
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pages 7423–7436

June 16-21, 2024 ©2024 Association for Computational Linguistics

DEMUX: Data-efficient Multilingual Learning

Simran Khanuja Srinivas Gowriraj Lucio Dery Graham Neubig

Carnegie Mellon University
{skhanuja,sgowrira,ldery,gneubig}@cs.cmu.edu

Abstract

Pre-trained multilingual models have enabled
deployment of NLP technologies for multi-
ple languages. However, optimally fine-tuning
these models under an annotation budget, such
that performance on desired target languages is
jointly maximized, still remains an open ques-
tion. In this paper, we introduce DEMUX, a
framework that prescribes the exact data-points
to label from vast amounts of unlabelled multi-
lingual data, having unknown degrees of over-
lap with the target set. Unlike most prior works,
our end-to-end framework is language-agnostic,
accounts for model representations, and sup-
ports multilingual target configurations. Our
active learning strategies rely upon distance
and uncertainty measures to select task-specific
neighbors that are most informative to label,
given a model. DEMUX outperforms strong
baselines in 84% of the test cases, in the zero-
shot setting of disjoint source and target lan-
guage sets (including multilingual target pools),
across three models and four tasks. Notably,
in low-budget settings (5-100 examples), we
observe gains of up to 8-11 F1 points. Our code
is released here1.

1 Introduction

Picture this: Company Y, a healthcare technology
firm in India, has recently expanded their virtual as-
sistance services to cover remote locations in Nepal
and Bhutan. Unfortunately, their custom-trained
virtual assistant is struggling with the influx of new
multilingual data, most of which is in Dzongkha
and Tharu, but unindentifiable by non-native re-
searchers at Y. How can they improve this model?
Following current approaches, they first attempt to
discern the languages the data belongs to, but com-
mercial language identification systems (LangID)
are incapable of this task2. Assuming this hurdle
1https://github.com/simran-khanuja/demux
2For instance, this is true of Google Cloud’s LangID as
of December 2023: https://developers.google.com/ml-kit/
language/identification/langid-support

is crossed, Company Y then seeks out annotators
fluent in these languages, but this also fails given
crowd-sourcing platforms’ lack of support for the
above languages3. As an alternative, they decide to
use tools that identify best languages for transfer,
but these either rely on linguistic feature informa-
tion – missing for Dzongkha and Tharu4 (Lin et al.,
2019), past model performances – expensive to
obtain (Srinivasan et al., 2022) or don’t support
multilingual targets (Lin et al., 2019; Kumar et al.,
2022). Based on annotator availability, they even-
tually choose Nepali and Tibetan as optimal trans-
fer languages, and collect unlabelled corpora from
news articles, social media and online documents.
Even assuming all the preceding challenges are
surmounted, a final question remains unaddressed
by the traditional pipeline: how do they select the
exact data points to give to annotators for best per-
formance in their domain-specific custom model,
under a fixed budget?

In this work, we aim to provide a solution to
the above problem by introducing DEMUX, an
end-to-end framework that replaces the pipelined
approach to multilingual data annotation (Figure
1). By directly selecting datapoints to annotate,
DEMUX bypasses several stages of the pipeline,
that are barriers for most languages. The alleviation
of needing to identify the target languages itself
(Step 1: Figure 1), implies that it can be used for
noisy, unidentifiable, or code-mixed targets.

DEMUX makes decisions at the instance level
by using information about the pre-trained multilin-
gual language model’s (MultiLM’s) representation
space. This ensures that the data annotation pro-
cess is aware of the model ultimately being utilized.
Concretely, we draw from the principles of active
learning (AL) (Cohn et al., 1996; Settles, 2009)
for guidance on model-aware criteria for point se-
lection. AL aims to identify the most informative

3Given MTurk’s lack of regional support.
4e.g. in the WALS database https://wals.info/languoid
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Figure 1: Top: Today, improving the performance of a model on multilingual target data is a three-step process.
First, one would identify the target languages. Next, they would either collect data to label in these languages,
or closely related transfer languages, based on annotator availability. Finally, they would fine-tune a model on
the labelled data. However Step 1 excludes 98% of the world’s languages, Step 2 is constrained by annotators
or linguistic feature information, and Step 3 of factoring in the model to fine-tune, largely remains unaccounted
for. Bottom: With our end-to-end framework DEMUX, we prescribe the exact data to label from a vast pool of
multilingual source data, that provides for best transfer to the target, for a given model.

points (to a specific model) to label from a stream
of unlabelled source data. Through iterations of
model training, data acquisition and human annota-
tion, the goal is to achieve satisfactory performance
on a target test set, labelling only a small fraction
of the data. Past works (Chaudhary et al., 2019; Ku-
mar et al., 2022; Moniz et al., 2022) have leveraged
AL in the special case where the same language(s)
constitute the source and target set (Step 2 (upper
branch): Figure 1). However, none so far have
considered the case of source and target languages
having unknown degrees of overlap; a far more
pervasive problem for real-world applications that
commonly build classifiers on multi-domain data
(Dredze and Crammer, 2008). From the AL lens,
this is particularly challenging since conventional
strategies of choosing the most uncertain samples
(Settles, 2009), could pick distracting examples
from very dissimilar language distributions (Long-
pre et al., 2022). Our strategies are designed to
deal with this distribution shift by leveraging small
amounts of unlabelled data in target languages.

