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Abstract

Large Language Models (LLMs) have shown
remarkable proficiency in language understand-
ing and have been successfully applied to a va-
riety of real-world tasks through task-specific
fine-tuning or prompt engineering. Despite
these advancements, it remains an open ques-
tion whether LLMs are fundamentally capable
of reasoning and planning, or if they primar-
ily rely on recalling and synthesizing informa-
tion from their training data. In our research,
we introduce a novel task—Minesweeper—
specifically designed in a format unfamiliar to
LLMs and absent from their training datasets.
This task challenges LLMs to identify the lo-
cations of mines based on numerical clues pro-
vided by adjacent opened cells. Successfully
completing this task requires an understand-
ing of each cell’s state, discerning spatial re-
lationships between the clues and mines, and
strategizing actions based on logical deduc-
tions drawn from the arrangement of the cells.
Our experiments, including trials with the ad-
vanced GPT-4 model, indicate that while LLMs
possess the foundational abilities required for
this task, they struggle to integrate these into a
coherent, multi-step logical reasoning process
needed to solve Minesweeper. These findings
highlight the need for further research to un-
derstand the nature of reasoning capabilities
in LLMs under similar circumstances, and to
explore pathways towards more sophisticated
Al reasoning and planning models.

1 Introduction

Large Language Models (LLMs) have made re-
markable strides in the Natural Language Process-
ing (NLP) arena, capturing the spotlight with their
multifaceted capabilities. These models have been
effectively utilized across a spectrum of NLP tasks,
including information extraction (Agrawal et al.,
2022; Zhu et al., 2023b), answering arithmetic and
common-sense questions (Li et al., 2022; Yuan
et al., 2023; Imani et al., 2023), as well as aiding in
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strategic planning (Yao et al., 2023b; Wang et al.,
2023c) or acting as game agents (Callison-Burch
et al., 2022; Wang et al., 2023a; Gupta, 2023). With
growing scale, LLMs begin to exhibit “emergent
abilities” (Wei et al., 2022a; Schaeffer et al., 2023),
including marked improvements in their ability to
follow instructions, perform multi-step reasoning
and planning, and even extend to comprehending
humor (OpenAl, 2023). Such flourishing capability
has triggered excitement within the research com-
munity, cultivating the belief that LLMs could be
instrumental in achieving Artificial General Intel-
ligence (Bubeck et al., 2023; Zhang et al., 2023;
Tu et al., 2023). Nevertheless, a crucial question
remains underexplored: To what extent can the rea-
soning capabilities of LLMs go beyond the scope
of their training distribution?

This question is critical as it uncovers if LLMs
are reliable for sophisticated hands-off planning in
various scenarios such as biomedical experimen-
tal design (Bran et al., 2023; O’Donoghue et al.,
2023) and autonomous driving (Sha et al., 2023),
where the agents have to deal with off-distribution
inputs occasionally. Unfortunately, the answer is
not straightforward, and the debate is going on
(Huang et al., 2022; Helbling et al., 2023; Wu et al.,
2023; Huang et al., 2023; Valmeekam et al., 2023;
Stechly et al., 2023). The reason is that LLMs’
substantial parameter counts enable them to store
and recall vast amounts of information from their
training material (Gudibande et al., 2023; Rosen-
feld et al., 2020; Kaplan et al., 2020; Brown et al.,
2020), which may contain conventional reasoning
datasets such as GSMS8K (Cobbe et al., 2021), Mul-
tiArith (Roy and Roth, 2015), or StrategyQA (Geva
et al., 2021). This could exaggerate LLMs’ reason-
ing abilities on such benchmarks (Qin et al., 2023;
Deng et al., 2023), leading to false a promise when
applying LLMs to practical scenarios.

Although attempts to develop new benchmarks
that challenge LLMs suggest potential zero-shot
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learning successes (Suzgun et al., 2023; Bao et al.,
2023), there is an underlying concern that these
benchmarks may not be distinct enough from the
LLMs’ training data, thereby giving LLMs an
undue advantage and masking their true abilities
(Valmeekam et al., 2022). For instance, Gudibande
et al. (2023) suggest that smaller LLMs only learn
specific tasks when fine-tuned with data from larger
models and that these improvements do not gener-
alize well. Drawing an analogy between smaller
and larger LLMs to humans implies that LLMs
may not exhibit genuine intelligence or intrinsic
reasoning beyond their training distribution (Liu
etal., 2023; Bubeck et al., 2023). To robustly claim
that LLMs possess reasoning abilities, they must
be tested under a wider array of conditions. A
fundamental approach to overcoming these chal-
lenges is to decouple the test inputs from the LLMs’
pre-training data, compelling them to rely on task
descriptions for reasoning and planning rather than
prior knowledge. This entails an environment with
clear instructions, a rich but well-defined action
space, and a distinct objective. Such a setup facili-
tates the verification of the reasoning process and
qualitative performance assessment, while it also
reduces the chances of successful random guessing.

Minesweeper, a well-known logic puzzle game
illustrated in Figure 1, is proposed as an ideal test-
ing ground under these considerations. The game
presents a range of complexities: while its funda-
mental principles are straightforward and acces-
sible to beginners, achieving proficiency requires
advanced logical reasoning skills that go beyond
mere pattern recognition on the game board. For
LLMs, the challenge in Minesweeper lies in inter-
preting the states of individual cells, making use
of numerical hints, and understanding the spatial
interconnections between cells. This is essential
for accurately determining the locations of mines
and strategizing subsequent moves based on incom-
plete information—a process that is instinctive for
human players. Despite LLMs’ prior knowledge of
the universally known rules of Minesweeper, the
transformation of game boards from visual repre-
sentations to machine-readable text has been lim-
ited, with no existing format aligning with our rep-
resentation. Consequently, LLMs must rely on their
intrinsic logic for problem-solving by understand-
ing and following the rules, as pattern matching
from training data is impractical.

Building upon our initial motivation, we conduct
a comprehensive set of experiments with LLMs in-
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cluding GPT-3.5-16k, GPT-3.5-instruct, and GPT-4
(OpenAl, 2022, 2023), probing their inherent rea-
soning skills. We introduce the Minesweeper game
in various formats to determine how different types
of input influence LLM performance. Objective
measures like the count and proportion of accurate
moves, correctly flagged mines, and completely
resolved boards were employed to gauge effective-
ness. However, a critical aspect of our evaluation
is the manual examination of the LLMs’ reasoning
processes, inspecting the validity and logical sound-
ness of their intermediate deductions. Our findings
indicate that these models generally struggle to
maintain consistent logical reasoning chains. The
GPT-3.5 versions, in particular, tended to repeat
information from provided examples or previous
conversations, often failing to adjust to the updated
board layouts. While GPT-4 showed improvements
in response diversity, relevance, and coherence, it
still faced issues with logical inconsistencies and
incomplete reasoning. Our research categorizes
errors in a detailed simulated environment, which
sheds light on the specific skills required for solv-
ing logical puzzles, underscoring the importance of
these competencies in future LLM-focused studies.
Moreover, we notice that LLMs tend to generate
ad-hoc sequences of actions rather than following
logical reasoning chains based on action history, a
finding not commonly reported, providing novel in-
sights into LLM operational behaviors. To support
forthcoming research and comprehensive evalua-
tion of LLMs, we have published our code and data
at https://github.com/Yinghao-Li/Minesweeper-for-
LLM. We hope it contributes to LLMs’ broader
understanding and future development.

2 Related Works

Recent studies have explored the reasoning capabil-
ities of LLMs, with several investigations underway
to understand (Qin et al., 2023; Bang et al., 2023;
Liu et al., 2023; Xu et al., 2023; bench authors,
2023; Bao et al., 2023), enhance (Wei et al., 2022b;
Imani et al., 2023), and leverage (Yao et al., 2023b;
Sha et al., 2023) these abilities for various appli-
cations. Some critics argue that the datasets used
for evaluation are overly simplistic and potentially
compromised by inclusion in the training data of
LLMs (OpenAl, 2023; Wei et al., 2023), casting
doubt on the authenticity of these purported capa-
bilities (Valmeekam et al., 2022; Bao et al., 2023).
In response, new tasks and evaluation frameworks
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Figure 1: An example of Minesweeper on a 9 x 9 board containing 10 mines, along with its interaction format.
Subfigure la displays the game’s GUI; Subfigure 1b shows a plain-text, table-formatted representation of the
game board, enhanced with color for improved visualization; Subfigure 1c depicts the coordinate-based plain-text
representation of the board; and Subfigure 1d provides a log of the player’s (in this case, the first author’s) actions,
where “L”, “R”, and “M” denote left-click, right-click, and middle-click actions, respectively.

have been suggested (Valmeekam et al., 2022; Xu
et al., 2023; Bao et al., 2023; Vervoort et al., 2023;
Wang et al., 2023a). However, these tend to fo-
cus narrowly on specific aspects of arithmetic or
commonsense reasoning, often presented in un-
structured natural language that intersects with
LLMs’ pre-existing world knowledge. This over-
lap presents a challenge in fully assessing LLMs’
inductive reasoning abilities. In contrast, the game
of Minesweeper encompasses symbolic, arithmetic,
and commonsense reasoning in a structured format
lying outside the scope of LLMs’ training data, and
thus demands genuine reasoning skills for success-
ful resolution.

