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Abstract

In the evolving landscape of Neural Machine
Translation (NMT), the pretrain-then-finetune
paradigm has yielded impressive results. How-
ever, the persistent challenge of Catastrophic
Forgetting (CF) remains a hurdle. While pre-
vious work has introduced Continual Learn-
ing (CL) methods to address CF, these ap-
proaches grapple with the delicate balance be-
tween avoiding forgetting and maintaining sys-
tem extensibility. To address this, we pro-
pose a CL method, named F-MALLOC (Feed-
forward Memory ALLOCation). F-MALLOC
is inspired by recent insights highlighting that
feed-forward layers emulate neural memories
and encapsulate crucial translation knowledge.
It decomposes feed-forward layers into discrete
memory cells and allocates these memories to
different tasks. By learning to allocate and
safeguard these memories, our method effec-
tively alleviates CF while ensuring robust ex-
tendability. Besides, we propose a comprehen-
sive assessment protocol for multi-stage CL of
NMT systems. Experiments conducted follow-
ing this new protocol showcase the superior per-
formance of F-MALLOC, evidenced by higher
BLEU scores and almost zero forgetting.1

1 Introduction

In the pursuit of achieving state-of-the-art results
in Neural Machine Translation (NMT), the reliance
on large-scale parallel corpora has been pivotal
(Bahdanau et al., 2015; Vaswani et al., 2017). How-
ever, practical application scenarios often present
challenges, especially when translation is neces-
sitated for specific domains with limited data re-
sources (Chu and Wang, 2018; Saunders, 2022).
Typically, the prevalent paradigm involves the ini-
tial pretraining of models on expansive general do-
main corpus, followed by finetuning for the target

1The code and data for this work are available at https:
//github.com/WJMacro/ContinualMT.

domain (Freitag and Al-Onaizan, 2016; Chu and
Dabre, 2019).

Despite the efficacy of this pretrain-then-finetune
paradigm, it has been demonstrated that fine-tuning
on the target domain can result in significant per-
formance degradation in the general domain, a phe-
nomenon known as Catastrophic Forgetting (CF)
(French, 1993). In response to this challenge, var-
ious Continual Learning (CL) approaches have
emerged to address CF in NMT systems. Exist-
ing efforts primarily rely on regularization-based
techniques to constrain the divergence of model
parameters from their previous values (Khayrallah
et al., 2018; Saunders et al., 2019; Cao et al., 2021).
While these methods are mathematically elegant,
they still face challenges related to forgetting. Al-
ternatively, some approaches take an architecture-
based framework, isolating parameters specific to
different tasks to prevent forgetting (Gu et al., 2021;
Liang et al., 2021; Huang et al., 2023). However,
they require prior information on task numbers to
allocate parameters and rely on external storage of
model or mask matrices, limiting its extendibility
and applicability.

In summary, the demand for a CL method for
NMT systems that is both extendable and effective
in preventing forgetting is pressing. To this end, we
introduce a new CL method termed F-MALLOC
(Feed-forward Memory ALLOCation), which is
inspired by recent insights that feed-forward layers
emulate neural memories and encapsulate crucial
translation knowledge (Geva et al., 2021; Huang
et al., 2023). Therefore, we facilitate new knowl-
edge learning and mitigate CF by allocating and
protecting these memories. F-MALLOC first lever-
ages a structural pruning method to trim the feed-
forward layers of a pretrained NMT model, pre-
serving memories that encapsulate crucial general
domain knowledge. Subsequently, F-MALLOC
proceeds to learn a set of non-exclusive task masks
(Serrà et al., 2018), automatically allocating the
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‘writable’ memory capacity to upcoming tasks. The
memories allocated in this manner are then desig-
nated as ‘read-only’. F-MALLOC strategically
blocks gradient flows through these ‘read-only’
memories, effectively mitigating the risk of for-
getting.

Meanwhile, conventional CL evaluation proto-
cols in the NMT area typically focus on a single
stage of training, lacking a holistic perspective over
multiple stages. Therefore, we introduce a com-
prehensive evaluation protocol for multi-stage CL
in the NMT scenario. Our protocol incorporates
metrics assessing forgetting mitigation and adap-
tation to novel tasks. To enhance robustness, we
conduct tests with random task sequences, reducing
biases from specific orders. This protocol provides
a nuanced understanding of F-MALLOC and com-
peting methods’ performance over time in NMT.

