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Abstract

Large language models (LLMs) often struggle
with complex logical reasoning due to logical
inconsistencies and the inherent difficulty of
such reasoning. We use Lean, a theorem prov-
ing framework, to address these challenges. By
formalizing logical reasoning problems into
theorems within Lean, we can solve them by
proving or disproving the corresponding theo-
rems. This method reduces the risk of logical
inconsistencies with the help of Lean’s sym-
bolic solver. It also enhances our ability to treat
complex reasoning tasks by using Lean’s ex-
tensive library of theorem proofs. Our method
achieves state-of-the-art performance on the
FOLIO dataset and achieves performance near
this level on ProofWriter. Notably, these results
were accomplished by fine-tuning on fewer
than 100 in-domain samples for each dataset.1

1 Introduction

Logical reasoning, a bedrock of intelligence and
a core capability of humans, has been a challeng-
ing issue for machine learning systems for a long
time. LLMs, despite their impressive abilities to un-
derstand and generate natural language, often fall
short when dealing with complex logical reasoning
tasks. They frequently suffer from logical inconsis-
tencies, where the model hallucinates and makes
statements not grounded in premises, leading to
spurious results (Saparov and He, 2023; Dasgupta
et al., 2022).

Recent advances in AI have adopted a struc-
tured approach to tackle these reasoning problems
by splitting them into symbolic formalization and
problem-solving (He-Yueya et al., 2023; Pan et al.,
2023; Ye et al., 2023). Specifically, the formal-
ization step is often handled by a large language
model, while problem-solving is handled by an off-
the-shelf symbolic solver. In this approach, sym-

1Our code and data is available at
https://github.com/Some-random/
theorem-proving-reasoning.

bolic solvers essentially act as a rigorous check-
point, ensuring that the model outputs align with
logical rules, thereby mitigating the issue of logic
inconsistency. In these approaches, solvers may
range from being completely deterministic, like
SymPy (He-Yueya et al., 2023), or relying on a
combination of heuristics and basic machine learn-
ing techniques, as is the case with Pyke (Pan et al.,
2023) and Z3 (Ye et al., 2023; de Moura and
Bjørner, 2008). While this approach successfully
addresses hallucinations, it still struggles with more
complex problems.

As a powerful theorem prover and a versatile pro-
gramming language, Lean (de Moura et al., 2015)
presents a compelling solution to connect symbolic
solvers with linguistic resources. Much like sym-
bolic solvers, Lean has a strict checking system
that ensures each reasoning step is certified. What
distinguishes it, however, is its additional function-
ality as a programming language developed specifi-
cally for theorem proving. Every day, a substantial
amount of code is written in Lean, capturing rea-
soning “nuggets” with step-by-step rationals that
are useful for training LLMs. A few recent studies
have already tapped into Lean for mathematical
theorem-proving tasks (Polu et al., 2023; Han et al.,
2022a; Lample et al., 2022), showing its potential
in tackling difficult reasoning challenges.

In this paper, we propose LeanReasoner, a Lean-
based framework to tackle logical reasoning prob-
lems. We use LLMs to formalize natural language
context into Lean and fine-tune a custom model
on these problems using a modest amount of data
annotated ourselves. As we use LLMs to dynam-
ically generate solutions within the Lean environ-
ment, our approach stands in stark contrast to the
static, pre-defined solution-finding methods of Log-
icLM (Pan et al., 2023), which only rely on tradi-
tional techniques like forward and backward chain-
ing, and SATLM (Ye et al., 2023), which operates
within the Z3 environment using a suite of prede-
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termined algorithms and heuristics. The adaptive
nature of LLMs as a solution-finding tool allows
our system to evolve continuously, harnessing a
vast array of reasoning data and information.

Our contributions in this paper are three-fold.

• To our knowledge, this is the first attempt to use
Lean, traditionally associated with mathematical
theorem proving, for natural language logical
reasoning. This effort highlights a possible inter-
section between mathematical theorem proving
and logical reasoning.

• Our research revealed that incorporating pre-
training data from mathematical theorem proofs
enhances the development of a more effective
solver for logical reasoning compared to pre-
vious techniques. Additionally, this approach
enabled us to achieve SOTA results on FOLIO.

• We make available the training data accumu-
lated in this research, comprising 100 Lean-
formalized logic reasoning problems from
ProofWriter, along with 27 analogous formal-
izations from FOLIO. The corresponding proofs
in Lean are also included.

2 Problem Definition and Notation

The task we aim to solve is logical reasoning, tak-
ing the form of multi-choice questions given a nat-
ural language context. The answer to the question
can be logically deduced based on the context. The
framework we use for solving the problem is Lean.2

Lean is an open-source theorem-proving program-
ming language with vibrant community support.
Its current base includes over 100,000 theorems
and 1,000,000 lines of code.3 We use Lean as a
generic theorem prover, outside of mathematics.

The task and our solution to it, consist of the
following components:

• Context, which is composed of natural language
utterances, composing a set of rules and facts.
For example: Hudson is a cat, all cats are ani-
mals, and cats often meow.

• Question, which denotes the posed question. For
example, Does Hudson often meow?

• Options is a set of available answers (discrete
categories) from which an answer can be chosen.
For example, True, False or Unknown.

2https://leanprover.github.io/.
3https://en.wikipedia.org/wiki/Lean_

(proof_assistant).

• Formalized context refers to the representation
of context in Lean. For example, the formal-
ized context for our example would be: axiom
A1 is_cat Hudson, axiom A2 ∀x, is_cat x →
is_animal x and axiom A3 ∀x, is_cat x → of-
ten_meow x.

• Formalized question: Given that Lean operates
as a theorem prover, questions are transformed
into dual theorems: one asserting the positive
stance and the other negating it. For the given ex-
ample, the formalized questions would be: Theo-
rem hudson_often_meows: often_meow Hudson
and Theorem not_hudson_often_meows: ¬ of-
ten_meow Hudson.

• Goal: In the context of proving theorems with
Lean, a "goal" is a logical statement that needs
to be proven true, given a set of axioms and rules.
When we set out to answer a question using the
Lean prover, this question becomes our root goal.
At that point, we can apply various instructions
in Lean to simplify or break down this primary
goal and generate intermediate goals.

