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Abstract

Text classification systems have continuously
improved in performance over the years. How-
ever, nearly all current SOTA classifiers have a
similar shortcoming, they process text in a hor-
izontal manner. Vertically written words will
not be recognized by a classifier. In contrast,
humans are easily able to recognize and read
words written both horizontally and vertically.
Hence, a human adversary could write problem-
atic words vertically and the meaning would
still be preserved to other humans. We simulate
such an attack, VertAttack. VertAttack identifies
which words a classifier is reliant on and then
rewrites those words vertically. We find that
VertAttack is able to greatly drop the accuracy
of 4 different transformer models on 5 datasets.
For example, on the SST2 dataset, VertAttack
is able to drop RoBERTa’s accuracy from 94 to
13%. Furthermore, since VertAttack does not
replace the word, meaning is easily preserved.
We verify this via a human study and find that
crowdworkers are able to correctly label 77%
perturbed texts perturbed, compared to 81% of
the original texts. We believe VertAttack offers
a look into how humans might circumvent clas-
sifiers in the future and thus inspire a look into
more robust algorithms.

1 Introduction

Automatic text classifiers have seen a continual in-
crease in helping websites moderate and monitor
products or people. Though they are helpful to re-
duce the work load of humans, they can be subject
to problems like bias (Chuang et al., 2021; Zhou
et al., 2021) and are vulnerable to adversarial at-
tacks (Lei et al., 2022; Le et al., 2022). Research
into text adversarial attacks has been on the rise in
recent years. The reasons range from testing clas-
sifiers’ robustness (Wang et al., 2022) to privacy
concerns (Xie and Hong, 2022).

Current state-of-the-art (SOTA) attacks largely
fall into character based attacks and word-based

Figure 1: Examples of texts perturbed by VertAttack.
Humans can still understand the vertically written words,
while classifiers struggle to read.

attacks. Character-based attacks change individ-
ual characters, by flipping character, introducing
or removing whitespace (Gröndahl et al., 2018), or
replacing characters with visually similar charac-
ters (Eger et al., 2019). Word-based attacks re-
place words with similar words which are less
known to the target classifier (Li et al., 2020; Wang
et al., 2022). One weakness of current SOTA at-
tacks is that they constrain themselves to horizontal
changes. That is, the final result is still read in a
left-to-right (English) manner. This is a disadvan-
tage because the attacker restricts themselves to the
same domain as the classifier which is also only
able to read text horizontally.

Humans have the ability to read text in multiple
directions, not just horizontally. Thus, a human
attacker who wants to communicate a message to
others, while avoiding a website automatically clas-
sifying that text, could write the words vertically
and the meaning would still be preserved. We sim-



ulate this with VertAttack.
VertAttack exploits the current limitation of clas-

sifiers’ inability to read text vertically. Specifically,
VertAttack perturbs input text by changing infor-
mation rich words from horizontally to vertically
written. Our research makes the following contri-
butions:

1. Propose an attack (VertAttack) to mimic how
humans may subvert automatic classifiers. This
attack exploits current classifiers’ glaring weakness
(inability to “read” vertical text).

2. Test VertAttack on 5 datasets, against 4 differ-
ent classifiers. We further examine transferability
of our attack. We find that when VertAttack has
blackbox access to the classifier, it is able to drop
classification accuracy from 83 - 95% down to 1
- 36%. We further compare VertAttack with two
other text attacks, BERT-ATTACK and Textbugger.
We find that, on average, VertAttack is able to drop
classifiers’ accuracy to 36.6% accuracy, which is
lower than BERT-ATTACK (47.5%) and Textbug-
ger (63.2%).

3. Verify VertAttack’s ability to be understood
by humans via qualitative analysis. We find that
humans are able to correctly classify 77% perturbed
texts compared to 81% of the original texts.

4. Investigate initial defenses in terms of whites-
pace removal and find that if VertAttack a classifier
reverses the algorithm it is able to mitigate the at-
tack, but simpler whitespace preprocessing is not
as effective.

5. Enhance VertAttack by allowing it to add
in chaff to further disguise the text. This chaff
greatly affects the reversal defense. Furthermore,
we investigate how VertAttack affects classifiers
using OCR to extract text from images.

The success of VertAttack shows a vulnerability
in classifiers which humans may leverage to easily
defeat them. We share code and perturbed texts for
future research1.

2 Threat Model

The examined threat model follows from prior re-
search (Formento et al., 2023; Le et al., 2022; Deng
et al., 2022). We assume blackbox knowledge of a
classifier. That is, VertAttack has no internal knowl-
edge of the classifier, but has access to the proba-
bilities and label output by the model. VertAttack
uses this for feedback (Section 4.1).

1We make our code and generated texts available at
https://github.com/JonRusert/VertAttack

With prior research, there is an assumption that
the feedback classifier is the same as the target
classifier. However, websites rarely share the exact
classifier used for moderating texts. Thus, we also
examine the cases of where the feedback classifier
differs from the target classifier as a transferability
problem.