In the rest of the paper, we first describe three
AL strategies based on the principles of a) semantic

similarity with the target; b) uncertainty; and c)
a combination of the two, which picks uncertain
points in target points’ local neighborhood (§3).
We experiment with tasks of varying complexity,
categorized based on their label structure: token-
level (NER and POS), sequence-level (NLI), and
question answering (QA). We test our strategies
in a zero-shot setting across three MultiLMs and
five target language configurations, for a budget of
10,000 examples acquired in five AL rounds (§4).

We find that our strategies outperform previous
baselines in most cases, including those with mul-
tilingual target sets. The extent varies, based on
the budget, the task, the languages and models
(§5). Overall, we observe that the hybrid strategy
performs best for token-level tasks, but picking
globally uncertain points gains precedence for NLI
and QA. To test the applicability of DEMUX in
resource constrained settings, we experiment with
lower budgets ranging from 5-1000 examples, ac-
quired in a single AL round. In this setting, we
observe gains of upto 8-11 F1 points for token-
level tasks, and 2-5 F1 for complex tasks like NLI
and QA.
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2 Notation

Assume that we have a set of source languages,
Ls = {l1s . . . lns }, and a set of target languages,
Lt = {l1t . . . lmt }. Ls and Lt are assumed to have
unknown degrees of overlap.

Further, let us denote the corpus of unlabelled
source data as Xs = {x1s . . . xNs } and the unla-
belled target data as Xt = {x1t . . . xMt }.

Our objective is to label a total budget of B
data points over K AL rounds from the source
data. The points to select in each round can then
be calculated by b = B

K . Thus considering the
super-set Sb = {X ⊂ Xs

∣∣ |X| = b} of all b-
sized subsets of Xs, our objective is to select some
X∗ ∈ Sb according to an appropriate criterion.

3 Annotation Strategies

Based on the broad categorizations of AL methods
as defined by Zhang et al. (2022), we design three
annotation strategies that are either representation-
based, information-based, or hybrid. The first
picks instances that capture the diversity of the
dataset; the second picks the most uncertain points
which are informative to learn a robust decision
boundary; and the third focuses on optimally com-
bining both criteria. In contrast to the standard
AL setup, there are two added complexities in our
framework: a) source-target domain mismatch; b)
multiple distributions for each of our target lan-
guages. We therefore design our measures to select
samples that are semantically similar (from the
perspective of the MultiLM) to the target domain
(Longpre et al., 2022).

All strategies build upon reliable distance and un-
certainty measures, whose implementation varies
based on the type of task, i.e. whether the task is
token-level, sequence-level or question answering.
A detailed visualization of how these are calculated
can be found in §A.1. Below, we formally describe
the three strategies, also detailing the motivation
behind our choices.

3.1 AVERAGE-DIST

AVERAGE-DIST constructs the set X∗ such that it
minimizes the average distance of points from Xt

under an embedding function f : X → Rd de-
fined by the MultiLM. This is a representation-
based strategy that picks points lying close to the
unlabelled target pool (McCallum et al., 1998; Set-
tles and Craven, 2008). The source points cho-
sen are informative since they are prototypical of

the target data in the representation space (Figure
2a). Especially for low degrees of overlap between
source and target data distributions, this criterion
can ignore uninformative source points. Formally,

X∗ = argmin X ∈ Sb

∑

xs∈X
dt (xs)

Where

dt (x) =
1

|Xt|
∑

xj
t∈Xt

∥∥∥f (x)− f
(
xjt

)∥∥∥

For all task types, we use embeddings of tokens
fed into the final classifier, to represent the whole
sequence. For NLI and QA, this is the [CLS] token
embedding. For token-level tasks, we compute the
mean of the initial sub-word token embeddings
for each word, as this is the input provided to the
classifier to determine the word-level tag.

3.2 UNCERTAINTY

Uncertainty sampling (Lewis, 1995) improves an-
notation efficiency by choosing points that the
model would potentially misclassify in the current
AL iteration. Uncertainty measures for each task-
type can be found below:

Sequence-Level: We use margin-sampling
(Scheffer et al., 2001; Schein and Ungar, 2007),
which selects points having the least difference
between the model’s probabilities for the top-two
classes. We compute the output probability distri-
bution for all unlabeled samples in Xs and select
samples with the smallest margin. Formally,

X∗ = argmin X ∈ Sb

∑

xs∈X
P∆ (xs)

Where

P∆ (x) = pc1(x)− pc2(x)

pc1(x) and pc2(x) are the predicted probabilities
of the top-two classes for an unlabeled sample x.

