
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pages 7738–7755

June 16-21, 2024 ©2024 Association for Computational Linguistics

A Theory Guided Scaffolding Instruction Framework
for LLM-Enabled Metaphor Reasoning

Yuan Tian1,2, Nan Xu1,3∗, Wenji Mao1,2∗
1State Key Laboratory of Multimodal Artificial Intelligence Systems,

Institute of Automation, Chinese Academy of Sciences
2School of Artificial Intelligence, University of Chinese Academy of Sciences

3Beijing Wenge Technology Co., Ltd
{tianyuan2021,xunan2015,wenji.mao}@ia.ac.cn

Abstract

Metaphor detection is a challenging task in
figurative language processing, which aims
to distinguish between metaphorical and lit-
eral expressions in text. Existing methods
tackle metaphor detection via training or fine-
tuning discriminative models on labeled data.
However, these approaches struggle to explain
the underlying reasoning process behind the
metaphorical/literal judgment. Recently, large
language models (LLMs) have shown promise
in language reasoning tasks. Although promis-
ing, LLM-based methods for metaphor detec-
tion and reasoning are still faced with the chal-
lenging issue of bringing the explainable con-
cepts for metaphor reasoning and their linguis-
tic manifestation. To fill this gap, we propose
a novel Theory guided Scaffolding Instruction
(TSI) framework that instructs an LLM to infer
the underlying reasoning process of metaphor
detection guided by metaphor theories for the
first time. Our work is inspired by a peda-
gogical strategy called scaffolding instruction,
which encourages educators to provide ques-
tioning and support as scaffolding so as to assist
learners in constructing the understanding of
pedagogical goals step by step. We first con-
struct a metaphor knowledge graph grounded
in metaphor theory, which serves as the instruc-
tional structure to obtain a series of scaffolding
questions, directing the LLM to incrementally
generate the reasoning process for metaphor
understanding through dialogue interactions.
During this theory guided instruction process,
we explore the LLM’s mastery boundary and
provide the relevant knowledge as scaffolding
support when the question is beyond the LLM’s
capability. Experimental results verify that
our method significantly outperforms both the
LLM-based reasoning methods and the SOTA
methods in metaphor detection, indicating the
facilitation of metaphor and instruction theories
in guiding LLM-enabled reasoning process.

*Corresponding author

(a) Standard Zero-Shot

Q: Decide whether the word “wears” in the sentence “He always 

wears a smile” is used metaphorically.

A: No, the word “wears” in the sentence “He always wears a smile” 

is not used metaphorically.

(b) Zero-Shot Chain-of-Thought

Q: Decide whether the word “wears” in the sentence “He always 

wears a smile” is used metaphorically. Let’s think step by step.

A: To determine …, we need to consider the following:

1. Literal meaning: The word “wears” in its literal sense means ... 

2. Figurative meaning: A metaphor is …

Considering these points, the word “wears” in the sentence is not a 

metaphor because it is used in its literal sense… 

(c) Prompt with Key Ideas from Conceptual Metaphor Theory

Q: According to conceptual metaphor theory, metaphor facilitates a 

mapping of attributes or characteristics from source domain to target 

domain. For example, the word “invested” in the sentence “I have 

invested a lot of time in her” is a metaphorical expression. The 

source domain implied by this metaphor is the domain of money and 

the target domain implied by this metaphor is the domain of time. 

Based on the above information, decide whether the word “wears” in 

the sentence “He always wears a smile” is used metaphorically.

A: Yes, the word “wears” is used metaphorically. Here, the source 

domain is the domain of clothing or accessories, ... The target 

domain is the abstract concept of having a positive demeanor…, it 

creates a metaphorical connection between the act of physically 

putting on clothing and displaying a cheerful disposition. 

x

✓

x

Figure 1: Example inputs and outputs generated by GPT-
3.5 utilizing standard zero-shot method, zero-shot chain-
of-thought method, and prompt with key ideas from
conceptual metaphor theory for metaphor reasoning.

1 Introduction

Metaphor is not just a figurative expression but a
pervasive phenomenon in human thought, percep-
tion, and reasoning (Lakoff and Johnson, 1980).
Merriam-Webster Dictionary defines metaphor as
“a figure of speech in which a word or phrase liter-
ally denoting one kind of object or idea is used in
place of another to suggest a likeness or analogy
between them”. Metaphor detection as a fundamen-
tal research task in natural language processing can
benefit a variety of other tasks, which require the
understanding of implicit semantics, such as ma-
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chine translation (Mao et al., 2018), sentiment and
emotion analysis (Mao and Li, 2021), and conver-
sational dialogue (Sun et al., 2023).

Existing studies on metaphor detection establish
supervised learning methods based on labeled data
(Rohanian et al., 2020; Le et al., 2020; Mao and Li,
2021). Recently, some studies employ metaphor
theories to help design models for metaphor de-
tection, resulting in significant performance gains
(Zhang and Liu, 2022; Ge et al., 2022; Tian et al.,
2023). Although these methods are inspired by dif-
ferent metaphor theories, they essentially train or
fine-tune discriminative models to learn a decision
boundary between metaphorical and literal sam-
ples, lacking the ability to explain the underlying
reasoning process of metaphorical/literal judgment.

Recently, large language models (LLMs) have
shown promise in generating reasoning processes
with natural language across various tasks (Kojima
et al., 2022; Wang et al., 2023a; Zhang et al., 2023),
which demonstrates their potential to provide the
underlying reasoning process for metaphor under-
standing. Although promising, LLM-based meth-
ods for metaphor detection and reasoning are still
faced with the challenging issue of bringing the
explainable concepts for metaphor reasoning and
their linguistic manifestation. Figure 1 gives ex-
amples of LLM-based metaphor detection meth-
ods. Figure 1 (a) and (b) show that LLMs fail to
detect the metaphor; even when employing zero-
shot chain-of-thought method (Kojima et al., 2022).
This limitation may be attributed to the fact that
metaphors are not merely linguistic phenomena but
associated with human thought and reasoning pro-
cess (Lakoff and Johnson, 1980). Thus metaphors
inherently convey intricate and implicit meanings
that require a deeper level of understanding, mak-
ing it more difficult for LLMs to comprehend. To
better understand and detect metaphors, metaphor
theories that provide well-established frameworks
can serve as shortcuts to help effective metaphor
reasoning and understanding. Figure 1 (c) provides
an LLM with the prompt incorporated with the
key ideas from conceptual metaphor theory (CMT)
(Lakoff and Johnson, 1980), the key metaphor the-
ory in cognitive linguistics. The result shows that,
with the help of CMT theory, the LLM can provide
a correct answer with an explanation of correspond-
ing reasoning process.