3 Attack Goals

Based on prior research (Lei et al., 2022; Zang
et al., 2020; Li et al., 2019) VertAttack has 2 goals:
1. Modify text in such a way to cause an automated
classifier to fail (misclassify). 2. Ensure modified
retains the original meaning to humans. Thus, the
attack is similar to obfuscation from classifiers.

Some previous text attack research have made
the argument that attacks should be impercepti-
ble to humans (Dyrmishi et al., 2023). However,
this is not a unanimous requirement from text at-
tacks, as many do not include it as a prerequisite
(Alzantot et al., 2018; Ebrahimi et al., 2018; Eger
et al., 2019; Li et al., 2021a). Furthermore, this
would disqualify nearly all character-level attacks
since humans do not naturally substitute characters
in their writing (beyond mispellings). Finally, as
stated, VertAttack simulates how humans can attack
automated classifiers. Thus, we focus on the two
aforementioned goals.

4 Methodology

Our proposed attack, VertAttack, can be divided
into two main steps: 1) Word Selection, 2) Word
Transformation. A visualization of the method can
be seen in Figure 2.

4.1 Word Selection

Algorithm 1 Word Selection
Input: text
Output: j ← PositionToModify
ScoreOrig ← Classifier(text)
DropMax ← 0, i← 0, j ← 0
while i ̸= len(text) do

Scorew ← Classifier(text/w)
Dropw ← ScoreOrig − Scorew
if Dropw > DropMax then

DropMax ← Dropw
j ← i

end if
i← i+ 1

end while



I really hate this 
restaurant, it 
deserves no love.

Classifier

1. Word Selection

_ really hate this 
restaurant, it 
deserves no love.

I really hate this 
restaurant, it 
deserves no _

…

2. Word Transformation

I really h this restaurant, it 
            a
            t
            e
deserves no love.
            

Check transformed text
I really h this restaurant, it 
            a
            t
            e
deserves n love.
                o 
            

Classifier 
Incorrect?

Yes:
output 
final text

No:
Continue 
modifying

3. Check and Repeat

Figure 2: VertAttack basic overview. A word to transform is first selected from the input text and then transformed
vertically. The classifier assists in providing feedback in the form of class probabilities. The process is repeated
until the classifier misclassifies the text.

First the attack finds which word most helps
the classifier. We employ a greedy search method
(Algorithm 1). In previous work this has been
referred to as word importance (Jin et al., 2020) or
greedy selection (Hsieh et al., 2019). The method
removes one word2 at a time and checks the change
in classification probability from the original text.
Each word is removed and then replaced until all
probabilities are calculated. The word that causes
the highest drop in probability is chosen as the
word to be transformed.

4.2 Word Transformation

Algorithm 2 Word Transformation
Input: text, perturbpositions
Output: textm
#lines ← max length of words to be modified
k ← 0
while k < #lines do

i← 0
while i ̸= len(text) do

if i ∈ perturbpositions then
append text[i][k]

else
append word on first line
or pad spaces equal to word length

end if
append space
i← i+ 1

end while
Add newline char to textm
k ← k + 1

end while

Once a word is selected, it is then transformed
vertically (Algorithm 2). First, the number of lines

2Here a word is defined as a token separated by whitespace.

needed (ie. length of word) for each selected word
is calculated. Next, we iterate through each word
of the original text. If a word is a non-selected
word, then it is simply added to the final text. If the
word is a selected word, then only the character of
the corresponding line is chosen. For example, if
“happy” is selected, and the line number is 2, then
“a” is added to the final text. For all lines that only
consist of whitespace and the vertical characters,
the required whitespace is calculated by the length
of each non-selected word.

Finally, we add a width constraint to the algo-
rithm for practicality. The transformation is only
run on that width (number of words) at a time and
all text is combined at the end. For example, if
there are 100 words and the width constraint is 10,
then only 10 are modified at a time.

Once the transformations are applied, the classi-
fier is queried again to see if the transformed text
causes the classifier to misclassify. If so, the final
text is produced. If not, then the algorithm repeats,
however, this time the words that have been se-
lected already are removed as candidates during
the selection step.

5 Experimental Setup

To test the effectiveness of VertAttack, we evaluate
the attack against several transformer classifiers
across datasets examined in previous attack papers3

(Li et al., 2020; Jin et al., 2020; Ren et al., 2019;
Wang et al., 2022).

3The majority of attacks were run on 56-core 256G proces-
sors. VertAttack was limited to 1 hour for each attacked text,
after 1 hour the attack was noted as failure and no perturba-
tions were made to the text.



5.1 Datasets

We examine 4 binary task datasets and one multi-
class task dataset. Following prior research (Li
et al., 2020), we randomly sampled up to 1000 ex-
amples for each dataset to attack. (QNLI contained
872 examples, thus all were used):

1. AG News - a collection of news articles di-
vided into 4 categories (World, Sports, Business,
Sci/Tech). Average text length is 38 words.

2. SST-2 - Stanford Sentiment Treebank, con-
tains movie reviews labeled for sentiments (posi-
tive/negative) by humans. Average text length is
20 words.

3. CoLA - Corpus of Linguistic Acceptability,
contains English sentences labeled grammatical
correctness. Average text length is 8 words.

