52.8 | 61.2/61.7 | 56.4/55.0 | 54.8/55.4 | 62.3/65.1 | 53.5
BLOOMseom | 44.4/40.4|41.1/40.3 | 50.5/52.3 | 49.0/49.4 | 53.0/57.4 [ 49.8/54.0 | 55.2/58.2 | 57.9/53.2 | 54.3/55.6 | 63.9/64.9 | 52.2
+AFP | 50.7/46.4 | 47.5/44.8 | 58.2/57.5 | 54.9/54.8 | 57.8/58.4 | 52.6/55.4 | 57.0/59.0 | 59.7/58.3 | 56.3/57.2 | 64.7/65.2 | 55.8
BLOOMZ, 75 |50.3/51.2]48.0/46.2|57.1/53.4|54.4/52.3| 58.0/58.0 | 55.2/56.8 | 66.4/68.9 | 59.8/62.3 | 59.0/61.6 | 66.1/67.7 | 57.6
BLOOM;75 |50.4/44.4|47.6/46.1|47.7/52.1|52.9/51.1|55.8/58.2 | 52.4/54.6 | 64.2/67.3 | 60.1/60.6 | 56.1/59.3 | 67.9/65.9 | 55.7
+AFP | 52.9/51.3 | 49.8/48.8 | 61.0/58.0 | 56.9/56.0 | 60.8/61.6 | 55.4/58.2 | 66.4/69.0 | 63.3/63.3 | 59.3/60.7 | 68.3/66.1 | 59.4
BLOOMZ,,5 |51.1/52.0]49.7/48.0|63.6/62.2|56.9/56.1|61.2/62.4 | 57.6/59.8 | 73.7/76.9 |62.1/63.9 | 64.1/66.9 | 66.1/68.5 |61.1
BLOOMy | 54.0/48.7|48.1/47.5|59.9/60.4 | 53.2/51.4 | 58.0/58.8 | 54.0/54.8 | 70.4/73.5 | 64.3/64.8 | 60.6/63.8 | 71.4/67.7 | 59.3
+AFP | 55.8/54.3 | 50.2/50.4 | 66.5/64.5 | 58.7/56.8 | 62.0/62.8 | 58.2/61.0 | 72.9/75.6 | 68.0/68.6 | 62.9/66.2| 73.0/70.8 | 63.0
Bactrian-X7p | 53.0/53.3|44.6/44.1 | 68.7/63.4|56.7/53.6 | 76.8/85.8 | 54.4/55.2 | 79.5/83.3 | 55.9/57.0 | 75.0/80.6 | 66.3/66.1 | 63.7
ZH-Alpacal, |51.7/52.9|47.2/46.2 | 67.6/62.8 | 57.2/54.8 | 73.2/83.8 | 57.6/60.8 | 76.6/79.3 | 57.4/58.3 | 71.4/74.8 | 67.9/68.5 | 63.0
Llamasg 54.5/49.0|45.9/44.9 | 67.8/64.2 | 55.4/53.1 | 74.6/84.2 | 55.8/57.4 | 77.0/80.7 | 55.0/55.5 | 72.3/79.4 | 66.1/65.5 | 62.9
+AFP | 55.9/54.1 | 47.6/48.4 | 70.0/64.3 | 58.6/56.1 | 78.4/86.8 | 57.2/60.0| 79.9/84.0 | 56.8/57.6 | 76.4/83.0 | 66.7/67.7 | 65.5
Table 1: In-context learning results of models across different parameter scales on 5 datasets. The Average

improvement is 3.31%, where 4.28% on the first two tasks and 2.67% on reasoning tasks. * uses an additional 20GB
Chinese corpus for pre-training. For a fair comparison, all results are obtained from the same in-context learning

template illustrated in Appendix C.

EN—ZH ZH—EN Avg
Model 0 1 5 10 0 1 5 10 0 1 5 10
XGLMs6am 25.3 31.6 62.2 63.3 26.7 67.4 69.8 70.8 26.0 49.5 66.0 67.1
+AFP 52.7 62.8 65.4 67.6 65.9 70.9 71.8 72.3 59.3 66.9 68.6 69.9
XGLM7 5 28.1 79.3 79.8 80.1 29.1 81.6 81.8 82.2 28.6 80.4 80.8 81.2
+AFP 574 80.4 80.8 81.0 68.8 81.7 81.8 824 63.1 81.1 81.3 81.7

Table 2: Translation results of COMET (Rei et al., 2020) on FLORES-101 devtest set.

10 BEIR o N
. z 7

00 02 04 06 08 ) o0 02 04 06 s 1o

(2) BLOOMs0m (b) BLOOMsgom+AFP

Figure 3: (a, b) The t-SNE visualization of the original
and aligned internal EN-ZH sentence representations of
BLOOMs560m

additional 20GB Chinese corpus (Cui et al., 2023).
This result further proves the effectiveness of our
method. We assume that this performance gain
may benefit from better-aligned multilingual repre-
sentations in models, which promotes the transfer
of knowledge learned in the English corpus.

