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Abstract

Large Language Models (LLMs) have shown
promising in-context learning abilities. How-
ever, conventional In-Context Learning (ICL)
approaches are often impeded by length limi-
tations of transformer architecture, which pose
challenges when attempting to effectively in-
tegrate supervision from a substantial num-
ber of demonstration examples. In this paper,
we introduce a novel framework, called Naive
Bayes-based Context Extension (NBCE), to
enable existing LLMs to perform ICL with an
increased number of demonstrations by signif-
icantly expanding their context size. Impor-
tantly, this expansion does not require fine-
tuning or dependence on particular model ar-
chitectures, all the while preserving linear
efficiency. NBCE initially splits the con-
text into equal-sized windows fitting the tar-
get LLM’s maximum length. Then, it in-
troduces a voting mechanism to select the
most relevant window, regarded as the poste-
rior context. Finally, it employs Bayes’ the-
orem to generate the test task. Our exper-
imental results demonstrate that NBCE sub-
stantially enhances performance, particularly
as the number of demonstration examples in-
creases, consistently outperforming alternative
methods. The code NBCE is available at:
https://github.com/amurtadha/NBCE-master

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable capabilities in in-context learn-
ing (ICL), a paradigm that enables them to excel
in various unseen tasks based on task examples
or instructions within their context (Han et al.,
2021; Qiu et al., 2020). Unlike traditional fine-
tuning methods, ICL leverages LLMs for down-
stream tasks solely through inference, eliminating
the need for parameter updates and making it com-
putationally efficient, bringing us closer to the goal

∗ These authors contributed equally to this work.

of general AI. This approach has gained promi-
nence as LLMs continue to grow in scale (Brown
et al., 2020; Zhang et al., 2022a; Chowdhery et al.,
2022).

The 2048-token context limit in popular LLMs
like GPT-3 poses challenges for scaling up ICL
with more demonstration examples in ICL, due to
architectural constraints and computational com-
plexity. Recent studies (Garg et al., 2022; Min et al.,
2022b; Chen et al., 2022) improve ICL through
meta-learning and fine-tuning on downstream tasks,
but the limited diversity of annotated tasks and bi-
ases hinder generalization. Another line of research
has explored various approaches to retraining long-
range language models with extrapolation, extend-
ing them to 128 times the limit of existing LLMs
(Li et al., 2023; Gu et al., 2023). However, these
approaches require additional training over several
steps, which can be time-consuming.

Recently, Hao et al. (2022) introduced structured
prompting, encoding demonstrations with specific
position embeddings for collective attention via a
scaled mechanism. Extending this, Ratner et al.
(2023) proposed parallel context windows, utiliz-
ing individual encoding of examples with designed
position and attention mechanisms. Addressing
this issue is crucial for leveraging ICL effectively,
especially in scenarios with ample examples.

In this paper, we introduce a novel frame-
work called Naive Bayes-based Context Extension
(NBCE) for large language models to significantly
expand the number of demonstrations by orders of
magnitude while greatly enhancing stability. In-
stead of simply merging all demonstrations, we
partition the vast number of demonstrations into
multiple groups, each independently processed by
the language model. This approach ensures that the
encoding complexity scales linearly with the num-
ber of groups, avoiding the quadratic complexity
associated with considering all examples simul-
taneously. Following Ratner et al. (2023); Hao
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et al. (2022), we align the position embeddings of
grouped prompts to the right, placing them next to
the test input. Subsequently, we leverage the Naive
Bayes to encode the input by conditioning it on
these grouped prompts. We conducted experiments
across various tasks, including text classification,
multi-choice, and open-ended tasks. NBCE effec-
tively scales up the number of demonstrations, out-
performing conventional in-context learning across
different model sizes and tasks, while also signifi-
cantly enhancing stability.

In brief, the contributions can be summarized as
follows:

1. We introduce an innovative framework known
as Naive Bayes-based Context Extension
(NBCE), designed to substantially increase
the volume of demonstrations for large lan-
guage models, thus enhancing stability on a
significant scale.

2. We provide detailed technical insights to en-
able context expending of in-context learning
tasks. The idea is to encode the test sample by
conditioning it on a vast array of demonstra-
tions sourced from the training dataset.

3. We conducted extensive experiments on
benchmark NLP datasets, and our findings
clearly highlight NBCE’s remarkable capa-
bility to efficiently scale up the number of
demonstrations, while significantly enhancing
overall stability.

2 Approach

An example of our proposed NBCE is depicted
in 1. Assume that we have a sequence, denoted
as T , which we intend to generate. Furthermore,
we have multiple relatively independent context
sets, denoted as S1, S2, . . . , Sn (e.g., n different
paragraphs), each of which is sufficiently long and
does not split a sentence into fragments. Suppose
that the total length of these context sets exceeds
the training length, but when combined with an
individual Sk and T , they still fall within the train-
ing length. Our objective is to generate T based
on the information contained in S1, S2, . . . , Sn. In
essence, we seek to estimate the conditional prob-
ability of T given S1, S2, . . . , Sn, which can be
represented as p(T |S1, S2, . . . , Sn).

In straightforward terms, Naive Bayes can be
understood as a combination of two key elements:

Figure 1: An example for our NBCE. Initially, NBCE
divides the context into equal-sized windows, each
with the maximum length compatible with LLM in-
target. Subsequently, a voting mechanism is introduced
to select the most relevant context window, regarded as
the posterior context. Finally, it employs Bayes’ theo-
rem to generate the test task.

Bayes’ formula and an independence assumption:

p(T |S1, S2, . . . , Sn) ∝ p(S1, S2, . . . , Sn|T )p(T ),
(1)

where, the symbol ∝ denotes proportionality, sig-
nifying that we are focusing solely on the relevant
factors in a proportion while disregarding constant
factors unrelated to the token sequence T . This
approach aligns with the underlying assumption of
conditional independence:

p(S1, S2, . . . , Sn|T ) =
n∏

k=1

p(Sk|T ). (2)

Thus, we have:

p(T |S1, S2, . . . , Sn) ∝ p(T )
n∏

k=1

p(Sk|T ). (3)

Furthermore, based on Bayes’ formula p(Sk|T ) ∝
p(T |Sk)
p(T ) , we get:

p(T |S1, S2, . . . , Sn) ∝
1

pn−1(T )

n∏

k=1

p(T |Sk).

(4)
Or:

log p(T |S1, S2, . . . , Sn) =
n∑

k=1

log p(T |Sk)

− (n− 1) log p(T )

+ constant, (5)
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where both p(T |Sk) and p(T ) can be computed di-
rectly utilizing existing LLMs, independent of their
architecture, and without the need for fine-tuning
on extensive textual data. Specifically, p(T |Sk) rep-
resents the probability predicted by an individual
contextual set, while p(T ) signifies the probabil-
ity in the absence of any context or with an empty
context. It is noteworthy that multiple contextual
sets can be concurrently processed within the same
batch, with computational complexity scaling lin-
early with the number of contexts. Certainly, Naive
Bayes leans heavily on the independence assump-
tion, which can restrict its practical utility. To as-
pire to enhance its performance beyond the initial
state, we further refine Equation 5.

To commence this refinement, we shall introduce
the following notations:

log p(T |S) = [log p(T |S1), . . . , log p(T |Sn)],
(6)

and

log p(T |S) = 1

n

n∑

k=1

log p(T |Sk), (7)

where log p(T |S) denotes the Average Pooling of
log p(T |S). Let β = n − 1, then Equation 5 can
be rewritten as

log p(T |S1, S2, . . . , Sn) = (β + 1)log p(T |S)
− β log p(T )
+ constant. (8)

However, the reformulation may prompt the
emergence of two inherent inquiries:

• If we consider β as a hyperparameter subject
to tuning, could this potentially yield superior
results?

• Is it conceivable that employing alternative
pooling techniques, denoted as P , might po-
tentially yield enhancements in performance?
That is:

log p(T |S1, S2, . . . , Sn) = (β + 1)P [log p(T |S)]
− β log p(T )
+ constant (9)

To delve deeper into these inquiries, we conducted
a series of experiments employing the 7B model
and garnered preliminary insights. In the realm
of reading comprehension, a consistent trend of
robust performance emerges when employing Max
Pooling with a β value of 0.25 in conjunction with
Greedy Search. Conversely, outcomes generated
via Random Sampling frequently yield results that
are challenging to interpret.

The observed disparities in outcomes can be at-
tributed to the inherent characteristics of these two
methods. Random Sampling, characterized by its
selection of tokens based on their probability dis-
tribution, tends to exhibit lackluster performance,
signaling that the output of Max Pooling may not
align with a plausible probability distribution. In
contrast, Greedy Search operates distinctively by
prioritizing the token with the highest probability,
disregarding the holistic distribution. Its commend-
able performance suggests that the token with the
highest probability is more likely to be the accurate
choice. Larger probabilities are indicative of lower
uncertainty. To enhance the performance of Ran-
dom Sampling, we modify the pooling method to
directly output the probability distribution with the
lowest uncertainty:

P [log p(T |S)] = log p(T |Sk),
k = argmin{H1, H2, . . . ,Hn},

Hi = −
∑

T

p(T |Si) log p(T |Si), (10)

By substituting this expression into Eq.9, we ar-
rive at the conclusive formulation of the NBCE.
It is noteworthy that while the initial inspiration
for this approach stemmed from Naive Bayes, the
generalized Equation 9 transcends the conventional
boundaries of traditional Naive Bayes, yet main-
tains its inherent interpretability. Eq.9 assumes an
intuitive form: Predictions originating from various
contextual sources are collectively amalgamated
(or weighted) through the utilization of the method
denoted as P (with a weight factor of β + 1). Sub-
sequently, this amalgamation is counterbalanced by
subtracting the prediction in the absence of context,
weighted by β. The rationale behind subtracting
the context-less prediction lies in enhancing the
model’s reliance on contextual information, reduc-
ing its dependency on inherent knowledge (Shi
et al., 2023).