4. QNLI - Stanford Question Answering Dataset,
contains question/answer pairs. A classifier must
determine whether the context sentence contains
the answer to the question. Note that we restrict
VertAttack to modify the context sentence only. Av-
erage text length is 28 words.

5. Rotten Tomatoes (RT) - contains movie re-
views from Rotten Tomatoes. Each review is la-
beled as positive or negative. Average text length
is 21 words.

5.2 Classifiers

We examine a combination of up to 4 classifiers
per dataset. At least 3 classifiers are examined per
dataset to measure how well the attack transfers.
We look at a combination of transformer models4

(Morris et al., 2020):
1. BERT (base-uncased) - a fine-tuned version

of BERT (Devlin et al., 2019) on the corresponding
dataset. For example, for AG News, the bert-base-
uncased model was fine-tuned on the AG News
training data.

2. Albert - a fine-tuned version of the AL-
BERT model (Lan et al., 2019). ALBERT has
a smaller memory footprint than BERT, since it
shares weights across layers.

3. RoBERTa - a fine-tuned version of the
RoBERTa model (Liu et al., 2019). RoBERTa has
seen stronger classification results in recent years
than BERT, due to choices made during pretrain-
ing.

4. DistilBERT - a fine-tuned version of Distil-
BERT (Sanh et al., 2020). DistilBERT is a lighter,

4We leverage pretrained models via TextAttack:
https://github.com/QData/TextAttack

Classifiers
Feedback BERT Albert Rob. Disti.

A
G

Orig. 94.2 94.2 94.7 -
BERT 4.7 43.7 25.9 -
Albert 60.2 8.0 31.2 -
Rob. 86.9 79.3 20.2 -

SS
T-

2

Orig. 92.4 92.7 94 -
BERT 12.5 46.7 53.0 -
Albert 53.6 13.4 57.7 -
Rob. 50.2 51.3 13.4 -

C
oL

A

Orig. 81.2 82.9 85.7 82.5
BERT 5.5 29.9 35.4 33.1
Albert 31.6 14.8 20.3 33.7
Rob. 32.4 31.8 1.2 33.5
Disti. 31.6 31.6 45.6 15.5

Q
N

L
I Orig. 90.4 - 91.7 86

BERT 33.5 - 67.5 60.8
Rob. 62.8 - 32.4 63.1
Disti. 64.4 - 67.8 35.6

R
T

Orig. 85.4 84.8 88.6 -
BERT 6.7 48.2 46.3 -
Albert 46 14.7 45.2 -
Rob. 56.3 40.2 25.8 -

Table 1: VertAttack results on datasets, accuracy is
shown. The second column indicates which classifier
was used to give feedback to VertAttack. Orig. = orig-
inal accuracy without any attack. Rob. = RoBERTa,
Disti. = Distilbert.

faster version of BERT which was pretrained using
BERT as a teacher for self-supervision.

5.3 Metrics

To calculate the effectiveness of VertAttack, we
examine 1 quantitative metric and 1 qualitative.
For quantitative, we measure accuracy:

Accuracy =
#correctly_classified

#total_examples
(1)

For qualitative, we measure human ability to un-
derstand the text. Specifically, we leverage crowd-
workers as judges for the perturbed texts. We ask
3 crowdworkers to label each text (for class) and
take the majority vote as a decision.

6 VertAttack Results

Our main VertAttack results are found in Table 15.
The second column indicates which classifier is
leveraged for feedback for VertAttack. We examine
attacks where the feedback and target classifier are
the same (diagonal rows), as well as transferability
of attacks (non diagonal). Note that the former is

5Due to computational intensity of attacks, we opt to test
differ combinations of classifiers on the datasets rather than
every combination on every dataset.



the standard measurement in most attack papers.
We make the following observations:

VertAttack causes large drops to classifier accu-
racy. Our results demonstrate the effectiveness of
VertAttack across datasets and classifiers. Specif-
ically, when examining the cases where the feed-
back classifier is the same as the target classifier,
we see up to 90 point drops. In AG News, VertAt-
tack is able to drop BERT from 94.2% to 4.7%,
Albert from 94.2 to 8.0, and RoBERTa from 94.7
to 20.2, which averages to 83 points. Similar drops
from VertAttack are seen in the other datasets as
well: SST-2 averages 80 points, CoLA averages
74 points, QNLI averages 56 points, and Rotten
Tomatoes averages 71 points. Overall, these results
support VertAttack’s strength in fooling classifica-
tion systems.

VertAttack’s attacks transfer to other classifiers.
Though not as strong, we find VertAttack to be suc-
cessful even in cases of transferability. In the most
effective case (the CoLA datasets), the transfer at-
tacks cause an average drop of 51 points (max: 65,
min: 40.1). These drops are detrimental to text clas-
sifiers’ effectiveness and reliability. Slightly lesser
drops are seen for SST-2, AG News, and Rotten
Tomatoes which causes drops around 40 points on
average. Finally, classifiers on the QNLI dataset
see drops of 25 when the feedback classifier differs.
In even the final cases, the attacks is a hinderance to
classification methods and highlight their inability
to process text as effectively as humans.