In addition to cross-lingual understanding and
reasoning abilities, the multilingual generation abil-
ity of models has been improved. The bilingual
translation results of XGLM models are reported

in Table 2. Models not only obtain a better cross-
lingual generation ability, but also show a more bal-
anced generation performance than the vanilla ones
between both directions. It is interesting to find that
the average performance of models in the zero-shot
condition improves from 27.3 to 61.2 COMET on
average, which may come from the response in
the target language format used in cross-lingual
instruction following is similar to the one in the
machine translation task.

4.2.1 AFP Brings Better Bilingual
Representations

Visualization of sentence representations.
Given 1k EN-ZH translation parallel samples,
we visualize the sentence representations of
XGLMj564m and BLOOMj5600m, Which are obtained
by the mean pooling method using the representa-
tion for each token in one sentence. In the vanilla
models, there is a distinct separation between
sentence representations from different languages
(Figure 1(a) and 3(a)). However, the ones using
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Figure 4: The deviation of £ypiform-£align for XGLMsgam
during training process with different multilingual train-
ing methods. The smaller these two metrics are, the
better representations models learn. “BPre” and “BIT”
denote bilingual pre-training and bilingual instruction
tuning, respectively.

AFP come to be more aligned between languages
and uniform (Figure 1(b) and 3(b)), which means
our method promotes the representation of the
model to be better-aligned from a qualitative point
of view.

Alignment and uniformity. The distribution of
multilingual representations is quantified by the
two metrics, alignment and uniformity proposed
by Wang and Isola (2020), for further analysis.
Specifically, the alignment score measures the ex-
pected distance between the representations of posi-
tive samples, which are translation parallel samples
for multilingual generative models, and is calcu-
lated as follows:
2

Zalign é E Hf(m) - f(l‘+)“ (5)

(z,2T)~Dpos

where D), is the distribution of positive samples.
In contrast, uniformity reflects the degree of uni-
formly distributed for representations:

2
Luniform 2 log E ei2||f("”)*f(y)\| (6)

i.i.d.
x,yl ~tD

where z and y are randomly sampled from the
distribution D. Therefore, the smaller ;g and
Luniform are, the better representations models learn.

Figure 4 illustrates the deviation of /ujje, and
Luniform for XGLMseqn using different training
methods on the same training data. The initial 5000
steps are visualized, with one point for every 500
steps. We can find that the metrics are both decreas-
ing using AFP, while the bilingual pre-training only
improves the uniformity of representations. The
results further prove that our method improves the
multilingual representation distributions within the
multilingual generative models.

—o— XGLMsoam

562
360 r\ BLOOMsom
558

56

(a) (b)

Figure 5: Effects of the target layer of MCL (a) and the
psre of CIF (b) on 5 EN-ZH datasets.

4.2.2 Multilingual Contrastive Learning on
Bottom Layer Performs Better

Figure 5(a) presents the impact of different lay-
ers applied by contrastive learning on the 5 cross-
lingual datasets (XNLI, PAWS-X, XCOPA, XS-
toryCloze, and XWinograd). The average per-
formance of models shows a trend of decreasing
first and then increasing, which changes at the
10th layer for XGLMsgan or the 17th layer for
BLOOMs560m. And the first transformer layer is
better for both models when using multilingual
contrastive learning. As a result, multilingual con-
trastive learning is applied to the first layer after
the embedding layer by default.

4.2.3 Cross-lingual Instruction Following or
Multilingual Instruction Tuning?

As shown in Figure 5(b), multilingual instruction
tuning (ps,e = 1) is inferior to cross-lingual instruc-
tion following (py. < 1) for the models evaluated.
Moreover, the result becomes suboptimal when all
samples are transferred into the cross-lingual for-
mat (pse = 0). We empirically set the py, to 0.5 in
the cross-lingual instruction following task.

4.3 Multilingual Results and Analyses

In addition to the bilingual alignment, AFP can be
applied to align the models in multilingual condi-
tions. English is first chosen as the pivot language
of alignment for the dominance performance in
multilingual generative models. That is, the in-
put parallel samples of AFP are selected from the
EN-XX corpus, e.g., EN-ZH and EN-TH, to pull
the representations and outputs of models in other
languages closer to the ones in English. We also
investigate the other alignment methods like pair-
wise alignment in Section 4.3.1, which shows an
inferior performance.

Table 3 reports the results of alignment be-
tween 5 languages from different language families,
where the performance of models on the NLI and
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XNLI XCOPA
High Medium Low High Medium Low