Experiments conducted following the proposed
protocol highlight the superior performance of F-
MALLOC with high robustness. Additional anal-
ysis of F-MALLOC’s memory allocation strategy
reveals its effective utilization of task information,
such as inherent difficulty or inter-task similarities,
resulting in enhanced performance.

In summary, the contributions of this paper are
as follows:

• We propose F-MALLOC, a multi-stage CL
method that prevents forgetting and promotes
new knowledge acquisition through feed-
forward memory allocation. It requires no
prior task information and minimal storage
overhead.

• Through a tailored evaluation protocol for
multi-stage CL in NMT systems, we enhance
the understanding of system performance on
both stability and plasticity.

• Further analysis of F-MALLOC’s adaptive
memory allocation strategy demonstrates its
effectiveness in leveraging task difficulty and
inter-task similarities to optimize capacity us-
age and encourage knowledge transfer.

2 Background

2.1 Feed-forward Layers Emulate Memory
Networks

Feed-forward Layer. The prevalent architec-
ture in NMT is the encoder-decoder Transform-
ers(Vaswani et al., 2017), which is made of inter-
twined multi-head attention (MHA) and point-wise

feed-forward layers. Our specific focus lies in the
feed-forward layer, formally defined as:

FF(x) = W (2) · σ(W (1) · x) (1)

where W (1),W (2) represent learnable parameters
(bias term omitted for simplification), and σ typ-
ically denotes the activation function, commonly
ReLU.

Feed-forward layer as neural memory of knowl-
edge. Recent research has explored the inter-
pretability of feed-forward structures, noting a
significant resemblance between the feed-forward
layer and neural memory (Sukhbaatar et al., 2015).
Treating parameter matrices W (1) and W (2) as
keys and values respectively, the feed-forward layer
can be seen as an unnormalized key-value memory
(Sukhbaatar et al., 2019). Studies have delved into
this similarity, with Geva et al. (2021) revealing
that in feed-forward layers, each key correlates with
textual patterns in training examples, while each
value induces a distribution over the output vocabu-
lary. In the context of Neural Machine Translation,
Huang et al. (2023) demonstrates that feed-forward
layers encapsulate crucial translation knowledge
and can facilitate knowledge transfer between mod-
els.

3 Methods

3.1 Overview
Building upon prior research that characterizes
feed-forward layers as neural memory repositories
of knowledge, we posit a hypothesis that effec-
tive allocation and protection of these memories
within feed-forward layers can facilitate both the
acquisition of new knowledge and the prevention
of forgetting. Our proposed method, F-MALLOC,
is devised on the premise of this hypothesis.

F-MALLOC is specifically tailored to the feed-
forward structure, with all other parameters held
constant throughout the process. To preserve criti-
cal general domain knowledge while allowing flex-
ibility for future task learning, we initiate the pro-
cess with a structured pruning method (3.2). This
method aids in eliminating unimportant memo-
ries, making them ‘writable’. Subsequently, we
introduce learnable task masks to manage these
free memories (3.3). These task masks, acquired
through learning, play a vital role in memory al-
location for new tasks, designating them as ‘read-
only’ to prevent alterations. For an overview of our
method, please refer to Fig.1.
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Figure 1: Illustration of F-MALLOC. For simplification, we depict a decomposed feed-forward layer. (a) The
Original General Domain Model: Highlighting the general domain task in green. (b) Pruned General Domain
Model: Post-pruning, pruned memories are ‘writable’ (depicted in white), while others are designated as ‘read-only.’
(c) Learning a New Task: The model learns to allocate some memories to the new task and mark them ‘read-only’
(depicted in yellow). ‘read-only’ memories remain available for future tasks’ forward propagation. However,
backward propagation through them is prohibited. (d) Multi-task Model: After learning all tasks, each task
occupies a share of memory capacity. The forward pass of the last task is shown.

3.2 Preserving General Domain Knowledge

Pruning has demonstrated effectiveness in retaining
essential parameters while eliminating unnecessary
ones in neural networks. In this context, we adopt
a structured pruning method, which is designed to
preserve general domain knowledge. The pruning
process calculates an importance score for each
memory cell in the feed-forward layer, retaining
only the most crucial ones.