Alone another track, the use of LLMs in game-
play has gained attention, with efforts to harness
them for diverse games such as card games (Gupta,
2023; Guo et al., 2023), interactive narrative games
(Callison-Burch et al., 2022; Tsai et al., 2023; Cui
et al., 2023; Zhu et al., 2023a), chess (Noever et al.,
2020; Stockl, 2021; Suzgun et al., 2023; Feng et al.,
2023), and video games like Minecraft (Wang et al.,
2023a,b). Nonetheless, we contend that such games
are intrinsically distinct from Minesweeper in both
structure and the level of challenge they pose to
LLMs. Card and interactive narrative games largely
draw on common sense and narrative understand-
ing, with a constrained range of actions. This lim-
itation can obscure whether LLM decisions stem
from deep reasoning or instinctual response. Chess,
while offering a more extensive range of possibil-
ities, presents an abstract playfield that typically
requires tailored pre-training for LLMs to grasp its
rules. Minecraft poses a further challenge with its
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complex syntax and the need for meticulous, often
biased, prompt engineering, making it an impres-
sive display but not an accurate indicator of LLMs’
functional application. Minesweeper, by compari-
son, offers a straightforward yet strategically rich
gameplay experience with clear objectives and di-
rect evaluation criteria, making it an exemplary
model for assessing the practical reasoning capa-
bilities of LLMs.

3 Minesweeper

Minesweeper, a classic logic game, has been a

part of the Windows operating system since around

1990s. Though the rule is simple, it features a rich
and discrete action space, a clear goal, and direct
feedbacks and evaluation metrics. The objective is

straightforward: players must unveil all cells on a

board peppered with hidden mines without detonat-

ing any. Each cell on the board can exist in one of
four possible states (Figure 1b):

* Unopened (“?”): The state of these cells is un-
known; they could transition into any of the other
three states.

e Numbered (“1” to “8”): These cells reveal the
count of adjacent mines, including diagonals, pro-
viding critical clues for safe navigation.

e Blank (“.”): These cells have no adjacent mines,
often opening up larger areas of the board.

* Flagged (“F”): Cells suspected to contain mines
are marked accordingly for safety.

Notably, the choice of symbols is arbitrary and

should not impact the model performance, as they

serve as mere representations of concepts.



During gameplay, players may execute one of
three actions per turn: left-click (“L”) to reveal a
cell’s contents, right-click (“R”) to flag a suspected
mine, and middle-click (“M”) to verify the correct-
ness of flagged cells based on adjacent numbers.
On a beginner’s 9 x 9 board (Figure 1a), this re-
sults in 243 potential actions per round (Figure 1d),
creating an extensive action landscape despite nu-
merous actions being invalid (as listed in Table 3).
The game provides immediate feedback for each
action, with outcomes ranging from revealing or
flagging cells to error messages, game endings or
victories, allowing models to adjust their strategies
in real-time. Victory is reached by correctly iden-
tifying and flagging all mines or revealing all non-
mine cells, whereas failure occurs upon missteps
such as erroneous left-click on mines or incorrect
flag placements during middle-click verifications.
With action space and game objective established,
metrics such as the proportion of valid moves, the
percentage of successfully solved games, and the
average number of moves to resolve a board can
be readily computed. In summary, Minesweeper
serves as a less knowledge-intensive, more symbol-
comprehension and basic math-reasoning bench-
mark, pivoting on spatial reasoning over pure infor-
mation retrieval.

We employ two plain-text formats to present the
game board when interacting with LLMs, aiming to
understand LLMs’ capabilities of comprehending
each of them and to reduce the potential influence
of input format on the reasoning process. The first
format is table representation, depicted in Fig-
ure 1b. Here, the game board is portrayed as a table
with the states of each cell enclosed in ISIEX-style
quotation marks (grave accent “>” and apostrophe
“'”) to differentiate them from the cell indices and
separators. Rows and columns are delineated by
line break “\n” and comma “,” respectively, with
indices for the first row and column serving as the
coordinates for the cells. This format is intuitive
for human interpretation; LLMs equipped with ca-
pabilities to understand tables, as suggested by the
literature (Chen, 2023; Singha et al., 2023), should
process it similarly. For comparison, we also em-
ploy coordinate representation (Figure 1c). It
explicitly associates each cell’s coordinates with
its state in the form of a look-up table, potentially
offering a more direct description for LLMs to com-
prehend the board’s configuration.

The following sections first explore two critical
skills required for Minesweeper agents (§ 4). Then,
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Task Representation  3.5-16k  3.5-instr
table 66.7 533
— ids 63.7 40.7
Board + example 64.3 47.0

Navigation - verification 66.3 -

coordinate 82.3 66.7
+ example 89.7 61.0
Neighbor  table 33.3 16.7
Counting  coordinate 37.3 30.3

Table 1: Comparative analysis of GPT-3.5 variants in
board understanding tasks. The performance are quan-
tified using exact-matching accuracy percentages. The
notation “— ids” indicates the omission of indices in
the table representation, while “+ example” denotes the
inclusion of additional examples in the prompts. The
“+ verification” symbol refers to the application of the
self-verification technique as described in (Weng et al.,
2022). As GPT-3.5-instruct is not optimized for conver-
sational contexts, the self-verification is not applicable.

they evaluate the proficiency of LLMs in playing
Minesweeper, detailing objective scores and case
studies that highlight their reasoning and planning
capabilities (§ 5). Each section begins with a brief
introduction of the experimental setup, with com-
prehensive details available in appendix A.

4 Board Understanding

4.1 Experiment Setup

A fundamental skill for LLMs in Minesweeper is
the ability to comprehend the game board. To
assess this capability, we conducted two types
of straightforward experiments: board naviga-
tion and neighbor counting. In board navigation,
LLM:s are presented with a game board and a spe-
cific coordinate, and they are tasked to identify the
corresponding cell state. For neighbor counting,
LLMs are given an additional arbitrary state from
the set {~?', ~."', ~1', ~2',} and are required to
calculate the number of occurrences of this state
(ranging from 0 to 8) surrounding the provided co-
ordinate. We annotated 100 randomly generated
9 x 9 boards, each containing 10 mines, with com-
plete action steps (refer to Figure 1d). The boards
were randomized at different stages of the game, ei-
ther fully or partially revealed, and 3 sets of coordi-
nates were selected randomly for the experiments.

4.2 Results

The performance of GPT-3.5-16k and GPT-3.5-
instruct was evaluated using both table and coordi-
nate representations, as shown in Table 1. With the



table representation, GPT-3.5-16k demonstrated
a notable deficiency in accurately identifying the
cell state, failing approximately one-third of the
time in board navigation tasks. GPT-3.5-instruct
showed even lower performance. Attempts to en-
hance performance through various modifications
to the boards and prompts, including removing in-
dices, adding examples, and requesting models to
revise their outputs, were unsuccessful. However,
with the coordinate representation, both models ex-
hibited improved results. This suggests that the
challenge of interpreting tables might be a limiting
factor for the models in subsequent gameplay tests.
Nonetheless, GPT-3.5 displayed a failure rate of
over 10%, which is suboptimal given that the task
essentially involves copying and pasting values in
coordinate-state mappings. In neighbor counting
tasks, both models achieved a maximum accuracy
of about one-third, significantly better than random
guessing. This indicates that GPT-3.5 models pos-
sess basic arithmetic and geographical planning
skills, which are essential for Minesweeper. These
findings suggest that the models have a moderate
level of board understanding, which is sufficient to
not severely impede the gameplay tests that follow.

5 Minesweeper Gameplay

5.1 Experiment Setup

In our study, we utilize 5 x 5 Minesweeper boards
containing 4 hidden mines, a setup less complex
than the conventional beginner level. LLMs are
instructed to start the game by left-clicking the cen-
ter cell and then proceed with either left, right, or
middle-click actions on cells they assess as benefi-
cial for advancing gameplay. We craft and annotate
100 boards for GPT-3.5 models, ensuring the initial
left-click would reveal at least 10 cells (40% of the
board). This strategy aims to streamline the length
of the prompts and minimize the number of inter-
active rounds required. For GPT-4, we randomly
subsample 10 boards from the pool to reduce the
experiment time and expense.

Prompting techniques such as chain-of-thought
reasoning (Wei et al., 2022b) and few-shot in-
context learning (appendix A.3) are employed to ac-
tivate the LLMs’ reasoning capabilities and provide
sufficient information for decision-making. Each
game session permits a maximum of 10 actions per
board, concluding either when the model achieves
victory, triggers a mine, or produces unrecogniz-
able responses. Given that human annotators, on
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Natural Conversation Compact History
Rules: ... Rules: ...
Action types: ... q
Examplgg Action Types: ...
(N Examples: ...
Reasoning: ... Action History:
Action: L(3,3) CEONIESIONY;

[Action 1]: L(3,3)

Feedback: Success!
[Feedback 1]: Success!

Current Board: ...

Reasoning: ... [Action 2]: ...

Action: ...
: [Feedback 2]: ...

Current Board: ...

Feedback: ...
Current Board: ...

Reasoning: ...
Action: ...

Reasoning: ...
Action: ...