Token-level: For token-level tasks we first com-
pute the margin (as described above) for each token
in the sequence. Then, we assign the minimum mar-
gin across all tokens as the sequence margin score
and choose construct X∗ with sequences having
the least score. Formally,

X∗ = argmin X ∈ Sb

∑

xs∈X
MARGIN-MIN (xs)

Where

MARGIN-MIN (x) =
|x|
min
i=1

(
pic1(x)− pic2(x)

)
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(a) AVERAGE-DIST (b) UNCERTAINTY (c) KNN-UNCERTAINTY

Figure 2: Visualization of datapoints selected using strategies detailed in Section 3, for a three-class sequence
classification task (XNLI). AVERAGE-DIST selects points (dark blue) at a minimum average distance from the
target (pink); UNCERTAINTY selects most uncertain points lying at the decision boundary of two classes, and
KNN-UNCERTAINTY selects uncertain points in the target neighborhood.

Question Answering: The QA task we investi-
gate involves extracting the answer span from a rel-
evant context for a given question. This is achieved
by selecting tokens with the highest start and end
probabilities as the boundaries, and predicting to-
kens within this range as the answer. Hence, sam-
ples having the lowest start and end probabilities,
qualify as most uncertain. Formally,

X∗ = argmin X ∈ Sb

∑

xs∈X
SUM-PROB (xs)

Where

SUM-PROB (x) =
|x|
max
i=1

log pis(x)+
|x|
max
i=1

log pie(x)

Above, |x| denotes the sequence length of the
unlabeled sample x, and pis(x) and pie(x) represent
the predicted probabilities for the start and end
index, respectively.

3.3 KNN-UNCERTAINTY

As standalone measures, both distance and uncer-
tainty based criteria have shortcomings. When
there is little overlap between source and target,
choosing source points based on UNCERTAINTY
alone leads to selecting data that are uninformative
to the target. When there is high degrees of overlap
between source and target, the AVERAGE-DIST met-
ric tends to produce a highly concentrated set of
points (Figure 2a) – even if the model is accurate
in that region of representation space – resulting in
minimal coverage on the target set.

To design a strategy that combines the strengths
of both distance and uncertainty, we first measure
how well a target point’s uncertainty correlates with
its neighborhood. We calculate the Pearson’s corre-
lation coefficient (ρ) (Pearson, 1903) between the

uncertainty of a target point in Xt and the average
uncertainty of its top-k neighbors in Xs. We ob-
serve a statistically significant ρ value > 0.7, for
all tasks. A natural conclusion drawn from this is
that decreasing the uncertainty of a target point’s
neighborhood would decrease the uncertainty of
the target point itself. Hence, we first select the top-
k neighbors for each xt ∈ Xt. Next, we choose the
most uncertain points from these neighbors until
we reach b data points. Formally, until |X∗| = b :

X∗ = argmax{X ⊂ N k
t

∣∣ |X| = b}

∑

xs ∈ X

U(xs)

Where

N k
t =

|Xt|⋃

j=1

k-NEARESTNEIGHBORS(xjt ,Xs)

Above, U(xs) represents the uncertainty of the
source point as calculated in §3.2.

4 Experimental Setup

Our setup design aims to address the following:
Q1) Does DEMUX benefit tasks with varying com-
plexity? Which strategies work well across differ-
ent task types? (§4.1)
Q2) How well does DEMUX perform across a
varied set of target languages? Can it benefit multi-
lingual target pools as well? (§4.2)
Q3) How do the benefits of DEMUX vary across
different MultiLMs? (§4.3)

4.1 Task and Dataset Selection
We have three distinct task types, based on the label
format. We remove duplicates from each dataset
to prevent selecting multiple copies of the same
instance. Dataset details can be found in Table 1.
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Task Type Task Dataset Languages (two-letter ISO code)

Token-level Part-of-Speech
Tagging (POS)

Universal Dependencies
v2.5 (Nivre et al., 2020)

tl, af, ru, nl, it, de, es, bg, pt, fr, te, et, el, fi,
hu, mr, kk, hi, tr, eu, id, fa, ur, he, ar, ta, vi,

ko, th, zh, yo, ja

Named Entity
Recognition (NER)

WikiAnn (Rahimi et al.,
2019)

nl, pt, bg, it, fr, hu, es, el, vi, fi, et, af, bn, de,
tr, tl, hi, ka, sw, ru, mr, ml, jv, fa, eu, ko, ta,
ms, he, ur, kk, te, my, ar, id, yo, zh, ja, th

Sequence-Level Natural Language
Inference (NLI)

XNLI (Conneau et al.,
2018)

es, bg, de, fr, el, vi, ru, zh, tr, th, ar, hi, ur,
sw

Question Answering (QA) TyDiQA (Clark et al., 2020) id, fi, te, ar, ru, sw, bn, ko

Table 1: Tasks and Datastes: DEMUX is applied across tasks of varying complexity, as elucidated in Q1: §4.