Importance-based memory pruning. The prun-
ing problem can be seen as finding an optimal
mask under a sparsity constraint. To formalize
this, we decompose the feed-forward layer into
N key-value pairs, which we call a memory cell2.
Subsequently, a mask is introduced to control the
activation of them (Xia et al., 2022; Kwon et al.,
2022):

FF(x,m) =
N∑

i=1

mi ⊙W
(2)
:,i · σ(W (1)

i,: · x) (2)

Here, N denotes the hidden dimension of the feed-
forward layer, m ∈ {0, 1}N represents the mask
vector and ⊙ denotes the Hadamard product.

A common approach to select unnecessary mem-
ory is to estimate the importance of different mem-
ories with gradient (Michel et al., 2019) or Fisher

2We use memory and memory cell interchangeably.

information (Liu et al., 2021). The precise calcula-
tion of the importance score typically demands the
use of the same data and loss functions employed
during model training, which is often impractical
in CL scenarios where obtaining the training data
of a pretrained model may be unfeasible.

Attention Attention

Activated Dropped

Figure 2: Illustration of estimating feed-forward mem-
ory importance via JS divergence.

To address this challenge, we propose an alter-
native approach employing Jensen–Shannon (JS)
divergence. The method draws inspiration from
the stochastic dropout mechanism (Hinton et al.,
2012), which introduces randomness by eliminat-
ing a portion of units in each layer during training,
mitigating co-adaptation and overfitting. In our
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approach, dropout is applied to the feed-forward
layer, generating unique memory activations and
distinct outputs during each forward pass. By com-
paring these outputs and computing the gradient of
the divergence, we derive a novel importance score
for memories.

As shown in Fig.2, we perform two forward
passes, with or without dropout, of the input data
x through the network, generating two distribu-
tions of model predictions, denoted as P1(y|x) and
P2(y|x). We then calculate the JS divergence be-
tween these predictions:

LJS(x) =
1

2
(KL(P1(y|x),P2(y|x))
+ KL(P2(y|x),P1(y|x)))

(3)

where KL(·, ·) denotes the Kullback–Leibler (KL)
divergence. In practice, we adopt an external
dataset D and estimate the average gradient of
JS divergence, serving as an empirical importance
score:

Ik = Ex∈D

∣∣∣∣
∂LJS(x)

∂mk

∣∣∣∣ (4)

Following the derivation of the importance score,
a binary mask is generated through a binarization
function utilizing the s quantile of the importance
score, denoted as qs(I), as the threshold:

mG
k =

{
1, if Ik ≥ qs(I)

0, if Ik < qs(I)
(5)

where s is the desired sparsity. Substituting this
mask mG into Formula 2 accomplishes the prun-
ing.

3.3 Learning New Domain Continually

After the structure pruning stage, wherein specific
feed-forward memories are pruned and marked
‘writable’ for future learning, we introduce a task
mask mechanism to manage memory. Through-
out the forward pass, these task masks govern the
activation of feed-forward memory, conditioning
the model for specific tasks. In the backward pass,
the task masks are employed to suppress gradient
updates to the ‘read-only’ memories, effectively
preventing CF. Fig.3 provides an overview of this
procedure.

Learning task mask to allocate ‘writable’ mem-
ory. To adapt to a new task t, a task mask mt

l

is learned. This task mask serves to conditionally
activate the memories in the l-th feed-forward layer.
We adopt the task-based hard attention mechanism

FC2

FC1

FC2

FC1

Figure 3: Illustration of new domain learning: forward
(the left) and backward (the right) propagation. Here,
we show the inner structure of the feed-forward layer.

proposed by Serrà et al. (2018) to train the mask.
For each task t, a learnable task embedding etl is
introduced for each layer. The task mask mt

l is
defined as a gated version of the embedding vector
etl :

mt
l = σ(

etl
τ
) (6)

where σ represents a gate function, and τ is a
temperature variable. We wish to learn a binary
task mask that could be employed to allocate feed-
forward memory in the same format as described
in Eq.2.

To facilitate the efficient learning of task masks,
we employ a sigmoid function with a temperature
scalar to create a differentiable pseudo-gate func-
tion. The temperature scalar regulates the polar-
ization or ‘hardness’ of the pseudo-step function.
As τ → 0, the values of mt

l,i tend towards either
0 or 1, compelling the model to exploit allocated
memories. Conversely, as τ → ∞, the values of
mt

l,i approach 0.5, allowing the model to freely ex-
plore memories. Throughout the training process,
we implement temperature annealing, transition-
ing from 1

τmax
to τmax. This dynamic adjustment

aids the model in cyclically exploring memories
while simultaneously exploiting activated memo-
ries. During the training process, the mask under-
goes a gradual polarization, resulting in the occu-
pation of useful memories.