For instance, using our earlier examples,
if the root goal is proving Theorem hud-
son_often_meows: often_meow Hudson, an in-
termediate goal might be proving that Hudson is
a cat. We aim to resolve each intermediate goal
using our provided context, gradually working
our way towards proving the root goal. Once all
intermediate goals are resolved, we have effec-
tively proven our root goal, and the proof search
concludes successfully.

• Tactics are the instructions in the Lean theorem
proving language that are used to manipulate
goals to obtain a proof for a given goal. For
example, apply A3 Hudson is a tactic that uses
modus ponens on the Goal often_meow Hudson
and transforms it to a new Goal is_cat Hudson

A diagram of these components and the relations
between them is depicted in Figure 1. This proce-
dure is framed within the language of the Lean
theorem prover as a goal-satisfying process.

3 LeanReasoner

Our framework, LeanReasoner, is composed of
four main components: a formalizer, a tactic gen-
erator, a proof search mechanism, and a result
interpreter. The formalizer converts the context
and question to formalized context and formalized
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Context, Question and Options

Context: The cow is big. The cow likes the dog. The cow visits the dog. The dog needs the cow The cow needs the cow. If something visits the dog and the dog needs the 

cow then it needs the cow. If the dog visits the cow then the cow visits the dog. If something needs the cow and the cow likes the dog then it likes the cow.

  Question: Does the Cow like the Cow                                                                               Options: True, False or Unknown

Formalizer                                                                                          
constant Cow: obj                                                        

constant Dog: obj                                   

constant Cat: obj                         

constant Big: obj -> Prop             

constant Likes: obj->obj->Prop    

constant Needs: obj->obj->Prop

axiom R1: ∀ x : obj, Visits x Dog ∧ Needs Dog Cow → Needs x Cow

axiom R2: Visits Dog Cow → Visits Cow Dog

axiom R3: ∀ x : obj, Needs x Cow ∧ Likes Cow Dog → Likes x Cow

axiom R4: ∀ x : obj, Needs Cat Cow ∧ Likes Cow Cat → Likes Cow Cow

theorem does_cow_like_cow: Likes Cow Cow

Formalizer 
axiom T1: Big Cow

axiom T2: Likes Cow Dog

axiom T3: Visits Cow Dog

axiom T4: Needs Dog Cow

axiom T5: Needs Cow Cow                                

Likes Cow Cow

No GoalsNeeds Cow Cow ∧
Likes Cow Dog

Needs Cat Cow ∧
Likes Cow Cat

Needs Cow Cow,
Likes Cow Dog

Likes Cow Dog

No Goals

apply  R3 Cow sorryapply  R4

exact T2

exact T5

apply  R1 Cow

split

…

…

Unknown

True

False

Check every proof path

Exists path 
that found a 

proof

 Theorem is 
the positive 

version 

Formalizer Tactic Generator + Proof Search Result Interpreter

Figure 1: An overview of our approach. The natural language context is first processed by the “formalizer”. It
then advances to the proof search stage, where all the tactics (in red) generated by the “tactic generator” are used to
manipulate goals. Finally, the outcome is interpreted by the “result interpreter”.

question. The tactic generator then generates tac-
tics based on premises extracted from the formal-
ized context. The proof search mechanism oversees
tactic execution and goal expansion. The result in-
terpreter analyses the output of the proof search
and identifies the correct answer in the options. In
this section, we detail each of those components.

3.1 Formalizer
As formalizers, we used OpenAI models text-
davinci-003 (GPT-3) and GPT-4 (OpenAI, 2023).
For text-davinci-003, we followed the same prompt-
ing approach as Logic-LM (Pan et al., 2023) to
separate task specifications and problems, thereby
enabling the model to continue with the task of
formalization through next-token-prediction. For
GPT-4, we used similar prompts but included the
task specification in the system prompt.

There is no automatic way to assert all the en-
tities, relationships, and constraints of the context
have been captured by the formalized result. How-
ever, the syntax of the formalized result can be
checked by Lean. Because correct syntax is a pre-
requisite for downstream theorem proving, if an
error is encountered during compilation, we pro-
vide the error message generated by Lean along
with the faulty formalization and ask the formal-
izer to regenerate the result. We further manually
inspect the formalizer in §5. We note that we take
a strict approach, and if the formalizer fails more
than once, then the problem is counted as not being
correctly solved.

3.2 Tactic Generator
The model we used for tactic generation is Re-
Prover (Yang et al., 2023). This model contains

two parts: a retriever that employs retrieval mecha-
nisms to explicitly select premises when provided
with the current goal, and a generator that generates
tactics using the goal and the retrieved premises.

The division of the problem-solving task into
premise selection and tactic generation simplifies
the process and facilitates easier troubleshooting.
It isolates the source of potential issues, be it in
the premise selection or the tactic generation, thus
reducing the complexity of the problem. Also, this
division of responsibilities eases the burden on the
tactic generator. Choosing the right premise with
numerous distractions is challenging, especially in
logical reasoning problems when several options
might seem promising for the current step but will
not ultimately lead to the desired goal.

The premise retrieval component of our process
draws from the Dense Passage Retriever (DPR)
(Karpukhin et al., 2020). Provided with a goal g
as the query and a set of candidate premises P , it
generates a ranked list of m premises from P . In
DPR, both g and P are treated as raw texts that are
embedded in a vector space. We then retrieve the
top m premises that maximize the cosine similarity
between the goal and the premise. For tactic gen-
eration, we use a standard sequence-to-sequence
model. The goal and the premises are concatenated
together as a string to generate new tactics.

As a baseline, we also prompt GPT-4 to generate
proofs. For cases when the chosen theorem to prove
aligns with the answer (say the chosen theorem is
the positive stance of the question and the answer is
YES), we present GPT-4 with the correct proof as
part of the prompt. Conversely, if the answer does
not align with the chosen theorem or the answer is
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UNKNOWN, the formalized theorem is unprovable.
In those cases, we still encourage the model to
engage in step-by-step reasoning, even though it
will eventually hit a roadblock. An example of the
prompt to GPT-4 can be found in Appendix A.1.

3.3 Proof Search

The proof search module controls the overall search
process that selects tactics and maintains states dur-
ing proof construction. Essentially, the goal of the
search method is to build a proof tree that incre-
mentally evolves the goal through tactic invoca-
tions. This approach was first introduced in GPT-
F (Polu and Sutskever, 2020). LeanDoJo (Yang
et al., 2023), a recently released framework that
enables interaction with Lean programmatically,
subsequently provided an implementation of this
method, which we use for our study.