The choice of values for β can be tailored to
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different scenarios. For tasks necessitating compre-
hensive reading comprehension and robust context
integration, a larger β value may be deemed appro-
priate. Conversely, tasks leaning towards creative
writing may benefit from a smaller β value. In our
experiments, we set β = 0.25.

3 Experimental Setup

In this section, we describe the experimental set-
tings adopted in our work, including the datasets,
LLMs and comparative approaches used to evalu-
ate our approach.

3.1 Datasets
In our experiments, we employed a diverse range
of benchmark datasets to evaluate our approach.
These datasets encompassed various tasks, includ-
ing text classification and multiple-choice ques-
tions. Fifteen Text Classification Datasets: SST-
2 (Socher et al., 2013), CR (Ding et al., 2008),
RTE (Bar-Haim et al., 2014), Subj (Pang and
Lee, 2004), CB (De Marneffe et al., 2019), AG-
News (Zhang et al., 2015), SST-5 (Socher et al.,
2013), YELP (Zhang et al., 2015), TREC (Li and
Roth, 2002), DBPedia (Zhang et al., 2015), NLU
(Liu et al., 2019), BANKING77 (Casanueva et al.,
2020), CLINIC150 (Larson et al., 2019), TREC
(fine-grained labels) and NLU (fine and coarse-
grained labels). Five datasets from Multiple-choice
Domain. Specifically, we consider sentence com-
pletion: HellaSwag (Zellers et al., 2019); com-
mensense reasoning: PIQA (Bisk et al., 2020),
OpenBookQA (Mihaylov et al., 2018), StoryCloze
(Mostafazadeh et al., 2017), MMLU (Hendrycks
et al., 2021), ARC-Easy (Bhakthavatsalam et al.,
2021); and COPA from SuperGLUE benchmark
(Wang et al., 2019). It is worth noting that we
conducted evaluations using the standard test sets
or validation sets when a public test set was not
available. It is important to mention that all the
datasets used in our experiments are in the English
language.

3.2 Training Sampling and Models
The effectiveness of ICL has been observed to be
highly dependent on the selection of training ex-
amples (Zhao et al., 2021). To ensure a fair and
consistent comparison, we maintain the approach
employed in the PCW (Ratner et al., 2023), a com-
mon practice in prior research (Zhao et al., 2021;
Lu et al., 2022; Ahmed et al., 2022). Specifically,
we randomly selected 30 sets from the training

datasets and report the mean and standard devia-
tion calculated across these sampled sets.

Given our limited computational resources,
our experiments were conducted using eight
large models: GPT2-Large (0.75B), GPT2-
XL(1.5B)(Radford et al., 2019), there LLAMA
models, including 7B, 13B and 30B (Touvron et al.,
2023), and three OPT models with 1.3B, 6.7B and
13B parameters (Zhang et al., 2022b).

3.3 Comparative Baseline

Note that our proposed solution does not require
any additional training. As far as our knowledge
extends, Ratner et al. (2023) initiated the work in
this line of research. Therefore, we compare our
approach with methods that also do not require
further training, as follows.

• ICL. A traditional ICL approach employs a
conventional single context window, which
essentially utilizes the full capacity of the po-
sitional embedding in the LLM.

• PCW(Ratner et al., 2023). PCW introduces
strategic adjustments to both position encod-
ing and attention mask mechanisms to enable
multiple context windows without requiring
additional training.

3.4 Prompt Formats

We have employed the same prompt formats as
those adapted by the comparative baseline, PCW.
For the sake of brevity, we have omitted specific
details about the prompt format; for a more com-
prehensive understanding, we kindly refer you to
Ratner et al. (2023).

4 Evaluation

We evaluate our proposed solution based on two
primary criteria:

• Ability to Extend the Length of Large
Models: Does our solution effectively enable
the expansion of the size or capacity of large
models?

• Impact of Additional Demonstrations on
ICL Task Performance: Does the inclusion
of more demonstrations have a positive effect
on the performance of the ICL task?
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Dataset
# Shots per

window
# Labels

ICL
B=1

B=3 B=6 B=9
PCW NBCE PCW NBCE PCW NBCE

SST-2 27 2 80.2 ± 11.7 84.1 ± 8.2 85.2 ± 6.7 81.2 ± 7.0 83.6 ± 7.0 78.9 ± 5.3 84.3 ± 5.9∗

CR 21 2 81.3 ± 6.3 81.2 ± 6.4 82.7 ± 6.3 82.3 ± 5.2 84.7 ± 4.6 81.2 ± 3.4 84.1 ± 4.4∗

SUBJ 18 2 65.1 ± 11.9 67.0 ± 12.2 66.1 ± 13.2 62.9 ± 10.9 66.2 ± 10.7 60.1 ± 2.8 64.4 ± 9.9∗

CB 5 2 43.9 ± 3.7 43.9 ± 3.2 45.2 ± 3.7 42.8 ± 2.1 44.8 ± 3.3∗ 42.1 ± 2.2 45.1 ± 5.0∗

RTE 5 2 52.5 ± 2.2 53.5 ± 1.7 52.9 ± 2.9 54.4 ± 1.0∗ 53.0 ± 2.4 53.9 ± 2.6 54.2 ± 2.5
AGNews 11 4 61.7 ± 14.2 70.9 ± 9.4 71.0 ± 8.9∗ 67.7 ± 7.0 67.1 ± 10.6 64.8 ± 3.1 72.9 ± 7.6∗

SST5 20 5 40.8 ± 2.5 41.5 ± 3.1 41.8 ± 2.4 37.4 ± 4.1 42.5 ± 1.9∗ 35.9 ± 2.8 41.9 ± 2.4∗

TREC 38 6 56.6 ± 7.9 59.0 ± 4.7 63.1 ± 7.0∗ 53.9 ± 3.1 65.3 ± 3.0∗ 50.9 ± 3.4 66.5 ± 2.9∗

DBPedia 7 14 58.7 ± 20.2 78.9 ± 6.6∗ 71.1 ± 13.7 79.3 ± 4.2 75.9 ± 8.2 68.1 ± 1.9 76.7 ± 5.7∗

NLU Scenario 43 18 34.8 ± 7.6 28.5 ± 4.3 45.7 ± 6.7∗ 26.9 ± 3.2 41.7 ± 8.5∗ 24.4 ± 1.6 44.1 ± 6.1∗

TREC Fine 37 50 31.2 ± 7.9 33.9 ± 4.4 36.9 ± 6.3∗ 31.3 ± 3.5 40.3 ± 5.1∗ 26.5 ± 4.2 39.3 ± 3.9∗

NLU Intent 43 68 24.5 ± 6.1 22.3 ± 5.6 27.5 ± 4.6∗ 19.8 ± 4.7 28.6 ± 6.1∗ 15.5 ± 3.4 31.1 ± 4.7∗

BANKING77 27 77 28.9 ± 5.1 28.0 ± 3.7 36.0 ± 3.2∗ 23.0 ± 3.3 37.1 ± 3.4∗ 18.5 ± 2.7 38.5 ± 3.6∗

CLINIC150 39 150 43.9 ± 3.2 44.1 ± 1.9 48.5 ± 2.3∗ 40.4 ± 1.7 49.4 ± 1.5∗ 35.0 ± 1.9 49.7 ± 1.8∗

Table 1: Comparative Analysis of Classification Accuracy (in %) for GPT2-Large Using Various Context Windows
(B=3, B=6, B=9). Note: A single window (B) includes K examples, falling within the model’s capacity (e.g.,
1024 tokens in GPT-2). For detailed information on the maximum number of examples (K) for each dataset and
model, refer to Appendix Section A.2. Best scores are highlighted in bold. An asterisk (*) denotes statistical
significance, as determined by a t-test with a p-value < 0.05. The results of GPT-2-Xl are presented in Appendix
Table 6.