Model EN-0/5 | ZH-0/5 | TH'-0/5 | TR-0/5 | SW-0/5 | EN-0/5 | ZH-0/5 | THT-0/5 | TRT-0/5 | SW-0/5 | Avg
GPT-378  |55.3/52.8|42.4/45.9|38.5/36.6 | 40.5/38.4|34.8/33.9|73.6/74.5 | 55.0/57.7 | 53.7/54.4| 53.4/53.0| 52.3/52.1 | 49.9
XGLMsesy  |45.5/41.2(37.6/35.6 | 40.8/35.0|40.2/34.9 | 37.5/34.7| 56.4/59.6 | 52.8/52.2 | 55.4/54.2| 52.8/51.8 | 51.8/51.6 | 46.1
+MIT | 46.8/43.4|40.3/39.8|41.4/39.6|40.2/36.7 | 37.6/37.9 | 58.0/60.2 | 55.2/55.8 | 56.8/57.4 | 55.4/54.6 | 53.2/53.8 | 48.2
+AFP | 48.0/46.3 | 42.8/42.7 | 42.8/43.3 | 40.4/42.9 | 38.9/40.0 | 60.6/61.4 | 59.0/59.4 | 59.0/60.0 | 56.6/56.0 | 57.6/55.6 | 50.7
XGLMysp  |54.1/49.9|45.4/44.2|45.2/43.6|44.7/39.5|44.3/39.6]69.4/74.6] 62.4/63.2| 62.0/62.4| 56.6/58.4| 58.2/57.2| 53.7
+MIT | 54.6/51.3|47.2/46.4|46.5/45.7|45.9/41.6 | 45.0/41.3 | 70.6/74.4 | 64.0/65.2 | 62.8/63.2 | 58.0/59.6 | 58.8/58.4| 55.0
+AFP | 55.8/54.1 | 50.6/48.8 | 48.1/47.2 | 46.7/44.1 | 46.1/44.2 | 71.4/75.0 | 66.8/66.6 | 63.2/64.4 | 61.8/62.0 | 62.2/62.8 | 57.1

BLOOMZseom | 43.8/44.5|41.5/40.7 | 37.8/39.2|35.6/35.9 | 35.8/35.8 | 54.8/57.2 | 52.0/52.8 | 52.6/52.5| 52.6/51.8 | 52.0/52.4 | 46.1

BLOOMs60m

+AFP | 48.4/46.5 | 47.4/44.1 | 39.8/40.5 | 39.7/39.4

BLOOMZ, 75
BLOOM, 75
+AFP 52.1/51.3 | 49.1/47.1

41.2/41.8 | 40.1/41.3

BLOOMZ;7 18
BLOOMj7.i5
+AFP

55.7/52.5 | 50.1/50.2 | 43.7/43.2 | 43.0/43.4

44.4/40.4|41.1/40.3 | 33.4/35.1|34.5/34.1 | 35.7/34.5 | 53.0/57.4 | 49.8/54.0 | 50.8/51.8 | 52.8/52.6 | 51.2/52.0 | 44.9
40.1/40.8

50.3/51.2|48.0/46.2 | 38.4/36.8|37.1/37.4|38.3/38.7| 58.0/58.0 | 55.2/56.8 | 52.4/53.8 | 52.2/54.6 | 50.8/50.2 | 48.2
50.4/44.4|47.6/46.1(37.9/35.7 | 36.9/35.0 | 36.3/36.7 | 55.8/58.2 | 52.4/54.6 | 51.2/52.0 | 53.4/54.2 | 52.2/53.6 | 47.2
41.1/42.5

51.1/52.0]49.7/48.0|40.9/37.6 | 39.8/36.1(39.2/39.7|61.2/62.4 | 57.6/59.8 | 53.2/51.6 | 55.0/54.2| 53.6/52.2 | 49.7
54.0/48.7|48.1/47.5|39.5/37.4 | 38.2/35.0 | 37.7/38.9| 58.0/58.8 | 54.0/54.8 | 52.6/52.8 | 53.8/53.4 | 53.2/54.6 | 48.6
42.2/43.1

56.0/58.4 | 52.4/54.4 | 53.8/53.4 | 54.6/54.8 | 52.2/53.4 | 48.5

60.2/60.4 | 55.4/58.8 | 54.2/54.6 | 55.6/56.0 | 53.6/55.0 | 50.6

62.6/62.8 | 58.2/60.4 | 55.6/55.2 | 56.4/56.6 | 55.0/55.8 | 52.3

Table 3: In-context learning performance on NLI and Reasoning datasets across 5 languages. “High”, “Medium”
and “Low” denotes the available amount of linguistic resources. T denotes the unseen language in the pre-training
corpus of BLOOM. Following Lin et al. (2022), the prompt template is written in English for all languages evaluated.

Model EN ZH TH TR SW Avg
XGLMs6am 4.840.8 21417 22418 22418 1.140.0 2.541.7
Avg translate from +AFP 52404 27415 2.8+1.7 27416 2.6105 32414
the language XGLMyss 163422 100165  11.0070  10.0x73  14.040s | 12.3175
+AFP 16.9i1 7 ll.lieo 11-6i6 8 11.1j:6 9 14.7i9 2 13~1i7 0
XGLMseam 74407 1.341.0 14411 14409 0.940.7 2.541.7
Avg translate to +AFP 844103 1.610.3 18411 234108 191056 32414
the language XGLM7 s 24.34+3.3 8.0+2.9 11.0443 9.643.7 85457 12.3475
+AFP 24-4i3 0 10.0i242 11.8i3 9 10.3i3 2 9.015 4 13-1i7 0

Table 4: Few-shot multilingual machine translation results of spBLEU on FLORES-101 devtest set. The variance
of performance across the input or output languages is marked in the subscript.