Dataset Single Target Multi-Target

HP MP LP Geo LPP

UDPOS French Turkish Urdu Telugu, Marathi, Urdu Arabic, Hebrew, Japanese, Korean,
Chinese, Persian, Tamil, Vietnamese, Urdu

NER French Turkish Urdu Indonesian, Malay,
Vietnamese

Arabic, Indonesian, Malay, Hebrew,
Japanese, Kazakh, Malay, Tamil, Telugu,

Thai, Yoruba, Chinese, Urdu

XNLI French Turkish Urdu Bulgarian, Greek, Turkish Arabic, Thai, Swahili, Urdu, Hindi

TyDiQA Finnish Arabic Bengali Bengali, Telugu Swahili, Bengali, Korean

Table 2: Target language configurations. We run five experiments for each model and task, with the language sets
above as targets (details in §4.2). All languages mentioned in Table 1 make up the source set, except the chosen
target languages for a particular configuration.

4.2 Source and Target Language Selection

We experiment with the zero-shot case of disjoint
source and target languages, i.e., the unlabelled
source pool contains no data from target languages.
The train and validation splits constitute the unla-
belled source or target data, respectively. Evalua-
tion is done on the test split for each target language.
With Q2) in mind, we experiment with five target
settings (Table 2):
Single-target: We partition languages into three
equal tiers based on zero-shot performance post
fine-tuning on English: high-performing (HP), mid-
performing (MP) and low-performing (LP), and
choose one language from each, guided by two
factors. First, we select languages that are com-
mon across multiple datasets, to study how data
selection for the same language varies across tasks.
From these, we choose languages that have similar-
ities with the source set across different linguistic
dimensions (obtained using lang2vec (Littell et al.,
2017)), to study the role of typological similarity
for different tasks.
Multi-target: Here, we envision two scenarios:
a) Geo: Mid-to-low performing languages in geo-
graphical proximity are chosen. From an applica-

tion perspective, this would allow one to improve a
MultiLM for an entire geographical area.
b) LPP: All low-performing languages are pooled,
to test whether we can collectively enhance the
MultiLM’s performance across all of them.

4.3 Model Selection
We test DEMUX across multiple MultiLMs: XLM-
R (Conneau et al., 2019), InfoXLM (Chi et al.,
2020), and RemBERT (Chung et al., 2020). All
models have a similar number of parameters
(∼550M-600M), and support 100+ languages.
XLM-R is trained on monolingual corpora from
CC-100 (Conneau et al., 2019), InfoXLM is trained
to maximize mutual information between multi-
lingual texts, and RemBERT is a deeper model,
that reallocates input embedding parameters to the
Transformer layers.

4.4 Baselines
1) RANDOM: Random subset of b data points from
Xs is selected.
2) EGALITARIAN: Equal number of randomly se-
lected data points from the unlabeled pool for each
language, i.e. |xs| = b/|Ls|; ∀xs ∈ Xs is cho-
sen. Debnath et al. (2021) demonstrate that this
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outperforms a diverse set of alternatives.
3) LITMUS: LITMUS (Srinivasan et al., 2022) is a
tool to generate data labeling plans, based on the
predictor’s projections. We only run this for XLM-
R since the tool requires past fine-tuning perfor-
mance profiles, and XLM-R has default support.
4) GOLD: This involves training on data from the
target languages itself. Given all other strategies are
zero-shot, we expect GOLD to out-perform them and
help determine an upper bound on performance.

4.5 Fine-tuning Details

We fine-tune all MultiLMs on English (EN-FT) and
continue fine-tuning on data selected using DE-
MUX, similar to Lauscher et al. (2020); Kumar
et al. (2022). Our budget is 10,000 examples ac-
quired in five AL rounds. For each model, we first
obtain EN-FT and continually fine-tune using DE-
MUX. All results are averaged across three seeds:
2, 22, 42 and further details are in §A.3.

5 Results

How does DEMUX perform overall? We present
results for NER, POS, NLI and QA in Tables 3,
4, 5 and 6, respectively. In summary, the best-
performing strategies outperform best performing
baselines in 84% of the cases, with variable gains
dependant on the task, model and target languages.
In the remaining cases, the drop is within 1% abso-
lute delta from the best-performing baseline.
How does DEMUX fare on multilingual target
pools? We observe consistent gains given mul-
tilingual target pools as well (Geo and LPP). We
believe this is enabled by the language-independent
design of our strategies, which makes annotation
decisions at a per-instance level. This has important
consequences, since this would enable researchers,
like those at Company Y, to better models for all
the languages that they care about.
Does the model select data from the same lan-
guages across tasks? No! We find that selected
data distributions vary across tasks for the same
target languages. For example, when the target lan-
guage is Urdu, DEMUX chooses 70-80% of sam-
ples from Hindi for NLI and POS, but prioritizes
Farsi and Arabic (35-45%) for NER. Despite Hindi
and Urdu’s syntactic, genetic, and phonological
similarities as per lang2vec, their differing scripts
underscore the significance of script similarity in
NER transfer. This also proves that analysing data
selected by DEMUX can offer linguistic insights

into the learned task-specific representations.