Dataset
# Shots per

window
# Labels

ICL
B=1

B=3 B=6 B=9
PCW NBCE PCW NBCE PCW NBCE

SST-2 48 2 93.4 ± 1.3 94.9 ± 0.6∗ 93.8 ± 0.9 91.7 ± 1.0 94.0 ± 0.9∗ 84.5 ± 0.9 94.1 ± 0.7∗

CR 39 2 93.9 ± 0.7 93.5 ± 0.6 94.1 ± 0.6∗ 90.0 ± 1.0 94.0 ± 0.5∗ 79.3 ± 3.3 94.2 ± 0.5∗

SUBJ 32 2 70.1 ± 9.9 60.5 ± 7.6 74.2 ± 7.5∗ 49.8 ± 1.8 69.8 ± 7.3∗ 48.4 ± 0.0 71.4 ± 6.9∗

CB 10 2 81.3 ± 5.7 81.9 ± 7.4 77.8 ± 8.3 76.4 ± 5.2 78.4 ± 7.5 62.2 ± 3.0 83.9 ± 3.7∗

RTE 10 2 72.9 ± 3.1 73.8 ± 1.9 73.1 ± 3.1 67.2 ± 2.5 74.4 ± 1.8∗ 57.5 ± 1.4 74.2 ± 2.4∗

AGNews 20 4 87.9 ± 2.8 87.3 ± 1.7 88.6 ± 1.6 87.4 ± 1.1 88.8 ± 1.6∗ 83.1 ± 1.8 89.3 ± 1.0∗

SST5 36 5 40.8 ± 5.6 44.6 ± 3.8∗ 43.1 ± 3.5 40.4 ± 4.4 42.5 ± 3.2 22.9 ± 3.0 42.9 ± 2.6∗

TREC 69 6 83.4 ± 5.4 81.1 ± 3.9 83.5 ± 4.7 55.1 ± 3.8 86.4 ± 3.7∗ 41.2 ± 4.0 88.8 ± 3.0∗

DBPedia 14 14 86.7 ± 6.8 94.9 ± 3.0∗ 93.2 ± 3.3 95.7 ± 1.6 95.6 ± 2.4 92.7 ± 1.3 96.8 ± 1.3∗

NLU Scenario 80 18 79.6 ± 3.0 79.7 ± 2.5 83.8 ± 2.2∗ 58.4 ± 2.9 85.0 ± 1.6∗ 40.4 ± 4.9 86.3 ± 1.4∗

TREC Fine 65 50 55.6 ± 6.1 49.5 ± 5.4 57.8 ± 6.8∗ 33.5 ± 3.6 59.8 ± 5.0∗ 16.9 ± 2.9 60.9 ± 4.5∗

NLU Intent 80 68 59.9 ± 5.2 62.9 ± 3.9∗ 54.3 ± 2.9 37.3 ± 5.6 56.6 ± 3.1∗ 14.8 ± 3.4 57.9 ± 2.5∗

BANKING77 51 77 46.3 ± 4.0 51.2 ± 3.3∗ 50.5 ± 3.1 26.6 ± 4.5 54.6 ± 3.3∗ 11.2 ± 3.2 58.9 ± 2.5∗

CLINIC150 72 150 61.3 ± 2.5∗ 57.0 ± 3.2 55.4 ± 2.6 32.8 ± 4.8 57.2 ± 1.8∗ 17.1 ± 4.0 60.8 ± 1.9∗

Table 2: Comparative Analysis of Classification Accuracy (in %) for LLAMA-7B Across Various Context Win-
dows. The results of LLAMA-13B and LLAMA-30B are presented in Appendix Section Tables 7 and 8.

4.1 Classification Task Evaluation

4.1.1 Main Results

We conducted an analysis in which we calculated
the average accuracy from 30 different runs, each
with a unique seed. We compiled the accuracy and
standard deviation for various text classification
datasets, which are presented in Tables 1, 2, and
3. Due to space constraints, the results of more
scaled models are presented in the Appendix
Section: GPT2-XL Table 6, LLAMA-13B Table
7, LLAMA-30B Table 8, and OPT-6.7B Table
12. To highlight significant findings, we marked
statistical significance with an asterisk (*), based
on a t-test with a p-value of less than 0.05. Our key
observations are as follows. (1) Vanilla ICL con-
sistently showed the lowest performance across all
models and datasets, underscoring the critical need

for expanded context in ICL tasks. (2) For mod-
els with fewer parameters (like GPT-2-Large and
OPT-1.3B) and when dealing with a limited number
of output classes (five or fewer), we noted minor
or negligible differences between both PCW and
NBCE, compared to vanilla ICL. Conversely, in
models with a larger number of parameters, NBCE
generally demonstrated superior performance in
most cases. However, it is important to note that
several of these differences did not reach statisti-
cal significance. (3) NBCE enhances ICL by ac-
commodating a greater number of examples. This
improvement becomes particularly evident when
B=9, where both accuracy and stability generally
show marked improvements. We observed that
larger models benefit more substantially from our
approach. This favorable scaling trend of NBCE is
particularly notable when contrasted with previous
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Dataset
# Shots per

window
# Labels

ICL
B=1

B=3 B=6 B=9
PCW NBCE PCW NBCE PCW NBCE

SST-2 48 2 85.0 ± 8.5 81.7 ± 10.6 86.0 ± 7.2 81.1 ± 7.7 88.1 ± 5.7* 79.9 ± 9.8 88.8 ± 5.2*
CR 39 2 89.1 ± 2.4 88.8 ± 2.3 89.7 ± 1.7 88.5 ± 3.3 88.8 ± 1.6 85.6 ± 3.6 89.1 ± 1.5*
SUBJ 32 2 78.8 ± 9.0* 68.3 ± 7.5 69.0 ± 7.9 68.5 ± 6.6 70.5 ± 7.4 65.2 ± 8.3 70.9 ± 6.3*
CB 10 2 53.0 ± 6.0 50.5 ± 3.3 50.8 ± 3.3 51.6 ± 5.2 51.5 ± 4.3 49.1 ± 1.0 51.6 ± 3.6*
RTE 10 2 51.1 ± 3.7 51.8 ± 3.8 52.7 ± 3.2 50.6 ± 3.1 51.4 ± 2.9 50.9 ± 2.1 51.3 ± 2.5
AGNews 20 4 61.3 ± 10.3 67.4 ± 6.7* 59.6 ± 7.2 65.1 ± 5.9* 60.3 ± 9.0 69.4 ± 5.0* 62.9 ± 6.7
SST5 36 5 44.0 ± 3.9 42.7 ± 4.6 44.8 ± 2.8 42.4 ± 4.0 44.8 ± 2.2* 41.6 ± 4.3 45.1 ± 2.0*
TREC 69 6 59.4 ± 6.3* 55.0 ± 4.3 56.8 ± 4.7 55.2 ± 3.2 55.7 ± 4.3 52.5 ± 2.8 57.1 ± 3.9*
DBPedia 14 14 86.3 ± 3.8 87.7 ± 2.1 87.9 ± 2.2 88.1 ± 2.6 87.5 ± 2.6 87.0 ± 3.1 87.9 ± 2.6
NLU Scenario 80 18 67.8 ± 4.0 69.9 ± 3.5 70.2 ± 4.0 69.9 ± 2.6 69.3 ± 4.3 67.7 ± 4.0 72.8 ± 3.8*
TREC Fine 65 50 39.7 ± 4.5 38.8 ± 4.7 41.5 ± 6.0 40.5 ± 5.8 43.1 ± 6.4 35.3 ± 3.5 42.0 ± 4.7*
NLU Intent 80 68 45.3 ± 4.9 50.0 ± 4.2 50.9 ± 4.0 48.8 ± 4.2 51.0 ± 4.7 45.4 ± 3.2 54.5 ± 3.3*
BANKING77 51 77 25.9 ± 4.9 24.8 ± 4.0 28.8 ± 4.5 26.0 ± 3.5 30.1 ± 3.5* 28.9 ± 3.1 32.5 ± 3.5*
CLINIC150 72 150 50.8 ± 3.0 52.4 ± 2.3 57.7 ± 2.0 52.6 ± 2.0 57.2 ± 2.5* 49.3 ± 2.5 58.4 ± 2.0*

Table 3: Comparative Analysis of Classification Accuracy (in %) for OPT-1.3B models. The results of OPT-6.7B
are presented in Appendix Tables 12.

Figure 2: Average Performance Enhancements with
NBCE over PCW as a Function of Label Count: Each
data point in our analysis signifies the average improve-
ment observed across all datasets on GPT2 models. It
is worth noting a clear and positive correlation between
the quantity of unique labels and the benefits derived
from our NBCE.

efforts to enhance ICL (refer to (Zhao et al., 2021;
Lu et al., 2022)), where improvements in 178B-
scale models were less marked compared to those
in smaller models

4.1.2 PCW enables ICL with a Large
Number of Classes

To investigate the relationship between the num-
ber of classes and our NBCE’s performance, we
conducted a detailed analysis, which was adapted
by Ratner et al. (2023). In each experiment, we
calculated the difference between NBCE and PCW
and then averaged the results across all datasets on
GPT2 models sharing the same number of classes.
As illustrated in Figure 2, a robust positive cor-

relation emerged between the quantity of classes
and the improvements achieved by NBCE. Specif-
ically, the Pearson correlation coefficient (r) was
0.41 when considering the logarithm of class num-
bers in relation to the average improvement, with a
slope of 1.15. Remarkably, for datasets featuring
numerous labels, such as NLU Intent (Liu et al.,
2019), Banking77 (Casanueva et al., 2020), and
CLINIC150 (Larson et al., 2019), we observed
substantial improvements ranging from 3.6 to 5.1
points in most cases.

When comparing results across datasets with
varying numbers of classes, it is crucial to ac-
count for potential confounding factors, such as
variations in domain, style, or genre. To miti-
gate these effects, we conducted a comparison us-
ing two datasets, each featuring both fine-grained
and coarse-grained labels. The TREC dataset (Li
and Roth, 2002), which includes 6 coarse-grained
classes. The NLU dataset (Liu et al., 2019), com-
prising 18 scenarios coarse-grained classes and 68
intents coarse-grained classes. Our analysis on
GPT2 models, as presented in Table 10, reveals that
NBCE outperforms PCW by 4.1 and 3.0 improve-
ments on GPT2-Large and GPT2-XLarge, respec-
tively. Similarly, in the context of NLU, we observe
average improvements of 17.2 and 5.2 points on
GPT2-XLarge, respectively. These findings under-
score the effectiveness of our approach, particularly
when confronted with a large number of output
classes.