QNLI models most resilient to attack. Unlike
the other datasets, which saw at least 1 classifier
drop below 20% classification accuracy, QNLI clas-
sifiers dropped to only 32% in the lowest. This
might be due to the difficulty of attacking multi-
text inputs. We limited VertAttack to only attack
the hypothesis and not the premise. We would most
likely see a drop in accuracy if premise is allowed
to be attacked as well, but we restricted to the hy-
pothesis for a more realistic model where a user is
proposing a hypothesis to a model’s premise.

BERT and DistilBert show strength as most
robust classifiers examined. To investigate re-
silience against VertAttack, we calculate three av-
erages for each classifier, seen in Table 2: 1. The
classifier used by VertAttack for feedback is the
same as the target classifier (Same), 2. The classi-
fier used by VertAttack is different than the target
classifier (Diff.), 3. Inclusion of both 1 and 2 (All).
Each score corresponds to the drop in accuracy

BERT Albert Rob. Disti.
Same 76.1 75.9 72.3 58.7
Diff. 35.7 43.3 45.4 39.06
All 48.3 53.3 53.8 44.7

Table 2: Average drops of VertAttack against the corre-
sponding classifier across all datasets. Three averages
are shown: “Same” indicates the average of the attacks
where the feedback classifier was the same as the at-
tacked. “Diff.” indicate the set of attacks where the
feedback classifier differed from the attacked.“All” is
the average for all drops against the classifier. Bold
values indicate lowest drops.

VertAttack
Actual
+ -

Pr
ed

. + 41 16
- 7 36

Original
Actual
+ -

Pr
ed

. + 40 11
- 8 41

Table 3: Confusion Matrices of human study results.
Participants labeled 100 perturbed RT texts as positive
(+) or negative (-) sentiment. Each text received 3 votes,
a majority vote was taken.

against VertAttack. Thus, for resiliency, classifiers
would like to have a lower drop in accuracy. We
can see that DistilBert has the lowest drops in two
cases (Same, All), while BERT has the lowest for
the third (Diff.). However, BERT is examined in
all 5 datasets, while DistilBert is only examined in
2. Thus, no final decision can be noted on most
resilient between the two.

7 Human Study

To investigate humans’ understanding of VertAt-
tack’s texts, we employed human crowdworkers to
label a sampled set of texts which were perturbed
by VertAttack. Specifically, we randomly sampled
100 of the 1000 texts from the Rotten Tomatoes
dataset. We then asked crowdworkers to read the
text and decide the sentiment of the text (positive
or negative). For each text, we employed 3 crowd-
workers6, and took the majority vote of the labels.
It should be noted that no instructions to read the
texts vertically were given. More information on
the instructions can be found in Appendix A.

The confusion matrix of results is in Table 3.
Humans were able to identify sentiment correctly,
77% of the time, far greater than the 7 - 26% of the
automated classifiers. This confirms that unlike the
automated classifiers, humans are well prepared to
read text in non-traditional manners.

6Amazon Mechanical Turk



For comparison, we also ran the same study with
on the original, unperturbed 100 texts. This is also
in Table 3 under the “Original” subtable. Humans
are able to do slightly better on the unperturbed
texts achieving an accuracy of 81%. However, Ver-
tAttack’s percentage is only 4 points below (77%).
This highlights that human misclassifications on
VertAttack’s texts have more to do with the diffi-
culty of some of the texts rather than due to pertur-
bation.

8 Comparisons with other attacks

To further investigate how VertAttack performs
in the adversarial text space, we compare to two
other attacks, BERT-ATTACK (Li et al., 2020) and
Textbugger (Li et al., 2019)7. BERT-Attack is sim-
ilar to VertAttack as it is a word based attack. To
select a word, BERT-ATTACK finds the impor-
tance score of a word by masking each word (one
at a time) and comparing to the original logits. For
replacement, BERT-ATTACK relies on BERT to
give suggestions via its MLM training. Textbugger
is a character based attack which tests inserting,
deleting, swapping, or substituting characters. We
run both attacks on the same 1000 examples from
the Rotten Tomatoes dataset. The results can be
seen in Table 4.

Overall, we find that BERT-ATTACK causes
greater drops when the feedback classifier is the
same as the attacked classifier, but VertAttack trans-
fers better. Textbugger is weaker in both cases.
Specifically, when the feedback classifier is the
same (diagonal values), BERT-ATTACK causes
classifiers to average 9.5% accuracy compared to
VertAttack’s 15.7% and Textbugger’s 33.5%. How-
ever, for transferability (non diagonal values), Ver-
tAttack causes classifiers to average 47% accuracy,
19 points less than BERT-ATTACK’s average of
66.5% and 31 points less than Textbugger’s aver-
age of 78.1. Furthermore, when taking the overall
averages (all cells) VertAttack drops classifiers to
36.6% accuracy while BERT-ATTACK averages
47.5% and Textbugger averages 63.2%.