Model
XGLMs6am

w/ EN as pivot language 54.1 51.0 51.3 49.2 48.0 50.7
w/ Pairwise alignment

BLOOMs60m

w/ EN as pivot language 52.3 49.6 46.9 47.1 .
w/ Pairwise alignment ~ 51.6 48.9 46.5 46.3 46.8 48.0

EN ZH TH TR SW Avg

Model EN ZH TH TR SW Avg

XGLMj7sg + AFP 64.1 58.2 55.7 53.7 53.8 57.1

w/ Semantic aligned demos 64.4 58.7 55.8 55.8 54.0 57.7

BLOOMy, g + AFP  58.4 54.7 49.4 49.9 49.0 52.3

w/ Semantic aligned demos 58.9 54.8 49.5 50.2 49.2 52.5

Table 5: Results of different alignment policies. The pol-
icy adopting English as pivot language achieves higher
improvement on average and is adopted as default.

reasoning tasks is improved by 3.72% from high-
resource languages to the less-represented language
Swahili.

Moreover, models with AFP obtain a more bal-
anced performance distribution. Taking XGLM
models as an example, the variance of performance
across 5 languages decreases from 3.44% to 2.96%
on average. It is noted that AFP advances the per-
formance of BLOOM in the two unseen languages,
Thai (TH, +3.9%) and Turkish (TR, +3.92%).

Table 6: The average performance on XNLI and
XCOPA when prompt with 5 semantic aligned demos.

Multilingual generative models also obtain a per-
formance gain (+0.75 BLEU) in the multilingual
machine translation task after alignment (Table 4).
It can also find a more balanced performance dis-
tribution across languages, where the average vari-
ance reduction is 0.4% for the models evaluated.

4.3.1 English as a pivot language or Pairwise
Alignment?

Besides adopting English as a pivot language to
align multilingual representations, we also investi-
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XNLI PAWS-X XCOPA XStoryCloze XWinograd
Model 0-shot S-shot 0-shot S-shot 0-shot S-shot 0-shot S-shot 0-shot S-shot Avg
XGLM7sp 45.643.4 43.643.1 | 54.74+31 55.14+16 | 589450 60.4457 | 60.6439 60.5450 | 63.9451 64.7+42 | 55.3455
+AFP 4751335 477130 | 577123 575114 | 613145 624157 | 624137 635149 | 655145 667141 | 578150
BLOOMZ7,p | 44.144.0 43.544.6 | 57.8+2.6 56.64+2.9 | 53.1+53 54.6455 | 58.946.7 61.047.4 | 60.0+49 60.4159 | 54.248.3
BLOOM7p | 43.345.5 425447 | 54.543.1 53.543.6 | 52.34+4.7 53.314.0 | 57.316.2 59.217.2 | 59.046.2 59.2152 | 52.015.2
+AFP 454145 459439 | 5814t26 56.143.1 | 550437 551439 | 613160 6254172 | 61158 605152 | 547150

Table 7: In-context learning results of models on 5 datasets across all languages. The variance of performance
across languages is marked in the subscript. All results are reported in Appendix B.4.

gate the pairwise alignment policy, which is aligned
by languages in pairs. For example, assuming to
align the representations of English (EN), Chinese
(ZH), and Thai (TH), the former policy comes to
two parallel samples for input, which are EN-ZH
and EN-TH, while the latter contains three parallel
samples: EN-ZH, EN-TH, and ZH-TH.

The results of five languages alignment experi-
ments on XNLI and XCOPA are reported in Table
5. The pairwise alignment policy performs consis-
tently better in the low-resource language Swabhili,
although its average improvement is inferior to that
when adopting English as a pivot language.

4.3.2 Combination with Other Cross-lingual
Methods

After alignment, multilingual generative models
can use other cross-lingual methods for further im-
provement. We take a method named semantic
alignment for an example, which is able to promote
the cross-lingual ability using semantic aligned de-
mos in prompt (Tanwar et al., 2023). As shown
in Table 6, models obtain a further 0.4% improve-
ment in the multilingual NLI and reasoning tasks
on average.

4.4 Extended to Alignment in 52 Languages

Based on the above analyses, we extend the align-
ment to all 52 languages in the Bactrian-X dataset
by adopting English as a pivot language (infor-
mation about all languages involved is reported in
Appendix D). As shown in Table 7, models obtain a
2.6% improvement in 5 multilingual tasks on aver-
age, and mitigate the variance across languages. It
is also noted that the performance of BLOOM7 15
on unseen languages among 5 datasets is improved
by 2.8% using only parallel samples via our align-
ment framework, which may arise from the knowl-
edge transferred from other languages after align-
ment.

Model 0-shot 3-shot 5-shot
XGLM564M 52.94:{:0_54 51.71:(:0_90 52-03;(:0.89
w/ MCL 50.23+0.43 48.6640.51 48.6040.49
w/ MIT 54.2540.49 53.54410.75 52.9340.68
w/ CIF 55.31+0.55 54.0240.63 53.5840.64
w/ AFP 55.97+0.48 55.50+0.55 56.15+0.43

Table 8: Ablation study of different training methods on
5 datasets for XGLMsg4m.