As a reference, the middle part of Figure 1 pro-
vides a practical illustration of this process. Start-
ing from the root goal, for each given proof goal,
we explore 64 possible tactics. All goals are main-
tained in a priority queue and expanded based on
cumulative log probabilities of the goal. The cumu-
lative log probability is defined as the summation
of the log probabilities of the tactics that brought
us to the goal from the root. This implies that we
tend to expand those goals where our generative
model has the highest global confidence.

To enhance search efficiency and circumvent po-
tential loops, we have incorporated a mechanism
that stops the expansion of a node N if we have
already explored another node M with a state se-
quence that prefixes N . Essentially, if the current
goal being explored contains all the elements of a
previously explored goal, then it shouldn’t be fur-
ther expanded. This is based on the observation
that if we have already assessed the potential paths
and outcomes for a specific goal, then exploring
a more generalized version of the same goal is re-
dundant. Such a mechanism avoids unnecessary
repetitions, which streamlines the search process
and improves the overall efficiency. Moreover, we
define a valid proof as one that is devoid of “cheat-
ing” tactics (such as sorry) that tell Lean to assume
that the current goal is completed, even though it
has not been proven. This means that every path
containing “cheating” tactics is disregarded.

Errors in the search process typically manifest in
two ways: a timeout or an exhaustion of nodes to
search. We have allocated a three-minute window

for each search, which is usually sufficient. We
provided more analysis of the errors made by tactic
generator in the experiment section.

3.4 Result Intepreter

If the correct answer is Unknown, we only regard
the result as correct if neither True nor False can
be proven. All datasets investigated in this study
only contain questions with only one correct an-
swer. Consequently, if the proof system verifies
more than one option, the response is immediately
marked as incorrect.

4 Experimental Setup

We now describe our experimental setup: the
datasets we used for evaluation and model training
and the details of model training.

4.1 Evaluation Data

In our evaluation, we use two common logical rea-
soning datasets as testbeds:

ProofWriter: This deductive logical reasoning
dataset presents problems in an intuitive language
form. We incorporated the Open-World Assump-
tion (OWA) subset as per (Pan et al., 2023), where
each instance is characterized by a {problem, goal}
pairing. The label for each pair contains TRUE,
FALSE, or UNKNOWN. It encompasses five seg-
ments based on the required reasoning depth. Our
focus is the depth-5 subset, which is the most chal-
lenging one. To get a fair comparison against Logic-
LM, we used the same 600 sample tests, ensuring
an even label distribution.

FOLIO: Unlike ProofWriter, FOLIO is con-
structed using first-order logic. This increases the
complexity of the proving part. The dataset also
presents problems in a more natural wording, with
relationships that are considerably more complex.
Such a combination of advanced logic and rich lin-
guistic structure makes the formalization task in
FOLIO substantially tougher than in ProofWriter.
For our analysis, we turned to the entire FOLIO
test set, encompassing 204 examples.

4.2 Training Data for Domain Adaptation

Regarding the data for model training, we collected
100 theorem proofs for ProofWriter and 27 theorem
proofs for FOLIO, where each problem’s proof
was either manually annotated or collected from
successful proofs generated by GPT-4. The data
collection took about eight days.

4
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During data annotation, we adopted two diver-
gent approaches for constructing proofs. One ap-
proach emulated a straightforward strategy, encom-
passing a detailed procedure with all of the interme-
diate steps and lemmas, similar to how we humans
might derive proof when given theorem-proving
tasks. Conversely, the second approach resembles
the proof formats found in mathlib.4 We gener-
ate more succinct proofs of the same problem by
reducing the number of intermediate lemmas and
combining multiple tactics into a single compound
tactic. The objective of having two annotations for
the same problem was to examine the influence of
annotation style on downstream logical reasoning.
In the following experiments, we use Intuitive to
refer to the first annotation style and Concise to
denote the second annotation style. An illustrative
example is available in Appendix C.

It is important to mention that despite the limited
data collected, the reasoning patterns for logical
reasoning likely mirror those found in mathemati-
cal reasoning, which were potentially learned dur-
ing pretraining. The main purpose of this data
collection is domain adaptation to transfer from
math to natural language logical reasoning.

4.3 Model Training

We used the same model structure for pretraining as
in the ReProver paper, namely, Google’s Byte-T5
(Xue et al., 2022). We also experimented with the
pretrained ReProver from LeanDoJo (Yang et al.,
2023), which was pretrained on mathlib. The fine-
tuning of our collected data took about six hours on
one A100 40G. The hyperparameters are the same
as in the original LeanDoJo paper.

5 Results

We present our experimental results, including an
examination of prompting-based baseline, experi-
mental results for LeanReasoner, and a comparison
between our work and other baselines.

5.1 Prompting-Based Baselines

Since there is no automated method to verify the
accuracy of formalization, we conducted manual
examinations of the formalized results to determine
whether errors occur during formalization or proof
generation stages. In this examination, only formal-
izations that correctly capture every fact, axiom,

4https://github.com/
leanprover-community/mathlib

and rule are counted as accurate. We manually
examined 100 questions from ProofWriter’s vali-
dation set and 40 questions from FOLIO’s training
set. The findings have been summarized in Table 1.

Comparison of formalization accuracy. The
formalization accuracy of ProofWriter is much
higher than FOLIO. This can be attributed to its
simpler language structure. In the case of FOLIO,
although using LLM for formalization helped in
filtering out unnecessary details from the natural
language context, there still exists some common
error patterns. We have illustrated typical GPT-4
error patterns in Appendix B using a composite
sample derived from various error instances. Inter-
estingly, Lean’s formalization accuracy is on par
with both Prolog and FOL in Logic-LM. This con-
sistency underscores Lean’s versatility, allowing
it to uniformly represent different problem types
within a single framework.

Adding textual comments increases formaliza-
tion accuracy. We observed improved results
when formalized code was paired with descrip-
tive textual comments (example in Appendix A.1)
sourced from the context. This approach further
splits the formalization task into two subtasks: 1)
linking textual context with formalized code and 2)
generating formalized code based on the prior tex-
tual context. These textual cues acted as a bridge
between raw text and formalized code, enhancing
the performance of formalization.