9 Malicious Use - Offensive Language

To confirm the main results and demonstrate how
VertAttack may be used maliciously, we apply Ver-
tAttack to “offensive” texts. We take a subset of
OLID’s (Zampieri et al., 2019) test set, labeled OFF

7TextAttack was leveraged to simulate these attacks:
github.com/QData/TextAttack

Classifiers
BERT Albert RoBERTa

Original 85.4 84.8 88.6

V
er

tA
. BERT 6.7 48.2 46.3

Albert 46 14.7 45.2
RoBERTa 56.3 40.2 25.8

B
er

tA
. BERT 22.9 52.3 74.8

Albert 79 1.9 78.7
RoBERTa 66.6 47.3 3.6

Te
xt

b. BERT 46.2 52.3 74.8
Albert 85.8 16.1 91.6

RoBERTa 74.1 56.9 38.2

Table 4: VertAttack compared with BERT-Atttack and
Textbugger. The second column indicates which clas-
sifier was used to give feedback to the attacks. Bold
values indicate stronger attacks against that classifer.
Italic values indicate strongest transfer attack.

Classifiers
Feedback BERT Albert XLNet
Original 76.7 78.3 78.3
BERT 1.3 23.8 27.5
Albert 20 0 26.7
XLNet 12.9 17.1 0.8

Table 5: VertAttack results on OLID dataset, on the OFF
labeled (Offensive Language). Accuracy is shown. The
second column indicates which classifier was used to
give feedback to VertAttack.

(offensive). This results in 260 texts. We leveraged
pretrained classifiers from Huggingface 8, trained
on OLID training data. We examine 3 variations
of transformer models, BERT, Albert, and XLNet
(Yang et al., 2019). The full results are in Table 5.

VertAttack is able to greatly reduce the classi-
fication accuracy for all three models. When the
feedback classifier is the same as the target, the
accuracy drops to 1% or lower. When the classi-
fiers differ, the accuracy is also low, in the range 13
- 28%. These results demonstrate how the attack
can cause issues on popular social media websites
which leverage automated classifiers to help curb
offensive language.

10 Effect on OCR + Classifier

To guarantee the preservation of whitespace, we
can write text to an image (as done in the human
study). The question arises of how a classifier
which leverages OCR to extract text from images
would fare. We test this by first converting the
modified text into an image using the PIL library9.
Next, we use Tesseract OCR10 to extract the text

8https://huggingface.co/mohsenfayyaz
9https://pypi.org/project/Pillow/

10https://github.com/tesseract-ocr/tesseract



Classifiers
Feedback BERT Albert RoBERTa
Original 85.4 84.8 88.6

N
on

e BERT 6.7 48.7 50
Albert 47.7 13.6 48.7

RoBERTa 44.8 45.5 9.4

O
C

R BERT 40.5 47.3 48.2
Albert 48.4 35.7 49.2

RoBERTa 45.6 44.1 37.7
Maj. Class 53.3

Table 6: Accuracy results on RT dataset when images
containing VertAttack modified text are converted to
text (via OCR) and classified. “None” refers to the orig-
inal accuracy with no conversion to image and back
via OCR. Second column indicates which classifier was
used for attack feedback. “Maj. Class” indicates a sim-
ple baseline which always predicts the majority class.

from the image and classify it. We test this on Rot-
ten Tomatoes. The feedback and target classifiers
use the text segmenter (Section 11). The results can
be found in Table 6. We include a simple majority
class baseline for comparison.

For OCR, we see accuracy increase in the cases
when the target and feedback classifier are the same.
For example, Albert classification changes from
13.6 to 35.7. When feedback and target classi-
fiers differ, the accuracy is similar to the original
attacked accuracy. All accuracies are below the
simple majority class baseline of 53.3. Thus, even
though OCR increase accuracy, it is still detrimen-
tal for a classifier. Furthermore, VertAttack could
be further modified to target a classifier which in-
cludes OCR in the pipeline.

11 Initial Defenses

We investigate some initial steps automated clas-
sifiers might take to mitigate VertAttack’s effec-
tiveness. Since VertAttack introduces whitespace,
simple solutions might be to reduce that whites-
pace. Thus, we look at three different approaches.
First, we simply remove extraneous whitespace and
limit at most 1 space between each token, denoted
as Simple. Second, we leverage a text segmenta-
tion library11 to remove whitespace and re-combine
words, denoted as Segment. Finally, we assume the
classifier has learned the algorithm for VertAttack
and thus reverses it. That is, the classifier attempts
to recombine vertical characters into words before
classification. This is denoted as Reverse. The full
algorithm can be found in the appendix (Appendix
B).

11grantjenks.com/docs/wordsegment/

Classifiers
Feedback BERT Albert RoBERTa
Original 85.4 84.8 88.6

VertAttack - None

Si
m

pl
e BERT 6.7 48.7 50.0

Albert 46.0 29.7 47.6
RoBERTa 56.3 38.1 59.8

Se
g.

BERT 37.8 49.6 53.8
Albert 45.4 49.2 51.1

RoBERTa 62.3 43.8 62.8
VertAttack - Simple

Si
m

pl
e BERT 6.7 48.7 50

Albert 47.7 13.6 48.7
RoBERTa 44.8 45.5 9.4

VertAttack - Segmenter

Se
g.