The embedding is initialized with αmG −
|N (0, 1)|, where α is a constant. This initialization
enables the new domain to harness all the insights
from the general domain’s memories. Simultane-
ously, it initializes the excess capacity usage to zero
at the outset of training, fostering minimal capacity
utilization. Upon model convergence, we archive
the acquired mask for future utilization.
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Applying task mask to safeguard ‘read-only’
memory. To tackle the challenge of CF, our ap-
proach involves leveraging task masks acquired
from previous tasks to influence the gradient. Be-
fore learning a new task, denoted as t, we aggre-
gate all task masks from preceding tasks using an
element-wise max (EMAX) operation and subse-
quently binarize the result with a threshold λ, as
expressed by the following equation:

m<t
l = Iλ(EMAXj<t{mj

l }) (7)

Here, the subscript l denotes the layer index. In
this specific context, task 0 corresponds to the gen-
eral domain translation task, and the associated
mask derived from structural pruning for the gen-
eral domain is denoted as m0. The aggregated
binary mask m<t

l encapsulates critical memories
designated as ‘read-only’ by previous tasks. The
primary objective is to safeguard the parameters in
these memories, preserving their functionality for
previous tasks. To achieve this, we utilize the mask
to adjust the gradient during the training of task t,
as articulated in the following equation:

g
′t
l = gtl ⊙ (1−m<t

l ) (8)

where ⊙ denotes the Hadamard product. This
modification guarantees that memories crucial for
previous tasks (entries with a value of 1 in m<t

l )
will have near zero gradients, thereby ensuring
their preservation during the training of subsequent
tasks.

4 Experiments

In our multi-stage CL experiments for NMT sys-
tems, we finetune a pretrained general domain
model on T new domains successively3. The pre-
trained model is based on the WMT’19 German-
English news translation task winner (Ng et al.,
2019). To neutralize the impact of task order, we
randomly generate five task order sequences and
report the average result.

4.1 Data Preparation
In the context of structure pruning, we employ
the WMT14 de-en translation data4 as the exter-
nal dataset. Additionally, we combine the WMT
newstest datasets from 2019 to 20215 to form a

3In our experiments, a task is a domain. Hence, we use
task and domain interchangeably.

4https://www.statmt.org/wmt14/translation-task.html
5https://www.statmt.org/

comprehensive general domain test set. For the
continual domain adaptation experiments, we uti-
lize the OPUS multi-domains dataset (Koehn and
Knowles, 2017), which has been re-split by Aha-
roni and Goldberg (2020). It includes German-
English parallel data in five domains: Medical,
Law, IT, Koran and Subtitles.

The details of all datasets mentioned above are
shown in Appendix A.

4.2 Baseline and Implementation Details

Baseline systems. We incorporate eight compet-
itive methods for comparison in our experiments,
which can be categorized into two groups: Non-
Continual Learning (Non-CL) methods and CL
methods. In the Non-CL category, (1) Single-
domain and (2) Mixed-domain directly finetune
the pretrained model on single or mixed domain
data, achieving the upper bound performance.
(3) Adapter (Bapna and Firat, 2019) inserts
Adapters on each transformer block of the gen-
eral domain model. In the CL category, we have
(4) Sequential Fine-tuning continual finetunes the
pretrained model sequentially; (5) EWC (Thomp-
son et al., 2019; Saunders et al., 2019) adds elas-
tic weight consolidation term to regularize loss; (6)
KD(Khayrallah et al., 2018; Dakwale and Monz,
2017) use knowledge distillation to transfer knowl-
edge; (7) Dynamic-KD(Cao et al., 2021) involves
dynamic adjustments to the weight of KD loss. (8)
PTE(Gu et al., 2021) prune the general domain
model and learn target domain with free parameters.
We have extended the baseline method designed
for a single stage to multiple stages. Further details
on these methods can be found in Appendix B.