In this paper, we tackle the challenging issue of
LLM-based metaphor reasoning. To better release
the capability of LLMs for metaphor reasoning

and understanding, we make the first attempt to in-
corporate well-founded metaphor theories in such
process. Further, to bridge the abstract concep-
tual representations of metaphor theories and the
detailed LLM reasoning process, we draw inspi-
ration from a pedagogical strategy called scaffold-
ing instruction (Bruner, 1974; Vygotsky, 1978),
which emphasizes that an educator continually ex-
plores a learner’s mastery boundary through dia-
logues and designs questions and support as scaf-
folding, to assist learners in constructing the un-
derstanding of pedagogical goals step by step. To
achieve this, we propose a novel Theory guided
Scaffolding Instruction framework (TSI) for LLM-
enabled metaphor reasoning. Specifically, we rely
on three representative metaphor theories, selection
preference violation (SPV) (Wilks, 1975, 1978),
metaphor identification procedure (MIP) (Praggle-
jaz Group, 2007), and conceptual metaphor theory
(CMT) (Lakoff and Johnson, 1980). In our com-
putational construct, we first formalize a metaphor
theory by converting it into a metaphor knowledge
graph (KG), which functions as the instructional
structure to construct scaffolding questions that
help LLM’s metaphor reasoning process. During
dialogue interactions, our framework automatically
detects the mastery boundary of LLM and provides
relevant knowledge as scaffolding support when
the question is beyond the LLM’s capability.

Our main contributions are as follows:

• To release the metaphor reasoning capability
of LLMs, we make the first attempt to propose
a theory guided framework TSI and develop
the conceptual representations by converting
metaphor theories into knowledge graphs for
scaffolding instruction.

• The scaffolding instruction process in TSI
constructs prompts for scaffolding questions
based on metaphor KGs to facilitate the step-
by-step reasoning, and provides scaffolding
support by dynamically assessing the LLM’s
mastery boundary.

• Experimental results on two datasets verify
that our method achieves significant perfor-
mance gains compared to LLM-based meth-
ods in complex reasoning and the SOTA meth-
ods in metaphor detection.
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2 Related Work

Metaphor Theories As a fundamental and pro-
found figurative phenomenon in linguistics and
cognition, metaphor has been theorized across
various disciplines in linguistics, philosophy and
psychology (Plato, 1901; Kittay, 1990; Aristotle,
1995). However, not all of these theories are ap-
propriate for computational formalization. Among
them, three theories are favorable in existing com-
putational research on metaphor, including selec-
tional preference violation (SPV) (Wilks, 1975),
metaphor identification procedure (MIP) (Praggle-
jaz Group, 2007), and conceptual metaphor theory
(CMT) (Lakoff and Johnson, 1980).

The SPV theory suggests that the disparity be-
tween the context of a word within a sentence and
its frequently used contexts is an indicator of this
word’s metaphorical usage. The MIP theory aims
to standardize the metaphor annotation process,
emphasizing that a metaphor is identified if the
contextual meaning of the word differs from its
basic meaning. Unlike SPV and MIP, which uti-
lize indicative clues based on linguistic features of
contexts or word meanings to identify metaphors,
CMT goes beyond linguistic analysis and proposes
a cognitive basis for metaphor understanding, sug-
gesting that metaphor facilitates a mapping of at-
tributes from source domain to target domain in
human cognition. In this paper, we focus on re-
leasing the metaphor reasoning capability of LLMs
with the guidance of these three metaphor theories.

Computational Work on Metaphor without The-
ories Computational studies on metaphor focus
on three main tasks, including metaphor detection,
metaphor interpretation, and metaphor generation.
Most of the work, especially the early work, es-
tablished methods for computational metaphor pro-
cessing without consideration of metaphor theories.

Metaphor detection, which attracts more re-
search attention compared to the other two tasks,
aims to identify an expression in text as metaphor-
ical or literal. Early researchers utilize ma-
chine learning based methods to detect metaphors
(Tsvetkov et al., 2014; Shutova et al., 2016; Bulat
et al., 2017). Given that understanding metaphors
requires knowledge beyond the context, some stud-
ies employ external knowledge resources for this
task (Rohanian et al., 2020; Wan et al., 2021; Li
et al., 2023). Benefiting from multitask learning,
other studies learn shared information between
metaphor detection and related tasks (Le et al.,

2020; Mao and Li, 2021; Zhang and Liu, 2023;
Badathala et al., 2023). Moreover, some studies
(Lin et al., 2021; Feng and Ma, 2022) explore data
augmentation methods to alleviate the problem of
insufficient data for this task.

Metaphor interpretation involves explaining the
implicit meaning conveyed by a metaphorical ex-
pression, which is a more challenging task than
metaphor detection. Existing studies without using
metaphor theories often formulate this task as a
paraphrasing task to generate literal substitute para-
phrase for a metaphorical word/phrase (Shutova,
2010; Shutova et al., 2012; Zayed et al., 2020) or
identify the literal interpretation for a metaphorical
expression in a candidate sentence set (Bizzoni and
Lappin, 2018; Chakrabarty et al., 2022).

Metaphor generation focuses on generating
metaphorical expressions from literal ones. Some
studies generate a metaphorical word to replace the
literal one using the end-to-end generation frame-
work (Yu and Wan, 2019; Chakrabarty et al., 2021).
Other studies generate the metaphorical sentence
based on syntactic patterns (Brooks and Youssef,
2020) or a given Chinese noun (Li et al., 2022).

Computational Work on Metaphor with The-
ories Unlike the above research only focusing
on computational perspectives for metaphor pro-
cessing, recently, some researchers (Stowe et al.,
2021b; Ge et al., 2022) have incorporated well-
established metaphor theories into computational
work on metaphor and achieved promising results.

Some studies (Su et al., 2021; Song et al., 2021;
Choi et al., 2021; Zhang and Liu, 2022; Wang et al.,
2023b) adopt SPV and MIP in network design for
metaphor detection. Inspired by CMT, Ge et al.
(2022) propose a model that generates plausible
source and target concepts to help metaphor detec-
tion. Tian et al. (2023) further propose an attribute
Siamese network to learn similar attributes between
the source and target domains for this task.

In metaphor interpretation, some research con-
siders the source domain implied by the metaphor
in CMT as the interpretation and develops vari-
ous methods to identify these domains, such as the
unsupervised method (Shutova et al., 2017), deep
learning based method (Rosen, 2018) and LLM-
based method (Wachowiak and Gromann, 2023).
Other research extracts attributes that link source
and target domains as interpretation of metaphors
(Su et al., 2017; Rai et al., 2019; Su et al., 2020).

In metaphor generation, Stowe et al. (2021b)
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make the first attempt to generate metaphors with
conceptual mappings grounded in CMT and de-
velop the lexical model and seq-to-seq model for
metaphor generation. In addition, Stowe et al.
(2021a) focus on comparing free and controlled
metaphor generation based on CMT.

Although previous methods achieve promising
results, they only apply metaphor theories for net-
work design or model the elements in these theories,
lacking the ability to explicitly reflect the inherent
reasoning processes grounded in theories. Recently,
large language models (LLMs) have shown poten-
tial for reasoning and can generate reasoning pro-
cesses in natural language, while how to develop
the LLM’s capability on metaphor reasoning re-
mains unexplored. Thus, we focus on releasing
LLM’s ability on metaphor reasoning and under-
standing with the guidance of metaphor theories.