4.5 Ablation Study

To take a deep look into the improvements con-
tributed by AFP, we conduct an ablation study on
the 5 datasets of bilingual tasks using XGLMsgam
(Table 8).

The in-context learning abilities of the models
decrease when only multilingual contrastive learn-
ing (MCL) is used. It may arise from the next word
prediction ability of the model is affected by the
MCL. Using the same data, both multilingual in-
struction tuning (MIT, +1.3%) and cross-lingual
instruction following (CIF, +2.1%) can improve
multilingual generative models, while the latter can
promote it more. In addition, the performance of
the models can be further improved after combin-
ing MCL and CIF, which is the proposed alignment
framework AFP.

5 Conclusion and Future Work

In this paper, we proposed a simple yet effective
multilingual alignment framework, including in-
ternal multilingual representations alignment and
cross-lingual outputs alignment methods. Experi-
mental results show that this framework improves
both the internal representations and cross-lingual
capabilities of generative models across various
scales.

Beyond aligning different languages, our frame-
work can be extended to align the internal repre-
sentations and outputs across different modalities
in the multi-modal generative models by replacing
parallel samples. However, it is noted that the cur-
rent framework relies on labeled training data for
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alignment. Future works can focus on the unsuper-
vised multilingual alignment method for language
models.

Limitations

Firstly, although our cross-lingual framework
boosts the cross-lingual ability of multilingual gen-
erative language models using only a small amount
of parallel samples, it is noted that the proposed
framework relies on labeled training data for align-
ment, which is unavailable for languages without
parallel samples.

In addition, due to limited computation re-
sources, our framework is constrained to multi-
lingual generative language models with less than
or equal to 7.5B parameters.

Lastly, there is an error propagation problem
from the involved machine translation system,
which may result in inferior performance.

Ethical Considerations

Since our alignment framework is applied to the
pre-trained multilingual generative language mod-
els, the model aligned may inherit the potential risk
and bias in the vanilla language model (Tamkin
et al., 2021). The cultural bias and offensive re-
sponse in English may be incorporated into other
languages due to the alignment policy used, which
adopts English as a pivot language. Future explo-
rations are needed to mitigate the risk and cultural
bias in multilingual generative language models.
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A Hyperparameters

To align the representations and outputs of mul-
tilingual generative models, we adopt AdamW
(Loshchilov and Hutter, 2019) optimizer, where
B1 = 0.9 and B2 = 0.999, and a learning rate of
le-5. The temperature 7 is set to 0.05 in the multi-
lingual contrastive learning task. Mixed precision
training and ZeRO are applied to speed up the train-
ing process and save memory used (Micikevicius
et al., 2018; Rasley et al., 2020). The number of
training steps is empirically set to 10k with a batch
size of 128. All experiments are conducted on a
GPU server with 8*A100 80GB RAM.

B Additional Results

B.1 Pooling Methods

Given representations for each token in the sen-
tence, there are three general methods, the last to-
ken representation, max pooling and mean pooling,
to obtain the representation of this sentence. Figure
6(a) illustrates the results of XGLMsg4n under dif-
ferent pooling methods using AFP. It can be found
that the last token and mean pooling perform bet-
ter, and our method is less sensitive to the pooling
method chosen. Thus, these two methods are used
in AFP and are selected according to the perfor-
mance of the development set.
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Figure 6: Results of different pooling methods (a) and weights of CIF (b) on 5 EN-ZH datasets using XGLMsg4n.

B.2 Weight of Cross-lingual Instruction
Following

We find that the weight « of cross-lingual instruc-
tion following in Eq. (4) affects the multilingual
performance of models. The average performance
of XGLMj5e4pm 0n 5 datasets with different «v is pre-
sented in Figure 6(b), where models perform better
than the other values evaluated when « is set to 1.5.
Therefore, we only consider a limited hyperparam-
eter sweep for each multilingual generative model
with a € {1,1.5,2}.

B.3 Distribution of multilingual
representations

Figure 7 illustrates the distributions of 5 languages
sentence representations from the vanilla XGLM
models and the aligned ones via t-SNE. Similar to
the bilingual distribution, we can find that there
are distinct gaps between the sentence representa-
tions from different languages in the vanilla mod-
els (Figure 7(a)-7(c)). After training with AFP, the
multilingual sentence distributions of models are
better aligned between languages across different
scales (Figure 7(d)-7(f)). The alignment of mul-
tilingual sentence representations in XGLMj7 s is
not as good as the two smaller models, which may
arise from the limited parallel samples used.

B.4 Performance on multilingual datasets
All results of XGLM7ys5, BLOOMZ7 5, and

BLOOM} 1 on the 5 multilingual datasets are re-
ported in Tabel 9-13.

C Task Descriptions and Prompt
Templates

To comprehensively evaluate our models, six
datasets across four tasks are adopted in this work.
Table 14 shows the statistics of all datasets used. It
is noted that the original COPA dataset (Roemmele
et al., 2011) in English is also included in the eval-
uation. Most templates of prompt follow the ones
in Lin et al. (2022).