BERT 10.0 44.7 53.6
Albert 49.3 4.7 53.6

RoBERTa 41.7 41.8 8.2

Table 7: VertAttack results on RT dataset with different
whitespace preprocessing present, accuracy is shown.
First column indicates which method the classifier used:
Simple - remove all extraneous spaces in input text,
Seg. - leverage word segmenter to process the input text.
Second column indicates which classifier was used to
give feedback to VertAttack. “VertAttack - X” indicates
which method VertAttack used with classifier feedback.

11.1 Simple + Segment

For the first two approaches, we run them on the
original attacked Rotten Tomato (RT) texts (from
Table 1). We then modify VertAttack to have this in-
formation during its attacks as feedback, as chang-
ing the preprocessing method during classification
puts the attack at a natural disadvantage since the
feedback is no longer as reliable. The full results
of these experiments are in Table 7.

We observe that when VertAttack includes a pre-
processing method for feedback that is different
than what the attacked classifier uses (“VertAttack -
None”), the attack suffers. For example, examining
the diagonal results, the simple preprocessing is
able to raise Albert’s classification accuracy from
14.7 to 29.7. The word segmentation approach
raises it even higher (to 49.2). Similar results are
seen across the table. The transferability results
(feedback classifier differs from final classifier)
also generally increase, but not nearly as strong.
This follows as VertAttack is modifying texts based
on a classifier that differs in preprocessing and
hence the attack becomes a transferability prob-
lem itself.

When VertAttack has the same method in its
feedback classifier, then the approaches are not
as fruitful (“VertAttack - Simple”, “VertAttack -
Segmenter”). Again with Albert (on the diagonal),



Classifiers
Feedback BERT Albert RoBERTa
Original 85.4 84.8 88.6

R
ev

er
se BERT 84.4 84.2 88.4

Albert 82.6 84.3 87.8
RoBERTa 86 82.6 87.3

Table 8: VertAttack results on RT dataset when the clas-
sifier reverse-engineers VertAttack, accuracy is shown.

we actually see a decrease in classification accu-
racy from 14.7 to 13.6 for Simple and down to
4.7 for Segmentation. This indicates the impor-
tance of the feedback classifier as it can strongly
affect VertAttack’s perception of a strong attack
and the importance of whitepace preprocessing for
classifiers if the attacker is not prepared.

11.2 Reverse
The Reverse preprocessing results can be found
in Table 8. As can be observed, the algorithm is
able to strongly combat VertAttack, increasing the
accuracy from 6 - 24 to 84 - 87. However, we
observe that it is not able to mitigate it entirely, as
some texts are entirely written vertically and the
algorithm is not able to distinguish when new lines
of words begin. We next introduce an augmentation
to VertAttack to combat the Reverse algorithm.

12 Enhancing VertAttack with Chaff

As demonstrated, if the classifier knows this type
of attack is occurring, it can strongly mitigate it
by reversing the algorithm. Thus, we enhance Ver-
tAttack by introducing chaff. Specifically, rather
than inserting only whitespace vertically, an alpha-
bet character has a chance of being inserted. This
occurs at a probability p. For example, if p = 10,
then there is a 10% probability that rather than
whitespace, a character is inserted in the vertical
lines. Note that to preserve readability we do not
allow this for whitespace next to perturbed words
(nor original whitespace).

We test chaff for p = {5, 10, 20, 30, 60}. The
main results against the Reverse algorithm (Sec-
tion 11.2) are in Table 9. We find that this en-
hancement hinders the ability to reverse the attack.
This is because Reverse is not able to identify non-
perturbed characters. For example, when p = 30
BERT’s accuracy drops from 85 to 40. This is 44
points lower than when the Reverse is applied to
p = 0 (no chaff). Similar trends are seen for Albert
and RoBERTa as well. As p increases, we find
greater accuracy drops. This points to the reverse

Classifiers
Feedback BERT Albert RoBERTa
Original 85.4 84.8 88.6

p = 0%

N
on

e BERT 6.7 48.2 46.3
Albert 46.0 14.7 45.2

RoBERTa 56.3 40.2 25.8

R
ev

er
se BERT 84.4 84.2 88.4

Albert 82.6 84.3 87.8
RoBERTa 86 82.6 87.3

p = 5%

N
on

e BERT 6.4 48.3 46.1
Albert 46.8 15.9 44.9

RoBERTa 57.7 41.3 24.6

R
ev

er
se BERT 76.4 78.1 81.1

Albert 75.8 75.7 82.0
RoBERTa 77.9 76.3 78.6

p = 10%

N
on

e BERT 6.0 49.1 46.3
Albert 46.3 17.0 44.4

RoBERTa 57.33 42.0 24.4

R
ev

er
se BERT 64.8 70.7 71.6

Albert 68.2 64.7 76.2
RoBERTa 73.7 71.5 67.4

p = 20%
N

on
e BERT 5.9 48.4 46.6

Albert 45.3 18 45.2
RoBERTa 57.7 42.2 24.2

R
ev

er
se BERT 48.7 63.2 62.4

Albert 60.8 47.1 67.9
RoBERTa 67.1 69.7 50.2

p = 30%

N
on

e BERT 5.8 49.2 47.6
Albert 44.7 19.6 44.3

RoBERTa 55.5 42.3 23.7

R
ev

er
se BERT 39.8 59.3 58.2

Albert 58.1 40.1 64.5
RoBERTa 63.8 65.8 40.5

p = 60%

N
on

e BERT 6.2 48.5 47.4
Albert 45.2 21.0 43.7

RoBERTa 55.5 42.3 23.7

R
ev

er
se BERT 27.7 60.1 55.0

Albert 57.5 28.9 63.2
RoBERTa 59.7 64.1 35.9

Table 9: VertAttack results on RT dataset when chaff
is added in (described in Section 12). “None” means
no preprocessing is used and “Reverse” is the classifier
attempting to reverse engineer VertAttack.