Complex Reasoning with LLMs In recent years,
LLMs have shown multiple emergent abilities (Wei
et al., 2022a), leading the shift of paradigm in
natural language processing from fine-tuning to
in-context learning. However, LLMs still exhibit
limitations when they tackle complex reasoning
tasks. To mitigate this gap, Wei et al. (2022b) pro-
pose chain-of-thought (CoT) prompting with task-
specific exemplars of reasoning processes. After
that, some studies design automatic CoT prompt-
ing methods encouraging LLMs to generate rea-
soning processes in a zero-shot manner (Kojima
et al., 2022; Wang et al., 2023a; Zhang et al., 2023).
Other studies explore enhancement methods to im-
prove the reasoning ability of current CoT methods,
such as refinement (Madaan et al., 2023), question
decomposition (Zhou et al., 2023), voting (Wang
et al., 2023c), ranking (Khalifa et al., 2023) and
using external knowledge (Zhao et al., 2023). Cog-
nitive linguists argue that metaphors are not just
linguistic expressions but fundamental to human
thought and cognition (Lakoff and Johnson, 1980),
thus understanding metaphors requires complex
reasoning processes in the human brain. Although
the above research has explored many complex rea-
soning tasks, LLM-enabled metaphor reasoning is
still a challenging task. Therefore, in this paper, we
make the first attempt to design methods to unleash
the potential of LLM on metaphor reasoning.

3 Problem Definition

Formally, Dte={(sk, wk, lk)}Nte
k=1 is the test dataset

with Nte instances, where sk is a sentence, wk is

a word within sk, and lk is the label (metaphorical
or literal) for wk. Our goal of metaphor detection
with LLM is to predict the label of the word within
a sentence in Dte without any training data.

4 Method

We propose a novel Theory guided Scaffolding
Instruction framework (TSI) for LLM-enabled
metaphor reasoning. Under the guidance of a
metaphor theory, our framework instructs LLM
to explicitly give a reasoning process with ques-
tioning and support as scaffolding to determine
whether the word within a sentence is metaphorical
or literal. Figure 2 shows the overall architecture
of our framework, which contains four primary
components: (1) Metaphor Knowledge Graph Con-
struction, which represents a simplified metaphor
theory and computational aspects in a graphical for-
mat; (2) Scaffolding Question Construction, which
constructs a sequence of scaffolding questions for
an LLM with metaphor knowledge graph as the in-
structional reference; (3) Scaffolding Support based
on Mastery Level of LLM, which automatically de-
tects the current capability of LLM (i.e. mastery
level) and provides knowledge as support if nec-
essary; and (4) Classification, which categories
the word within the sentence as metaphorical or
literal, based on the comparison between the struc-
ture of knowledge graph constructed from LLM’s
reasoning processes and the structure of metaphor
knowledge graph.

4.1 Metaphor Knowledge Graph
Construction

To facilitate theory guidance and computational
construction for LLM-enabled metaphor reason-
ing, we manually simplify the metaphor theory
and construct a metaphor knowledge graph (KG),
which covers the essential information in both the
theory and computational aspects. On the theory
side, metaphor KG represents the fundamental con-
cepts and the relation between concepts identified
in the metaphor theory. On the computational side,
metaphor KG also represents the core linguistic
expressions of the word, sentence, and POS infor-
mation as well as their connections. Specifically,
the metaphor KG is formulated as G = {E ,R,F},
where E ,R, and F represent sets of entities, rela-
tions, and facts, respectively. There are two groups
of entities in our metaphor KG. One group consists
of all the entities of concepts {eck}Nc

k=1 mentioned
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Metaphor Knowledge Graph Implied in Metaphor Theory

Inputs

[sentence]: I’ve invested a lot of time in her.    [word]: invest    [POS]: verb

Question 𝒑𝟏

Prompt: What is the source domain implied by the [POS] "[word]"?

Final 
Answer

Final Answer 
for 𝒑𝒊

Scaffolding Questions 𝓟 

Question 𝒑𝟐

Prompt: In the sentence "[sentence]", what is the target domain that the 
word "[word]" tries to describe?

Prompt: Here is a sentence "[sentence]". Now we know the source domain 
implied by the [POS] "[word]" and the target domain that the word "[word]" 
tries to describe in this sentence. [answer 1] [answer 2]
Decide whether the source domain is different from the target domain?

Scaffolding Support based on Mastery Level of LLM

Knowledge Graph based on Answers of LLM
1

2 3

Classification
4

Metaphorical

Structural 
Comparison

Final Answers of LLM

𝒢 መ𝒢

A SENTNECE

POS TAG SOURCE DOMAIN 
CONCEPT

TARGET DOMAIN 
CONCEPT

WORD different

I’ve … in her.

verb MONEY

TIME

invest differentfact3

fact1

fact2

fact3

fact1

fact2

Question 𝒑𝒊

𝒑

Question 𝒑𝟑

Question 𝒑𝒊

Final Answer

Metaphor Knowledge Scaffolding 

Filtering

Mastery Level Verifier

within mastery levelbeyond mastery level

Consistency 
ratio 𝒓𝒄

verify

Metaphor KB

prompt

𝒑𝒊
prompt

Answers

Figure 2: Overall architecture of our proposed framework TSI guided by conceptual metaphor theory for LLM-
enabled metaphor reasoning. [answer i] denotes the input slot of the final answer for the scaffolding question pi.

in metaphor theory or used for computational us-
age, and the other group consists of all the entities
of attributes {eak}Na

k=1 associated with the concepts
in metaphor KG. The relation could be a directed
relation rd or an undirected relation ru between
entities. The i-th fact fi ∈ F is denoted as a triple
(eh, r, et), where eh and et denote head and tail
entities, respectively. We apply our framework to
three metaphor theories widely used in computa-
tional metaphor processing, including selectional
preference violation (SPV) (Wilks, 1975, 1978),
metaphor identification procedure (MIP) (Praggle-
jaz Group, 2007), and conceptual metaphor theory
(CMT) (Lakoff and Johnson, 1980). The details of
metaphor KGs constructed based on the simplifi-
cation of SPV, MIP and CMT in our methods are
shown in Appendix B.

4.2 Scaffolding Question Construction

Questioning is a commonly used approach in the
pedagogical strategy scaffolding instruction (Zheng
et al., 2019; Laili and Siswono, 2020), which
helps ascertain the learner’s current level of under-
standing, stimulate critical thinking and encourage
deeper understanding. Inspired by this, taking a
sentence and a word within the sentence as initial
information, we construct a sequence of questions
as scaffolding with the metaphor KG as the refer-

ence guiding LLM to obtain metaphor reasoning
processes. Each scaffolding question induces a rea-
soning process based on a fact in the metaphor KG.
We have two types of reasoning processes, which
are as follows:

• Forward Reasoning: In a fact (e.g. fact1 and
fact2 in Figure 2), given an instantiated head
entity of concept (along with its associated
attribute entities, if applicable) and a direct re-
lation in the metaphor KG, the LLM needs to
determine the unknown instantiated tail entity;

• Relation Reasoning: In a fact (e.g. fact3 in
Figure 2), given two instantiated entities of
concepts (along with their associated attribute
entities, if applicable) in the metaphor KG, the
LLM needs to infer whether the undirected
relation between these two entities exists.