Figure 2: Interaction prompting modes. The “Natu-
ral Conversation” mode encompasses the full interac-
tion history, whereas the “Compact History” mode con-
denses the actions generated by the LLM and the game’s
feedback into a succinct, unified prompt.

average, complete each board with an average of
6.14 actions, we deemed a 10-action limit adequate
for the model to effectively resolve most boards,
contingent on its reasoning ability.

To balance the influence of prompt details and
accommodate models with shorter prompt con-
straints, our study introduces two distinct prompt-
ing approaches: 1) Natural Conversation (NC)
mode, and 2) Compact History (CH) mode, as
illustrated in Figure 2. In the NC mode, each game
commences with a detailed explanation of rules and
examples. During each round, we prompt LLMs to
execute actions along with their associated reason-
ing. The game system then provides feedback on
these actions and updates the board in a new user
message, while maintaining the complete history
of the interaction. CH mode, on the other hand,
condenses all relevant information and interaction
history into a concise, singular prompt, eliminating
the need for extensive conversational details. This
approach significantly shortens the length of the
conversation history. Given the turn-based nature
of Minesweeper, the CH mode is effective in pro-
viding all vital information required for the model
to make well-informed decisions.

5.2 Metrics

The evaluation of our model’s performance is an-
chored in objective metrics, which encompass: the
count of valid actions, the accurate identification
of mines, the number of successfully completed
games, and the logical coherence of reasoning



| Human | 3.5-16k(NC) | 3.5-16k (CH) | 3.5-instr(CH) | 4 (NC)
| GUI | Table Coord | Table Coord | Table Coord | Table Coord
Game Qutcome
# Total Games | 100 | 10
® % Solved (1) ‘ 89.0 ‘ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
e % Failed ({) 11.0 17.0 35.0 17.0 35.0 19.0 41.0 70.0 70.0
Mine Identification
# Total Mines | 400 | 40
o % Flagged (1) | 930 | 28 117 | 80 95 | 117 233 | 300 450
Action Accuracy
# Total Actions | 514 | 825 679 | 700 687 | 813 642 | 41 %2
e % Valid (1) ‘ 99.6 ‘ 7.2 22.4 ‘ 15.7 22.6 ‘ 24.1 64.6 ‘ 82.9 82.7
® % Repeated (|) 5.1 43.6 44.6 42.3 45.3 394 199 0.0 0.0
Reasoning Soundness
# Selected Reasoning Chains | - | 34 38 | 45 39 | 45 45 | 25 38
e % Valid Actions (1) - ‘ 61.8 81.1 ‘ 46.7 59.0 ‘ 80.0 95.6 ‘ 88.0 84.2
e % Accurate and Coherent Logic (1) - 0.0 0.0 0.0 0.0 0.0 0.0 12.0 26.4

Table 2: The comparison of GPT model variants, prompting modes, and board representation formats on 5 X 5
boards with 4 mines. “#” indicates the number of instances; “%” represents the percentage ratio. The initial action,
L(3,3), is consistently excluded from the count. GPT-3.5-instruct is prompted using the compact history mode, as
it is not optimized for chat-based interactions. The terms “Table” and “Coord” in the table refer to the table-format
and coordinate-format representations of the Minesweeper board, respectively. The percentages of solved and failed
cases do not sum to 100% due to instances where the game was not completed within 10 steps. The repetition is

calculated independently for each board.

chains. A “valid” action is one that advances game-
play without activating a mine. Table 3 details a
broad spectrum of negative examples. The metric
for correctly flagged mines is based on the quantity
of mines identified by the model that align with the
actual mine locations at the game’s conclusion. A
game is deemed “solved” when all mines are accu-
rately marked and no extraneous cells are flagged.
To assess the reasoning chains, we initially select 5
game boards where each model executed the high-
est number of valid actions. We then perform a
manual inspection to ensure these chains are logi-
cally sound and directly pertinent to the gameplay.
Due to the variable action counts across different
models and boards, the totals of actions and reason-
ing chains differ, as Table 2 illustrates.

5.3 Results and Discussion

Table 2 showcases the performance comparisons
between various GPT family models and a human
benchmark, focusing on valid actions, correctly
identified mines, completed games, and logical rea-
soning chains. In line with the findings on board
comprehension, models utilizing coordinate repre-
sentation exhibit superior performance across all
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metrics compared to table representation. This sup-
ports our previous assertion that LLMs struggle
with tables containing symbols not found in their
training data, preferring familiar in-domain termi-
nology as evidenced in the studies by Chen (2023)
and Singha et al. (2023).

Objective Scores In assessing specific gameplay
metrics, we first focus on three main areas: Game
Outcomes, Mine Identification, and Action Accu-
racy. Among the GPT-3.5 variants, 3.5-instruct
demonstrates better overall performance compared
to 3.5-16k in these metrics, albeit with a marginally
increased failure rate, which diverges from the
board understanding results. A detailed analysis of
GPT-3.5-instruct’s initial move reveals a consistent
anomaly: the model persistently selects the R(2,2)
action, contrary to the given instruction of L (3, 3)
(refer to Table 3 for invalid actions and Listing 5,
Line 83 for the specific prompt). After receiving
feedback, it switches to the L(1,1) action. This
action often uncovers fewer cells in our specially
selected boards, usually just the chosen cell itself
(as illustrated in Figure 3), which increases the
probability of the next action being valid. This be-
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Figure 3: A detailed analysis of the example interactions performed by GPT-3.5-instruct. Arrows oriented to the left
and right signify left and right mouse clicks, respectively. The arrow pointing upwards represents a middle-click.
The majority actions are technically allowed but do not effectively advance the gameplay.

>> USER:
——— CURRENT BOARD ——-
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>> ASSISTANT (gpt-3.5-turbo-16k):

REASONING:

Looking at the current board, we can see that the cell at (2,4)
has a number 4", indicating that there are four mines in its
neighboring cells. Out of these neighboring cells, three are
already opened, and one remains unopened at (1,4). Since there
are four mines in total, it is logical to deduce that the unopened
cell at (1,4) contains a mine. Therefore, our next move is to flag
the cell at (1,4) with a right-click.

ACTION:
R(1,4)

Figure 4: A case study of a “valid” action and its cor-
responding reasoning generated by GPT-3.5-16k for
solving Minesweeper. Blue indicates logical reasoning;
red and golden are illogical ones.

havior could also explain the higher failure rate and
lower repeatance rate observed in GPT-3.5-instruct
compared to the 3.5-16k model. Furthermore, GPT-
3.5-instruct tends to make conservative moves by
flagging all cells on the board, which accounts for
its inability to solve any board despite having a
higher ratio of flagged mines. Overall, all GPT-
3.5 models present a noticeable pattern of repeti-
tive actions during board solving, persisting even

65

with direct instructions to avoid repetition (see List-
ing 5, line 29). This repetitive behavior suggests
a significant limitation in the models’ capacity to
fully understand and reason about the nuanced vari-
ations occurring on the board at each turn. As
Transformer-based models designed primarily for
next-token prediction (Vaswani et al., 2017), their
focus likely remains on static aspects of cell states,
overlooking subtle changes. This attentional bias,
compounded by the lack of pre-training on tasks
resembling this one, often leads to the repeated
execution of identical actions.

In contrast, GPT-4 exhibits a marked improve-
ment in following instructions, achieving a zero
rate of repetition while maintaining a high fre-
quency of valid actions. Notably, it flags the most
mines, despite not solving any board and record-
ing a high percentage of game failures, which is
partly attributed to its tendency for divergent ac-
tions. When both operated in NC mode, GPT-4 is
more prone to generating unrecognizable actions
compared to GPT-3.5-16k, as illustrated in Fig-
ure 5, even when the conversation history is within
the token limit. A plausible interpretation of this
behavior is that GPT-4 demonstrates heightened
sensitivity to recent changes in board states, al-
locating more attention to these immediate alter-
ations. Conversely, it appears to pay less regard to
the more distant historical context, where the con-
straints governing action formats are established.



With the current state of the board, there are several safe moves that can be made based on the information provided by
the numbered cells. The cells along the edge that are showing a "1' next to a blank cell can be safely assumed to have a
mine in the adjacent unopened cell. Specifically, the cell at (1,3) has only one adjacent unopened cell at (1,2), which
must contain a mine. To progress in the game without risking opening a mine, we can flag the cell at (1,2) as it is the
only unopened adjacent cell to (1,3).

The cell at (4,1) is showing a 1", indicating there is one mine adjacent to it. Since the only unopened adjacent cell is at
(5,1), we can deduce that the mine must be in that location. Therefore, we can safely flag cell (5,1) with a right-click.

Observing the board, the cell at (2,1) shows a "2', indicating there are two mines adjacent to it. One mine is already
flagged at (1,2). The only other unopened cell next to it is at (1,1), so we can conclude that the other mine must be at
(1,1). Thus, the safe action is to flag cell (1,1).

The cell at (4,4) shows a "1', which means there is one mine adjacent to it. Since all surrounding cells are revealed except
for the one at (5,4), we can deduce that (5,4) must contain the mine. We should therefore flag cell (5,4) with a right-click.

Looking at cell (2,1), we can see it has a "2' which indicates there are two mines in the neighboring cells. Since one mine
is already flagged at (1,1), the other mine must be in one of the unopened cells adjacent to (2,1). Cell (2,2) also has a *2',
and given that there's already a mine flagged at (1,2), the second mine adjacent to (2,2) can only be at (3,1) because (3,2)

these cells is at (3,1).

is opened and cannot contain a mine. Thus, we can safely flag the cell at (3,1) as containing a mine.