4.2 Multi-Choice Tasks

Table 4 shows the evaluation of multi-choice tasks.
It is important to note that the improvements made
by both PCW and our NBCE in these tasks, com-
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Dataset
# Shots per

window
ICL
B=1

B=2 B=3 B=4 B=6
PCW NBCE PCW NBCE PCW NBCE PCW NBCE

PIQA 23 81.6 ± 0.6 80.6 ± 0.7 82.1 ± 0.4∗ 79.6 ± 0.7 82.9 ± 0.6∗ 79.1 ± 0.6 82.9 ± 0.6∗ 77.5 ± 0.8 83.0 ± 0.5∗

OpenBookAQ 63 41.9 ± 0.8 41.3 ± 1.0 46.3 ± 0.9∗ 40.9 ± 0.9 49.2 ± 0.8∗ 39.4 ± 0.6 49.3 ± 0.9∗ 35.1 ± 0.8 50.3 ± 1.1∗

COPA 77 77.8 ± 1.2 78.3 ± 1.1 78.2 ± 1.5 78.9 ± 1.7∗ 77.5 ± 1.2 77.8 ± 1.3 77.6 ± 1.6 65.9 ± 3.6 76.6 ± 0.8∗

HellaSwag 12 79.4 ± 1.1 80.4 ± 1.1∗ 78.9 ± 0.9 80.2 ± 0.8∗ 79.6 ± 0.7 80.1 ± 0.9 79.9 ± 0.8 78.5 ± 0.8 79.9 ± 0.7∗

ARCE 33 74.4 ± 1.1∗ 73.8 ± 1.2 72.8 ± 0.7 73.7 ± 1.4 73.5 ± 0.6 74.1 ± 0.8 73.7 ± 0.8 70.8 ± 1.5 73.5 ± 0.8∗

StoryCloze 24 46.0 ± 0.0 46.1 ± 0.1 78.7 ± 0.9∗ 46.1 ± 0.2 78.9 ± 0.8∗ 46.1 ± 0.2 78.8 ± 1.0∗ 46.3 ± 0.2 79.6 ± 0.7∗

MMLU 7 33.8 ± 1.9 34.1 ± 2.2 34.3 ± 1.5 33.6 ± 2.3 33.7 ± 1.7 34.1 ± 1.9 34.7 ± 1.9 32.5 ± 3.0 33.9 ± 1.9

Table 4: Comparative Results of Task Completion (e.g., Multiple Choices Task) for LLAMA-7B Using Various
Context Windows. Best scores are highlighted in bold. An asterisk (*) denotes statistical significance, as deter-
mined by a t-test with a p-value < 0.05. The results of LLAMA-13B are presented in Appendix Tables 9.

Dataset # Labels
GPT2-Large GPT2-XL LLAMA-7B LLAMA-13B

NBCE (RAN) NBCE NBCE (RAN) NBCE NBCE (RAN) NBCE NBCE (RAN) NBCE
SST-2 2 80.5 ± 4.5 84.3 ± 5.9∗ 91.6 ± 1.5 92.5 ± 1.5 92.3 ± 1.5 94.1 ± 0.7∗ 92.2 ± 1.0 94.9 ± 0.5∗

CR 2 78.0 ± 3.9 84.1 ± 4.4∗ 81.0 ± 2.2 81.9 ± 2.0 91.9 ± 1.2 94.2 ± 0.5∗ 91.1 ± 1.3 93.1 ± 0.6∗

SUBJ 2 57.0 ± 3.8 64.4 ± 9.9∗ 72.0 ± 5.0 76.0 ± 7.0 69.0 ± 3.4 71.4 ± 6.9 89.9 ± 3.0 93.0 ± 1.7∗

CB 2 46.1 ± 4.4 45.1 ± 5.0 55.3 ± 6.2 54.8 ± 8.5 81.6 ± 5.1 83.9 ± 3.7∗ 81.7 ± 4.0 84.1 ± 3.5∗

RTE 2 52.5 ± 2.8 54.2 ± 2.5 53.9 ± 2.9 55.3 ± 2.2 68.2 ± 1.9 74.2 ± 2.4∗ 72.9 ± 2.3 75.1 ± 1.5∗

AGNews 4 66.4 ± 7.5 72.9 ± 7.6∗ 69.5 ± 5.9 76.3 ± 4.7∗ 83.4 ± 2.1 89.3 ± 1.0∗ 85.3 ± 2.3 87.9 ± 1.1∗

SST5 5 41.3 ± 1.8 41.9 ± 2.4 39.1 ± 3.6 41.7 ± 5.3 40.4 ± 2.7 42.9 ± 2.6∗ 44.5 ± 2.1 47.7 ± 2.0∗

TREC 6 61.0 ± 2.8 66.5 ± 2.9∗ 50.7 ± 2.8 51.6 ± 3.0 84.1 ± 3.5 88.8 ± 3.0∗ 81.7 ± 4.4 85.0 ± 2.4∗

DBPedia 14 68.9 ± 8.2 76.7 ± 5.7∗ 84.1 ± 2.5 89.0 ± 2.8∗ 82.8 ± 2.7 96.8 ± 1.3∗ 89.2 ± 3.4 96.9 ± 1.3∗

NLU Scenario 18 40.8 ± 4.8 44.1 ± 6.1 45.3 ± 3.9 55.1 ± 5.4∗ 82.0 ± 2.1 86.3 ± 1.4∗ 81.7 ± 1.8 88.7 ± 1.0∗

TREC Fine 50 33.2 ± 4.2 39.3 ± 3.9∗ 35.2 ± 4.4 41.9 ± 3.7∗ 56.7 ± 3.1 60.9 ± 4.5∗ 57.1 ± 3.5 63.3 ± 4.1∗

NLU Intent 68 28.3 ± 0.8 31.1 ± 4.7∗ 35.1 ± 1.2 40.3 ± 3.6∗ 57.2 ± 2.1 57.9 ± 2.5∗ 62.6 ± 2.4∗ 61.8 ± 2.1
BANKING77 77 29.3 ± 1.6 38.5 ± 3.6∗ 33.6 ± 1.3 38.9 ± 2.4∗ 47.0 ± 1.5 58.9 ± 2.5∗ 48.7 ± 3.2 63.5 ± 2.3∗

CLINIC150 150 43.8 ± 1.7 49.7 ± 1.8∗ 47.7 ± 1.1 51.6 ± 1.7∗ 58.7 ± 2.1 60.8 ± 1.9∗ 62.5 ± 2.2 66.2 ± 2.2∗

Table 5: Ablation Study with Context Window B=9. Best scores are highlighted in bold. An asterisk (*) denotes
statistical significance, as determined by a t-test with a p-value < 0.05.

pared to text classification, are relatively modest,
with a slight edge for NBCE. Furthermore, em-
ploying a greater number of demonstrations does
not consistently translate to better performance in
multi-choice tasks. Instead, we observe that scal-
ing up the model size (Appendix Section Table
9), rather than increasing the number of demonstra-
tions, tends to yield more substantial improvements
in these tasks.

4.3 Impact of more Demonstrations on ICL

We conducted experiments to validate the impact
of additional demonstrations on ICL in NLP mod-
els. Our focus was to show how extra demonstra-
tions (B=6 and B=9, where B is the window size)
enhance model performance by improving context
understanding and robustness. Note that each win-
dow contains K samples within the model’s to-
ken limit (e.g., 2024 tokens for LLAMA). For
detailed information on the maximum value of K
for each model and dataset, please see Appendix
Table 15 . This approach aligns with the importance
of training example quantity in model adaptability
and generalization (Murtadha et al., 2023, 2024).
Our observations indicate that NBCE mostly out-
performs its counterpart, PCW, and these improve-
ments can be considered significant. Additionally,

scaling up the model size (Appendix Section Ta-
bles 6,7, 8, and 12) leads to improved performance,
especially on larger and more complex datasets.

4.4 Ablation Study

To better evaluate the proposed voting mechanism,
i.e., selecting the best k contexts as the posterior
in Equation 10, we conducted an ablation study
introducing a new variant, referred to as NBCE
(RAND). In this variant, rather than deliberately
choosing k, we randomly select one context from
the context windows. The results are presented
in Table 5. The experimental outcomes across a
variety of models and datasets demonstrate that a
careful selection of k significantly contributes to
the quality of the generated tokens. It is notewor-
thy that, in this setting, NBCE can be considered
as a standard ICL, where only one context win-
dow is considered. However, the performance may
slightly differ due to the likelihood of the generated
text p(T ), as outlined in Equation 9, affecting the
final performance.

4.5 Effect of Pooling Mechanism

It is imperative to underscore the introduction of
two distinct pooling mechanisms P : averaging the
context windows as depicted in Eq.7, and maximiz-
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ing based on entropy as delineated in Eq.10. To
empirically validate the efficacy of these pooling
strategies, we conducted a series of experiments
utilizing GPT2 models within the context of a text
classification task. The outcomes, illustrated in
Figure 3, showcase a comparative analysis in terms
of both accuracy and standard deviation. Notably,
the maximizing strategy not only augments perfor-
mance but also enhances stability. It is important to
acknowledge that the model size can significantly
influence the outcomes when employing the aver-
aging pooling mechanism.

Figure 3: Efficacy in terms of averaged accuracy and
standard deviation (i.e., the error bars) of two pool-
ing mechanisms: average context window (Eq.7) and
entropy-based maximization (Eq.10) utilizing GPT2
models for text classification. Notably, the maximiz-
ing approach enhances both accuracy and stability,
with model size impacting averaging pooling’s perfor-
mance.