For the forward reasoning, we use a Wh-question
to construct the scaffolding question. For the re-
lation reasoning, we use the template “Decide
whether ...” to construct the scaffolding question.
We construct a sequence of scaffolding question
prompts P = [p1, p2, . . . , pK ] according to the se-
quence of facts F = [f1, f2, . . . , fK ] within the
metaphor KG. Details of these scaffolding question
prompts for LLMs based on CMT, MIP and SPV,
respectively, are illustrated in Appendix B.
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4.3 Scaffolding Support based on Mastery
Level of LLM

Scaffolding instruction also emphasizes the impor-
tance of providing support to learners when they
engage in tasks beyond their mastery levels, which
means what a learner can do independently (Wood
et al., 1976; Vygotsky, 1978; Harris and Pressley,
1991). Inspired by this, we devise an approach
to automatically detect the mastery level of LLM
and provide knowledge as scaffolding support if
the question is beyond the current capability of
LLM. Figure 2 shows the overall architecture of
this approach, which is a pipeline framework, in-
cluding a mastery level verifier, a metaphor knowl-
edge scaffolding module, and a filtering module.
Appendix B gives the pseudocode of scaffolding
support based on mastery level of LLM.

Mastery Level Verifier When humans are con-
fused or lack confidence in answering a question,
they tend to provide inconsistent responses when
they are asked the same question multiple times
(Schaeffer and Presser, 2003), as they may simply
guess. Inspired by this observation, we propose the
mastery level verifier by examining the consistency
of the answers that the LLM provides to estimate
the LLM’s mastery level. For the i-th fact, given
the scaffolding question prompt pi, the set of inputs
Xi = {x(i,1), x(i,2), . . . , x(i,Ni)} for this question,
and an LLM denoted asM, our framework gener-
ates the answer ai formulated as

ai =M(pi∥Xi), (1)

where Ni is the number of inputs, and we perform
Eq. (1) for No times with temperature tp, yielding
a set of answers Ai = {a(i,1), a(i,2), . . . , a(i,No)}.
rc ∈ (0.5, 1] is the consistency ratio and nmin =
⌊No× rc +0.5⌋ is the minimum number of consis-
tent answers, where ⌊·⌋ denotes the floor function.
The specific designs of our verifier for different
reasoning processes are as follows:

• Forward Reasoning: We use T5 (Raffel
et al., 2020) to calculate a semantic tex-
tual similarity score between every answer
pair in Ai, and obtain the similarity matrix
SNo×No . If there exists a submatrix B =
S[j1, j2, . . . , jn; j1, j2, . . . , jn] and s ≥ smin

for ∀s ∈ B, where {j1, j2, . . . , jn} repre-
sents the indices of the n selected answers,
n ≥ nmin, and smin is the semantic similar-
ity threshold, we obtain the set of consistent
answers Ac

i = {a(i,j1), a(i,j2), . . . , a(i,jn)}.

• Relation Reasoning: We first project the an-
swers into “Yes”, “No”, or “Uncertain” with
rules. If there exists a subset of answers
Ac

i = {a(i,j1), a(i,j2), . . . , a(i,jn)} and all ele-
ments inAc

i can be projected into the same an-
swer (“Yes” or “No”), where {j1, j2, . . . , jn}
represents the indices of the n selected an-
swers, and n ≥ nmin, we regard Ac

i as the set
of consistent answers.

If there exist consistent answers Ac
i , we regard the

question falls within the mastery level of LLM; oth-
erwise, the question is beyond the LLM’s ability.

Metaphor Knowledge Scaffolding If the scaf-
folding question pi surpasses the mastery level of
the LLM, this module provides a scaffolding knowl-
edge prompt bi from the metaphor knowledge base
(KB) to help the LLM answer this question. The
detail of metaphor KB is shown in Appendix B.
Given the scaffolding question prompt pi, inputs
Xi = {x(i,1), x(i,2), . . . , x(i,Ni)} for this question,
scaffolding knowledge prompt bi, and the LLM
M, the metaphor knowledge scaffolding module
generates the answer asi , which is formulated as

asi =M(pi∥Xi∥bi). (2)

We perform Eq. (2) for Nk times with temper-
ature tp resulting in a set of outputs As

i =
{as(i,1), as(i,2), . . . , as(i,Nk)

}.
Filtering We randomly select one answer from
the remaining answers of As

i after denoising or Ac
i

as the final answer aoi .

4.4 Classification
Based on all the final reasoning answers of the
LLM, we can construct an instantiated knowledge
graph Ĝ for the original input sentence and a word
within the sentence. If the structure of Ĝ is identical
to that of G, we label this instance as metaphorical;
otherwise, we label it as literal.

5 Experiments

5.1 Datasets
We conducted experiments on two publicly avail-
able metaphor datasets: (1) MOH-X (Mohammad
et al., 2016) comprises 647 sentences, where only
a single verb is annotated as metaphorical or lit-
eral in each sentence; (2) TroFi (Birke and Sarkar,
2006) is another metaphor detection dataset, col-
lected from 1987-1989 Wall Street Journal Corpus.
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Dataset #Instance %Met. Avg. L #Samp

MOH-X 647 48.7 8.0 300
TroFi 3737 43.5 28.3 300

Table 1: Statistics of datasets. #Instance represents the
number of all the instances. %Met. represents the per-
centage of metaphorical instances. Avg. L denotes the
average length of instances. #Samp denotes the number
of randomly sampled instances utilized for evaluation.

We sampled 300 balanced instances from MOH-X
and 300 balanced instances from TroFi for testing.
Table 1 shows the statistics of datasets.

5.2 Baseline Methods

We use representative methods for LLM-based
complex reasoning as baselines, including the stan-
dard zero-shot method, automatic chain-of-thought
methods, and chain-of-thought enhancement meth-
ods, which are as follows: (1) Standard zero-shot
(Wei et al., 2021) prompts the LLM to provide
answers directly in a zero-shot manner; (2) Zero-
shot CoT (Kojima et al., 2022) concatenates the
question prompt with a simple trigger sentence (i.e.
“Let’s think step by step”) encouraging LLM to gen-
erate the reasoning process in a zero-shot manner;
(3) Plan-and-solve (Wang et al., 2023a) designs a
prompt aimed at guiding LLM to solve the prob-
lem by breaking the task into smaller subtasks, and
then implementing the devised plan; (4) Self-refine
(Madaan et al., 2023) improves initial outputs from
LLM through iterative feedback and refinement;
(5) Self-consistency (Wang et al., 2023c) selects
the most consistent answer through majority voting
among sampled reasoning chains; (6) Least-to-
most (Zhou et al., 2023) initially decomposes the
question into sub-questions in a top-down manner
and then addresses each sub-question.