Method HP MP LP Geo LPP

X
L

M
-R

EN-FT 80.0 79.5 65.6 61.0 45.8
GOLD 90.1 92.8 94.5 81.2 73.7

BASEegal 85.4 87.6 84.0 80.6 62.8
DEMUXknn 87.8 89.2 85.8 82.4 62.3

∆base 2.4 1.6 1.8 1.8 -0.5

In
fo

X
L

M

EN-FT 80.5 82.8 65.4 64.2 44.8
GOLD 90.0 92.8 94.6 83.5 74.9

BASEegal 84.0 87.6 83.2 80.9 63.4
DEMUXknn 87.4 89.2 85.5 82.2 64.2

∆base 3.4 1.6 2.2 1.3 0.8

R
em

B
E

R
T

EN-FT 78.8 80.2 55.7 61.1 48.4
GOLD 89.4 92.1 93.5 79.8 70.1

BASEegal 84.6 86.8 82.3 79.2 59.8
DEMUXknn 87.1 89.0 85.7 79.8 62.1

∆base 2.5 2.2 3.4 0.6 2.3

Table 3: PAN-X Results (F1): We observe gains across
all models and KNN-UNCERTAINTY performs best. ∆base

represents the delta from baseline.

Method HP MP LP Geo LPP

X
L

M
-R

EN-FT 81.7 75.5 71.5 80.2 62.2
GOLD 95.6 81.2 93.2 91.8 88.2

BASEegal 87.1 79.6 88.4 85.7 68.9
DEMUXknn 87.5 80.1 90.1 86.1 70.9

∆base 0.4 0.5 1.7 0.4 2.0

In
fo

X
L

M

EN-FT 79.6 74.0 59.0 73.6 58.2
GOLD 95.7 81.4 93.3 92.0 88.7

BASEegal 88.0 79.4 88.8 86.3 67.8
DEMUXknn 87.8 79.5 90.4 86.0 66.8

∆base -0.3 0.1 1.6 -0.3 -1.0

R
em

B
E

R
T EN-FT 72.9 71.1 50.6 66.1 55.7

GOLD 95.1 80.8 92.3 91.2 86.8
BASEegal 86.9 78.1 85.8 83.8 67.8

DEMUXknn 87.4 77.7 88.2 84.2 68.0

∆base 0.5 -0.3 2.4 0.4 0.2

Table 4: UDPOS Results (F1): We observe modest gains
for a 10k budget, but higher gains for lower budgets (§6)

.

Which strategies work well across different task
types? Our hybrid strategy, which picks uncer-
tain points in the local neighborhood of target
points, performs best for token-level tasks, whereas
globally uncertain points maximize performance
for NLI and QA. For NLI, both AVERAGE-DIST
and UNCERTAINTY outperform baselines, the for-
mer proving more effective. On further analysis,
we find that this is an artifact of the the nature of the
dataset which is balanced across three labels, and
is strictly parallel. This makes AVERAGE-DIST se-
lect high-uncertainty points at decision boundaries’
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Method HP MP LP Geo LPP
X

L
M

-R

EN-FT 81.8 77.3 69.9 80.1 73.4
GOLD 81.6 79.5 70.3 81.6 76.0

BASEegal 81.6 78.8 73.0 80.9 75.6
DEMUXavg 83.7 79.9 75.3 82.2 77.1

∆base 2.1 1.1 2.3 1.3 1.5
∆gold 2.1 0.4 5.0 0.6 1.1

In
fo

X
L

M

EN-FT 81.9 77.3 68.8 79.8 71.5
GOLD 83.6 80.6 73.7 82.4 77.7

BASEegal 83.7 79.8 74.6 81.5 77.3
DEMUXavg 84.8 80.8 75.9 83.1 77.8

∆base 1.1 1.0 1.3 1.6 0.5
∆gold 1.2 0.2 2.2 0.7 0.1

R
em

B
E

R
T

EN-FT 83.1 73.9 52.5 77.8 63.0
GOLD 81.1 73.3 63.1 76.0 67.5

BASEegal 80.0 75.3 63.9 76.4 67.9
DEMUXavg 81.7 76.1 67.6 78.6 70.9

∆base 1.7 0.8 3.7 2.2 3.0
∆gold 0.6 2.8 4.5 2.6 3.4

Table 5: XNLI Results (F1): Here we even surpass the
gold standard of in-language finetuning. Details in §5.

Figure 3: Performance across different rounds (XLM-R)

centroid, as visualized in Figure 2a. Our finding of
different strategies working well for different tasks
is consistent with past works. For example, Settles
and Craven (2008) find information density (identi-
fying semantically similar examples), to work best
for sequence-labeling tasks; Marti Roman (2022)
discuss how uncertainty-based methods perform
best for QA; and Kumar et al. (2022) also rec-
ommend task-dependant labeling strategies. By
including multiple tasks and testing multiple strate-
gies for each, we provide guidance to everyday
practitioners on the best strategy, given a task.