4.6 Effect of β

In our investigation, the parameter β as outlined
in Eq. 8 was initially set to 0.25. To elucidate
the impact of different β values on the overall per-
formance, experiments were conducted utilizing
GPT2 models within a text classification frame-
work, testing β values of 0.25, 0.5, and 0.75. The
outcomes, depicted in Figure 4, illustrate compar-
ative performances in terms of accuracy and stan-
dard deviation. The analysis reveals a reduced sen-
sitivity of model performance to variations in β,
indicating that modifications to β do not markedly
influence model robustness. Notably, an obser-
vation was made that larger model sizes exhibit
more stable performance at increased β values, par-
ticularly at β = 0.75. This stability accentuates
the capability of larger models to manage greater
parameter variability, enhancing their utility in a
broad spectrum of computational tasks.

Figure 4: Comparative analysis in terms of averaged
accuracy and standard deviation (i.e., the error bars) of
GPT2 model performance across varying β Eq. 8 val-
ues (0.25, 0.5, 0.75) in a text classification task.

5 Related Work

5.1 In-Context Learning

In recent years, in-context learning has received
significant attention in the research community.
Brown et al. (2020) introduced this concept, spark-
ing a wave of investigations. Zhao et al. (2021);
Han et al. (2023) addressed the issue of LLM mis-
calibrations and explored various calibration meth-
ods. However, few-shot performance can vary
based on the order of demonstrations and tem-
plate choices (Lu et al., 2022). In this context,
Zhao et al. (2021) identified three biases and sug-
gested content-free output calibration. Min et al.
(2022a) demonstrated how these biases shift deci-
sion boundaries and proposed calibrating through
prototypical cluster distribution estimation. Oth-
ers focused on prompt engineering, such as select-
ing optimal demonstration permutations (Lu et al.,
2022) and using retrieval modules for semantically
similar in-context examples (Liu et al., 2022; Ru-
bin et al., 2022). One promising direction is to
improve in-context learning by increasing the num-
ber of demonstrations.

5.2 Context Extension

Expanding the contextual capabilities of LLM con-
tinues to pose a formidable challenge and has at-
tracted considerable research attention. Various
studies have introduced to tackle the memory limi-
tations associated with self-attention mechanisms.
These approaches can be broadly classified into two
categories: fine-tuned approaches and few-shot ap-
proaches. Zaheer et al. (2020); Guo et al. (2022),
have suggested using sparse attention as a solu-
tion to this issue. Press et al. (2022) took a novel
approach by incorporating positional information
using relative factors in attention weights instead
of relying on absolute positional encoding. Despite
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the impressive capabilities of Press et al. (2022)’s
model for extrapolation, it remains computation-
ally intensive due to its quadratic self-attention cost,
making it slow and resource-demanding for longer
prompts. Ivgi et al. (2022) introduced an alterna-
tive approach called SLED, which is an encoder-
decoder model specifically designed for handling
lengthy texts. This model encodes short overlap-
ping segments of input text and integrates this in-
formation within the decoder, similar to the Fusion-
in-Decoder concept by Izacard and Grave (2021).
However, these researches require additional train-
ing.

More recently, Ratner et al. (2023) have intro-
duced the concept of Parallel Context Windows
(PCW), which enables the concurrent utilization of
multiple context windows without requiring addi-
tional training. PCW has been purposefully tailored
for self-attention models, involving modifications
to both position encoding and attention mask mech-
anisms to enhance the performance. NBCE and
PCW share noteworthy similarities, as they both
treat contexts as unordered and apply equal weight-
ing. Notably, when NBCE is employed within
the context of a single-layer, single-head attention
model, the resulting outcomes closely approximate
those achieved through the utilization of PCW. To
substantiate this claim, we can formulate the lan-
guage model tailored to a single-layer, single-head
attention configuration.

p(xt|x<t) = softmax

(
t∑

i=1

at,iviW

)
(11)

hence, approximately: log p(xt|x<t) ∼∑t
i=1 at,iviW . Substituting this into Equa-

tion 9 and setting β = 0, we obtain:

log p(T |S1, S2, . . . , Sn) ∼
1

n

n∑

k=1


∑

i∈Sk

aT,ivi


W

=


 ∑

i∈S1⊕...⊕Sn

aT,i
n
vi


W

(12)

here, we assume T represents a single sequence
(i.e., the query), However, this assumption does
not lack generality. The symbol ⊕ denotes con-
catenation and Sk ⊕ T is used for reasoning as
a continuous segment (as per NBCE’s setup), so

their positional encodings are adjacent. Addition-
ally, aT,i/n forms a collective attention for T with
all Si (with a sum equal to 1). These characteristics
are consistent with PCW, which is essentially inte-
grated into each layer more elegantly through an
attention mask. Therefore, PCW can be thought of
as a version of NBCE that utilizes average pooling.

6 Conclusion

This paper introduces a novel framework called
Naive Bayes-based Context Extension (NBCE) for
large language models. NBCE innovatively incor-
porates a voting mechanism to select the most ap-
propriate window context, and then utilizes Bayes’
theorem to generate the task text. Our results show
that NBCE outperforms its alternative PCW across
a diverse set of multi-class classification tasks. For
future work, while PCW shows effective without
additional training, ICL could potentially benefit
from more demonstrations in fine-tuning settings;
however, further investigation is required to fully
comprehend the extent of its advantages.

Limitations

NBCE facilitates ICL tasks by allowing for more
demonstrations without the need for fine-tuning.
However, there are still some limitations to this
approach:

• Since NBCE essentially functions as a voting
mechanism, its effectiveness is constrained in
tasks that require ordered or interrelated con-
texts, such as code generation. This is due to
its inherent nature, which may not adequately
handle sequential or dependent information in
certain contexts.

• Increasing the number of shots does not nec-
essarily lead to improved performance. Ex-
perimental results have indicated that expand-
ing the context window size does not signif-
icantly enhance performance in completion
tasks. This suggests a diminishing return on
performance gains with an increased number
of contexts.
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Dataset # Labels ICL
B=3 B=6 B=9

PCW NBCE PCW NBCE PCW NBCE
SST-2 2 90.6 ± 3.5 92.4 ± 2.5 92.7 ± 2.3∗ 89.4 ± 3.5 92.5 ± 2.2∗ 83.7 ± 1.7 92.5 ± 1.5∗

CR 2 79.2 ± 5.9 81.3 ± 4.6 82.5 ± 2.9∗ 81.6 ± 2.4 81.9 ± 2.1 82.7 ± 1.7 81.9 ± 2.0
SUBJ 2 68.8 ± 11.6 64.9 ± 7.3 74.5 ± 8.3∗ 57.0 ± 4.1 78.7 ± 4.8∗ 65.6 ± 3.0 76.0 ± 7.0∗

CB 2 51.9 ± 7.4 57.2 ± 8.5∗ 56.1 ± 7.9 49.6 ± 3.6 55.8 ± 7.8∗ 42.2 ± 2.1 54.8 ± 8.5∗

RTE 2 55.4 ± 2.4 55.6 ± 1.6 54.9 ± 2.5 54.2 ± 1.3 55.2 ± 2.3∗ 50.4 ± 2.0 55.3 ± 2.2∗

AGNews 4 67.2 ± 13.2 79.6 ± 3.4∗ 70.0 ± 9.6 80.4 ± 2.3∗ 74.1 ± 5.8 71.6 ± 2.5 76.3 ± 4.7∗

SST5 5 38.0 ± 6.1 41.4 ± 4.3∗ 41.1 ± 4.7 38.1 ± 3.6 41.5 ± 5.4∗ 35.3 ± 2.2 41.7 ± 5.3∗

TREC 6 47.9 ± 5.1 48.7 ± 2.8 51.7 ± 5.0∗ 45.5 ± 2.3 51.8 ± 4.6∗ 43.1 ± 1.9 51.6 ± 3.0∗

DBPedia 14 77.5 ± 9.8 87.0 ± 4.0 87.7 ± 3.8∗ 88.9 ± 3.3 88.6 ± 3.3 81.4 ± 2.1 89.0 ± 2.8∗

NLU Scenario 18 45.1 ± 9.3 50.0 ± 6.1 51.1 ± 8.1∗ 46.7 ± 5.9 50.3 ± 6.8∗ 38.7 ± 6.3 55.1 ± 5.4∗

TREC Fine 50 36.4 ± 6.2 40.0 ± 3.0 40.1 ± 5.1∗ 35.5 ± 2.6 41.7 ± 3.6∗ 31.0 ± 2.8 41.9 ± 3.7∗

NLU Intent 68 30.2 ± 5.4 33.8 ± 4.6 36.4 ± 4.9∗ 33.4 ± 4.3 38.5 ± 5.4∗ 24.3 ± 3.7 40.3 ± 3.6∗

BANKING77 77 30.7 ± 4.1 33.3 ± 3.5 35.5 ± 2.8∗ 26.8 ± 3.1 37.6 ± 2.4∗ 16.7 ± 2.6 38.9 ± 2.4∗

CLINIC150 150 46.6 ± 2.5 47.1 ± 2.3 49.9 ± 1.9∗ 40.8 ± 2.3 50.9 ± 2.1∗ 34.5 ± 2.5 51.6 ± 1.7∗

Table 6: Comparative Analysis of Classification Accuracy (in %) for GPT-2-XL Across Various Context Windows
(B=3, B=6, B=9). Best scores are highlighted in bold. An asterisk (*) denotes statistical significance, as determined
by a t-test with a p-value < 0.05.