We also use the SOTA methods for metaphor
detection as strong baselines, which are as follows:
(1) MelBERT (Choi et al., 2021) leverages con-
textualized information inspired by MIP and SPV
for metaphor detection; (2) MisNet (Zhang and
Liu, 2022) which incorporates MIP and SPV into
their linguistics enhanced network; (3) AdMul
(Zhang and Liu, 2023) is the SOTA method for
metaphor detection, which employs a multi-task
learning framework to transfer knowledge from ba-
sic sense discrimination to metaphor detection via
adversarial training. We use these methods trained
on a large metaphor dataset VUA All (Leong et al.,

2018) to perform zero-shot transfer on our datasets.

5.3 Implementation Details

We employ the accuracy and macro-average F1 for
evaluation and report the mean and standard devi-
ation of 3 runs in our experiments. The OpenAI
GPT-3.5 (gpt-3.5-turbo-0613)1 serves as the LLM
in our experiments. The details of rules to filter
answers in our method are shown in Appendix B.
The prompt design for the baselines and other im-
plementation details are shown in Appendix C.2

5.4 Main Results

Comparison with Baselines Table 2 shows the
comparative results between our methods and base-
lines. Our methods guided by MIP and CMT
achieve significant improvements over all the rep-
resentative LLM-based methods in complex rea-
soning, which verifies the effectiveness of our scaf-
folding instruction framework for LLM-enabled
metaphor reasoning. Least-to-most, tackling prob-
lems through sub-questions, outperforms other
baselines on MOH-X. Zero-shot CoT, encourag-
ing LLM to think step by step, achieves better re-
sults than other baselines on TroFi. Both of these
methods guide LLM to tackle problems step by
step, indicating the necessity of deep and sequen-
tial thinking in metaphor reasoning.

Compared with SOTA methods in metaphor de-
tection, our method guided by CMT outperforms
them across all datasets, and our method guided by
MIP also achieves better performances on TroFi.
These results further verify the effectiveness of our
method. Although MelBERT and MisNet design
their networks under the guidance of metaphor the-
ories and fine-tune pre-trained models for metaphor
detection, they rely on capturing surface-level clues
in these theories and fail to capture the underlying
metaphor reasoning process reflected in these theo-
ries. This limitation results in our method guided
by MIP and CMT achieving significant improve-
ments over MelBERT and MisNet.

Comparison between Metaphor Theories The
experimental results in Table 2 indicate that our
method guided by SPV performs worse compared
to our methods guided by MIP and CMT. One pos-
sible reason is that as some metaphorical usages be-
come prevalent over time, SPV, relying on data fre-

1https://platform.openai.com/docs/models/gpt-3-5
2Our codes are available at https://github.com/

TIAN-viola/TSI.

7744

https://github.com/TIAN-viola/TSI
https://github.com/TIAN-viola/TSI


Method MOH-X TroFi
F1 Acc. F1 Acc.

Methods in LLM-based complex reasoning
Standard zero-shot (Wei et al., 2021) 66.43 ± 1.45 69.11 ± 1.29 58.58 ± 1.01 61.22 ± 0.95
Zero-shot CoT (Kojima et al., 2022) 70.97 ± 0.37 71.22 ± 0.32 64.18 ± 1.07 64.78 ± 0.95
Plan-and-Solve (Wang et al., 2023a) 54.27 ± 2.73 57.89 ± 2.01 58.13 ± 2.29 58.33 ± 2.23
Self-refine (Madaan et al., 2023) 64.06 ± 0.37 67.67 ± 0.27 57.27 ± 0.22 60.89 ± 0.16
Self-consistency (Wang et al., 2023c) 70.65 ± 1.58 72.22 ± 1.50 60.30 ± 0.76 61.56 ± 0.68
Least-to-most (Zhou et al., 2023) 74.43 ± 1.27 75.00 ± 1.25 63.88 ± 3.16 64.11 ± 3.03
Methods in metaphor detection (zero-shot transfer)
MelBERT (Choi et al., 2021) 77.88 ± 0.83 77.89 ± 0.83 62.36 ± 1.51 62.89 ± 1.29
MisNet (Zhang and Liu, 2022) 77.08 ± 1.12 77.11 ± 1.13 62.01 ± 0.64 62.67 ± 0.54
AdMul (Zhang and Liu, 2023) 79.74 ± 0.44 79.89 ± 0.42 60.54 ± 1.43 62.67 ± 0.98
Our methods guided by different metaphor theories
TSI (SPV) 74.22 ± 1.95 74.33 ± 1.96 51.93 ± 1.60 56.22 ± 1.03
TSI (MIP) 79.39 ± 0.35 79.44 ± 0.31 65.60 ± 1.08 65.89 ± 1.03
TSI (CMT) 82.59 ± 2.22 82.93 ± 1.94 66.07 ± 1.11 66.89 ± 1.13

Table 2: Comparison between our methods and baselines. The best results are highlighted in bold font. The best
results for baselines in LLM-based complex reasoning and those in metaphor detection are underlined

Variant MOH-X TroFi
F1 Acc. F1 Acc.

TSI (SPV) 74.22 ± 1.95 74.33 ± 1.96 51.93 ± 1.60 56.22 ± 1.03
w/o Metaphor Knowledge Scaffolding 73.08 ± 1.30 73.22 ± 1.34 50.94 ± 1.54 55.56 ± 1.26
w/o Mastery Level Verifier 72.30 ± 1.58 72.44 ± 1.59 50.13 ± 1.17 55.11 ± 0.96
w/o Metaphor Knowledge Graph 69.11 ± 0.25 69.44 ± 0.31 51.78 ± 1.00 53.33 ± 0.72
TSI (MIP) 79.39 ± 0.35 79.44 ± 0.31 65.60 ± 1.08 65.89 ± 1.03
w/o Metaphor Knowledge Scaffolding 70.36 ± 1.30 71.33 ± 1.19 65.40 ± 0.91 65.78 ± 0.63
w/o Mastery Level Verifier 69.86 ± 0.72 71.00 ± 0.82 65.16 ± 0.40 65.22 ± 0.42
w/o Metaphor Knowledge Graph 69.11 ± 0.25 69.44 ± 0.31 58.69 ± 0.87 58.78 ± 0.83
TSI (CMT) 82.59 ± 2.22 82.93 ± 1.94 66.07 ± 1.11 66.89 ± 1.13
w/o Metaphor Knowledge Scaffolding 79.11 ± 0.69 79.11 ± 0.68 64.28 ± 0.15 65.33 ± 0.27
w/o Mastery Level Verifier 79.07 ± 0.53 79.11 ± 0.57 63.43 ± 1.05 64.67 ± 0.98
w/o Metaphor Knowledge Graph 75.55 ± 1.77 76.11 ± 1.73 62.50 ± 2.32 62.63 ± 2.10

Table 3: Experimental results of ablation study.

quency rather than semantic essence, tend to lead
our method to wrong results on such metaphorical
usages. In addition, our method using MIP per-
forms better than our SPV guided method. This im-
provement seems to benefit from the fact that under-
standing contextual meaning is a strength of LLM,
which is an important step in our method guided by
MIP. In contrast to SPV and MIP, which analyze
metaphor at the linguistic level, CMT mainly lever-
ages source and target domains to explain implicit
comparisons in metaphors reflected in human cog-
nition, which seems to contribute to the superior
performances of our method guided by CMT across
all datasets. These results also indicate the poten-
tial of the comprehensive perspectives in metaphor
theories, especially CMT, for enhancing computa-
tional work on metaphor.