6 Further Analysis

What is the minimum budget for which we can
observe gains in one AL round? To deploy DE-

Method HP MP LP Geo LPP

X
L

M
-R

EN-FT 78.9 73.2 79.9 80.7 78.5
GOLD 81.2 83.8 83.7 84.7 81.0

BASEegal 79.9 81.7 79.6 81.1 78.7
DEMUXunc 80.8 82.9 80.3 81.0 77.8

∆base 0.9 1.2 0.7 -0.1 -0.9

In
fo

X
L

M

EN-FT 77.6 75.4 82.2 81.9 78.8
GOLD 80.7 85.0 86.3 87.1 81.1

BASEegal 80.5 82.3 82.2 82.3 78.1
DEMUXunc 81.8 84.1 80.8 82.6 77.8

∆base 1.3 1.8 -1.4 0.3 -0.3

R
em

B
E

R
T EN-FT 79.7 73.0 82.9 78.0 78.2

GOLD 78.4 80.1 86.7 84.4 80.5
BASEegal 81.3 78.9 82.8 76.5 75.3

DEMUXunc 82.7 80.2 80.6 78.0 76.1

∆base 1.4 1.3 -2.2 1.5 0.8

Table 6: TyDiQA Results (F1): UNCERTAINTY works
best here. Despite TyDiQA being composed of typo-
logically diverse languages and being extremely small
(35-40k samples), we observe modest gains across mul-
tiple configs.

MUX in resource-constrained settings, we test its
applicability in low-budget settings, ranging from
5,10,50,100,250,500,1000, acquired using the EN-

FT model only. As shown in Figure 4, we observe
gains across all budget levels. Notably, we observe
gains of up to 8-11 F1 points for token-level tasks,
and 2-5 F1 points for NLI and QA, for most lower
budgets (5-100 examples). These gains diminish as
the budget increases. For complex tasks like NLI
and QA, semantic similarity with the target holds
importance when the budgets is below 500 exam-
ples, but picking globally uncertain points gains
precedence for larger budgets.
Do the selected datapoints matter or does follow-
ing the language distribution suffice? DEMUX
not only identifies transfer languages but also se-
lects specific data for labeling. To evaluate its im-
portance, we establish the language distribution
of data selected using DEMUX and randomly se-
lect datapoints following this distribution. Despite
maintaining this distribution, performance still de-
clines (§A.4), indicating that precise datapoint se-
lection in identified transfer languages is vital.

7 Related Work

Multilingual Fine-tuning: Traditionally models
were fine-tuned on English, given the availability
of labeled data across all tasks. However, signifi-
cant transfer gaps were observed across languages
(Hu et al., 2020) leading to the emergence of two
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Figure 4: Multiple budgets, one AL round: We experiment with low-budgets acquired using the EN-FT model. We
observe gains of up to 8-11 F1 over baselines for 5-100 examples, with a trend of diminishing gains given larger
budgets. All runs averaged across three seeds (2, 22, 42).

research directions. The first emphasizes the sig-
nificance of using few-shot target language data
(Lauscher et al., 2020) and the development of
strategies for optimal few-shot selection (Kumar
et al., 2022; Moniz et al., 2022). The second fo-
cuses on choosing the best source languages for
a target, based on linguistic features (Lin et al.,
2019) or past model performances (Srinivasan et al.,
2022). Discerning a globally optimal transfer lan-
guage however, has been largely ambiguous (Pel-
loni et al., 2022) and the language providing for
highest empirical transfer is at times inexplicable
by known linguistic relatedness criteria (Pelloni
et al., 2022; Turc et al., 2021). By making deci-
sions at a data-instance level rather than a language
level, DEMUX removes reliance on linguistic fea-
tures and sidesteps ambiguous consensus on how
MultiLMs learn cross-lingual relations, while pre-
scribing domain-relevant instances to label.

Active learning for NLP: AL has seen wide adop-
tion in NLP, being applied to tasks like text classifi-
cation (Karlos et al., 2012; Li et al., 2013), named
entity recognition (Shen et al., 2017; Wei et al.,
2019; Erdmann et al., 2019), and machine transla-
tion (Miura et al., 2016; Zhao et al., 2020), among
others. In the multilingual context, past works (Mo-
niz et al., 2022; Kumar et al., 2022; Chaudhary
et al., 2019) have applied AL to selectively label

data in target languages. However, they do not con-
sider cases with unknown overlap between source
and target languages. This situation, similar to a
multi-domain AL setting, is challenging as data
selection from the source languages may not prove
beneficial for the target (Longpre et al., 2022).

8 Conclusion
In this work, we introduce DEMUX, an end-to-
end framework that selects data to label from vast
pools of unlabelled multilingual data, under an an-
notation budget. DEMUX’s design is language-
agnostic, making it viable for cases where source
and target data do not overlap. We design three
strategies drawing from AL principles that encom-
pass semantic similarity with the target, uncertainty,
and a hybrid combination of the two. Our strategies
outperform strong baselines for 84% of target lan-
guage configurations (including multilingual target
sets) in the extreme case of disjoint source and tar-
get languages, across three models and four tasks:
NER, UDPOS, NLI and QA. We find that semantic
similarity with the target mostly benefits token-
level tasks, while picking uncertain points gains
precedence for complex tasks like NLI and QA.
We further analyse DEMUX’s applicability in low-
budget settings and observe gains of up to 8-11 F1
points for some tasks, with a trend of diminishing
gains for larger budgets.
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9 Limitations

With DEMUX’s wider applicability across lan-
guages come a few limitations as we detail below:

Inference on source data: DEMUX relies on
model representations and its output distribution
for each example. This requires us to run
inference on all of the source data; which can be
time-consuming. However, one can run parallel
CPU-inference which greatly reduces latency.