Dataset # Labels ICL
B=3 B=6 B=9

PCW NBCE PCW NBCE PCW NBCE
SST-2 2 94.5 ± 0.7 94.1 ± 0.7 94.8 ± 0.5∗ 94.0 ± 0.9 95.0 ± 0.4∗ 90.1 ± 1.2 94.9 ± 0.5∗

CR 2 92.0 ± 1.4 92.2 ± 0.9 92.9 ± 1.0∗ 92.5 ± 0.5 93.0 ± 1.0∗ 91.1 ± 0.9 93.1 ± 0.6∗

SUBJ 2 90.2 ± 3.8 87.5 ± 3.3 90.8 ± 2.9∗ 79.0 ± 7.2 92.5 ± 1.7∗ 67.1 ± 5.4 93.0 ± 1.7∗

CB 2 80.3 ± 8.0 84.6 ± 4.1∗ 79.8 ± 4.9 83.1 ± 4.0∗ 80.3 ± 6.4 74.1 ± 6.3 84.1 ± 3.5∗

RTE 2 74.6 ± 2.7 73.5 ± 2.0 74.0 ± 2.5 71.9 ± 1.6 74.6 ± 1.6∗ 66.4 ± 2.0 75.1 ± 1.5∗

AGNews 4 86.9 ± 2.9 87.9 ± 1.7 86.6 ± 1.8 88.0 ± 0.9 87.3 ± 1.8 87.7 ± 1.1 87.9 ± 1.1
SST5 5 48.0 ± 3.3 49.2 ± 2.6 48.0 ± 3.3 48.4 ± 2.1 47.3 ± 3.4 44.0 ± 2.9 47.7 ± 2.0∗

TREC 6 83.1 ± 3.1 83.7 ± 2.9∗ 81.5 ± 3.4 75.5 ± 3.6 83.0 ± 3.8∗ 49.5 ± 5.4 85.0 ± 2.4∗

DBPedia 14 88.6 ± 6.1 93.6 ± 3.9∗ 93.2 ± 3.9 94.4 ± 2.7 94.7 ± 2.6 94.5 ± 2.7 96.9 ± 1.3∗

NLU Scenario 18 82.1 ± 2.7 85.9 ± 1.8 86.7 ± 1.8∗ 81.2 ± 2.4 87.4 ± 1.4∗ 74.1 ± 2.9 88.7 ± 1.0∗

TREC Fine 50 55.4 ± 5.3 60.1 ± 5.1∗ 57.7 ± 4.7 56.8 ± 5.4 60.4 ± 4.7∗ 47.6 ± 9.0 63.3 ± 4.1∗

NLU Intent 68 68.3 ± 4.1 73.0 ± 2.6∗ 58.1 ± 2.3 65.2 ± 2.6∗ 60.7 ± 2.7 52.6 ± 3.6 61.8 ± 2.1∗

BANKING77 77 46.6 ± 4.2 56.4 ± 2.8∗ 52.8 ± 3.5 50.8 ± 3.1 59.2 ± 2.8∗ 40.2 ± 2.5 63.5 ± 2.3∗

CLINIC150 150 63.7 ± 2.5 66.0 ± 2.7∗ 59.2 ± 2.3 57.5 ± 2.9 62.4 ± 1.7∗ 48.7 ± 2.3 66.2 ± 2.2∗

Table 7: Comparative Analysis of Classification Accuracy (in %) for LLAMA-13B Across Various Context Win-
dows (B=3, B=6, B=9). Best scores are highlighted in bold. An asterisk (*) denotes statistical significance, as
determined by a t-test with a p-value < 0.05.

A Appendix

A.1 Scaling Model Parameters
A.2 Prompt Format
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Dataset # Labels ICL
B=3 B=6

PCW NBCE PCW NBCE
SST-2 2 94.7 ± 0.5 94.9 ± 0.7 95.0 ± 0.3 92.9 ± 0.7 95.0 ± 0.3∗

CR 2 93.8 ± 0.5 93.6 ± 0.5 93.8 ± 0.5 93.3 ± 1.1 93.7 ± 0.4
SUBJ 2 90.3 ± 4.5 91.0 ± 2.7 93.8 ± 1.7∗ 83.7 ± 5.1 94.5 ± 1.6∗

CB 2 88.8 ± 2.5 88.7 ± 1.9 88.0 ± 3.3 83.9 ± 2.4 89.1 ± 2.2∗

RTE 2 79.9 ± 1.9 79.0 ± 1.8 79.4 ± 2.1 73.8 ± 3.4 80.6 ± 1.8∗

AGNews 4 88.0 ± 4.7 89.4 ± 0.7 88.9 ± 1.3 88.0 ± 0.8 88.8 ± 1.4
SST5 5 47.0 ± 2.6 47.5 ± 2.3 45.0 ± 2.8 48.4 ± 1.0∗ 44.5 ± 2.4
TREC 6 87.2 ± 3.3 90.1 ± 1.7∗ 88.8 ± 2.8 67.2 ± 4.8 88.6 ± 1.7∗

DBPedia 14 88.4 ± 8.6 94.5 ± 3.0 95.4 ± 2.6∗ 96.2 ± 3.0 96.7 ± 1.4
NLU Scenario 18 82.6 ± 2.0 85.3 ± 1.5∗ 84.6 ± 1.7 80.2 ± 2.1 85.8 ± 1.2∗

TREC Fine 50 60.7 ± 4.8 67.7 ± 4.3∗ 64.7 ± 3.7 50.1 ± 4.2 68.6 ± 4.2∗

NLU Intent 68 68.6 ± 4.4 74.4 ± 2.7∗ 60.1 ± 2.7 61.6 ± 3.2 61.0 ± 2.2
BANKING77 77 50.3 ± 3.1 63.2 ± 2.5∗ 55.3 ± 3.5 58.1 ± 2.7 63.7 ± 3.6∗

CLINIC150 150 67.0 ± 3.6 71.0 ± 4.2∗ 65.6 ± 3.0 57.2 ± 2.9 67.3 ± 2.3∗

Table 8: Comparative Analysis of Classification Accuracy (in %) for LLAMA-30B Across Various Context Win-
dows (B=3, B=6, B=9). Best scores are highlighted in bold. An asterisk (*) denotes statistical significance, as
determined by a t-test with a p-value < 0.05.

Dataset ICL
B=2 B=3 B=4 B=6

PCW NBCE PCW NBCE PCW NBCE PCW NBCE
PIQA 83.0 ± 0.6 83.6 ± 0.6∗ 83.2 ± 0.6 83.5 ± 0.6 83.2 ± 0.7 83.3 ± 0.5 83.2 ± 0.6 81.9 ± 1.0 83.2 ± 0.5∗

OpenBookAQ 51.0 ± 1.7 51.1 ± 1.2∗ 47.0 ± 1.1 50.2 ± 1.3 50.2 ± 1.3 48.8 ± 1.1 49.8 ± 1.0∗ 46.7 ± 1.3 51.1 ± 1.0∗

COPA 79.9 ± 2.5 81.8 ± 2.4∗ 79.0 ± 0.9 86.0 ± 1.9∗ 79.8 ± 2.2 86.5 ± 1.5∗ 79.8 ± 2.1 74.9 ± 3.1 78.4 ± 1.5∗

HellaSwag 82.3 ± 0.7 82.5 ± 1.0 82.5 ± 0.7 82.3 ± 0.7 82.2 ± 0.5 82.2 ± 0.6 82.4 ± 0.5 81.7 ± 0.8 82.2 ± 0.5∗

ARCE 80.3 ± 0.6 80.5 ± 0.7∗ 77.4 ± 0.7 79.8 ± 0.5 79.7 ± 0.5 78.9 ± 0.6 79.8 ± 0.5∗ 76.8 ± 0.9 80.5 ± 0.4∗

StoryCloze 80.5 ± 0.8 82.1 ± 0.9∗ 80.1 ± 0.9 82.0 ± 0.6∗ 80.0 ± 0.9 81.9 ± 0.8∗ 80.1 ± 1.0 81.2 ± 0.8∗ 80.1 ± 0.9
MMLU 45.3 ± 1.8 46.4 ± 1.9∗ 43.6 ± 1.3 45.5 ± 1.9∗ 44.4 ± 1.3 44.7 ± 2.1 44.4 ± 2.0 43.6 ± 2.8 44.6 ± 1.4

Table 9: Comparative Results of Task Completion (e.g., Multiple Choices Task) for LLAMA-13B Using Vari-
ous Context Windows. Best scores are highlighted in bold. An asterisk (*) denotes statistical significance, as
determined by a t-test with a p-value < 0.05.