5.5 Ablation Study

We conduct the ablation study to evaluate the im-
pact of components in our methods, using the
following variants: (a) w/o Metaphor Knowl-
edge Scaffolding removes the metaphor knowl-
edge scaffolding module in our method from our
methods; (b) w/o Mastery Level Verifier ablates
mastery level verifier and its subsequent metaphor
knowledge scaffolding module; (c) w/o Metaphor
Knowledge Graph removes the metaphor KG and
presents LLM with a single question prompt. This
prompt comprises a description of key ideas in the
metaphor theory and a direct query about whether
the word in the sentence is metaphorical, templates
of which are shown in Appendix C.

Table 3 shows the results of our ablation study.
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Figure 3: Results of our methods with different numbers
of answers generated by LLM on MOH-X and TroFi.
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Figure 4: Results of our methods with different consis-
tency ratios on MOH-X and TroFi.

Removing the metaphor knowledge scaffolding
module reduces the performance, thus verifying the
effectiveness of the knowledge base we provide in
our method. Furthermore, we remove the mastery
level verifier from our methods, resulting in signif-
icant performance declines across all the datasets
and theories. These variants demonstrate the ef-
fectiveness of the approach to provide scaffolding
support based on detecting the mastery level of
LLM in our method. In addition, to evaluate the
effectiveness of the metaphor KG representation,
we directly ablate it and present LLM with the
theory description and a query to ask whether the
word in the sentence is metaphorical. This variant
uses the in-context learning ability of LLM to learn
metaphor theory, which leads to sharp drops in
performance across all the datasets, indicating that
LLM can learn a metaphor theory better through
the representation of metaphor knowledge graphs
rather than theory descriptions.

5.6 Hyper-parameter Analysis

Number of Answers To explore the impact of
the number of answers generated by LLM (denoted
as No) in our methods, we experiment on varying
No from 1 to 11. The experimental results in Fig-
ure 3 show that increasing No initially enhances
the performance, followed by a plateau or marginal
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Figure 5: Results of our methods with different semantic
similarity thresholds on MOH-X and TroFi.

decline of the performance.

Consistency Ratio To analyze the impact of the
consistency ratio rc in our mastery level verifier,
we conduct experiments varying rc from 0.6 to 1.
The experimental results in Figure 4 indicate that
a high consistency ratio could bring performance
drops for the reason that an appropriate ratio allows
LLM to make a slight number of incorrect answers.

Semantic Similarity Threshold To evaluate the
influence of semantic similarity threshold smin in
our mastery level verifier, we conduct experiments
on varying the threshold from 1.5 to 5.0, where a
higher score indicates greater semantic similarity.
From the experimental results in Figure 5, we can
see that our method guided by CMT achieves the
optimal performance at lower thresholds, while our
method guided by MIP excels with larger thresh-
olds. This phenomenon might be attributed to the
variance in the quality of knowledge presented in
the metaphor knowledge scaffolding module. The
knowledge derived from MIP seems to be more
comprehensible for LLM in comparison to the
knowledge derived from CMT.

6 Conclusion

In this paper, we propose a theory guided scaf-
folding instruction framework for LLM-enabled
metaphor reasoning. Inspired by a pedagogical
strategy scaffolding instruction, our framework in-
structs an LLM to infer the metaphor reasoning
process using questioning and support as scaffold-
ing guided by a metaphor theory. Experimental
results show that our framework outperforms the
previous LLM-based complex reasoning methods
and the SOTA methods for metaphor detection, ver-
ifying the effectiveness of our proposed framework
and indicating the facilitation of metaphor and in-
struction theories in LLM-enabled reasoning.
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Limitations

Our work has some limitations. Firstly, we are
unable to evaluate our framework on large-scale
test sets due to the costs of experimentation with
LLMs, thus we obtain balanced randomly sampled
test datasets for the evaluation of this work. In
addition, we simplify metaphor theories by focus-
ing on fundamental concepts, their relations and
corresponding knowledge in our method. How-
ever, the metaphor theories that we use, especially
CMT, contain rich contexts, which are worth fur-
ther exploration in LLM-enabled metaphor reason-
ing. Compared to the current pretrained model
based work on metaphor detection, our work
can be viewed as opening a new path to the
theory-directed, instruction-oriented LLM-based
metaphor understanding and reasoning. To this end,
we hope our work can promote future research on
further enriching knowledge representation based
on the comprehensive perspectives in metaphor
theories, forming a more in-depth understanding
of metaphors and incorporating it into the LLM-
enabled reasoning process through novel method-
ologies, by peer researchers and ourselves.
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A Licenses of Scientific Artifacts

The OpenAI API for gpt-3.5-turbo-0613 is avail-
able at https://openai.com/api/. The license
of T5 (Raffel et al., 2020) is Apache-2.0 and the li-
cense of MOH-X (Mohammad et al., 2016) is avail-
able at https://saifmohammad.com/WebPages/
SentimentEmotionLabeledData.html. The li-
cense of TroFi (Birke and Sarkar, 2006) is
available at https://www2.cs.sfu.ca/~anoop/
students/jbirke/LICENSE.html.

B Method Details

Metaphor Knowledge Graph Construction To
facilitate theory guidance and computational con-
struct for LLM-based metaphor reasoning, we
make the compromise and simplify the metaphor
theory, retaining the fundamental concepts and
their relations in our metaphor knowledge graph
representations. Specifically, Figure 6 illustrates
the details of metaphor knowledge graphs con-
structed based on the computational elements and
relations, as well as the simplified theories, includ-
ing CMT, MIP, and SPV in our methods.

Prompt Design for Scaffolding Questions Ta-
ble 4 summarizes a list of template prompts for
scaffolding questions P in our methods using dif-
ferent metaphor theories.

Scaffolding Support based on Mastery Level of
LLM Table 5 shows the rules in our methods to
project the answers of LLM for the relation rea-
soning process into “Yes”, “No”, or “Uncertain”
in scaffolding support based on the mastery level
module. If there are any candidate phrases in Ta-
ble 5 that appear in the answer after converting all
the uppercase characters in the answer string into
lowercase characters, we project this answer into
the corresponding category. If none of these can-
didate phrases appear in the answer, we check the
answer manually. Table 6 shows details about the
template prompts of the metaphor knowledge base
in the metaphor knowledge scaffolding module in
our methods using different metaphor theories. Al-
gorithm 1 is the pseudocode of scaffolding support
based on mastery level of LLM.

Filtering We first convert all the uppercase char-
acters in the answer string into lowercase characters
and then filter out the uncertain answers generated
from the metaphor knowledge scaffolding module
that contains any of the following phrases: “it is
not possible to determine”, “cannot be determined”,
“is uncertain” and “difficult to provide a definitive
answer”.