Natural Language Inference This task aims to
determine the semantic relationship between the
premise and hypothesis. Table 15 illustrates the
template and 3-shot example used in our evaluation
for this task.

Paraphrase Detection Models need to evaluate
whether the second sentence is a paraphrase of the
first sentence in this task. The template and 3-shot
example adopted are reported in Table 16.

Reasoning Three popular multilingual reasoning
datasets are applied in this task category. Given
candidate sentences or pronouns mentioned above,
models have to select the best one with semantic
coherence and comply with the rules of the physics
world. The detailed templates and examples are
presented in Table 17 (XCOPA), Table 18 (XSto-
ryCloze) and Table 19 (XWinogrande).

Multilingual Machine Translation Given sen-
tences in the source language, models for this task
have to generate the corresponding sentences in
the target language. Table 20 illustrates the tem-
plate and 3-shot example used in our evaluation for
FLORES-101.
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High Medium Low

Model #shot EN DE' ES FR RUT ZzH | AR BG' ELT THT TRT VI | HI SW UR | Avg

0 |54.1 42.5 39.9 49.9 45.0 45.4|46.4 48.9 45.4 45.2 44.7 47.2|43.2 44.3 42.1|45.6
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XGLM7v5B +AFP

BLOOMZ;.i5

BLOOM 5 +AFP
53.3 44.5 44.1 51.9 44.1 49.8[49.2 42.4 42.3 41.9 41.3 50.7|47.0 42.4 44.1|459

Table 9: In-context learning results on XNLI across all languages. “High”, “Medium” and “Low” denotes the
available amount of linguistic resources. T denotes the unseen language in the pre-training corpus of BLOOM.

Model #shot| EN DE' Es FR zH JAT| KO' |Avg

0 [58.9 58.0 57.3 54.0 52.9 50.3| 51.6 |54.7
8 53.3| 52.2 |55.1

0 |[61.4 58.2 58.2 59.4 57.5 56.2| 53.4 |57.7
5 [59.4 59.0 57.4 58.1 57.6 56.3| 54.9 | 575

XGLM7A5B +AFP

0 [63.6 57.9 58.5 57.4 56.9 55.7| 54.8 |57.8
5 [62.2 56.9 57.3 57.1 56.1 54.7| 51.8 | 56.6

0 [59.9 54.7 57.7 54.0 53.2 52.0| 50.3 |54.5
5 [60.4 54.4 54.9 54.9 51.4 50.4| 48.5 |53.5

0 [62.4 59.3 59.6 59.2 56.2 56.1| 54.2 |58.1
5 [62.3 56.2 55.8 58.0 53.2 54.9| 52.5 |56.1

BLOOMZ; 13

BLOOMj 15 +AFP

Table 10: In-context learning results on PAWS-X across all languages. “High” and “Medium” denotes the available
amount of linguistic resources. T denotes the unseen language in the pre-training corpus of BLOOM.

High Medium Low Ex-Low

Model #shot| EN ZH | ID 1Tt THT TRT VI |ETT sw TA |HTT QUT| Avg

69.4 62.4|63.0 56.0 62.0 56.6 61.4|57.4 58.2 56.2|56.6 48.0|58.9
5 |74.6 63.2|62.6 57.6 62.4 58.4 66.2|58.6 57.2 57.2|54.8 51.8|60.4

71.0 65.2|64.2 58.6 64.2 60.2 63.8|59.8 60.4 58.0|58.4 52.2|61.3
5 |76.6 66.2|63.4 59.6 64.2 61.0 67.4|61.2 60.6 58.4|56.2 53.4| 62.4

XGLM7 s

XGLMj 55 +AFP

61.2 57.6|59.4 49.4 53.2 55.0 58.2[49.2 53.6 46.0|43.4 51.2|53.1
5 [62.4 59.8|61.0 49.4 51.6 54.2 61.8|47.2 52.2 58.4|48.4 49.2|54.6

58.0 54.2(59.2 48.6 52.6 53.8 59.0|48.0 53.2 45.0(46.0 49.4|52.3
5 |58.4 54.8/60.0 50.2 52.8 53.4 57.8|47.6 54.6 53.8|46.6 50.0|53.3

59.4 55.8161.6 53.2 54.4 55.2 60.6|51.2 54.2 54.4|48.6 51.8|55.0
5 [61.0 56.8|61.0 51.4 54.2 54.6 59.6|49.8 55.2 57.2|50.2 50.4 | 55.1

BLOOMZ;.i8

BLOOMjy, g +AFP

Table 11: In-context learning results on XCOPA across all languages. “High”, “Medium”, “Low” and “Ex-Low”
denotes the available amount of linguistic resources. T denotes the unseen language in the pre-training corpus of
BLOOM.
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High Medium Low Ex-Low

Model #shot| EN ES RUT ZH | AR ID | HI SW TE | EU MY'| Avg

0 [69.2 64.0 63.4 59.5|56.2 63.0({59.0 59.2 60.2|57.4 55.1|60.6
5 |73.7 63.6 63.6 59.2|54.4 62.2|59.4 58.5 58.7|56.9 55.7[60.5