Implementation detail. In our proposed method,
we exclusively finetune the Feed-forward layers
in Transformers, keeping all other modules frozen
throughout the procedure. During the structure
pruning stage, we set the pruning sparsity to 0.2
for subsequent CL experiments (the same pruning
sparsity is also used in PTE for fair comparison).
When computing the proposed JS loss, we only ac-
tivate the default dropout module for feed-forward
activation. In the CL stage, the temperature hyper-
parameter τmax is set to 400, following previous
work (Serrà et al., 2018). We use α = 5.0 in the
embedding initialization. The binarize threshold λ
in Eq.7 is set to 0.5. For more details please refer
to Appendix C.
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4.3 Metrics
We adopt the BLEU score to evaluate the transla-
tion performance. Recognizing that post-training
BLEU may not sufficiently capture the nuances in
multi-stage CL, we introduce two additional met-
rics: Forgetting Ratio (FR) and Saturation Ratio
(SR).

• Inspired by (Liu et al., 2020), FR is defined
as:

FRt =
1

t− 1

t−1∑

i=1

ai
i − at

i

ai
i

(9)

where aji ,∀i ≤ j represents the BLEU on the
i-th domain after learning of j-th domain6.
This metric is employed to quantify the stabil-
ity (the ability to prevent forgetting).

• SR is defined as:

SRt = 1− at
t

aM
t

(10)

where, aMi represents the BLEU of i-th do-
main in a mixed-domain training fashion,
commonly regarded as the upper bound of
CL methods. The saturation rate highlights
the system’s plasticity (learning ability) when
encountering a new task, with a higher rate
indicating lower plasticity.

5 Results and Analysis

Table 1 presents the post-training performances
of all nine systems across six domains. No-
tably, F-MALLOC consistently outperforms all
CL baselines on average, with an impressively
low forgetting rate of 0.71%. In comparison
with regularization-based baselines, F-MALLOC
demonstrates a better ability to alleviate forget-
ting and acquire new knowledge. When compared
with the SOTA architecture-based method, PTE,
F-MALLOC attains higher performance with min-
imal storage overhead and no prior information
about task numbers.

Regrading the Non-CL baselines, although still
trailing behind the upper bound performance, F-
MALLOC demonstrates comparable performance
to the strong baseline method, Adapter. These
results collectively underscore the effectiveness
of F-MALLOC in Continual Learning scenarios

6This definition calculates the average proportion of per-
formance degradation over all previously learned domains,
excluding the latest one as it experiences no forgetting.

for Transformer-based Neural Machine Translation
(NMT) systems.

For a more comprehensive analysis and compar-
ison of various CL methods, the following subsec-
tions will use task sequence 0: IT → Koran → Law
→ Medical → Subtitles as a reference.

5.1 Comparison with CL methods
Table 2 presents the results for task sequence 0.
Notably, among the prior CL methods, PTE stands
out with the best performance, achieving a BLEU
score of 39.58. In contrast, regularization-based
methods exhibit inferior performance. The sub-
optimal results of KD-based approaches (KD and
Dynamic-KD) can be attributed to the absence of
sample replay in our experimental setting. With-
out a sample cache from previous tasks, KD strug-
gles to effectively transfer knowledge from the pre-
ceding model to subsequent ones. Importantly, F-
MALLOC surpasses all CL baselines, delivering
the best results in both the BLEU score and forget-
ting rate.

Robustness against domain order. A horizon-
tal comparison between Table 1 and Table 2
for the same method’s performance reveals that
regularization-base methods such as EWC and KD
are sensitive to domain order, resulting in imbal-
anced performance on the initial and final tasks. In
contrast, F-MALLOC exhibits notable resilience to
variations in domain order, as evidenced by the bal-
anced performance across different domain orders.
This robustness is further substantiated by the low
standard deviations presented in Appendix D.
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Figure 4: Forgetting rate and saturation rate across dif-
ferent training stages.
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Category Domain General IT Koran Law Medical Subtitles Average FR[%] Additional storage
Method BLEU

Non-CL
Single-domain 38.00 48.80 22.90 57.15 55.93 32.01 42.47 - T ·M
Mixed-domain 21.24 46.17 22.97 60.35 55.98 29.87 39.43 - 0
Adapter 38.00 44.09 22.48 53.31 51.23 32.05 40.19 - T ·A