C Implementation Details

Table 7 shows the hyperparameter values of our
methods in our experiments on different datasets.
We use T5-3B1 to calculate the semantic textual
similarity score between the answer pair. The num-
ber of sampled reasoning paths for the baseline
Self-consistency is 40. Table 8 summarizes a list of
prompts for baselines in our experiments. Table 9 il-
lustrates the template prompts for the variant of w/o
Metaphor Knowledge Graph in the ablation study.
If there is no knowledge prompt for a question, we
just use the majority voter to replace scaffolding
support based on mastery level of LLM module and
get the final answer for this question. The system
prompt that we use for GPT-3.5 in the experiments
of our methods and baselines is as follows.

1https://huggingface.co/t5-3b
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Figure 6: Metaphor knowledge graphs guided by CMT, MIP and SPV.

Theory Question Template Prompt

CMT

Question p1
The source domain is a conceptual domain containing concepts that are typically concrete, tangible, and familiar
to us. What is the source domain implied by the [POS] "[word]"?

Question p2
The target domain is a conceptual domain that contains concepts that are typically vague and abstract. In the
sentence "[sentence]", what is the target domain that the word "[word]" tries to describe?

Question p3

Here is a sentence "[sentence]". Now we know the source domain implied by the [POS] "[word]" and the target
domain that the word "[word]" tries to describe in this sentence.
[answer 1]
[answer 2]
Based on the above information, decide whether the source domain is different from the target domain?

MIP

Question p1 What is the basic meaning of the [POS] "[word]"?
Question p2 In the sentence "[sentence]", what is the contextual meaning of the word "[word]"?

Question p3

Here is a sentence "[sentence]". Now we know the basic meaning of the [POS] "[word]" and the contextual
meaning of the word "[word]".
[answer 1]
[answer 2]
Based on above information, decide whether the contextual meaning of the word "[word]" is different from its
basic meaning.

SPV

Question p1 Please provide examples of the frequent usage of the [POS] "[word]".

Question p2

Now we know examples of the frequent usage of the [POS] "[word]".
[answer 1]
In the sentence "[sentence]", decide whether the context of the word "[word]" is different from its contexts in the
above sentences.

Table 4: Template prompts for scaffolding questions P . [sentence] and [word] denote the input slots for the sentence
in an instance and the target word within this sentence, respectively. [POS] denotes the input slot of the part of
speech of the target word. [answer i] denotes the input slot for the LLM’s final answer to question pi.

You are ChatGPT, a large language model
trained by OpenAI. Answer as concisely as
possible.
Knowledge cutoff: 2021-09
Current date: 2023-10-15
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Algorithm 1 Scaffolding Support based on Mastery Level of LLM

Require: (1)M: an LLM; (2) Combs(L, k): obtains combinations of all elements within a set L taken
k elements at a time.

Input: (1) Ai: set of No answers ofM for the i-th scaffolding question prompt pi; (2) rc: consistency
ratio; (3) smin: semantic similarity threshold; (4) bi: the scaffolding knowledge prompt for pi; (5) Xi:
inputs for pi.

Output: aoi : final answer for the i-th scaffolding question pi.
1: Compute nmin = ⌊No × rc + 0.5⌋ ▷ Mastery Level Verifier
2: if pi is for forward reasoning then
3: Compute SNo×No with semantic textual similarity scores between every pair of answers in Ai

4: for all j ← No to nmin do
5: for all Ij ∈ Combs([1, . . . , No], j) do
6: if ∀s ∈ S[Ij , Ij ], s ≥ smin then
7: Ac

i = Ai[Ij ], break

8: if Ac
i exists then break

9: else
10: Obtain Ap

i by project answers in Ai to “Yes”, “No” or “Uncertain” with rules
11: if number of “Yes” in Ap

i ≥ nmin then
12: Retrieve the index list I of element “Yes” within Ap

i

13: Ac
i = Ai[I]

14: else
15: if number of “No” in Ap

i ≥ nmin then
16: Retrieve the index list I of element “No” within Ap

i

17: Ac
i = Ai[I]

18: if Ac
i does not exists then ▷ Metaphor Knowledge Scaffolding

19: Compute asi =M(pi∥Xi∥bi) for Nk times ▷ Eq. (2)
20: Obtain As

i by denoising answers in {as(i,1), as(i,2), . . . , as(i,Nk)
}

21: Sample an answer aoi from As
i ▷ Filtering

22: else
23: Sample an answer aoi from Ac

i ▷ Filtering
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Answer Category Candidate Phrase

Answer for
question q3

(CMT)

Yes

Yes,; Yes.; is/are (indeed/likely/most likely/conceptually/generally/inherently/potentially/
fundamentally) different; can/might/seems to/appears to/may/could/would (indeed) be
(considered) different/distinct; may/appears to/might/can/could/does/would differ; differs
from; do not align; are/is not (inherently/conceptually/generally/potentially) the same;
the source (domain) and (the) target domains/domain differ

No

No.; No,; is/are (likely/conceptually/generally/inherently/potentially) the same;
can/might/seems to/appears to/may/could/would (indeed) be (considered)
the same; is/are (likely/conceptually/generally/inherently/potentially/closely)
similar/aligned/related; is/are not indeed/likely/most
(likely/conceptually/generally/inherently/potentially/fundamentally) different/disinct

Uncertain
it’s difficult to provide a definitive answer; it is not possible to determine; without further
context/information/clarification; need further clarification/context

Answer for
question q3

(MIP)

Yes

Yes,; Yes.; is/are (indeed/likely/most likely/conceptually/generally/inherently/potentially/
fundamentally) different; can/might/seems to/appears to/may/could/would (indeed) be
(considered) different/distinct; may/appears to/might/can/could/does/would differ; dif-
fers from; do not align; are/is not (inherently/conceptually/generally/potentially) the
same; goes beyond the/its basic meaning; diverges from; can/might/seems to/appears
to/may/could/would (indeed) deviate

No

No.; No,; is/are (likely/conceptually/generally/inherently/potentially) the
same/equivalent; can/might/seems to/appears to/may/could/would (indeed) be (con-
sidered) the same; is/are (likely/conceptually/generally/inherently/potentially/closely)
similar/aligned/related; is/are not indeed/likely/most
(likely/conceptually/generally/inherently/potentially/fundamentally) different/distinct;
corresponds with its/the basic meaning; is used in its/the basic meaning

Uncertain
it’s difficult to provide a definitive answer; it is not possible to determine; without further
context/information/clarification; need further clarification/context

Answer for
question q2

(SPV)

Yes

Yes,; Yes.; is/are (indeed/likely/most likely/conceptually/generally/inherently/potentially/
fundamentally) different; can/might/seems to/appears to/may/could/would (indeed) be
(considered) different/distinct; may/appears to/might/can/could/does/would differ; differs
from; do not align; are/is not (inherently/conceptually/generally/potentially) the same;
does suggest a different usage; implies a different context; is used differently in this
context