Aprior Model Selection: We require knowing the
model apriori which might mean a different label-
ing scheme for different models. This a trade-off
we choose in pursuit of better performance for the
chosen model, but it may not be the most feasible
solution for all users.

Refinement to the hybrid approach: Our hy-
brid strategy picks the most uncertain points in
the neighborhood of the target. However, its cur-
rent design prioritizes semantic similarity with the
target over global uncertainty, since we first pick
top-k neighbors and prune this set based on uncer-
tainty. However, it will be interesting to experiment
with choosing globally uncertain points first and
then pruning the set based on target similarity. For
NLI and QA, we observe that globally uncertain
points help for higher budgets but choosing nearest
neighbors helps most for lower budgets. Therefore,
this alternative may work better for these tasks, and
is something we look to explore in future work.
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A Appendix

A.1 Distance and Uncertainty Measurements

All of our strategies our based on reliable distance
and uncertainty measures. Once these are estab-
lished, it is easy to extend DEMUX to other tasks
and models. An overview of how these are mea-
sured for the tasks in our study can be found in
Figure 5. These are formally described in the pa-
per, in Section 3.

A.2 Uncertainty Details

For token-level tasks, we investigate two strategies.
First, we employ the Mean Normalized Log Proba-
bility (MNLP) (Shen et al., 2017) method, which has
been demonstrated as an effective uncertainty mea-
sure for Named Entity Recognition (NER). This
approach selects instances for which the log proba-
bility of model prediction, normalized by sequence
length, is the lowest. Formally,

X∗ = argmin X ∈ Sb

∑

xs∈X
MNLP (xs)

Where

MNLP (x) =
1

|x|

|x|∑

i=1

log pic1(x)

In this equation, |x| denotes the sequence length
of the unlabeled sample x, and pic1(x) represents
the predicted probability of the most probable class
for the ith token in the sequence.

Concurrently, we also explore margin-based un-
certainty techniques (MARGIN-MIN). For each token
in the sequence, we compute the margin as the dif-
ference between the probabilities of the top two
classes. Then, we assign the minimum margin
across all tokens as the sequence margin score and
choose sequences with the smallest margin score.
Formally,

X∗ = argmin X ∈ Sb

∑

xs∈X
MARGIN-MIN (xs)

Where

MARGIN-MIN (x) =
|x|
min
i=1

(
pic1(x)− pic2(x)

)

We eventually choose the margin based technique
given better performance for both token level tasks.

A.3 Fine-tuning Details
We first fine-tune all MultiLMs on English (EN-FT)
and continue fine-tuning on data selected using
DEMUX, similar to Lauscher et al. (2020); Ku-
mar et al. (2022). We experiment with a budget
of 10,000 examples acquired in five AL rounds,
except for TyDiQA, where our budget is 5,000 ex-
amples (TyDiQA is of the order of 35-40k samples
overall across ten languages, and this is to ensure
fair comparison with our gold strategy). For each
model, we first obtain EN-FT and continually fine-
tune using DEMUX. Hyperparameters are in Table
8 and we report average results across three seeds:
2, 22, 42. For UDPOS, we include all languages
except Tagalog, Thai, Yoruba and Kazakh, because
they do not have training data for the task5. We
fine-tune using a fixed number of epochs without
early stopping, given the lack of a validation set in
our setup (we assume no labelled target data).

Fine-tuning is done on a NVIDIA RTX A6000
GPU. Fine-tuning after each data selection round
takes 10-15 mins. The bottleneck is inference on
all of the source data, to obtain distance and un-
certainty measures. Depending on the dataset, the
time taken varies from 20 hrs (for 3 seed runs on
PAN-X and UDPOS for one target language con-
figuration) to 2 days (for 3 seed runs on XNLI for
one target language configuration).

A.4 Detailed Results
The detailed results for the first ablation study
where we test DEMUX for multiple budgets in
one AL round, can be found in Table 11. Results
for the second ablation, where we fine-tune models
on randomly selected data that follows the same
language distribution as DEMUX, can be found in
Table 10.

5https://huggingface.co/datasets/xtreme/blob/main/xtreme.py
#L914
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Figure 5: An overview of how distance and uncertainty are measured in our setup. A1, A2, A3 denote three words
in Sentence A that are tokenized into 2, 3, and 1 subword, respectively.

Dataset Single Target Multi-Target

HP MP LP Geo LP Pool

UDPOS fr:4938 tr:984 ur:545 te:130, mr:46, ur:545 ar:906, he:484, ja:511, ko:3014, zh:2689,
fa:590, ta:80, vi:794, ur:545

NER fr:9300 tr:9497 ur:944 id:7525, my:100, vi:8577 ar:9319,id:7525, my:100, he:9538, ja:9641,
kk:910, ms:761, ta:965, te:939, th:9293, yo:93,

zh:9406, ur:944

XNLI fr:2490 tr:2490 ur:2490 bg:2490, el:2490, tr:2490 ar:2490, th:2490 ,sw:2490, ur:2490, hi:2490

TyDiQA fi:1371 ar:2961 bn:478 bn:478, te:1113 sw:551, bn:478, ko:325

Table 7: Number of unlabelled target examples used in each configuration. This is the size of the validation set.