The corrected action based on the previous reasoning should be to flag the cell at (3,1) as it is suspected to contain a
mine. This is deduced from the fact that the 2" in both cells (2,1) and (2,2) must be satisfied by having two mines
adjacent to them, and with the given flags and opened cells, the only possible location for the second mine around both of

Figure 5: This figure presents a case study of the reasoning sequences formulated by GPT-4 with coordinate board
representation during action planning. The GUI on the left shows the board states and actions taken by the agent
during the game. Elements highlighted in blue represent accurate facts and logical inferences as assessed by human
evaluation, while those marked in red indicate incorrect observations or illogical conclusions. Notably, the final
generated action “F (3,1)” deviates from the permissible action formats, resulting in the termination of the game.

Reasoning Chains The foregoing discussion
highlights that merely counting valid actions is
not an adequate measure of the models’ reasoning
skills. Therefore, we shift our focus to the logical
coherence of their reasoning chains. A review of
the final section in Table 2 reveals that the GPT-3.5
variants struggle to generate coherent reasoning.
For instance, in a typical case from GPT-3.5-16k,
shown in Figure 4, the model correctly identifies
cell “4'at (2,4) and understands that there are
four mines around, but fails to grasp the concept
of “neighboring cells” or to accurately count the
surrounding cell states, as indicated by the state-
ment marked in red. Furthermore, the statement in
golden font is not well-grounded, making it chal-
lenging to discern any logical connection between
its first and second halves. This sentence appears
more like an unsuccessful attempt to replicate our
in-context example “Given that there’s just one
adjacent mine, it’s logical to deduce that the un-
opened cell at (2,3) contains the mine” (refer to
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Listing 5, Line 51) rather than a display of genuine
reasoning. While this example is specifically for
GPT-3.5-16k, similar errors are prevalent across all
GPT-3.5 outputs. It appears that despite possess-
ing a certain degree of individual capabilities in
elementary symbolic understanding, geographical
reasoning, and arithmetic calculation, as suggested
by the board understanding results, the GPT-3.5
models fall short in integrating these skills cohe-
sively for action planning, resulting in a fragmented
reasoning chain.

GPT-4 exhibits more encouraging results com-
pared to its predecessors. While its achievements
are modest, GPT-4 demonstrates a certain level of
logical understanding in this unfamiliar task, sug-
gesting an ability to grasp the game’s rules and
dynamics beyond mere replication. To explore the
extent and origin of this reasoning, we delve deeper
into GPT-4’s reasoning chains, analyzing a repre-
sentative case in Figure 5. It shows that GPT-4 can
logically reason if the number of neighboring un-



opened cells equals the remaining unflagged mines
near a numbered cell, specifically in simple scenar-
ios like “1'and ~2', and particularly around the
board’s corners (e.g., (1,2) or (5,4)). Yet, even
in such basic situations, GPT-4 shows around 50%
fails. The model struggles particularly with con-
figurations where exactly three unopened cells sur-
round a ~ 3'cell and other complex setups, as seen
in the lower rows of the example. To determine if
GPT-4’s ability stems from the rules or the exam-
ples, we conducted a control experiment by omit-
ting Example 1 from the initial prompt (Listing 5,
Line 43), which closely mirrors the successful sce-
narios and is the sole example of left-clicking. This
led to a dramatic 90% reduction in coherent rea-
soning with the coordinate board representation,
indicating the significant role of examples in GPT-
4’s reasoning process, likely by providing a familiar
context for reference and imitation.

Another notable point from Figure 5 is GPT-4’s
non-linear action sequence. For a human player,
following the initial action of R(1,2), the logical
next step would be to mark the adjacent unopened
cell as a mine, i.e., R(1,1). However, GPT-4 in-
stead opts for R(5,1), an irrational choice that
strays from the focus of the previous action, before
returning to (1,1). This behavior suggests that
GPT-4 might not fully consider its historical ac-
tions and lacks the capability for long-term, multi-
step planning, a crucial aspect in evaluating an
agent’s intrinsic reasoning abilities as opposed to
mere summarization capabilities.

It is important to note that the results discussed
were derived from experiments conducted on 5 x 5
boards, and it is reasonable to anticipate that per-
formance may further deteriorate on larger boards
with more flexible mine arrangements.

6 Conclusion

In this study, we assessed the capabilities of LLMs
in solving logical puzzles by examining their per-
formance in the game Minesweeper, a task for
which they have received limited exposure during
the pre-training phase. This approach aims to as-
sess the intrinsic reasoning capabilities of LLMs.
Our experiments reveal that GPT-3.5 models ex-
hibit basic abilities in spatial navigation, symbol
recognition, and counting. However, they struggle
with multi-step planning and generating coherent
reasoning chains. GPT-4 shows improvement in
simpler scenarios with shorter logic chains but still
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encounters issues with hallucinations and inconsis-
tent context awareness. We find that GPT-4 can
learn from examples and apply this knowledge to
similar situations but is less adept at deducing un-
derlying rules and applying them to novel scenar-
ios, unlike GPT-3.5 models which tend to replicate
examples. Our conclusion seems to be in correla-
tion with Yadlowsky et al. (2023): LLMs do not
produce new knowledge (a situation where logi-
cal reasoning is necessary); they are just (good)
handlers of existing experience.

We do not intend to diminish the significance
of LLMs or their transformative impact on natural
language processing. Rather, we believe it is pre-
mature to consider LLMs as an intelligent object
and a threat to human society. They resemble a
comprehensive dictionary, useful for reference but
lacking in comprehension. We hope that our work
can inspire future research on this topic, and we
will continue exploring the capabilities of LLMs.

Limitations

In our study, we employed two board represen-
tation methods: table and coordinate representa-
tions. Our results indicate that coordinate repre-
sentation is more effective for LLM comprehen-
sion and offers a wider range for evaluating the
model’s reasoning abilities. However, we did not
explore other board representation methods, such
as different table formats (e.g., HTML, Markdown)
or image-based approaches. According to Singha
et al. (2023), alternative table formats may not sig-
nificantly differ in effectiveness from our chosen
method. Still, it’s possible that other representa-
tions could be more suitable for our specific con-
text. Moreover, our initial attempts to use an image-
based Web interface with board GUI were not suc-
cessful. Therefore, we focus on text-based repre-
sentations in this study. While advanced prompt-
ing methods like Program of Thoughts (PoT, Chen
et al., 2022) or Tree of Thoughts (ToT, Yao et al.,
2023a) may boost performance, their use could di-
vert from assessing the true reasoning abilities of
LLMs and their applicability in simplifying com-
plex issues without extensive external input. Hence,
we deferred the application of these sophisticated
techniques to future studies.

Another area for exploration is fine-tuning LLMs
like Llame-2-70b (Touvron et al., 2023) with spe-
cific reasoning capabilities on our dataset labeled
with human actions. The idea is that if a fine-tuned



model outperforms the original or GPT-4 when the
fine-tuning and testing data match in terms of sym-
bol usage, board size, and representation, and does
not improve with variations in these factors, we can
infer that the “reasoning capability” is tied to the
training data and not broadly generalizable. How-
ever, due to constraints in computational resources,
we haven’t conducted these experiments, leaving
them for future research.

At last, we would like to emphasize that we can
easily extend the Minesweeper dataset to a scale
of ("mwnxrgi‘;‘“m“) with zero effort. Nonetheless,
we keep a relatively small scale of test cases as it
is sufficient to support our conclusion. With the
future development of LLMs, a larger evaluation
set might be desired for a more robust and unbiased
objective metric-based evaluation.
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A Experiment Setup
A.1 GPT Versions

In this paper, we discuss three distinct versions of
the GPT model: GPT-3.5-16k, GPT-3.5-instruct,
and GPT-4. The term GPT-3.5-16k is used to de-
note the “gpt-3.5-turbo-16k” model as listed on
the OpenAl API model webpage, specifically the
checkpointed 0613.! The GPT-3.5-instruct model
refers to the “gpt-3.5-turbo-instruct” variant, with
the checkpoint version dated 2023-09-15. Lastly,
GPT-4 represents the “gpt-4” model, utilizing also
the 0613 checkpoint version. All mentioned check-
points are hosted on Microsoft Azure,?. The model
temperature is set to 0 in all cases.

A.2 Board Understanding

In our board understanding experiments, we ini-
tially generate 1,000 randomly arranged boards,
each featuring a 9 x 9 grid with 10 hidden mines.
Notably, the central cells, positioned at (5, 5), are
always mine-free. From this pool, we select 100
boards, ensuring that the initial click at the center
L(5,5) reveals at least 10 cells. Subsequently, we
conduct gameplay using the graphical user inter-
face depicted in Figure la. The actions of the an-
notators, who are average players in Minesweeper
and unaware of the board’s layout beyond the ini-
tial instruction to click the center, are recorded as
shown in Figure 1d. Although not all trials are
successful—with about 90% boards being solved

and the remainder failing due to human errors or 50- -

50 guesses——the entire action history, including
unsuccessful attempts, is preserved for analysis.