GPT-3’s performance on formalization is worse
than GPT-4 . The distinction in performance be-
tween GPT-3 and GPT-4 is evident. While the
formalization for simpler problems is the same,
GPT-3 struggles with intricate logic and complex
problems. As such, we opted not to use GPT-3
in further tests. Additionally, we experimented
with the CodeLLAMA (Baptiste Rozière and et.al,
2023) model family for similar tasks, but found that
their accuracy in formalization was significantly
lower than that of GPT-3, achieving less than 30%
on ProofWriter.

The proof accuracy of prompting-based base-
line is very low. The proof accuracy section of
the table is determined by whether the generated
proof can be validated successfully in Lean. If
the formalization of the question as a theorem is
correct and the proof can be validated without any
error or warning, then we can treat the proof as

5
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Model ProofWriter FOLIO
Formalize Prove Answer Formalize Prove Answer

GPT-4 Base 94% 15% 80% 60% 10% 35%
GPT-4 Base Comments 99% 15% 80% 75% 15% 35%
GPT-4 Base Separate 95% 5% 75% 60% 10% 40%
GPT-3 Base Comments 77% 12% 63% 45% 10% 35%
Logic-LM 98% 75.5% 74% 65% 69.2% 55%

Table 1: Formalization, Proof, and Answer choice accuracy of 100 ProofWriter samples and 40 FOLIO samples
via OpenAI Language Model API, with manual annotation. ‘GPT-4 Base’ serves as our baseline, where few-shot
examples include both formalization and proof generation in a single prompt. In ‘GPT-4 Base Comments’, we
augment these examples with line-by-line comments in Lean code. For ‘GPT-4 Base Separate’, we divide the task
into two parts, using separate prompts for formalization and proof generation. For simplicity, we did not use the
self-refinement technique when evaluating Logic-LM.

valid. However, the accuracy of rendered proofs is
very low. The issue could stem from assigning too
many tasks to the large language model, making it
challenging to address both within a single prompt.
Despite our efforts to separate formalization and
proof, the results were still disappointing, which
highlights GPT-3 and GPT-4’s struggle with gener-
ating correct Lean proof. Interestingly, the proof
accuracy of Logic-LM wasn’t as high as we ex-
pected. Upon replicating their code, we found their
chosen solver Pyke to be suboptimal, struggling to
identify an answer when multiple search paths are
available and some could result in loops.

The answer accuracy of prompting-based base-
line is surprisingly high. Despite the low accu-
racy in most of GPT-4’s proofs, it achieved high ac-
curacy for final choices on ProofWriter (as shown
in column Answer). We believe this may be due
to GPT-4’s training exposure to the dataset, poten-
tially leading to a degree of memorization.

5.2 LeanReasoner
In this section, we focus on training our own mod-
els to do tactic generation using our annotated train-
ing data. To isolate the impact of erroneous formal-
ization, we only used the accurate formalizations
from the previous subsection for testing. This gave
us 99 test examples for ProofWriter and 28 for
FOLIO. All findings are detailed in Table 2.

Fine-tuning on annotated data increases
premise selection accuracy. We first compare
the results on premise selection using the metrics
recall@1 and recall@4. The recall@k metric is
defined as follows:

recall@k =
|GT_Prem ∩ Pred_Prem[0 : k]|

|GT_Prem| ,

where GT_Prem means ground truth premises and
Pred_Prem means top predicted premises. The sub-
optimal results of LeanReasoner pretrained solely
with math data may be attributed to the domain
mismatch between mathematical theorem proving
and logical reasoning. The model frequently makes
mistakes by attempting to use other, unrelated tac-
tics that are useful in mathematical theorem prov-
ing (like ring, linarith) but not applicable in logi-
cal reasoning. Furthermore, the accuracy for FO-
LIO was noticeably poorer than that of ProofWriter.
This disparity is likely due to FOLIO’s intricate
logic and its need for a broader array of first-order
logic tactics such as cases, have, and contradic-
tion. In contrast, ProofWriter primarily employs
tactics like apply, exact, and split.

Pretraining on theorem proving data increases
overall accuracy. Regarding the overall proof
results, LeanReasoner pretrained on math theorem
proving data consistently outperformed other ap-
proaches for both ProofWriter and FOLIO datasets.
This success indicates that our model effectively
uses the logical “nuggets” found in mathemati-
cal theorem proofs. While the premise selector
benefits from distinct cues and a limited range of
choices, the realm of tactic generation is much
broader. This vastness of options renders the Re-
Prover baseline’s proof accuracy nearly negligible.
But other than that, there is a strong correlation
between premise selection accuracy and overall
proof accuracy. While the benefits of a pretrained
LeanReasoner may not be as noticeable for sim-
pler datasets like ProofWriter, its value becomes
evident for more complex datasets, such as FOLIO.

Concise annotation gives better result on
premise selection. Fine-tuning with different an-

6
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Method
Pretrained Fine-tuned ProofWriter FOLIO
on Math on our Premise Selection Proof Premise Selection Proof

Data Annotation Rec@1 Rec@4 Acc Rec@1 Rec@4 Acc
GPT-4 N/A N/A N/A 15% N/A 10%
LeanReasoner Yes No 56.2% 81.3% 0% 23.5% 38.2% 0%
LeanReasoner No Intuitive 62.5% 100% 99% 54.8% 95.2% 71.4%
LeanReasoner Yes Intuitive 75% 100% 99% 71.4% 96.8% 85.7%
LeanReasoner Yes Concise 75% 100% 99% 83.8% 97.4% 85.7%

Table 2: Comparative Analysis of Recall@k in premise selection and overall proof accuracy for 99 ProofWriter
test samples and 28 FOLIO test samples. Note the proof accuracy here is different from Table 1 because it is
directly linked to the final accuracy. The effects of pretraining and fine-tuning on LeanReasoner are evaluated using
theorem-proving data and both Intuitive and Concise annotation sets, respectively. Premise Selection accuracy was
not calculated for the GPT-4 baseline due to the complexities in prompting GPT-4 with Lean goals.

notations has a slight effect on premise selection
and tactic generation in this small test set. When
fine-tuned with Concise annotations, LeanRea-
soner would also try to generate concise proofs,
which usually use compound tactics that offer more
information for premise selection. However, the
final proof accuracy has not changed on this small
test set. Figure 2 displays an example of proofs for
the same question, produced by the three primary
methods we compared. In the absence of pretrain-
ing, the model struggles to identify an appropri-
ate approach for solving the problem. It merely
attempts to apply the next applicable theorem, lack-
ing a clear objective. While Intuitive data offers
numerous lemmas that assist in the thought process
during proof-writing, these excessive lemmas do
not aid LLMs in generating tactics effectively.