XGLM7 s
0 |[70.7 65.9 65.7 62.5|58.3 64.1|60.1 60.5 61.1|60.0 57.7 | 62.4

XGLMj .55 +AFP
5 |74.7 67.3 67.4 62.8(58.2 67.1|61.4 61.6 60.7|59.8 57.6|62.5

0 |73.7 64.6 52.6 62.1]|60.3 62.4|59.2 55.3 57.7|51.9 48.4|58.9
5 |76.9 65.4 53.1 63.9(/60.9 67.4|62.8 57.3 59.2|56.4 47.5|61.0

BLOOMZ;7.18
0 [70.4 59.4 53.5 64.3[59.7 59.6|58.8 52.1 54.7|50.7 47.5|57.3
5 |73.5 64.1 51.7 64.8|60.0 64.6|61.3 53.1 56.9|53.7 47.3|59.2

0 [70.8 67.6 54.3 67.6|62.3 65.2(62.3 57.6 57.0|59.2 50.0 | 61.3

BLOOMy ;g +AFP
5 |75.4 66.4 54.8 69.0(64.0 70.5|63.1 56.9 58.1|59.4 49.8| 62.5

Table 12: In-context learning results on XStoryCloze across all languages. “High”, “Medium”, “Low” and
“Ex-Low” denotes the available amount of linguistic resources. T denotes the unseen language in the pre-training
corpus of BLOOM.

High Medium

Model #shot| EN FR RU' zH JAT| PT |Avg

0 |62.8 59.0 58.7 73.8 66.4| 62.4 |63.9
5 [66.4 62.7 60.6 73.2 62.6| 62.7 |64.7

0 |64.6 61.4 60.3 75.2 66.6| 64.6 | 655
5 |70.2 63.9 63.2 74.2 63.9| 64.6 | 66.7

XGLM7_5B +AFP

0 |64.1 59.0 56.5 66.1 51.6| 62.7 |60.0
5 [66.9 60.2 54.3 68.5 52.6| 60.1 |60.4

0 |60.6 56.6 55.2 71.4 51.7| 58.6 |[59.0
5 |63.8 57.8 55.6 67.7 51.8| 58.6 |[59.2

0 [62.1 57.8 58.4 72.2 53.6| 62.4 |61.1
5 |64.8 61.4 56.2 68.5 52.6| 59.7 |60.5

BLOOMZ;.i5

BLOOMjy g +AFP

Table 13: In-context learning results on XWinograd across all languages. “High” and “Medium” denotes the
available amount of linguistic resources. T denotes the unseen language in the pre-training corpus of BLOOM.

Task Dataset #Lang Data Curation Metric #Train #Dev #Test

Natural Language Inference ‘ XNLI 15 Translation Accuracy — 2,490 5,010
Paraphrase Detection ‘ PAWS-X 7 Aligned Accuracy - 2,000 2,000
XCOPA 12 Translation Accuracy 33,810 100 500

Reasoning XStoryCloze 11 Translation Accuracy 361 - 1,511
XWinograd 6 Translation Accuracy - - 2, 325%

Multilingual Machine Translation ‘ FLORES-101 101 Aligned BLEU - 997 1,012

Table 14: Statistic of evaluation datasets used. * denotes the number of English samples, as the number of test
samples in XWinograd varies across languages.

8072



02

XGLMsgan XGLM, 78

XGLM.sp

02

00 02 04 06 08 10 00 02 04 06 08 0
(a) (b)
XGLMsgam+AFP XGLM; 75 +AFP

Figure 7: Distribution of multilingual sentence representations in XGLM.(Vanilla:(a)-(c), Aligned:(d)-(f), shown in

t-SNE)

D Additional Information about
Language Code

Table 21 presents more information about the lan-
guage codes involved in this work.
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Template Candidate Verbalizer

{Premise}, right? {Label}, {Hypothesis} | Entailment— Yes, Neural— Also, Contradiction—No

We ask every nation to join us., right? Also, We need at least 10 countries to join us.</s>
One of the benefits we get of course is travel., right? Yes, Traveling is one perk we get.</s>
Serious crime down, but murders increase., right? Yes, There has been a rise in murders.</s>

So I’'m not really sure why., right? No, I am certain as to the reason why.

Table 15: Template and example of 3-shot demonstrations used in the evaluation of XNLI. Connectors are indicated
in italics. The label for each example is underlined. The red text is the prediction from the model evaluated.

Template Candidate Verbalizer

{Sentence 1}, right? {Label}, {Sentence 2} True— Yes, False—No

Write anywhere , run once, right? No, Write anywhere , once run</s>
It was Easipower that said :, right?Yes, It said that Easipower was ,</s>
In 1951, he died and retired in 1956 ., right? No, He died in 1951 and retired in 1956 .</s>

Green took over Park ’s No ., right? Yes, Park Green took over No .

Table 16: Examples of 3-shot demonstrations used in the evaluation of PAWS-X. Connectors are indicated in italics.
The label for each example is underlined. The red text is the prediction from the model evaluated.