# of correct responses
>= 1 >= 2 =3

Original 94 81 49
VertAttack 92 77 47

Chaff p = 30 83 47 23

Table 10: Human results for all three text variations.
The values indicate the percentages of texts correctly
classified by at least X humans where X is indicated
in the column header. Original and VertAttack are the
same values from Table 3. Chaff p = 30 indicates that
chaff is added to the perturbed text at 30% rate.



algorithm becoming less able to avoid the random
inserted text.

We verify that readability is maintained, follow-
ing the same process in the main human study (Sec-
tion 7). Table 10 compares human evaluations of
adding in chaff at a rate of 30%. We see a drop in
correct responses but at least 1 human is able to
correctly identify the sentiment in at least 83% of
the texts.

This enhancement further demonstrates VertAt-
tack as a strong representation of how humans can
adjust to combat automatic classifiers.

13 Related Work

Here we examine some of the other current SOTA
attacks. We examine both word-based attacks and
character-based attacks as VertAttack shares some
characteristics with both.
Word-Based Attacks: Like VertAttack, current
black-box SOTA word-based attacks attack a classi-
fier by receiving feedback from that classifier. This
feedback is in the form of label probabilities (Hsieh
et al., 2019), or the logits of the classifier (Li et al.,
2021b). Black-box, word-based attacks follow sim-
ilar steps to VertAttack. First, they choose tokens
for replacement, and then they leverage a tool to
choose a replacement. This could be a transformer
model (Li et al., 2020), a lexicon like WordNet
(Ren et al., 2019), or word embeddings (Hsieh et al.,
2019). Unlike, VertAttack current word-based at-
tacks only operate in the horizontal space. That is,
all words chosen for replacement are substituted
for that word in place. Their goal is to find words
which a classifier does not know well enough to
make a correct classification. Thus, VertAttack is
set apart by operating in the vertical space. Fur-
thermore, VertAttack does not replace the selected
word, thus meaning is more easily preserved.
Character-Based Attacks: Another common type
of SOTA attack are character-based attacks which
change text at the character level. These attacks
generally aim to be more transferable than word
attack and thus do not receive feedback from a clas-
sifier. Instead, the changes are applied at a random
chance throughout the text. For example, whites-
pace might be removed (Gröndahl et al., 2018)
or added or standard, English characters might be
replaced with non-standard similar looking char-
acters (e.g “a” → “@”)(Eger et al., 2019). Both
cases try to cause classifiers to see words as out-of-
vocabulary. One downside is that character-level

attacks can be mitigated more easily with proper
preprocessing (Rusert et al., 2022). VertAttack is
similar, in that it focuses on the characters of a
word, however, VertAttack uses an internal classi-
fier for feedback. Furthermore, due to the posi-
tioning of the characters, VertAttack’s changes are
harder to correct with preprocessing of text.

Whitespace attacks have also been shown to be
effective against LLMs. Cai and Cui (2023) find
that adding a whitespace before a comma in a text
can fool a classifier to misclassify a text as human-
generated instead of machine-generated. This at-
tack, SpaceInfi, differs from VertAttack since it only
focuses on this specific classification task. Further-
more, it adds a single space next to commas. In our
experimentations, we focus on classification tasks
where syntactic structure is less important.

14 Conclusion

We presented a new attack which exploits current
classifiers’ inability to understand text written ver-
tically. Mimicking a human, VertAttack perturbs
text by rewriting words in a vertical manner which
humans are able to understand, but classifiers are
not. We find drops in classification up to 86 points.

Furthermore, VertAttack produces texts which
humans can understand. Human crowd workers
verified this by labeling 77% perturbed texts cor-
rectly, compared to 81% of non perturbed texts.

When compared to other attacks, VertAttack
causes stronger drops when transferability of at-
tacks is included. VertAttack drops classifiers to
36.6% accuracy compared to 46.5% of BERT-
Attack and 63.2% of Textbugger.

We explored initial results on how VertAttack
affects classifiers with OCR. We found that these
classifiers are more robust, but still vulnerable.

Finally, We investigated initial defenses against
VertAttack and found that the methods are able to
mitigate the attack as long as VertAttack does not
enhance with chaff.

Every experiment shows VertAttack’s ability to
maintain readability and cause large accuracy drops
in multiple classifiers. We also find humans do
know the meaning in the attacked text. Hence, the
overall results will be useful for future research.