Dataset # Labels
GPT2-Large GPT2-XLarge

ICL PCW NBCE ICL PCW NBCE
SST-2 2 80.2 ± 11.7 84.1 ± 8.2 85.2 ± 6.7 90.6 ± 3.5 92.4 ± 2.5 92.7 ± 2.3*
CR 2 81.3 ± 6.3 81.2 ± 6.4 82.7 ± 6.3 79.2 ± 5.9 81.3 ± 4.6 82.5 ± 2.9*
SUBJ 2 65.1 ± 11.9 67.0 ± 12.2 66.1 ± 13.2 68.8 ± 11.6 64.9 ± 7.3 74.5 ± 8.3*
CB 2 43.9 ± 3.7 43.9 ± 3.2 45.2 ± 3.7 51.9 ± 7.4 57.2 ± 8.5* 56.1 ± 7.9
RTE 2 52.5 ± 2.2 53.5 ± 1.7 52.9 ± 2.9 55.4 ± 2.4 55.6 ± 1.6 54.9 ± 2.5
AGNews 4 61.7 ± 14.2 70.9 ± 9.4 71.0 ± 8.9 * 67.2 ± 13.2 79.6 ± 3.4* 70.0 ± 9.6
SST-5 5 40.8 ± 2.5 41.5 ± 3.1 41.8 ± 2.4 38.0 ± 6.1 41.4 ± 4.3* 41.1 ± 4.7
TREC 6 56.6 ± 7.9 59.0 ± 4.7 63.1 ± 7.0* 47.9 ± 5.1 48.7 ± 2.8 51.7 ± 5.0*
DBPedia 14 58.7 ± 20.2 78.9 ± 6.6 71.1 ± 13.7 77.5 ± 9.8 87.0 ± 4.0 87.7 ± 3.8*
NLU Scenario 18 34.8 ± 7.6 28.5 ± 4.3 45.7 ± 6.7* 45.1 ± 9.3 50.0 ± 6.1 51.1 ± 8.1*
TREC Fine 50 36.9 ± 6.3 37.4 ± 4.8* 36.9 ± 6.3 36.4 ± 6.2 40.1 ± 3.0* 40.1 ± 5.1
NLU Intent 68 24.5 ± 6.1 22.3 ± 5.6 27.5 ± 4.6* 30.2 ± 5.4 33.8 ± 4.6 36.4 ± 4.9*
BANKING77 77 28.9 ± 5.1 28.0 ± 3.7 36.0 ± 3.2* 30.7 ± 4.1 33.3 ± 3.5 35.5 ± 2.8*
CLINIC150 150 43.9 ± 3.2 44.1 ± 1.9 48.5 ± 2.3* 46.6 ± 2.5 47.1 ± 2.3 49.9 ± 1.9*

Table 10: Comparative analysis of classification results in terms of accuracy (in %) for both the GPT2-Large and
GPT2-XLarge models using a context window of B = 3. Notably, a single window comprises a set of examples
with a total number of tokens equal to the maximum capacity of conventional in-context learning (e.g., 1024 tokens
in GPT-2). The best-performing scores for each model and dataset are highlighted in bold, while ’*’ indicates
statistical significance, determined by a t-test with a p-value < 0.05.
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Dataset # Labels
OPT-1.3B OPT-6.7B OPT-13B

ICL PCW NBCE ICL PCW NBCE ICL PCW NBCE
SST-2 2 85.0 ± 8.5 81.7 ± 10.6 86.0 ± 7.2 93.8 ± 2.6 93.7 ± 3.3 95.8 ± 1.7* 93.1 ± 4.4 93.8 ± 3.1 94.9 ± 2.3
CR 2 89.1 ± 2.4 88.8 ± 2.3 89.7 ± 1.7 90.3 ± 2.5 90.7 ± 2.4 91.7 ± 1.5* 92.7 ± 1.5 92.3 ± 2.5 93.1 ± 1.4
SUBJ 2 78.8 ± 9.0* 68.3 ± 7.5 69.0 ± 7.9 72.3 ± 10.6* 70.9 ± 13.9 64.0 ± 10.7 86.4 ± 9.2 88.0 ± 8.3 90.1 ± 5.9
CB 2 53.0 ± 6.0 50.5 ± 3.3 50.8 ± 3.3 52.4 ± 10.1 59.9 ± 12.1 59.3 ± 10.8 50.5 ± 8.5 49.3 ± 5.8 62.5 ± 10.2
RTE 2 51.1 ± 3.7 51.8 ± 3.8 52.7 ± 3.2 56.1 ± 2.2 56.2 ± 1.6 56.8 ± 2.0 53.0 ± 6.0 56.3 ± 4.9 56.8 ± 6.2
AGNews 4 61.3 ± 10.3 67.4 ± 6.7* 59.6 ± 7.2 74.8 ± 6.7 76.7 ± 4.8* 72.7 ± 5.7 78.6 ± 5.6 82.4 ± 2.3 78.8 ± 3.9
SST-5 5 44.0 ± 3.9 42.7 ± 4.6 44.8 ± 2.8 42.7 ± 5.1 45.2 ± 4.2 42.5 ± 4.6 45.6 ± 3.4 45.7 ± 2.6 42.9 ± 4.2
TREC 6 59.4 ± 6.3* 55.0 ± 4.3 56.8 ± 4.7 70.3 ± 3.3 73.1 ± 2.2* 71.8 ± 3.5 56.7 ± 7.2 62.4 ± 6.2 57.1 ± 6.8
DBPedia 14 86.3 ± 3.8 87.7 ± 2.1 87.9 ± 2.2 89.8 ± 3.5 94.3 ± 2.0* 93.5 ± 2.6 87.3 ± 4.0 94.1 ± 2.1 94.0 ± 2.2
NLU Scenario 18 67.8 ± 4.0 69.9 ± 3.5 70.2 ± 4.0 74.9 ± 3.0 79.0 ± 2.0 77.9 ± 3.0 78.5 ± 3.2 81.8 ± 2.0 83.7 ± 1.8
TREC Fine 50 39.7 ± 4.5 38.8 ± 4.7 41.5 ± 6.0 45.7 ± 6.7 49.6 ± 6.6 50.1 ± 6.7 49.7 ± 6.0 55.5 ± 6.6 51.7 ± 6.6
NLU Intent 68 45.3 ± 4.9 50.0 ± 4.2 50.9 ± 4.0 55.8 ± 3.9 62.5 ± 3.1 63.3 ± 3.1 61.5 ± 2.8 71.8 ± 2.5 71.8 ± 2.7
BANKING77 77 25.9 ± 4.9 24.8 ± 4.0 28.8 ± 4.5 43.6 ± 3.1 51.9 ± 2.8 53.7 ± 3.3 43.3 ± 3.4 53.0 ± 3.8 56.0 ± 3.4
CLINIC150 150 50.8 ± 3.0 52.4 ± 2.3 57.7 ± 2.0 60.4 ± 2.4 63.0 ± 1.9 65.5 ± 1.9 59.7 ± 2.3 65.1 ± 2.7 66.1 ± 2.1

Table 11: Comparative analysis of classification results measured by accuracy (in %) for OPT models with B = 3.
The best scores are highlighted in bold, while ’*’ indicates p-value < 0.05.

Dataset # Labels ICL
B=3 B=4 B=5

PCW NBCE PCW NBCE PCW NBCE
SST-2 2 93.8 ± 2.6 93.7 ± 3.3 95.8 ± 1.7* 93.9 ± 2.7 96.1 ± 0.9* 92.3 ± 4.2 96.3 ± 0.9*
CR 2 90.3 ± 2.5 90.7 ± 2.4 91.7 ± 1.5* 90.8 ± 2.3 91.9 ± 1.6* 90.0 ± 2.7 91.5 ± 1.4*
SUBJ 2 72.3 ± 10.6* 70.9 ± 13.9 64.0 ± 10.7 66.6 ± 13.2 65.7 ± 9.7 67.3 ± 14.2 68.4 ± 9.8
CB 2 52.4 ± 10.1 59.9 ± 12.1 59.3 ± 10.8 55.6 ± 10.4 59.8 ± 12.0 60.7 ± 8.7 56.1 ± 9.9
RTE 2 56.1 ± 2.2 56.2 ± 1.6 56.8 ± 2.0 55.7 ± 1.6 56.6 ± 2.0 55.0 ± 1.4 56.9 ± 1.9*
AGNews 4 74.8 ± 6.7 76.7 ± 4.8* 72.7 ± 5.7 75.7 ± 5.3 73.0 ± 5.6 77.7 ± 3.9 77.1 ± 5.1
SST-5 5 42.7 ± 5.1 45.2 ± 4.2 42.5 ± 4.6 44.3 ± 4.5* 41.3 ± 3.5 46.3 ± 3.6* 42.8 ± 3.4
TREC 6 70.3 ± 3.3 73.1 ± 2.2* 71.8 ± 3.5 72.1 ± 2.9 72.0 ± 3.4 73.6 ± 2.7 72.9 ± 2.9
DBPedia 14 89.8 ± 3.5 94.3 ± 2.0* 93.5 ± 2.6 94.4 ± 2.1 93.4 ± 2.3 94.7 ± 1.5* 93.7 ± 2.0
NLU Scenario 18 74.9 ± 3.0 79.0 ± 2.0 77.9 ± 3.0 76.8 ± 4.3* 76.8 ± 3.1* 77.7 ± 3.8 79.3 ± 2.1*
TREC Fine 50 45.7 ± 6.7 49.6 ± 6.6 50.1 ± 6.7 48.2 ± 6.7 49.4 ± 6.9 51.5 ± 6.9 50.7 ± 5.2
NLU Intent 68 55.8 ± 3.9 62.5 ± 3.1 63.3 ± 3.1 61.8 ± 3.6 62.4 ± 3.9 61.1 ± 3.7 66.4 ± 2.3*
BANKING77 77 43.6 ± 3.1 51.9 ± 2.8 53.7 ± 3.3 51.5 ± 3.2 53.8 ± 3.2 52.2 ± 2.0 56.4 ± 2.6
CLINIC150 150 60.4 ± 2.4 63.0 ± 1.9 65.5 ± 1.9 62.7 ± 2.2 65.5 ± 2.5* 61.9 ± 1.8 67.1 ± 2.2*

Table 12: The comparative results of context extension, measured by accuracy (in %), for OPT-6.7B models with
windows (B = 4 and B = 5).