Model Dataset LR Epochs

XLM-R

NER 2e-5 10
UDPOS 2e-5 10
XNLI 5e-6 10

TyDiQA 1e-5 3

InfoXLM

NER 2e-5 10
UDPOS 2e-5 10
XNLI 5e-6 10

TyDiQA 1e-5 3

RemBERT

NER 8e-6 10
UDPOS 8e-6 10
XNLI 8e-6 10

TyDiQA 1e-5 3

Table 8: Hyperparameter Details.

7434



Dataset Single Target Multi-Target

HP MP LP Geo LP Pool

UDPOS fr tr ur te, mr, ur ar, he, ja, ko, zh, fa, ta,
vi, ur

it: 3434 et:799, fa:598,
ja:890, vi:694

de:5095, eu:84,
hi:3323, mr:92,

nl:556

ar:93, bg:68,
et:3197,eu:84, fr:65,

hi:3323, ja:890

hi:830

NER fr tr ur id, my, vi ar, id, my, he, ja, kk, ms,
ta, te, th, yo, zh, ur

it: 572 he: 4582; mr:
1015, nl: 4393

fa: 4007, ms:
79, ta: 788, vi:

62

bn:1000, he:572,
ko:469, ms:79

bn:62, ko:4699,
ml:4306

XNLI fr tr ur bg, el, tr ar, th, sw, ur, hi
ur:781, zh:6250 ru:781, ur:6250 hi:6250 ru:781, ur:6250 bg:6250, de:781, fr:781,

vi:781

TyDiQA fi ar bn bn, te sw, bn, ko
ar:185, bn:119,

id:142, ko:2,
ru:1, sw:17,

te:4450

bn:14, fi:2742,
ko:20, sw:4,

te:2

ar:740 ar:46, fi:2742, id:570,
ko:325, ru:5, sw:8

-

Table 9: LITMUS prescribed annotation budget: LITMUS prescribes how many samples to select from each
language. We select a random sample of data following the prescribed annotation.

Dataset Strategy AL Round

1 2 3 4 5

PAN-X
SR 81.1 81.9 84.1 85.1 84.0

DEMUX 83.2 83.1 84.1 85.8 85.2

∆ 2.0 1.2 0.0 0.7 1.2

UDPOS
SR 89.9 89.3 89.5 90.0 89.8

DEMUX 89.7 89.8 89.9 89.5 90.1

∆ -0.2 0.5 0.5 -0.4 0.3

XNLI
SR 73.3 73.8 73.8 73.8 73.9

DEMUX 74.5 74.7 75.5 75.3 75.3

∆ 1.2 0.9 1.6 1.5 1.4

TyDiQA
SR 80.6 81.5 81.5 82.0 81.7

DEMUX 82.8 83.2 83.2 83.5 83.8

∆ 2.2 1.7 1.8 1.5 2.1

Table 10: Detailed results: SR stands for SAME-RATIO.
Same data distribution across languages but a random
subset of datapoints selected.
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Dataset Budget Strategy

UDPOS

GOLD EGAL KNN-UNC AVG-DIST UNC

5 77.1 70.9 79.8 81.8 65.7
10 80.1 70.7 81.8 82.3 65.4
50 83.5 72.4 83.2 83.8 71.1

100 86.5 74.5 86.0 85.8 75.1
250 89.6 77.7 88.2 88.2 77.4
500 91.1 79.1 89.3 89.3 79.7

1000 92.2 81.5 89.3 89.5 82.2

PAN-X

5 64.3 54 64.9 40.2 40.8
10 71.8 52.7 58.4 44.2 47.9
50 77.1 61.6 74.5 65.4 46.8

100 79.2 67.6 80.5 70.2 37
250 82.9 76.7 82.4 76.7 61.1
500 85.7 80.1 84.5 82.5 73.6

1000 87.7 80.6 83.5 81.7 79.1

XNLI

5 64.3 63.6 69 57.1 67.6
10 70.6 68.1 70.5 70.8 72.5
50 73.1 73.3 73.2 72.6 72.2

100 72.9 71.2 72.7 71.1 73.8
250 71.5 72.4 72.4 72.9 73.9
500 73.3 72.8 72.3 72.4 72.6

1000 73.9 72.3 72.3 73.7 72.3

TyDiQA

74.5 73.3 73.4 72.9 74.2 74.2
74.1 73.3 74.0 73.8 74.4 74.4
75.5 75.5 77.1 73.0 75.3 75.3
77.6 74.6 80.2 73.7 77.8 77.8
80.6 74.9 80.6 76.8 78.8 78.8
82.2 78.1 81.1 78.7 81.6 81.6
82.8 79.9 80.4 80.8 81.5 81.5

Table 11: Detailed results: Multiple budgets, one AL round
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