Template Candidate Verbalizer

[cause:|effect:] {Sentence 1} [because|so] {Label} Identity

cause: The woman resigned.because She thinks her boss is behaving immorally.</s>

effect: 1 pulled the rubber band.so It stretches out.</s>

cause: My skin suddenly broke out in a rash.because I came across poison ivy in my yard.</s>

cause: The girl pinched her nose.because The baby soiled the diaper.

Table 17: Examples of 3-shot demonstrations used in the evaluation of XCOPA. Connectors are indicated in italics.
The label for each example is underlined. The red text is the prediction from the model evaluated.
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Template Candidate Verbalizer

{Sentence 1} {Sentence 2} {Sentence 3} {Sentence 4} {Label} Identity

Ava started to notice wrinkles by her eyes. She bought an expensive wrinkle cream. She applied

it every night. After a month she checked her eyes out carefully. She was happy to see her wrink-

les were gone.</s>
Jenny wanted to learn how to ride a horse. She went to a local horse farm. After a quick lesson,
she mounted the horse. A feeling of joy enveloped her as she rode the horse around a ring. She

decided to come back soon for another fun lesson.</s>

Rick liked eating chocolate oatmeal. But his friend suggested that he use higher quality cocoa
powder. Rick was tight about money. But he decided to buy more expensive cocoa powder just

once. The taste was worth the price.</s>

Gordon bought his son a remote control car for Christmas. But he realized that it needed AA
batteries. Gordon could not find any. So the next day, he went to the toy store where he bought

the car. He bought a big package of AA batteries.

Table 18: Examples of 3-shot demonstrations used in the evaluation of XStoryCloze. Connectors are indicated in
italics. The label for each example is underlined. The red text is the prediction from the model evaluated.

Template Candidate Verbalizer

{Part 1 of Sentence} {Label} {Part 2 of Sentence} Identity

Charles Dickinson shot at Andrew Jackson, so Charles Dickinson started reloading.</s>

The cheetah outran the antelope so The cheetah got to eat.</s>
The lawyer asked the witness a question, but The lawyer was reluctant to repeat it.</s>

The outlet powered the lamp when The outlet had electricity.

Table 19: Examples of 3-shot demonstrations used in the evaluation of XWinogrande. Connectors are indicated in
italics. The label for each example is underlined. The red text is the prediction from the model evaluated.
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Template Candidate Verbalizer

{Src. Lang.}: {Src. Sent.} = {Tgt. Lang.}: {Tgt. Sent.} Identity

English: Since moving to the Catalan-capital, Vidal had played 49 games for the club. = French:
Depuis son arrivée dans la capitale catalane, Vidal a joué 49 matchs pour le club.</s>

English: Nadal’s head to head record against the Canadian is 7-2. = French: Le score de Nadal
en confrontations directes face au Canadien est de 7-2.</s>

English: He recently lost against Raonic in the Brisbane Open. = French: Il a récemment perdu

un match contre Raonic durant I’Open de Brisbane.</s>

English: Piquet Jr. was sacked after the 2009 Hungarian Grand Prix. = French: Piquet Jr. a été

limogé apres le Grand Prix de Hongrie 2009.

Table 20: Examples of 3-shot demonstrations used in the evaluation of FLORES-101. Connectors are indicated in
italics. The label for each example is underlined. The red text is the prediction from the model evaluated.

ISO 639-1 Language Family 1SO 639-1 Language Family
AF Afrikaans Indo-European LT Lithuanian Indo-European
AR Arabic Afro-Asiatic Lv Latvian Indo-European
AZ Azerbaijani Turkic MK Macedonian Indo-European

BG' Bulgarian Indo-European ML Malayalam Dravidian
BN Bengali Indo-European MN Mongolian Mongolic
CS Czech Indo-European MR Marathi Indo-European
DE German Indo-European MY Burmese Sino-Tibetan
ELf Greek, Modern ~ Indo-European NE Nepali Indo-European

EN* English Indo-European NL Dutch Indo-European
ES Spanish Indo-European PL Polish Indo-European
ET Estonian Uralic PS Pashto Indo-European

Eut Basque Language Isolate PTJr Portuguese Indo-European
FA Persian Indo-European ?{[(I) IS;;EZ:?; Indo-El_lropean
R .

. SI Sinhala Indo-European
GL Galician Indo-European SL Slovene Indo-European
GU Gujarati Indo-European sV Swedish Indo-European
HE Hebrew Afro-Asiatic SW* Swahili Niger-Congo
HI Hindi Indo-European TA Tamil Dravidian
HR Croatian Indo-European TE Telugu Dravidian

HT' Haitian Creole French Creole TH* Thai Kra-Dai
ID Indonesian Austronesian TL Tagalog Austronesian
IT Italian Indo-European TR* Turkish Turkic
JA Japanese Japonic UK Ukrainian Indo-European
KA Georgian Kartvelian UR Urdu Indo-European
KK Kazakh Turkic VI Vietnamese Austroasiatic
KM Khmer Austroasiatic XH Xhosa Niger-Congo
KO Korean Koreanic ZH* Chinese Sino-Tibetan

Table 21: Details of Language codes in this work. * denotes the language used in bilingual and 5-language
experiments. T indicates the languages involved in the multilingual evaluation datasets but not in Bactrian-X.
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