For each board, we randomly choose an action
(excluding the first and last from the history) and
associate board state as the focus. We then select
3 random coordinates per board, setting two chal-
lenges for LLMs: to determine the status of each
selected cell (board navigation), and to count the
number of specific symbols within {~?', ~."', ~1",
*2'} in their neighbors, including diagonally adja-
cent ones (neighbor counting). This process yields
300 test cases for each task.

As outlined in § 4, we employ two distinct board
representations: table and coordinate. Each re-
quired a slightly different approach in prompting.
Specifically, the table representation uses IATEX-
style quotation marks, while the coordinate rep-
resentation does not use quotations for board cell

"https://platform.openai.com/docs/models
2 * openai.azure.com
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states and employs regular double quotes in the
necessary positions in the game description. Ex-
amples illustrating these differences are provided
below.

Listing 1: An example of board navigation prompting
with table representation.

You will be presented with a 9 by 9 board for the
Minesweeper game. The board is wrapped in a 10
by 10 table, where the first row and the first
column with numbers in double quotation marks
are the row and column indices. A coordinate (x
,y) represents the cell at the x-th row and y-
th column, where x and y, starting from 1, are
the row and column indices, respectively. The
state of each cell is represented by the
following symbols:

represents a blank cell.

to “8' represents numbered cells with that
number of mines in the adjacent cells.

K

- “F' represents a flagged cell.
- "?' represents an unopened cell.
--- EXAMPLES ---

--- PARTIAL BOARD ---
ngu mym mow wgnm wgw

B A

R A A B

"3M, T TR, T2 CF!

4ottt 2t

QUESTION: What is the cell at coordinate (1,3)7?
ANSWER: ~1'

--- PARTIAL BOARD ---
QU , M1, 2", "3, 4"
R A R A
A A A
nym ot S st SEd
"4n T2, 2, !

QUESTION: What is the cell at coordinate (4,1)?
ANSWER: ~?'

--- END OF EXAMPLES ---

--- CURRENT BOARD ---

B e R I D A
-

IPL
n3n o~
ngn -
ngn -
ngn -
ngm -
ngn
ngn -

S0 S 0 s 0 S 0 S 0

QUESTION:
ANSWER :

What is the cell at coordinate (2,1)?

Listing 2: An example of board navigation prompting
with coordinate representation.

You will be presented with a 9 by 9 board for the
Minesweeper game, which is devided into cells.
The cells are presented as "coordinate: state”
mappings. A coordinate (x,y) represents the
element at the x-th row and y-th column, where
x and y, starting from 1, are the row and
column indices, respectively. The state of each

cell is represented by the following symbols:

represents a blank cell.

to "8" represents numbered cells with that
number of mines in the adjacent cells.

represents a flagged cell.

represents an unopened cell.

non

wyn
- "pn
- non
--- EXAMPLES ---

--- PARTIAL BOARD ---
(1,1): ?

(1,2): ?

(1,3): ?
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13
14
15
16
17
18
19
20

[T

E o=

= = == -V B RV IRV SV RV R
R DR =3 0w

o)

66
67
68
69

89
o
9

92
9:

94
95
96
97
98

(1,4):
(2,1):
(2,2):
(2,3):
(2,4):
(3,1):
(3,2):
(3,3):
(3,4):
(4,1):
(4,2):
(4,3):
(4,4):

QUESTION:

ANSWER :

--- END OF EXAMPLES

--- CURRENT BOARD

(1,1):
(1,2):
(1,3):
(1,4):
(1,5):

S D D S e D ) ) ) D ) )

2

=0 e D Y —= e e e -

N S G,

IR

[ N C R

B R N N R I B R I N B R N e U

is the cell at coordinate (3,4)?

16

17
18
19

(8,5):
(8,6):
(8,7):
(8,8):
(8,9):
(9,1):
(9,2):
(9,3):
(9,4):
(9,5):
(9,6):
(9,7):
(9,8):
(9,9):

B I R R N I N N I ICN N RN RN RN

QUESTION: What is the cell at coordinate (2,1)?
ANSWER :

Listing 3: An example of neighbor counting prompting
with table representation.

You will be presented with a 9 by 9 board for the
Minesweeper game. The board is wrapped in a 10
by 10 table, where the first row and the first
column with numbers in double quotation marks
are the row and column indices. A coordinate (x
,y) represents the cell at the x-th row and y-
th column, where x and y, starting from 1, are
the row and column indices, respectively. The
state of each cell is represented by the
following symbols:

- *.' represents a blank cell.

- "1' to “8' represents numbered cells with that
number of mines in the adjacent cells.

- "F' represents a flagged cell.

- *?' represents an unopened cell.

--- EXAMPLES ---

--- PARTIAL BOARD ---

QU , MM, 2", "3, "4 "5

B S A A

B A

B A A e

B N A A

B R S S A I

QUESTION: How many cells “F' are neighbors (
including diagonal) of the cell with coordinate

To find out how many cells with the value ~1' are
neighbors of the cell with coordinate (2,1), we
need to look at the 8 neighboring cells of
(2,1). These coordinates are:

a,1, (1,2, 3,1, (3,2), (2,2).

Now, we will check the values of these cells on the
given Minesweeper board:

(,1) = "7
(1,2) = "7
(3,1) = "7
(3,2) = 2!
(2,2) = "2

All of these neighboring cells are ~?'. So, the
number of cells with “1' that are neighbors of
the cell (2,1) is:

ANSWER: @.

--- END OF EXAMPLES ---

--- CURRENT BOARD ---
QU Mqn wpm m3m mgu wgm mgu wgn wgm ngn

B e A
B [ S (R
B e e e R e e
R e e
T L R R R B

T T
SHO oq0 SR om0 @0 ox0 60
N T A A
R O T
T T I
SHI SR0 . oH0 Sp0 . oH0 . SR oH0
T T I
RS TR TR IR
T
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16

19

28

QUESTION: How many cells “1' are neighbors (
including diagonal) of the cell with coordinate
(2,1)?
Let's think step by step.
ANSWER :

Listing 4: An example of neighbor counting prompting
with coordinate representation.

You will be presented with a 9 by 9 board for the
Minesweeper game, which is devided into cells.
The cells are presented as "coordinate: state”
mappings. A coordinate (x,y) represents the
element at the x-th row and y-th column, where
x and y, starting from 1, are the row and
column indices, respectively. The state of each

cell is represented by the following symbols:

- "." represents a blank cell.

- "1" to "8" represents numbered cells with that
number of mines in the adjacent cells.

- "F" represents a flagged cell.

- "?" represents an unopened cell.

--- EXAMPLES ---

--- PARTIAL BOARD ---

(1,1): F

(1,2): ?

(1,3): ?

(1,4): F

(2,1): ?

(2,2): ?

(2,3): ?

(2,4): ?

(3,1): ?

(3,2): F

(3,3): ?

(3,4): 1

(4,1): ?

(4,2): ?

(4,3): ?

(4,4): 1

QUESTION: How many cells "F" are neighboring (
including diagonally) the cell with coordinates

(2,1)?
Let's think step by step

ANSWER :

To find out how many cells with the value "1" are
neighbors of the cell with coordinate (2,1),
need to look at the 8 neighboring cells of

we

(2,1). These coordinates are:

a,1, 0,2, (3,1), 3,2, (2,2).

Now, we will check the values of these cells on the
given Minesweeper board:

(1,1) = F

(1,2) =72

(3,1) =72

(3,2) = F

(2,2) =7

From of these neighboring cells (1,1) and (3,2) are
"F". So, the number of cells with "1" that are
neighbors of the cell (2,1) is:

ANSWER: 2.

--- END OF EXAMPLES ---

--- CURRENT BOARD ---
1,1): ?

»2):
»3):
y4):
»5):
,6):
1)
,8):
»9):
(2,1):
(2,2):
(2,3):
(2,4):
(2,5):

= 9 o o9

D e e e -

63

74

(2,6):
(2,7):
(2,8):
(2,9):
(3,1):
(3,2):
(3,3):
(3,4):
(3,5):
(3,6):
(3,7):
(3,8):
(3,9):
(4,1):
(4,2):
(4,3):
(4,4):
(4,5):
(4,6):
(4,7):
(4,8):
(4,9):
(5,1):
(5,2):
(5,3):
(5,4):
(5,5):
(5,6):
(5,7):
(5,8):
(5,9):
(6,1):
(6,2):
(6,3):
(6,4):
(6,5):
(6,6):
(6,7):
(6,8):
(6,9):
(7,1):
(7,2):
(7,3):
(7,4):
(7,5):
(7,6):
(7,7):
(7,8):
(7,9):
(8,1):
(8,2):
(8,3):
(8,4):
(8,5):
(8,6):
(8,7):
(8,8):
(8,9):
(9,1):
(9,2):
(9,3):
(9,4):
(9,5):
(9,6):
9,7):
(9,8):
(9,9):

O JE i Qe g

—_ = M=

B O e g

B I I I TR T B B e e B B B B e B e B R N B R N e e e R

QUESTION: How many cells "1" are neighbors (
including diagonal) of the cell with coordinate
(2,1)?
Let's think step by step.
ANSWER :

In our analysis of the prompts, we employ the
Chain-of-Thought (COT) technique, as described
by Wei et al. (2022b), for the neighbor counting
task but not for board navigation. The rationale
behind this is that neighbor counting necessitates
multi-step action: initially identifying the neigh-
boring cells of a given target cell and subsequently
tallying a specific symbol within these neighbors.
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In contrast, the board navigation task is straight- -

forward, involving a direct query about a specified
target cell. We have observed that incorporating
COT into the neighbor counting process notably
enhances its performance.