5.3 Other Baselines

Having demonstrated that pretraining on theorem-
proving data yields superior performance, we pro-
ceed to benchmark our results against established
baselines for both ProofWriter and FOLIO. The
evaluation uses the same set of 600 problems from
LogicLM and the entire FOLIO test set.

Our approach yields near-perfect accuracy on
ProofWriter with significantly less data. As
illustrated in Table 3, our approach yields near-
perfect accuracy on the ProofWriter dataset. While
other methods except Logic-LM and GPT-4 COT
use the entire training set of ProofWriter, our ap-
proach relies on just 100 examples, underscoring
the efficiency of our method. Fine-tuning on Con-
cise annotation does not bring any advantage to the
final performance on this dataset.

Method Acc
Full training set method
Abs Biases (Gontier et al., 2022) 80.6%
MetaInduce (Yang et al., 2022) 98.6%
RECKONING (Chen et al., 2023b) 99.8%
Zero-shot method
GPT-4 CoT (Pan et al., 2023) 68.1%
Logic-LM (Pan et al., 2023) 79.3%
Our method (finetuned on 100 samples)
LeanReasoner without Pretraining 95.8%
LeanReasoner fine-tuned on Intuitive 98.3%
LeanReasoner fine-tuned on Concise 98.3%

Table 3: The fine-tuned LeanReasoner has been pre-
trained on mathlib. Full training set method means
the model has been trained on the full training set of
ProofWriter. Fine-tuning on Concise achieves near-
perfect accuracy with significantly less data.

Method Acc
Full training set method
Roberta (Han et al., 2022b) 62.1%
FOLNet (Chen, 2023) 70.6%
Zero-shot method
GPT-4 CoT (Pan et al., 2023) 70.6%
Logic-LM (Pan et al., 2023) 74.5%
Lean Z3 (SATLM) 77.5%
Our method (finetuned on 27 samples)
LeanReasoner without Pretraining 66.2%
LeanReasoner fine-tuned on Intuitive 78.4%
LeanReasoner fine-tuned on Concise 82.6%

Table 4: Result from “Lean Z3” is derived from lean-
smt applied to formalized Lean Code. The fine-tuned
LeanReasoner has been pretrained on mathlib. Full
training set method means the model has been trained on
the full training set of FOLIO. Our approach achieves
state-of-the-arts performance on FOLIO.
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Formalization:
axiom A1 : ∀ (a : Animal), is_rabbit a → is_cute a

axiom A2 : ∀ (a : Animal), is_rabbit a ∨ is_squirrel a

axiom A3 : ∀ (a : Animal), is_skittish a → ¬ is_still a

axiom A4 : ∀ (a : Animal), is_squirrel a → is_skittish a

axiom A5 : is_still Rock

theorem rock_condition : is_turtle Rock ∨ is_cute Rock:=

LeanReasoner Intuitive:
have h1 : ¬ is_skittish Rock, {

    intro h, have h2 : is_still Rock, from A5,

    have h3 : ¬ is_still Rock, from A3 Rock h,

    contradiction,

}, cases A2 Rock, {

    have h2 : is_cute Rock, from A1 Rock h, 

    right, exact h2,

}, {

    have h3 : ...,

    have h4 : ..., } 

Problem Statement: All rabbits are cute. Some 
turtles exist. An animal is either a rabbit or a 
squirrel. If something is skittish, then it is not 
still. All squirrels are skittish. Rock is still.

LeanReasoner Concise:
cases A2 Rock, {

    right,

    exact A3 Rock (A4 Rock h) A5,

}, {

    exfalso,

    exact A1 Rock h

}

Question: Rock is a turtle or cute.

LeanReasoner without Pretraining:
right,

apply A1 Rock,

cases A2 Rock, {

    exact h,

}, {

    ...

}, ✔
compresses multiple tactics 
into one reduces the workload 
of LLM

✘
model fails to find the 
correct solution 

✘
model is confused by 
excessive lemmas 

Figure 2: Sample proofs created by LeanReasoner without pretraining (left), finetuned on Intuitive data (middle),
and finetuned on Concise data (right).

Our approach achieves state-of-the-arts perfor-
mance on FOLIO. Table 4 presents our per-
formance on FOLIO. For a fair comparison with
SATLM that uses the Z3 solver, we used the lean-
smt tool5 on our formalized Lean code. This tool
produces outcomes in the form of “sat/unsat”. In
Z3, “sat” stands for “satisfiable.” When Z3 re-
turns “sat” as the result, it means that there exists
a set of variable values that makes the theorem
true. On the other hand, “unsat” stands for “unsat-
isfiable”. When Z3 returns “unsat”, it means that
the formula is inherently contradictory and cannot
be satisfied under any circumstance. We interpret
these results similarly to “found a proof/didn’t find
a proof” using our result interpreter. Due to the ex-
tensive length of proofs for FOLIO problems, we
observed that when LeanReasoner is fine-tuned on
the Intuitive dataset, it often allocates an excessive
amount of time for exploration and occasionally
enters loops. In contrast, generating shorter proofs
tends to ease the discovery of the proof. While the
tactics generated when fine-tuned on the Concise
dataset are more challenging to produce, the bot-
tleneck for LeanReasoner on FOLIO resides in the
search process.

Challenges in Benchmarking. It is important
to acknowledge that there can be scenarios where
errors in problem formalization or proof genera-
tion may occur, yet the final answer is still deemed

5https://github.com/ufmg-smite/lean-smt

correct. A case in point is when the answer to a
problem is Unknown, and errors arise in these
stages. In such instances, the model would strug-
gle to prove either the positive or negative theo-
rem. However, with our result interpreter, these
instances would still be classified as correct despite
the underlying issues in problem handling.