CL

Seq-finetune 15.81 29.29 12.16 23.90 26.50 20.76 21.40 47.80 0
EWC 24.57 36.93 17.61 46.14 43.92 25.01 32.36 11.47 2M
KD 22.80 34.49 13.93 36.33 38.00 24.88 28.41 32.79 M
Dynamic-KD 27.88 31.84 14.33 40.05 39.78 23.53 29.57 15.33 M
PTE 37.00 42.82 23.06 52.65 49.59 31.69 39.47 - T ·M [bit]
F-MALLOC(Ours) 39.54 44.33 23.02 53.77 51.62 31.16 40.57 0.71 T · E

Table 1: BLEU and FR for all domains post-training. The results are averages of 5 different task sequences (Non-CL
baselines are independent of task order). The best results are highlighted in bold. The best CL results are highlighted
with an underline. ‘-’ indicates the corresponding methods have no forgetting. The specital tokens denote number of
seen tasks(T ), adapter size(A), model parameter size(M ), binary mask size(M [bit]) and task embedding size(E).
Note that M ≫ M [bit] > A ≫ E.

Domain Genearl IT Koran Law Medical Subtitles Average FR[%]
Method BLEU

Seq-finetune 21.02 23.15 11.80 31.33 36.83 30.65 25.80 37.40
EWC 22.86 45.81 18.96 43.37 39.18 26.16 32.72 10.10
KD 25.91 29.52 13.40 40.31 44.68 31.61 30.91 27.14
Dynamic-KD 30.35 33.83 15.56 41.65 40.90 24.62 31.15 12.22
PTE 37.00 43.28 22.98 52.94 49.42 31.87 39.58 -
F-MALLOC(Ours) 39.54 44.19 22.81 53.64 51.21 31.93 40.55 0.24

Table 2: BLEU and FR of CL methods for all domains post-training using task sequence 0 (the domain training
order corresponds to the sequence in the first row). The best results are highlighted in bold.

Trade-off between stability and plasticity. As
depicted in Fig.4, both EWC and Dynamic-KD
exhibit robust abilities to mitigate forgetting. How-
ever, they also demonstrate a high saturation rate,
suggesting a compromise in their potential to adapt
to additional tasks. In contrast, KD achieves a low
saturation rate akin to Seq-finetune, but its forget-
ting rate is notably higher. This observation sheds
light on the struggle of regularization-based meth-
ods to balance stability and plasticity. Crucially,
F-MALLOC excels in both objectives, achieving a
harmonious equilibrium between mitigating forget-
ting and maintaining adaptability.

5.2 Hyperparameter

Temp BLEU FR[%] Sparsity BLEU FR[%]

τmax = 50 36.83 10.81 s = 0.05 39.09 0.40
τmax = 100 38.33 6.89 s = 0.1 39.87 0.15
τmax = 200 40.22 2.37 s = 0.2 40.55 0.24
τmax = 400 40.55 0.24 s = 0.3 40.01 0.85
τmax = 800 40.60 0.10 s = 0.4 39.88 2.02

Table 3: The effect of max temperature τmax (left) and
sparsity s (right). The value used in our experiments is
highlighted in bold.

We explored the impact of annealing temper-
ature τmax and prune sparsity s. As outlined in
Table 3, a small temperature results in a ‘soft’ mask
value, contributing to increased FR. Good results
were observed when τmax ≥ 400. Continually
increasing the temperature renders the annealing
strategy ineffective, resulting in a slower conver-
gence speed.

In terms of prune sparsity, low sparsity restricts
the available capacity for subsequent tasks, while
high sparsity adversely affects general domain per-
formance, both contributing to diminished overall
performance. Notably, the performance gap across
varying prune sparsity levels is relatively small,
highlighting the robustness of F-MALLOC.

5.3 Analyzing Memory Capacity Allocation
F-MALLOC employs a task mask mechanism for
the dynamic allocation of feed-forward memories
to different tasks. Therefore, by computing the
accumulated task mask m<t+1 and subsequently
binarizing it, we can assess the proportion of allo-
cated memories. As depicted in Fig.5, the capacity
usage undergoes rapid growth in the initial training
stage for all tasks, gradually converging at a stable
rate thereafter.
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Figure 5: Feed-forward memory capacity usage in the
training process of task sequence 0. Vertical dash lines
indicate task switches.

#Token Init_loss Capacity usage[%]

Koran 0.52M 3.455 12.25
IT 3.61M 2.398 17.68
Subtitles 6.25M 3.144 22.48
Medical 6.90M 2.284 23.15
Law 19.06M 1.616 22.69

Table 4: Stastics of data volume (#Token), task com-
plexity(Init_loss) and average capacity usage.