Furthermore, we have made the inclusion of in- |

context examples optional for the board navigation
task, but mandatory for neighbor counting. The
need for examples in neighbor counting arises from
the models’ propensity to generate unclear outputs
in this task. By providing an example, we aim to
guide the models towards producing more inter-
pretable responses.

A.3 Minesweeper

The detailed setup of the Minesweeper experiment
is presented in § 5. We hereby provide the actual
initial prompts with table-formatted board repre-
sentation used in our experiments. The coordinate
representation closely mirrors the variations found
in Listing 3 and Listing 4 and will not be omitted.

Listing 5: Initial prompt for Minesweeper gameplay.

>> SYSTEM:
You are a helpful assistant who is good at playing
Minesweeper.

>> USER:

--- MINESWEEPER INTRODUCTION ---

In Minesweeper, 4 hidden mines are scattered
throughout a 5 by 5 board, which is divided
into cells. The rows are seperated by newlines,

and columns by commas. The board is structured
as a 6 by 6 table, with the first row and
column labeled using numbers in double
quotation marks to indicate row and column
indices. Cells have multiple possible states:

- Unopened cells (represented by ~?', which cover
the board at the start of the game, can also be

made by removing flags)

- Numbered cells (represented by “1' to “8', which
indicate the number of mines in the eight
neighboring cells, including those diagonally
adjacent)

- Blank cells (represented by ~.',
neighboring mines)

- Flagged cells (represented by “F', which are
marked by the player to indicate a potential
mine location)

which have no

A player selects a cell to open it. If a player
opens a cell containing a mine, the game ends
in a loss. Otherwise, the opened cell displays
either a number, indicating the number of mines

diagonally and/or adjacent to it, or a blank
tile (sometimes shown as a @), and all adjacent
cells will automatically be opened. To win a
game of Minesweeper, all non-mine cells must be
opened without opening a mine.

--- ACTION OPTIONS ---

There are three permissible actions in Minesweeper:

- Left-click an unopened cell (°?') to reveal it.

- Right-click an unopened cell (°?') to place a flag

or a flagged cell ("F') to remove the flag.

- Middle-click on a numbered cell (°1' to “8') to
unveil its neighboring cells, but only if all
adjacent mines have been correctly flagged. If
any flags are misplaced, you'll lose the game.

--- ACTION FORMAT ---

2
%)

)

%}

Y,

U
R

5

76
77

75

Each of your actions should be formatted as
col)", where:

represents the action type: "L"
-click, "R" indicates a right-click,
signifies a middle-click.
- "row” specifies the row number of the targeted

"A(row,

- "A" denotes a left

and "M"

cell.

- "col” details the column number of the targeted
cell.

For instance, an action like "L(1,2)" translates to

a left-click on the cell located at the first
row and second column.

please ensure:
- You do not duplicate actions.
- You submit only one action at a time.

--- CURRENT BOARD ---

DRD DD DD DY DAD DED
DYD =P SR _oq0 og op0
YR N NI NEEE SR X
P S T S S T S
LT RIS R KL SR X
P T T S S
DD SPO _SP0 S0 _=p0 =90
L L NI NEE R R N
I T S T A T S

--- EXAMPLES ---
Example 1:

--- PARTIAL BOARD
B e

R R A

LA A

B

an oot T2t

REASONING: The cell located at (3,2) displays the
number “1', indicating there's a single mine in

its neighboring cells. Among these neighbors,
7 are opened as empty or numbered, and only one
remains unopened at (2,3). Given that there's
just one adjacent mine, it's logical to deduce
that the unopened cell at (2,3) contains the
mine. Thus, our next move is to flag the cell
at (2,3) with a right-click.
ACTION: R(2,3)
Example 2:
--- PARTIAL BOARD
"Q", 4", "5 e T

R SRR ¥
AR NIRRT Y
g sqt s sy
g s g
REASONING: The cell at (1,5) displays the number

1', indicating a single adjacent mine. Upon
examining its neighboring cells, only the cell
at (2,6) is flagged with “F'. This suggests
that all mines neighboring (1,5) have been

identified. Consequently, we can safely unveil
the other surrounding cells by middle-clicking
on (1,5).

ACTION: M(1,5)

Example 3:

--- PARTIAL BOARD
"er,"1", 2", 3", 4"
S0 a0 e s e s
N R
AT AP AN A

REASONING: The cell at (1,1) indicates there's a
single mine amongst its neighbors. Examining
the cells adjacent to it, both (2,1) and (2,2)
remain unopened, implying one of them contains
a mine. Similarly, the cell at (1,2) displays a

“1', suggesting that out of (2,1), (2,2), and

(2,3), one holds a mine. Since one of (2,1) or
(2,2) already contains a mine, it becomes
evident that (2,3) is mine-free. We can then
safely uncover (2,3) with a left-click.

ACTION: L(2,3)
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3 Begin by detailing your rationale in the

Type of Invalid Actions \ Example \

Feedback

Coordinate

Coordinate Out of Bound “L(0,10)” on a 9 x 9

board

Invalid Coordinates! Please make sure your coordinate are within
[1, 9] for rows and [1, 9] for columns.

Game

Initialization

Starting by Right-Clicking
Starting by Middle-Clicking

“R(5,5)” on a new board
“M(5,5)” on a new board

Please begin by left-clicking on the center cell.
Please begin by left-clicking on the center cell.

Left-Clicking

Left-Clicking on Blank Cell | “L(5,5)” where (5,5) is

Invalid action: Cannot left-click a blank cell. Left-click is only

opened as " . for unopened cells (*?').
Left-Clicking on Flagged | “L(5,5)” where (5,5) is | Invalid action: Cannot left-click a flagged cell. Left-click is only
Cell flagged as “F' for unopened cells (*?").
Left-Clicking on Numbered | “L(5,5)” where (5,5) is | Invalid action: Cannot left-click a numbered cell. Left-click is
Cell opened as ~2' only for unopened cells (*?").

Middle-Clicking

Middle-Clicking on Blank | “M(5,5)” where (5,5) is

Invalid action: Cannot middle-click a blank cell. Middle-click is

Cell opened as ~."' only for numbered cells (*1' to ~8").

Middle-Clicking on Flagged | “M(5,5)” where (5,5) is | Invalid action: Cannot middle-click a flagged cell. Middle-click
Cell flagged as “F' is only for numbered cells (*1' to ~8").

Middle-Clicking on Un- | “M(5,5)” where (5,5) is | Invalid action: Cannot middle-click an unopened cell. Middle-
opened Cell unopened (*?") click is only for numbered cells ("1' to ~8").

Middle-Clicking When
Numbered Cell Has no
Flagged Neighbor

Error: No flagged cells detected nearby. Flag adjacent mines
before middle-clicking.

Middle-Clicking When
# Flagged Neighbor Mis-
matchs Cell Number

Error: Flag count mismatch. Ensure all adjacent mines are
flagged before middle-clicking.

Right-Clicking

Right-Clicking on Blank
Cell

“R(5,5)” where (5,5) is
opened as ~."'

Invalid action: Cannot right-click a blank cell. Right-click is
only for unopened cells (*?') or flagged cells (" ?").

Right-Clicking on Num-
bered Cell

“R(5,5)” where (5,5) is
opened as ~1'

Invalid action: Cannot right-click a numbered cell. Right-click
is only for unopened cells (*?') or flagged cells (" ?"').

Table 3: Types and feedbacks for invalid actions.

--- END OF EXAMPLES ---

--- RESPONSE GUIDE ---
Let's think step by step.

"REASONING"
section, followed by specifying your move
using the previously mentioned format in the
ACTION" section. Ensure your reasoning doesn't
exceed 200 words. To commence the game, left-

click the center cell at (3, 3).

REASONING:
ACTION:

In subsequent iterations, the prompts are mod-
ified based on the model’s responses. When the
model generates a valid action, the updated game
board is presented, followed by a request for the
model to initiate the next move. In contrast, if
the action is invalid, an error message is displayed,
prompting the model to select an alternative action.
Table 3 enumerates the various types of invalid ac-

tions and their corresponding feedback tailored for
LLMs. Note that these actions do not directly vio-
late the game rules. Rather, they are deemed invalid
within the scope of our experiments because they
are logically ungrounded and do not contribute to
the progression of the game.