6 Related Work

Combining LLM with symbolic solver. Several
past studies (Chen, 2023; Creswell and Shanahan,
2022; Chen et al., 2023b) used symbolic solvers
to augment neural networks with logical reason-
ing. Many of these approaches have limitations,
like the necessity for custom or specialized mod-
ule designs that lack broad applicability. Recent
work (Pan et al., 2023; Ye et al., 2023; Poesia et al.,
2023; Olausson et al., 2023) presents a more gen-
eral framework that combines contemporary LLMs
with symbolic logic, bypassing the need to train or
craft intricate modules tailored for specific prob-
lems. While our research aligns with these, we do
not exclusively rely on off-the-shelf solvers.

Boosting the reasoning skill of LLM by train-
ing on reasoning data. A common way to boost
the reasoning skills of LLMs is by training them
on data that requires some form of reasoning. As
noted by Lewkowycz et al. (2022), LLMs trained
with science and math data do better on tasks
that require reasoning, especially when using CoT

8
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prompting. Other results by Fu and Khot (2022)
and Fu et al. (2023) suggest that powerful LLMs
obtain advanced reasoning capabilities from being
trained on code. This work is an extension of this
idea to theorem proving.

7 Conclusion

We introduced LeanReasoner, a framework based
on Lean that augments the logical reasoning abili-
ties of LLMs. We follow an extensive examination
of errors from the formalization and proof genera-
tion stages that are present in our framework. We
also examine the performance enhancements from
pretraining on theorem-proving data and annotation
styles (concise v.s. intuitive). We offered a com-
prehensive comparison with other techniques that
highlight the strengths of our model. Our results
underscore the potential of integrating theorem-
proving frameworks with LLMs in advancing logi-
cal reasoning.

Limitations

Despite our promising results, our method encoun-
ters limitations when dealing with problems that
involve commonsense and factual reasoning. In
these cases, it is challenging to retrieve all the nec-
essary information and accurately represent it in
Lean. Consider MMLU (Hendrycks et al., 2020)
and SummEdits (Laban et al., 2023): MMLU re-
quires the model to possess extensive world knowl-
edge, while SummEdits involves determining con-
sistency in summaries of different edits. In both
instances, the ability to represent the complexity
and nuance of real-world knowledge in Lean is
severely limited.

Further complications arise when dealing with
math word problems (Cobbe et al., 2021) and simi-
lar tasks (Hendrycks et al., 2021), where the goal
is to derive a numeric solution rather than a proof.
The theorem-proving approach, while effective for
certifying the validity of logical reasoning, does
not directly yield a numerical answer. Lastly, our
method grapples with problems found in more com-
plicated reasoning datasets like TheoremQA (Chen
et al., 2023a). These problems require an advanced
understanding of complex concepts and the ability
to formalize these concepts into Lean. Our current
framework struggles with this level of complex-
ity, underscoring the need for more sophisticated
formalization techniques and a deeper integration

between language understanding and theorem prov-
ing.

Even in the context of symbolic problems, there
are challenges. For instance, consider the Logi-
calDeduction task from the BigBench dataset (Sri-
vastava et al., 2022). Although this problem ap-
pears straightforward, employing Lean to solve it
is neither the most practical nor the most efficient
approach. Lean, as a theorem prover, is excellent in
abstract reasoning and proof construction, but when
faced with tasks involving constraints and variable
possibilities, it falls short. To solve the problems
in LogicDeduction, using Lean would require us
to formalize the concepts of ordering and relative
positioning. Even after doing so, generating proof
would necessitate significant labor and wouldn’t
necessarily yield a readily interpretable answer. In
contrast, a Constraint Satisfaction Problem (CSP)
solver can effectively manage constraints and gen-
erate potential solutions efficiently.

Ethical Considerations

Incorporating Lean’s theorem-proving capabilities
into LLMs offers a layer of mathematical rigor
that improves the reliability of conclusions derived.
However, LLMs are known to be susceptible to data
biases, which may manifest in critical applications.
This issue can inadvertently lead to skewed logic
or unintended bias in sensitive domains such as
medical diagnoses or legal interpretations. While
our method’s foundation in Lean’s theorem proving
data acts as a rigorous check, complete reliance
on it is not foolproof. A proactive approach in
reviewing both training data and model outcomes
is essential to uphold unbiased reasoning.
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A Prompts for Formalization

A.1 Prompts for ProofWriter
In subsection 5.1, we discussed various formaliza-
tion approaches. In this section, we present the
results using the GPT-4 Base Comments method
on ProofWriter when the answer is False. As evi-
dent from the last line, the predicted outcome from
GPT-4 can be derived easily.

System Message:
You are a logician with a background in

mathematics that translates natural language

reasoning text to Lean code so that these natural

language reasoning problems can be solved. During

the translation, please pay close attention to the

predicates and entities. There is an additional

requirement: I also want you to try to prove the

theorem you translated to Lean. If you can prove the

theorem, give me True at the end of the answer. If

you can prove the negation of the theorem, write

False at the end of the answer. If you can neither

prove the original theorem nor the negation

of the theorem, please give me Unknown at the end of

the answer.

Input:
Textual context: The cat is blue. The cat is nice.

The cat likes the cow. The cat needs the cow. The

cat needs the rabbit. The cow does not need the

rabbit. The cow needs the tiger. The rabbit is

round. The tiger is nice. The tiger does not

like the cow. If someone likes the cat and they

chase the cat then they are blue. If someone

likes the cow and they are red then the cow is

round. If someone needs the tiger and they need

the cat then they do not chase the cow. If someone

needs the cat and the cat is blue then the cat is

red. If someone is round then they need the cat.

If someone likes the cat and the cat needs the

rabbit then the cat chases the tiger. If the rabbit

needs the tiger then the rabbit is not round.