Upon comparing different tasks, we present the
statistics of data volume and task complexity for
each domain alongside the corresponding average
capacity usage in Table.4. Observing the table, we
discern a trend of increased capacity usage with
higher data volume. ‘Law’ stands out as an excep-
tion to this trend, having three times more tokens
yet occupying a similar capacity as ‘Subtitles’ and
‘Medical’. However, ‘Law’ is evidently the easiest
domain, indicated by its lowest initial loss at the
start of its training phase. Hence, its low capacity
usage is justified by its relatively lower difficulty.
Taken together, these observations suggest that our
proposed method has acquired a rational and effi-
cient memory allocation strategy, effectively lever-
aging the data volumes and inherent complexities
of the tasks.

Towards the conclusion of the entire training
process, approximately 40% of the feed-forward
memory is still ‘writable’. However, the best-
performing baseline, PTE, has already exhausted
model capacity. This emphasizes the potential of
our proposed method to effectively accommodate
additional tasks.

5.4 Knowledge Transfer and Domain
Similarity from Memory Reusing

In our proposed method, we employ non-exclusive
task masks, allowing feed-forward memories allo-

cated to previous tasks to be reused by subsequent
tasks. To investigate the inter-task relationship re-
garding the allocation of memories, we visually
represent the overlap rate among task masks for
different tasks. Specifically, we utilize the Jac-
card similarity coefficient, defined as |mi∩mj |

|mi∪mj | , to
assess the memory reuse between task ti and tj ,
i < j. The results, depicted in Fig.6, reveal a
substantial proportion of memory reuse between
different tasks. This observation underscores the
effectiveness of our non-exclusive masking strategy
in facilitating knowledge transfer between tasks.

Koran Law Medical Subtitles

IT

Koran

Law

Medical

0.14 0.20 0.21 0.20

0.16 0.16 0.17

0.37 0.29

0.27
0.15

0.20

0.25

0.30

0.35

Figure 6: Percentage of memory reuse across tasks.

We further conducted a comparative analysis
with the unsupervised domain clustering approach
proposed by Aharoni and Goldberg (2020). The
observed memory reuse rate aligns consistently
with domain similarity. Specifically, Aharoni and
Goldberg (2020) found that the ‘IT’ domain cluster
attracted the largest number of outliers, primar-
ily from the ‘Law’, ‘Medical’, and ‘Subtitles’ do-
mains. We observed a corresponding pattern of
higher memory reuse between these domains in
Fig.6. Furthermore, their findings indicated that
the ‘Koran’ domain cluster is isolated and attracts
the smallest number of outliers, aligning with the
notably lower memory reuse observed in our ex-
periments for the ‘Koran’ domain. This alignment
highlights the effectiveness of our approach in cap-
turing and leveraging task similarities for improved
knowledge transfer.

6 Related Work

CL for NMT. Recent work on CL of NMT can be
divided into two categories: regularization-based
and architecture-based. Regularization-based tech-
niques address forgetting by incorporating penalty
terms to constrain the divergence of model param-
eters from their previous values. Prominent meth-
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ods, including Elastic Weight Consolidation (EWC)
(Thompson et al., 2019; Saunders et al., 2019) and
knowledge distillation (Dakwale and Monz, 2017;
Khayrallah et al., 2018; Zhao et al., 2022; Cao
et al., 2021), are widely acknowledged for their
effectiveness in the fine-tuning process. Gu et al.
(2022) introduced a hard Low Forgetting Risk re-
striction on all parameters. In contrast to these
approaches, our method effectively mitigates for-
getting by blocking gradients, showcasing a more
efficient strategy.

Architecture-based methods involve dividing the
model into disjoint task-specific components. For
instance, Gu et al. (2021) prune the general domain
model and subsequently finetune free parameters
to adapt to the target domain. Another approach,
as demonstrated by Liang et al. (2021), involves
freezing Lottery Ticket Subnetworks to prevent for-
getting. Additionally, Huang et al. (2023) propose
utilizing external models’ feed-forward layers and
embeddings as a plug-in for knowledge transfer. In
comparison to these methods, our approach stands
out as it requires no pre-specification of task num-
bers or space allocation. Moreover, it avoids the
need to store an external model or a mask matrix.