B Obfuscation and Numerical Expression

To study the impact of existing Minesweeper-
related description within LLMs’ training mate-
rials, we conduct additional experiments to assess
the impact of varying the game descriptions and the
representation of numerical values on the perfor-
mance of the model. In the obfuscation experiment,
we replaced all instances of “Minesweeper” with
descriptions of a generic logical puzzle, substitut-
ing “mine” with “thorn” and standard mouse-click

76
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| Original Representation | Game Obfuscation | Numerical Expression

| Table Coord | Table Coord | Table Coord

# Total Games | 100

% Solved ‘ 0 0 ‘ 0 0 ‘ 0 0
% Failed 17 35 13 47 15 41
# Total Mines | 400

% Flagged Mines | 2.8 11.7 | 45 138 | 7.0 14.5
#Total Actions | 825 679 | 833 653 | 79 672
% Valid ‘ 7.2 22.4 ‘ 7.3 28.8 ‘ 9.9 28.6
% Repeated 43.6 44.6 57.5 44.1 44.6 39.7

Table 4: Ablation study on game obfuscation and numerical expressions. The results are all achieved using GPT-3.5-

16k with NC mode.

actions within game description and action feed-
backs with abstract symbols (e.g., “L/R/M”). In
the other set of experiments, Arabic numerals that
indicate the numbers of surrounding mines (e.g.,

1,2,...,8) were converted to their Roman counter- ,

parts (e.g., I, II, ---, VIII), with other elements
remaining unchanged. The outcomes are summa-
rized in Table 4. They show that these variations
have minimal effect on model performance, indicat-
ing that these factors do not significantly hinder the
model’s reasoning abilities. Our findings suggest
that the general exposure to Minesweeper game
rules across the internet does not provide a distinct

advantage for GPT models in solving these puzzles, -

and our assumption of “Minesweeper being a new
challenge for GPTs” holds.

C Interaction Examples

In this section, we provide more case studies on the

reasoning chains generated by LLMs as support
of our discussion in § 5. For better readability,
we convert all coordinate representations to ta-
ble representations. Please refer to our GitHub
repository for a complete set of experiment results.

Listing 6: An example of LLM-system interaction with
table representation in NC mode from GPT-3.5-16k.

// Initial Instructions are Omitted

>> ASSISTANT:

REASONING: Since the board is completely covered
with unopened cells, there is no specific
information available to make an informed
decision about which cell to open first.
Therefore, I will start by randomly selecting a

cell to open.

ACTION: L(3,3)

>> USER:

--- CURRENT BOARD ---

mgn mym mpm m3m wgm wgn

TR TR SRR YRR SRR Y

13
14
15
16
17
18
19

59

60

77

L N N N 1Ol
mym g osqr, BRI Y
mgm = v~ ot

ngm -

please ensure:
- You do not duplicate actions.
- You submit only one action at a time.

REASONING:

ACTION:

>> ASSISTANT:

REASONING: Looking at the newly revealed cells, we
can see that the cell at (2,2) is surrounded by

two mines. The cell at (2,3) is surrounded by

one mine. The cell at (3,2) is also surrounded
by one mine. Based on this information, we can
deduce that the cell at (3,3) is safe to open.

ACTION: L(3,3)

>> USER:

Your previous action
Message:

Invalid action: Cannot left-click a blank cell.
-click is only for unopened cells (?').

Please follow the instructions and try again.

"L(3,3)" is invalid. Error

Left

--- CURRENT BOARD ---

ngn mqm mom wgwm o wmgn ngn
) ) ) ’ )

P17, 5R0 SR SR, R, R
"2r, 2,2, !
R I I e
B e

ngn o~

please ensure:
- You do not duplicate actions.
- You submit only one action at a time.

REASONING:

ACTION:

>> ASSISTANT:
REASONING: Apologies for the mistake. Since the cell
at (3,3) is already opened and blank, we need
to look for another cell to open. Based on the
current information, the cell at (4,4) is
surrounded by one mine and the cell at (4,5)
surrounded by one mine. However, the cell at
(5,5) is surrounded by two mines. Therefore,
is safer to open the cell at (5,5) next.

is

it

ACTION: L(5,5)


https://github.com/Yinghao-Li/Minesweeper-for-LLM
https://github.com/Yinghao-Li/Minesweeper-for-LLM
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88
8¢
90
9

92

122

123
124
125

126

>> USER:

Your previous action "L(5,5)" is invalid. Error
Message:

Invalid action: Cannot left-click a blank cell. Left
-click is only for unopened cells (°?').

Please follow the instructions and try again.

--- CURRENT BOARD ---

g mym mpm m3nm wgm wgn

TR TR SRR YRR SR Y

P TR TR TP TR 1

A KR KN R 3

SRR R K

MEM s ns s s s

please ensure:

- You do not duplicate actions.

- You submit only one action at a time.

REASONING:

ACTION:

>> ASSISTANT:

REASONING: Apologies for the mistake again. Since

the cell at (5,5) is already opened and blank,

we need to look for another cell to open. Based
on the current information, the cell at (4,4)
is surrounded by one mine and the cell at (4,5)

is surrounded by one mine. However, the cell
at (5,4) is surrounded by two mines. Therefore,
it is safer to open the cell at (5,4) next.
ACTION: L(5,4)
>> USER:
Your previous action "L(5,4)" is invalid. Error
Message:

Invalid action: Cannot left-click a blank cell. Left
-click is only for unopened cells (°?').
Please follow the instructions and try again.

CURRENT BOARD ---

DRD PYD DR0 DD DLHD DED
DD 5H0 Sn0 SHi oni 990

P R T
DD _CPO Lm0 =i u_cgu oo
DY S0 =0 = 0 =0 =90
DD 2 0 R 0 2 0 20 2q0
Do _© 0 ° 0 ° 0 o 0 o 0

please ensure:
- You do not duplicate actions.
- You submit only one action at a time.

REASONING:

ACTION:

>> ASSISTANT:

REASONING: Apologies for the mistake once again.
Since the cell at (5,4) is already opened and
blank, we need to look for another cell to open

Based on the current information, the cell at

(4,4) is surrounded by one mine and the cell
at (4,5) is surrounded by one mine. However,
the cell at (5,3) is surrounded by two mines.
Therefore, it is safer to open the cell at
(5,3) next.

ACTION: L(5,3)

>> USER:

Your previous action
Message:

Invalid action: Cannot left-click a blank cell.
-click is only for unopened cells (°?').

Please follow the instructions and try again.

"L(5,3)" is invalid. Error

Left

CURRENT BOARD ---

146
147
148
149
150

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

174

175
176
177
178
179

180

181
182
183
184
185
186
187
188
189
190
191
192

193
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R D]V HRn WD DAY D

B Sy S A
AN A A
B [ [ [
B e
mEm s v s s s

please ensure:
- You do not duplicate actions.
- You submit only one action at a time.

REASONING:

ACTION:

>> ASSISTANT:

REASONING: Apologies for the repeated mistakes.
Since the cell at (5,3) is already opened and
blank, we need to look for another cell to open

Based on the current information, the cell at

(4,4) is surrounded by one mine and the cell
at (4,5) is surrounded by one mine. However,
the cell at (5,2) is surrounded by two mines.
Therefore, it is safer to open the cell at
(5,2) next.

ACTION: L(5,2)

>> USER:

Your previous action
Message:

Invalid action: Cannot left-click a blank cell.
-click is only for unopened cells (°?').

Please follow the instructions and try again.

"L(5,2)" is invalid. Error

Left

CURRENT BOARD ---

BRY D]0 DRw g0 0AD DEF

PP =R R, %R %% ,°%°
R A
B R [ R R
B e
B P TP

please ensure:
- You do not duplicate actions.
- You submit only one action at a time.

REASONING:

ACTION:

>> ASSISTANT:

REASONING: Apologies for the repeated mistakes.
Since the cell at (5,2) is already opened and
blank, we need to look for another cell to open

Based on the current information, the cell at
(4,4) is surrounded by one mine and the cell

at (4,5) is surrounded by one mine. However,
the cell at (5,1) is surrounded by two mines.
Therefore, it is safer to open the cell at
(5,1) next.

ACTION: L(5,1)

>> USER:

Your previous action "L(5,1)" is invalid. Error
Message:

Invalid action: Cannot left-click a blank cell. Left
-click is only for unopened cells (°?').

Please follow the instructions and try again.

--- CURRENT BOARD ---
AR RS L LT
ML TR,
IR TIEr LI AR TR Y
- CUEE S KN R S
TEML LT T T T

please ensure:



I3 % E

RS CES)
& =

209

NI
X

[ SR RS

3

- You do not duplicate actions.
- You submit only one action at a time.

REASONING:

ACTION:

>> ASSISTANT:

REASONING: Apologies for the repeated mistakes.
Since the cell at (5,1) is already opened and
blank, we need to look for another cell to open

Based on the current information, the cell at

(4,4) is surrounded by one mine and the cell
at (4,5) is surrounded by one mine. However,
the cell at (5,0) is surrounded by two mines.
Therefore, it is safer to open the cell at
(5,0) next.

ACTION: L(5,0)

>> USER:

Your previous action
Message:

Invalid Coordinates! Please make sure your
coordinate are within [1, 5] for rows and [1,
5] for columns.

Please follow the instructions and try again.

"L(5,0)" is invalid. Error

CURRENT BOARD ---

nQn mqm o mom m3zm o wgm wgn
) ) ) ) )

PP oR0 SR SR ,°R0,°R°
"2ttty 2t
SR L I
B S e
L N B B

please ensure:
- You do not duplicate actions.
- You submit only one action at a time.

REASONING:

ACTION:

>> ASSISTANT:

REASONING: Apologies for the repeated mistakes.
Since the cell at (5,0) is not a valid
coordinate, we need to look for another cell to

open. Based on the current information, the
cell at (4,4) is surrounded by one mine and the
cell at (4,5) is surrounded by one mine.
However, the cell at (5,1) is surrounded by two
mines. Therefore, it is safer to open the cell
at (5,1) next.