Question: Based on the above information, is the

following statement true, false, or unknown? The

cow chases the cow.
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Output:
universe u

constant obj : Type u

constant Cat : obj
constant Cow : obj
constant Rabbit : obj
constant Tiger : obj

constant Blue : obj → Prop
constant Nice : obj → Prop
constant Likes : obj → obj → Prop
constant Needs : obj → obj → Prop
constant Round : obj → Prop
constant Red : obj → Prop
constant Chases : obj → obj → Prop

axiom T1 : Blue Cat
axiom T2 : Nice Cat
axiom T3 : Likes Cat Cow
axiom T4 : Needs Cat Cow
axiom T5 : Needs Cat Rabbit
axiom T6 : ¬ Needs Cow Rabbit
axiom T7 : Needs Cow Tiger
axiom T8 : Round Rabbit
axiom T9 : Nice Tiger
axiom T10 : ¬ Likes Tiger Cow

-- If someone likes the cat and they chase the cat
then they are blue

axiom R1 : ∀ x : obj, Likes x Cat ∧ Chases x Cat →
Blue x

-- If someone likes the cow and they are red then
the cow is round

axiom R2 : ∀ x : obj, Likes x Cow ∧ Red x → Round
Cow

-- If someone needs the tiger and they need the cat
then they do not chase the cow

axiom R3 : ∀ x : obj, Needs x Tiger ∧ Needs x Cat
→ ¬ Chases x Cow

-- If someone needs the cat and the cat is blue
then the cat is red

axiom R4 : ∀ x : obj, Needs x Cat ∧ Blue Cat →
Red Cat

-- If someone is round then they need the cat
axiom R5 : ∀ x : obj, Round x → Needs x Cat
-- If someone likes the cat and the cat needs the

rabbit then the cat chases the tiger
axiom R6 : ∀ x : obj, Likes x Cat ∧ Needs Cat

Rabbit → Chases Cat Tiger
-- If the rabbit needs the tiger then the rabbit is

not round
axiom R7 : ∀ x : obj, Needs Rabbit Tiger → ¬

Round Rabbit

theorem cow_chases_cow : Chases Cow Cow :=
begin

have H1 : Needs Cow Tiger := T7,
have H2 : Needs Cat Cow := T4,
have H3 : ¬ Chases Cow Cow := R3 Cow (and.intro

H1 H2),
contradiction,
sorry,

end

-- Looks like the theorem cannot be proven in Lean.
-- So let’s try to prove the negation of the

theorem, which is Cow does not chase Cow

theorem not_cow_chases_cow : ¬ Chases Cow Cow :=
begin

apply R3 Cow,
split,
exact T7,
apply R5,
apply R2 Cat,
split,
exact T3,
apply R4 Rabbit,
split,
apply R5,
exact T8,
exact T1,

end

-- The negation of the theorem can be proven in
Lean. So

-- The answer is False

A.2 Prompts Used for FOLIO
For FOLIO, the prompts differ slightly from those
used for ProofWriter. Since FOLIO’s textual con-
text remains consistent across multiple questions,
we concatenate questions sharing the same context
and prompt the large language model in a single in-
stance. An illustrative example is provided below.

System Message:
You are a logician with a background in

mathematics that translates natural language

reasoning text to Lean code so that these natural

language reasoning problems can be solved. During

the translation, please pay close attention to the

predicates and entities. There is an additional

requirement: I also want you to try to prove the

theorem you translated to Lean. If you can prove the

theorem, give me True at the end of the answer. If

you can prove the negation of the theorem, write

False at the end of the answer. If you can neither

prove the original theorem nor the negation

of the theorem, please give me Unknown at the end of

the answer.

Input:
Textual context: There are six types of wild

turkeys: Eastern wild turkey, Osceola wild

turkey, Gould’s wild turkey, Merriam’s wild

turkey, Rio Grande wild turkey, and Ocellated

wild turkey. Tom is not an Eastern wild turkey.

Tom is not an Osceola wild turkey. Tom is

also not a Gould’s wild turkey, or a

Merriam’s wild turkey, or a Rio Grande wild

turkey. Tom is a wild turkey.

Question 1: Based on the above information, is the

following statement true, false, or uncertain?

Tom is an Ocellated wild turkey.

Question 2: Based on the above information, is the

following statement true, false, or uncertain?

Tom is an Eastern wild turkey.

Question 3: Based on the above information, is the

following statement true, false, or uncertain?

Joey is a wild turkey.
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Output:
-- Introducing basic types for entities in our

universe.
constant Turkey : Type
constant Tom : Turkey
constant Joey : Turkey

-- Defining properties for the turkeys in our
universe.

constant is_wild_turkey : Turkey → Prop
constant is_eastern_wild_turkey : Turkey → Prop
constant is_osceola_wild_turkey : Turkey → Prop
constant is_goulds_wild_turkey : Turkey → Prop
constant is_merriams_wild_turkey : Turkey → Prop
constant is_rio_grande_wild_turkey : Turkey → Prop
constant is_ocellated_wild_turkey : Turkey → Prop

-- Context from the information

-- Tom is not an Eastern wild turkey.
axiom A1 : ¬ is_eastern_wild_turkey Tom
-- Tom is not an Osceola wild turkey.
axiom A2 : ¬ is_osceola_wild_turkey Tom
-- Tom is also not a Gould’s wild turkey.
axiom A3 : ¬ is_goulds_wild_turkey Tom
-- Tom is not a Merriam’s wild turkey.
axiom A4 : ¬ is_merriams_wild_turkey Tom
-- Tom is not a Rio Grande wild turkey.
axiom A5 : ¬ is_rio_grande_wild_turkey Tom
-- Tom is a wild turkey.
axiom A6 : is_wild_turkey Tom
-- There are six types of wild turkeys: Eastern

wild turkey, Osceola wild turkey, ’Goulds wild
turkey, ’Merriams wild turkey, Rio Grande wild
turkey, and Ocellated wild turkey.

axiom turkey_type_exclusivity : ∀ (t : Turkey),
is_wild_turkey t → is_eastern_wild_turkey t ∨
is_osceola_wild_turkey t ∨
is_goulds_wild_turkey t ∨
is_merriams_wild_turkey t ∨
is_rio_grande_wild_turkey t ∨
is_ocellated_wild_turkey t

-- Formalizing the Questions

-- Question 1
-- Tom is an Ocellated wild turkey.
-- Let’s first prove the positive case.
theorem tom_is_ocellated_wild_turkey :

is_ocellated_wild_turkey Tom :=
begin

cases turkey_type_exclusivity Tom A6, {
have h1 : ¬ is_eastern_wild_turkey Tom,

from A1,
contradiction,

}, {
cases h, {

have h1 : ¬ is_osceola_wild_turkey
Tom, from A2,

contradiction,
}, {

cases h, {
have h1 : ¬ is_goulds_wild_turkey

Tom, from A3,
contradiction,

}, {
cases h, {

have h1 : ¬
is_merriams_wild_turkey Tom, from A4,

contradiction,
}, {

cases h, {
have h1 : ¬

is_rio_grande_wild_turkey Tom, from A5,
contradiction,

}, {
assumption,

}
}

}
}

}
end

-- Let’s try the negative case.