15 Limitations

Here we note some limitations with our method
and with our experiments. These limitations should



be kept in mind when working and expanding on
VertAttack so that they addressed or noted:
Websites are not guaranteed to preserve format-
ting of text produced by VertAttack. VertAttack
produces text in which targeted words are vertically
perturbed. It does this by adding in multiple new-
lines characters and padded whitespace to preserve
readability. However, not all websites are guaran-
teed to preserve this additional whitespace. Some
may completely remove extra newlines which will
cause the produced text to greatly drop in readabil-
ity. One solution to this is leveraging a module
to write the text into an image (as seen in the ex-
amples (Figure 1). With an image, the formatting
of text will be honored and readable to humans.
Furthermore, this adds another layer to the attack
as text would first need to be processed from the
image for classification. However, not all websites
allow images, and thus it is a noted limitation to be
remedied in the future.
Our attacks focused exclusively on transformer
classification models. Though transformers are
the current kings of classification, not all websites
might have the resources to employ these types of
models and thus investigation into simpler models
may be useful to confirm VertAttack’s effectiveness.
However, generally non-transformer models have
struggled against adversarial attacks and in the past,
and there seems to be no reason why they would
fare any better against VertAttack.
Greedy word selection is time consuming. The
selection method is the least efficient part of Ver-
tAttack. As noted, many previous attacks have
leveraged a similar method (Section 4.1). This is
due to lack of classifier knowledge in blackbox ap-
proaches, thus most tokens need to be checked in
selection. However, there do exist more efficient
approaches. For example, some style transfer algo-
rithms use attention mechanisms to find the most
important words (Wu et al., 2019). Thus, VertAt-
tack could be further improved by improving the
selection algorithm.

16 Ethical Considerations

By simulating adversarial attacks, such as VertAt-
tack, concerns can arise over ethical implications.
For example, introducing such a method might al-
low malicious users to more easily introduce harm-
ful texts into websites and other spaces. This is
a further concern as, for research, we make code
and algorithms publicly available. This needs to be

considered when introducing and studying any ad-
versarial attack. However, we believe that in spite
of the above possible wrongful uses, VertAttack can
be helpful in studying both robustness and future
understanding tasks of text classification systems.
This is further emphasized as humans can naturally
perform this attack and there is no dataset which
collects these attacks done by humans. Hence, Ver-
tAttack provides a way to simulate and further study
such attacks. Through this simulation, classifiers,
defenses, and other related NLP systems can ben-
efit in a public space. Our hope is not that this
algorithm is ever used for malicious purposes, but
to improve the aforementioned systems. Thus, we
believe the benefits to outweigh any risks.
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Figure 3: Instructions shown to Amazon Mechanical Turk crowdworkers.



A Human Study Details

For the human study we leveraged Amazon Me-
chanical Turk crowdworkers to annotate sentiment
on Rotten Tomatoes text which were perturbed by
VertAttack. The instructions provided to the partic-
ipants can be seen in Figure 3. As can be seen, no
instructions to read the text vertically were given.
For each annotation of text, crowdworkers were
paid $0.08. Each text received 3 annotations. As
AMT does presents each text as a separate task, the
3 annotators for 1 text were rarely the same annota-
tors for another task, thus annotator agreement was
not calculated.

To present the texts, we leverage the PIL library
in python to write the texts into simple images. An
example of this can be seen in the example images
(Figure 1). We chose to push the text onto images
to avoid any website dependent presentation of the
text (e.g. the worker viewer the text on a desktop
versus on a phone).

B Reverse Algorithm

Algorithm 3 Reverse
Input: Perturbed Text
Output: Preprocessed Text

Split_Text← Text.Split(‘\n’)
DropMax ← 0, i← 0, j ← 0
Top_Line← 0
while i ≤ Split_Text.length() do

cur_line = Split_Text[i]
if length(word) ∈ cur_line > 1 then

update previous top line, add to final text
Top_Line← i

else
store characters at positions

end if
i← i+ 1

end while

The full reverse algorithm can be found in Al-
gorithm 3. The algorithm first splits by new line
characters. To combine vertically written charac-
ters, the algorithm appends them to the position in
an original text line. An original text line is deter-
mined by those lines which have more than single
characters. Note, the algorithm cannot just take
the top line as the only text line as the width con-
straint in VertAttack adds vertical lines throughout
the text.
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Figure 4: The classifiers’ ability to correctly classify text
as the amount of words perturbed increases. The classi-
fier examined is BERT, when VertAttack uses BERT for
feedback.

C Analysis of Percentage of Words
Perturbed

For additional understanding of VertAttack, we
seek to analyze how the number of words modified
by VertAttack affects the classifiers. One might
postulate that as VertAttack modifies more words
the classifier does worse, as more and more of the
original text is lost. However, through our analysis
we find the opposite to be true.

Figure 4 graphs BERT’s classification ability
versus percentage of text perturbed across the 5
examined datasets. Surprisingly, we see that as
the percentage of words perturbed increases, the
classifier is better equipped to make a correct clas-
sification. This may partially be due to a limitation
with VertAttack compared to some other attacks.
Other attacks are able to bring in new words whose
embeddings can cause additional confusion for the
classifier, but VertAttack does not.