ACTION: L(5,1)

>> USER:

Your previous action
Message:

Invalid action: Cannot left-click a blank cell.
-click is only for unopened cells (*?').

Please follow the instructions and try again.

"L(5,1)" is invalid. Error

Left

CURRENT BOARD ---

ngn mqw mow w3w mgw ngw

B R A A A
2r, T2, 1,2, !
SR I T
B e
S P N R N R A

please ensure:

- You do not duplicate actions.

- You submit only one action at a time.
REASONING:

ACTION:

260
261

262

263

ENIEOIN Y —_

<

14
15
16
17
18
19
2

22
23
24
25

26

28

29

30

W =

~
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>> ASSISTANT:

REASONING: Apologies for the repeated mistakes.
Since the cell at (5,1) is already opened and
blank, we need to look for another cell to open

Based on the current information, the cell at

(4,4) is surrounded by one mine and the cell
at (4,5) is surrounded by one mine. However,
the cell at (5,2) is surrounded by two mines.
Therefore, it is safer to open the cell at
(5,2) next.

ACTION: L(5,2)

Listing 7: An example of LLM-system interaction with
coordinate representation in CH mode from GPT-3.5-
instruct.

// Initial Instruction Duplicates Listing 5 and thus
Omitted

YOUR ACTION HISTORY

[Action 1]: ACTION: R(2,2) -> FEEDBACK: Please begin
by left-clicking on a cell.

[Action 2]: ACTION: L(1,1) -> FEEDBACK: Action
successful!

[Action 3]: ACTION: R(5,4) -> FEEDBACK: Action
successful!

[Action 4]: ACTION: R(4,5) -> FEEDBACK: Action
successful!

[Action 5]: ACTION: R(5,5) -> FEEDBACK: Action
successful!

[Action 6]: ACTION: R(5,2) -> FEEDBACK: Action
successful!

[Action 7]: ACTION: R(5,1) -> FEEDBACK: Action
successful!

[Action 8]: ACTION: R(5,5) -> FEEDBACK: Action
successful!

[Action 9]: ACTION: R(5,5) -> FEEDBACK: Action
successful!

--- CURRENT BOARD ---

QN , MM, 2", "3, 4" "5

R e

"4" o1, 20,2, T3 CF!

"KM CF',CF' L, CF TR

--- RESPONSE GUIDE ---

Let's think step by step.

Begin by detailing your rationale in the "REASONING"

section, followed by specifying your move
using the previously mentioned format in the
ACTION" section. Ensure your reasoning doesn't
exceed 200 words.

"

REASONING:

ACTION:

>> ASSISTANT:

REASONING:
a value of

The cell at (4,5) is a numbered cell with

"3". This indicates that there are

three mines in its neighboring cells. Out of

the three neighboring cells, two are already

flagged with "F". This means that the remaining
unopened cell at (5,3) must contain the third

mine. Therefore, we can safely flag the cell at
(5,3) with a right-click.

ACTION: R(5,3)

Listing 8: An example of LLM-system interaction with
coordinate representation in NC mode from GPT-4.

// Initial Instructions and Responses are Omitted

>> USER:
CURRENT BOARD ---



16

19
2(

&
S 3

QUL L U
SO ® AU bR —

DRD DHE GV 0Z0 DA0 DED

DD oo 20 o 0 oo oo
DY S0 _°R0 = 0 _=q0 °f0
DY _SP0 _en0 ° 0 =0 =90
DD 2P0 20 20 o0 o0
BE0 SP0_SPI 291 S0 290
P S T S I

please ensure:

- You do not duplicate actions.

- You submit only one action at a time.
REASONING:

ACTION:

>> ASSISTANT:
REASONING:

The cell at (2,2) indicates there are 2 mines in its
neighboring cells. Since (1,1), (2,1), and
(3,1) are the only unopened cells around it, we

can deduce that two of these cells contain
mines. Similarly, the cell at (3,2) also
indicates there are 2 mines in its neighboring
cells. Considering that (3,1), (4,1), and (5,1)
are the only unopened cells around it, and we
know that two of (1,1), (2,1), and (3,1)
contain mines, we can conclude that (4,1) and
(5,1) are safe to open.

ACTION: L(4,1)

>> USER:

CURRENT BOARD ---

n@n mqm mom m3zw wgm wgn
) ’ ) ) ’

BYD oo =0 = 0 a0 a0
DY S0 R0 © 0 =0 =50
GBI LIS IEL LI L
DD 20 20 20 20 20
L LR R KL RIS SR X
P R T

please ensure:
- You do not duplicate actions.
- You submit only one action at a time.

REASONING:
ACTION:

>> ASSISTANT:

REASONING:

The cell at (4,1) indicates there's 1 mine in its
neighboring cells. Since (3,1), (5,1), and
(5,2) are the only unopened cells around it,
and we know that one of (3,1) or (5,1) contains

a mine (from the previous reasoning), we can
conclude that (5,2) is safe to open.

ACTION: L(5,2)

>> USER:

--- CURRENT BOARD ---

mgn  mym mom m3m wgm wgn

mgn g g g g

P AT TR TN RT3

U TP TSR R X

N R R ERE T RR X

AT ERET SR X

please ensure:

- You do not duplicate actions.

- You submit only one action at a time.

REASONING:

ACTION:

>> ASSISTANT:

REASONING:

The cell at (5,3) indicates there's 1 mine in its
neighboring cells. Since (4,4), (5,4), and

(5,5) are the only unopened cells around it, we
can deduce that one of these cells contains a
mine. However, we don't have enough information

to determine which one. Therefore, the best

113
114
115
116
117
118
119
120
12

122
123
124
125
126
127
128
129
130
131
132
133
134
135

136

137
138
139
140
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strategy is to open a cell that is not adjacent
to any numbered cells. The cell at (1,5) fits
this criterion.

ACTION: L(1,5)

>> USER:

CURRENT BOARD ---

DRE 0)D DD DY DAD DEE

B A I e
A A
P70 %2 % "5 %17, %%
B A I R R B
T

please ensure:
- You do not duplicate actions.
- You submit only one action at a time.

REASONING:
ACTION:

>> ASSISTANT:

REASONING :

The cell at (1,5) indicates there's 1 mine in its
neighboring cells. Since (2,5) is the only
unopened cell around it, we can deduce that
(2,5) contains a mine. Therefore, our next move

is to flag the cell at (2,5) with a right-
click.

ACTION: R(2,5)

>> USER:

CURRENT BOARD ---

DRY D0 DRY 00 04D DE

B A I I
VAN A N
B A
B A R I e
B T A

>> ASSISTANT:

REASONING:

The cell at (2,4) indicates there's 1 mine in its
neighboring cells. Since (2,5) is flagged and
(3,5) is the only other unopened cell around it
, we can deduce that (3,5) does not contain a

mine. Therefore, our next move is to open the
cell at (3,5) with a left-click.

ACTION: L(3,5)

>> USER:

CURRENT BOARD ---

ngu mqn mgm mym wgu wgw

B P R
"2r, 2, 1 TR
B e
BN I R
B e R A

please ensure:
- You do not duplicate actions.
- You submit only one action at a time.

REASONING:
ACTION:

>> ASSISTANT:
REASONING:
The cell at (3,5) indicates there's 1 mine in its
neighboring cells. Since (4,5) is the only
unopened cell around it, we can deduce that
(4,5) contains a mine. Therefore, our next move
is to flag the cell at (4,5) with a right-
click.

ACTION: R(4,5)

>> USER:
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196

--- CURRENT BOARD ---

nQn mqm mom m3zm wgm wgn
) ) ) ) ’

G R | PR
2 ) R K
B R A e
BT e e e
BT A

>> ASSISTANT:
REASONING:
The cell at (5,3) indicates there's 1 mine in its
neighboring cells. Since (4,5) is flagged and
(5,4) and (5,5) are the only other unopened
cells around it, we can deduce that one of them
contains a mine. However, we don't have enough
information to determine which one. Therefore,
the best strategy is to open a cell that is

not adjacent to any numbered cells. The cell at
(1,1) fits this criterion.

ACTION: L(1,1)

>> USER:
--- CURRENT BOARD ---

ngu mqu mom w3yw wgu g

B R I I e
2r, Rt t2t U, T TR
B A e
B A e N
BT o 0y "y T10,°R0,°%°

>> ASSISTANT:

REASONING:

The cell at (1,1) indicates there's 1 mine in its
neighboring cells. Since (2,1) is the only
unopened cell around it, we can deduce that
(2,1) contains a mine. Therefore, our next move

is to flag the cell at (2,1) with a right-
click.

ACTION: R(2,1)

>> USER:
--- CURRENT BOARD ---

ngn mqm mom m3zw wgwm wgn
) ’ ) ) ’

B R I N e
R R R PR
"3ttt ot
B e e e
B R A

please ensure:
- You do not duplicate actions.
- You submit only one action at a time.

REASONING:
ACTION:

>> ASSISTANT:
REASONING:
The cell at (3,2) indicates there are 2 mines in its
neighboring cells. Since (2,1) and (2,5) are
flagged and (3,1) is the only other unopened
cell around it, we can deduce that (3,1) does
not contain a mine. Therefore, our next move is
to open the cell at (3,1) with a left-click.

ACTION: L(3,1)
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