No

No.; No,; is/are (likely/conceptually/generally/inherently/potentially) the same;
can/might/seems to/appears to/may/could/would (indeed) be (considered)
the same; is/are (likely/conceptually/generally/inherently/potentially/closely)
similar/aligned/related; is/are not indeed/likely/most
(likely/conceptually/generally/inherently/potentially/fundamentally) different/distinct;
would represent/be a similar usage; can/might/seems to/appears to/may/could/would
(indeed) be consistent with its frequent usage; is used in the same context; in a context
similar to its frequent usage; falls under the first/second/third example; is related to its
usage in the first/second/third example

Uncertain
it’s difficult to provide a definitive answer; it is not possible to determine; without further
context/information/clarification; need further clarification/context

Table 5: Rules to project the answers of LLM in the relation reasoning process into “Yes”, “No” or “Uncertain”.
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Theory Knowledge Template Prompt

CMT

Knowledge b1

1. The source domain is the concept area from which the metaphor is drawn.
2. The concepts in source domain are typically concrete.
3. The source domain is the domain of experience or concepts that are more concrete,
tangible, and familiar to us. It serves as the basis for understanding or talking about a
less concrete or abstract concept, which is referred to as the target domain. The source
domain provides the metaphorical elements or framework through which we comprehend
the target domain.
4. The source domain is a conceptual domain. Conceptual domains are sets of value
meanings (presented using a list of concepts or a description of the members of the set)
and are used to describe the set of concepts that can be represented within a data element.
5. For example, in the metaphor "I’ve invested a lot of time in her," the source domain is
"money" and we draw upon our understanding of money to make sense of the concept of
time in terms of value, efficiency, and spending.
Taking the knowledge provided above into account, please answer the following question:

Knowledge b2

1. Target domain is used for the concept area to which the metaphor is applied.
2. The concepts in the target domain are typically vague and abstract.
3. The target domain is a conceptual domain. Conceptual domains are sets of value
meanings (presented using a list of concepts or a description of the members of the set)
and are used to describe the set of concepts that can be represented within a data element.
4. For example, in the metaphor "I’ve invested a lot of time in her," the target domain is
"time", which is being conceptualized in terms of the source domain of money.
Taking the knowledge provided above into account, please answer the following question:

MIP

Knowledge b1

The basic meaning can be found in general users’ dictionaries. The basic meaning is not
necessarily the most frequent meaning of the lexical unit. The basic meaning tends to be
- More concrete; what they evoke is easier to imagine, see, hear, feel, smell, and taste.
- Related to bodily action.
- More precise (as opposed to vague)
- Historically older.
Taking the knowledge provided above into account, please answer the following question:

Knowledge b2

The contextual meaning means the meaning of the lexical unit in context, that is, how the
lexical unit applies to an entity, relation, or attribute in the situation evoked by the text.
Take into account what comes before and after the lexical unit. The contextual meaning
may be conventionalized and will thus be found in a general users’ dictionary. It may
also be novel or specialized and will thus not be found in a general users’ dictionary.
Taking the knowledge provided above into account, please answer the following question:

Knowledge b3
If the basic meaning of a word contrasts with its contextual meaning, there is a difference
as well as comparison between the contextual and a more basic meaning.
Taking the knowledge provided above into account, please answer the following question:

SPV

Knowledge b1
The phrase "frequent usage of a word" refers to the regular and common application of a
word.

Knowledge b2

In the theory of selectional preference violation, Wilks suggests that metaphor represents
a violation of combinatory norms in the linguistic context and that metaphorical expres-
sions can be detected via such violation.
Taking the knowledge provided above into account, please answer the following question:

Table 6: Prompt design for scaffolding knowledge based on metaphor theories in our methods.

Notation
Our method (CMT) Our method (MIP) Our method (SPV)

Description
MOH-X TroFi MOH-X TroFi MOH-X TroFi

No 5 9 7 5 5 5 number of answers generated by LLM for a question
smin 2.0 2.5 5.0 3.5 1.5 2.5 semantic similarity threshold
rc 0.8 0.6 0.6 0.6 0.8 0.6 consistency ratio in mastery level verifier
tp 1 1 1 1 1 1 temperature of GPT 3.5
Nk 3 3 3 3 3 3 number of answers of LLM in metaphor knowledge

scaffolding

Table 7: Hyper-parameter values in our proposed methods.
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Method Template Prompt

Standard zero-shot Decide whether the word "[word]" in the sentence "[sentence]" is used metaphorically.

Zero-shot CoT
Decide whether the word "[word]" in the sentence "[sentence]" is used metaphorically. Let’s think
step by step.

Plan-and-Solve
Decide whether the word "[word]" in the sentence "[sentence]" is used metaphorically. Let’s first
understand the problem and devise a plan to solve the problem. Then, let’s carry out the plan and
solve the problem step by step.

Self-refine

Prompt for Initial Generation:
Decide whether the word "[word]" in the sentence "[sentence]" is used metaphorically.

Prompt for Feedback:
Can you give suggestions to improve the above answer? If the answer is perfect, just return
"NONE".

Prompt for Refine:
Okay, let’s use this feedback to improve the above answer.

Self-consistency Decide whether the word "[word]" in the sentence "[sentence]" is used metaphorically.

Least-to-most

Prompt for Stage 1: Decompose Question into subquestions
Q: Is the word "[word]" in the sentence "[sentence]" used metaphorically?
A: Let’s break down this problem into subquestions:

Prompt for Stage 2: Sequentially Solve Subquestions
Q: Is the word "[word]" in the sentence "[sentence]" used metaphorically?
A: Let’s break down this problem into subquestions:
[answer]
Q: Please answer the above subquestions and give the final answer for the initial question "Is the
word ‘[word]’ in the sentence ‘[sentence]’ used metaphorically?"

Table 8: Prompt design for LLM-based baselines. [sentence] denotes the input slot for the sentence in an instance
from the test dataset and [word] denotes the input slot for the target word within this sentence. [answer] denotes the
input slot for the answer of LLM to the previous question.

Theory Template Prompt

CMT

According to conceptual metaphor theory, metaphor facilitates a mapping of attributes or characteristics
from the source domain to the target domain. The source domain is a conceptual domain containing
concepts that are typically concrete, tangible, and familiar to us. The target domain is a conceptual domain
containing concepts that are typically vague and abstract. Based on the above information, answer the
following question:
In the sentence, "[sentence]", decide whether the word "[word]" is used metaphorically.

MIP

According to metaphor identification procedure, a metaphor is identified if the contextual meaning of
the target word is different from its more basic meaning. Based on the above information, answer the
following question:
In the sentence, "[sentence]", decide whether the word "[word]" is used metaphorically.

SPV

According to selectional preference violation, a metaphor is identified by noticing the difference between
the context of a target word and its frequently used contexts. Based on the above information, answer the
following question:
In the sentence, "[sentence]", decide whether the word "[word]" is used metaphorically.

Table 9: Prompt design for the variant of w/o Metaphor Knowledge Graph. [sentence] and [word] denote the input
slots for the sentence in an instance and the target word within this sentence, respectively.
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