theorem not_tom_is_ocellated_wild_turkey : ¬
is_ocellated_wild_turkey Tom :=

begin
exact A2,

end

-- The answer is Unknown

-- Question 2
-- Tom is an Eastern wild turkey.
-- Let’s first prove the positive case.
theorem tom_is_eastern_wild_turkey :

is_eastern_wild_turkey Tom :=
begin

sorry, -- Placeholder for proof
end

-- Let’s try the negative case.

theorem not_tom_is_eastern_wild_turkey : ¬
is_eastern_wild_turkey Tom :=

begin
exact A1,

end

-- The answer is False

-- Question 3
-- Joey is a wild turkey.
-- Let’s first prove the positive case.
theorem joey_is_wild_turkey : is_wild_turkey Joey :=
begin

sorry, -- Placeholder for proof
end

-- Let’s try the negative case.

theorem not_joey_is_wild_turkey : ¬ is_wild_turkey
Joey :=

begin
sorry, -- Placeholder for proof

end

-- The answer is Unknown

B Example Errors During Formalization

This is an artificial example highlighting typical
errors encountered in the formalization stage.

Input:
There are three types of wild turkeys: Eastern

turkey, Osceola turkey, Gould’s turkey. Tom is

neither an Eastern turkey nor an Osceola turkey.

Tom is a wild turkey. Bob is a Eastern turkey.

Bob weights 86 pounds and Tom weights 73 pounds.

Turkey either bites or stings.Bob bites. Eastern

turkey ’s bite would cause death.

Question 1: Tom is a Gould’s turkey.

Question 2: Bob is heavier than Tom.

Question 3: If Bob bites you, you will die.

Output:
constant Turkey : Type
constant Eastern Osceola Goulds : Turkey → Prop
constant weight_86 weight_73 : Turkey → Prop
constant bites stings : Turkey → Prop
constant eastern_bite_causes_death : Turkey → Prop
constant Tom Bob : Turkey

axiom A1 : ¬ Eastern Tom ∧ ¬ Osceola Tom
axiom A2 : Eastern Bob
axiom A3 : weight_86 Bob
axiom A4 : weight_73 Tom
axiom A5 : ∀ (t : Turkey), bites t ∨ stings t
axiom A6 : bites Bob
axiom A7 : ∀ (t : Turkey),

eastern_bite_causes_death t
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There are a few errors in the above code, includ-
ing:

• There is a missing axiom that corresponds to
"There are three types of wild turkeys":

Goulds Tom ∨ Eastern Tom ∨ Osceola Tom

• The formalization of numbers is incorrect, it
should be:

constant weight : Turkey → N

axiom A3 : weight Bob = 86

axiom A4 : weight Tom = 73

• The formalization of logic is incorrect, it
should be:

¬ bite_causes_death t ∧ bite_causes_itching t) ∨
(bite_causes_death ∧ ¬ bite_causes_itching t

• There is an incorrect division of concepts that
would make the proving impossible, the cor-
rect version should be:

∀ (t : Turkey), Eastern t → bite_causes_death t

C Example Proof Annotation with
Different Annotation Styles

Here we’re showing two example proofs created on
the same problem with ‘Intuitive’ annotation style
and ‘Concise’ annotation style.

Input:
"Textual Context": All eels are fish. No fish are

plants. A thing is either a plant or animal.

Nothing that breathes is paper. All animals breathe.

If a sea eel is either an eel or a plant, then a sea

eel is an eel or an animal.

"Question": "Based on the above information, is

the following statement true, false, or uncertain?

Sea eel is a paper.

Formalized Context:
constant Thing : Type

constant is_eel : Thing → Prop
constant is_fish : Thing → Prop
constant is_plant : Thing → Prop
constant is_animal : Thing → Prop
constant is_paper : Thing → Prop
constant breathes : Thing → Prop

constant sea_eel : Thing

-- All eels are fish.
axiom A1 : ∀ (t : Thing), is_eel t → is_fish t
-- No fish are plants.
axiom A2 : ∀ (t : Thing), is_fish t → ¬ is_plant t
-- A thing is either a plant or animal.
axiom A3 : ∀ (t : Thing), is_plant t ∨ is_animal t
-- Nothing that breathes is paper.
axiom A4 : ∀ (t : Thing), breathes t → ¬ is_paper

t
-- All animals breathe.

axiom A5 : ∀ (t : Thing), is_animal t → breathes t
-- If a sea eel is either an eel or a plant, then a

sea eel is an eel or an animal.
axiom A6 : (is_eel sea_eel ∨ is_plant sea_eel) →

(is_eel sea_eel ∨ is_animal sea_eel)

Intuitive Proof:
theorem not_sea_eel_is_paper : ¬ is_paper sea_eel

:=
begin

cases A3 sea_eel, {
have h1 : ¬ is_fish sea_eel, {

intro h,
have temp := A2 sea_eel h,
contradiction,

},
have h2 : ¬ is_eel sea_eel, {

intro h,
have temp := A1 sea_eel h,
contradiction,

},
have h3 : is_eel sea_eel ∨ is_plant

sea_eel, {
right,
assumption,

},
have h4 : is_eel sea_eel ∨ is_animal

sea_eel := A6 h3,
cases h4, {

contradiction,
}, {

have h5 : breathes sea_eel := A5
sea_eel h4,

have h6 : ¬ is_paper sea_eel := A4
sea_eel h5,

contradiction,
}

}, {
have h1 : breathes sea_eel := A5 sea_eel h,
have h2 : ¬ is_paper sea_eel := A4 sea_eel

h1,
contradiction,

}
end

Concise Proof:
theorem not_sea_eel_is_paper : ¬ is_paper sea_eel

:=
begin

cases A3 sea_eel, {
cases A6 (or.inr h), {

have h1 := A2 sea_eel (A1 sea_eel h_1),
contradiction,

}, {
exact A4 sea_eel (A5 sea_eel h_1),

}
}, {

exact A4 sea_eel (A5 sea_eel h),
}

end
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