Dataset # Labels
GPT2-Large GPT2-XLarge

B = 4 B = 5 B = 4 B = 5
PCW NBCE PCW NBCE PCW NBCE PCW NBCE

SST-2 2 83.3 ± 7.8 83.9 ± 7.9 85.0 ± 6.9 83.7 ± 8.6 91.3 ± 2.9 92.6 ± 2.6 91.4 ± 3.1 92.4 ± 2.4
CR 2 82.1 ± 5.9 84.1 ± 5.7 81.7 ± 4.7 82.4 ± 5.1 82.1 ± 2.9 82.7 ± 3.0 82.0 ± 2.4 81.7 ± 2.5
SUBJ 2 68.1 ± 11.9 63.1 ± 10.5 66.5 ± 10.3 68.9 ± 10.5 63.9 ± 6.0 76.2 ± 6.7 59.3 ± 5.2 79.3 ± 5.5*
CB 2 44.0 ± 3.4 44.7 ± 4.3 42.8 ± 2.0 43.8 ± 2.8 53.9 ± 6.2 53.8 ± 9.1 51.1 ± 4.4 56.7 ± 7.7*
RTE 2 53.5 ± 1.5* 52.1 ± 3.0 54.0 ± 1.2 53.7 ± 2.2 55.3 ± 1.1 54.7 ± 3.0 54.9 ± 1.7 55.7 ± 1.7
AGNews 4 69.2 ± 9.6 68.1 ± 12.5 67.9 ± 8.1 70.7 ± 8.4 80.5 ± 3.3* 72.5 ± 8.8 80.0 ± 2.5* 73.0 ± 6.7
SST-5 5 40.1 ± 4.0 42.4 ± 1.7* 40.4 ± 3.9 42.6 ± 1.6 41.5 ± 4.2* 38.5 ± 5.7 39.2 ± 4.4 41.7 ± 5.8*
TREC 6 57.4 ± 4.1 64.8 ± 4.0* 55.3 ± 4.0 64.6 ± 4.8* 48.9 ± 3.4 51.6 ± 3.7 48.1 ± 2.2 53.0 ± 2.7*
DBPedia 14 80.7 ± 5.0* 74.8 ± 12.1 79.3 ± 4.4 76.5 ± 8.4 88.5 ± 3.3 87.5 ± 4.7 89.8 ± 3.2 89.1 ± 3.6
NLU Scenario 18 27.8 ± 3.6 46.6 ± 7.4 27.5 ± 3.3 44.4 ± 6.5 49.7 ± 5.7 51.7 ± 7.6 48.7 ± 6.0 52.8 ± 5.5*
TREC Fine 50 32.4 ± 5.1 37.4 ± 4.8* 31.2 ± 4.1 39.9 ± 3.6* 38.6 ± 3.1 39.8 ± 6.1 37.2 ± 2.3 41.6 ± 3.8*
NLU Intent 68 24.3 ± 4.7 26.0 ± 5.6 20.3 ± 5.4 27.3 ± 4.4 34.8 ± 5.1 35.9 ± 5.2 37.1 ± 5.1 38.6 ± 3.3*
BANKING77 77 26.6 ± 3.2 35.2 ± 3.8* 25.5 ± 3.2 36.0 ± 3.8* 31.0 ± 3.5 35.4 ± 3.2* 29.6 ± 2.8 37.7 ± 2.6*
CLINIC150 150 43.2 ± 1.8 48.1 ± 1.9* 41.6 ± 2.2 49.4 ± 2.0* 45.9 ± 2.9 49.3 ± 2.3* 43.0 ± 2.4 50.3 ± 2.5*

Table 13: The comparative results of classification tasks, quantified in terms of accuracy (in %), for both GPT2-
Large and GPT2-XLarge models using different context windows (B = 4 and B = 5). The best scores for each
model and dataset are highlighted in bold, while an asterisk (*) denotes statistical significance (as determined by a
t-test with a p-value < 0.05).
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Dataset # Labels
OPT-1.3B OPT-6.7B

B = 4 B = 5 B = 4 B = 5
PCW NBCE PCW NBCE PCW NBCE PCW NBCE

SST-2 2 81.1 ± 7.7 88.1 ± 5.7* 79.9 ± 9.8 88.8 ± 5.2* 93.9 ± 2.7 96.1 ± 0.9* 92.3 ± 4.2 96.3 ± 0.9*
CR 2 88.5 ± 3.3 88.8 ± 1.6 85.6 ± 3.6 89.1 ± 1.5* 90.8 ± 2.3 91.9 ± 1.6* 90.0 ± 2.7 91.5 ± 1.4*
SUBJ 2 68.5 ± 6.6 70.5 ± 7.4 65.2 ± 8.3 70.9 ± 6.3* 66.6 ± 13.2 65.7 ± 9.7 67.3 ± 14.2 68.4 ± 9.8
CB 2 51.6 ± 5.2 51.5 ± 4.3 49.1 ± 1.0 51.6 ± 3.6* 55.6 ± 10.4 59.8 ± 12.0 60.7 ± 8.7 56.1 ± 9.9
RTE 2 50.6 ± 3.1 51.4 ± 2.9 50.9 ± 2.1 51.3 ± 2.5 55.7 ± 1.6 56.6 ± 2.0 55.0 ± 1.4 56.9 ± 1.9*
AGNews 4 65.1 ± 5.9* 60.3 ± 9.0 69.4 ± 5.0* 62.9 ± 6.7 75.7 ± 5.3 73.0 ± 5.6 77.7 ± 3.9 77.1 ± 5.1
SST-5 5 42.4 ± 4.0 44.8 ± 2.2* 41.6 ± 4.3 45.1 ± 2.0* 44.3 ± 4.5* 41.3 ± 3.5 46.3 ± 3.6* 42.8 ± 3.4
TREC 6 55.2 ± 3.2 55.7 ± 4.3 52.5 ± 2.8 57.1 ± 3.9* 72.1 ± 2.9 72.0 ± 3.4 73.6 ± 2.7 72.9 ± 2.9
DBPedia 14 88.1 ± 2.6 87.5 ± 2.6 87.0 ± 3.1 87.9 ± 2.6 94.4 ± 2.1 93.4 ± 2.3 94.7 ± 1.5* 93.7 ± 2.0
NLU Scenario 18 69.9 ± 2.6 69.3 ± 4.3 67.7 ± 4.0 72.8 ± 3.8* 76.8 ± 4.3* 76.8 ± 3.1* 77.7 ± 3.8 79.3 ± 2.1*
TREC Fine 50 40.5 ± 5.8 43.1 ± 6.4 35.3 ± 3.5 42.0 ± 4.7* 48.2 ± 6.7 49.4 ± 6.9 51.5 ± 6.9 50.7 ± 5.2
NLU Intent 68 48.8 ± 4.2 51.0 ± 4.7 45.4 ± 3.2 54.5 ± 3.3* 61.8 ± 3.6 62.4 ± 3.9 61.1 ± 3.7 66.4 ± 2.3*
BANKING77 77 26.0 ± 3.5 30.1 ± 3.5* 28.9 ± 3.1 32.5 ± 3.5* 51.5 ± 3.2 53.8 ± 3.2 52.2 ± 2.0 56.4 ± 2.6
CLINIC150 150 52.6 ± 2.0 57.2 ± 2.5* 49.3 ± 2.5 58.4 ± 2.0* 62.7 ± 2.2 65.5 ± 2.5* 61.9 ± 1.8 67.1 ± 2.2*

Table 14: The comparative results of context extension, measured by accuracy (in %), for OPT models with
windows (B = 4 and B = 5).
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Dataset Number of shots per window B
Prompt Example Labels

kmax GPT2 kmax LLAMA

SST-2 27 48
Sentence: {Sentence}
Label: Label

[negative, positive]

CR 21 39
Review:{Sentence}
Sentiment:{Label}

[negative, positive]

SUBJ 18 32
Input:{Sentence}
Type:{Label}

[objective, subjective]

CB 5 10
Premise:{Sentence}
Hypothesis:{ hypothesis}
Prediction:{Label}

[true, false, neither]

RTE 5 10
Premise:{Sentence}
Hypothesis:{ hypothesis}
Prediction:{Label}

[True, False]

AGNews 11 20
Input:{Sentence}
Type:{Label}

[world, sports, business, technology]

SST-5 20 36
Review:{Sentence}
Sentiment:Sentiment

[terrible, bad, okay, good, great]

TREC 38 69
Question:{Sentence}
Type:{Label}

[abbreviation, entity, description, hu-
man, location, numeric]

DBPedia 7 14
Input:{Sentence}
Type:{Label}

[company, school, artist, athlete, poli-
tics, transportation, building, nature, vil-
lage, animal, plant, album, film, book]

NLU Scenario 43 80
Utterance:{Sentence}
Scenario:{Label}

[lists, weather, general, cooking, email,
alarm, datetime, calendar, social, trans-
port, iot, recommendation, takeaway,
play, music, qa, news, audio]

TREC Fine 37 65
Question:{Sentence}
Type:{Label}

[abbreviation abbreviation, abbreviation
expansion, entity animal, entity body,
entity color, entity creation, entity cur-
rency, entity disease, entity event, entity
food...

NLU Intent 43 80
Utterance:{Sentence}
Intent:{Label}

[alarm query, alarm remove, alarm
set, audio volume down, audio volume
mute, audio volume other, audio vol-
ume up, calendar query, calendar re-
move, calendar set...

BANKING77 27 51
Query:{Sentence}
Intent:{Label}

[activate my card, age limit, apple
pay or google pay, atm support, auto-
matic top up, balance not updated after
bank transfer, balance not updated after
cheque or cash deposit...

CLINIC150 39 72
Sentence:{Sentence}
Intent:{Label}

[restaurant reviews, nutrition info, ac-
count blocked, oil change how, time,
weather, redeem rewards, interest rate,
gas type...

Table 15: Classification datasets with used prompts and kmax for GPT2 and LLaMA. Note that OPT shares the
same length of LLAMA (i.e., 2048)
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