Unstructured Pruning for Transformers. For
coarse-grained unstructured pruning of Trans-
former models, attention-head pruning (Voita et al.,
2019; Michel et al., 2019), layer-dropping (Fan
et al., 2020) and block pruning (Lagunas et al.,
2021) have been popularly used. Our proposed
pruning method shares similarities with the ap-
proach presented in Xia et al. (2022); Kwon et al.
(2022), where a mask or diagonal matrix is intro-
duced to facilitate pruning. However, our approach
diverges in both the estimation of importance and
the selection of modules earmarked for pruning..

7 Conclusion

This paper introduces F-MALLOC, a pioneering
method for CL in NMT systems. By decomposing
feed-forward layers into memory cells and imple-
menting a strategic memory allocation approach,
F-MALLOC proves effective in simultaneously
enhancing new knowledge acquisition and alle-
viating forgetting. Evaluation with a specialized
protocol for CL in NMT, positions F-MALLOC
as a superior performer, showcasing substantial
improvements, robustness, and extensibility com-
pared to existing approaches. The method’s ability
to leverage task difficulty and inter-task similari-

ties for enhanced performance represents a signif-
icant advancement not seen in previous methods.
F-MALLOC not only contribute to the field of CL
in NMT but also pave the way for more efficient
and adaptable neural network architectures.

Limitations

Although our proposed F-MALLOC can effectively
alleviate forgetting and exhibits high robustness
and extensibility, there are several limitations in
our current study: On the one hand, F-MALLOC
utilizes a fixed-capacity Transformer, which may
limit its capability to adapt to an unrestricted num-
ber of tasks. On the other hand, F-MALLOC is
designed for domain incremental training. Thus,
adding a new language can not be directly solved.
We leave these problems for future research.
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A Dataset Details

Dataset Train Dev. Test

WMT17 3.9M - -

General
Newstest2019 - - 2000
Newstest2020 - - 1000
Newstest2021 - - 785

IT 223K

2000 2000
Koran 17K
Law 467K

Medical 248K
Subtitles 500K

Table 5: Dataset statistics.

Here, we present detailed statistics for the
datasets used in our experiments in Table 5, fo-
cusing on the translation direction EN → DE. We
employ Moses scripts7 for sentence tokenization
and truecasing. Additionally, we utilize FastBPE8

to apply Byte Pair Encoding (BPE)(Sennrich et al.,
2016) to the tokenized data. The dictionary
and BPE codes are sourced from the Fairseq
WMT19 German-English news translation pre-
trained model(Ng et al., 2019).

B Baseline Details

Non-Continual Learning Methods. Each of
these baselines constructs a distinct model (or mod-
ule) for each task independently. Consequently,
they do not encounter CF and lack knowledge trans-
fer between tasks.

• Single-domain continues to train the general
domain model on target domain data, respec-
tively.

• Mixed-domain trains the general domain
model on combined multi-domain data, which
is considered the upper bound of CL meth-
ods.

• Adapter (Bapna and Firat, 2019) inserts
adapters on each transformer block of the gen-
eral domain model as proposed by Bapna and
Firat (2019). We set the bottleneck dimension
to 64 and only finetune the adapters.

Continual Learning Methods:

• Sequential Fine-tuning continues to train the
general domain model on target domains se-
quentially, without incorporating any mecha-
nism to address CF.

7http://www.statmt.org/moses/
8https://github.com/glample/fastBPE

• Elastic Weight Consolidation (EWC)
(Thompson et al., 2019; Saunders et al.,
2019) is a popular regularization-based
CL method that adopts elastic weights
consolidation to introduce L2 regularization,
penalizing parameter changes. The training
objective is:

LEWC(θ) = LCE(θ) + α
∑

i

Fi(θi − θGi )
2

In this equation, θ represents the model pa-
rameters, F is the diagnosis of the Fisher in-
formation matrix, and α is a hyperparameter
controlling the strength of regularization. To
extend this method to a multi-stage scenario,
we adopt the accumulated Fisher information,
as proposed by Huszár (2017).

• Knowledge Distillation (KD) (Khayrallah
et al., 2018; Dakwale and Monz, 2017) in-
troduces a regularization (reg) term into the
training objective. The reg term is formulated
in the spirit of knowledge distillation, mini-
mizing the cross-entropy between the original
(teacher) model’s output distribution and that
of the new (student) model. A hyperparameter
α is introduced to interpolate the reg term and
the NLL loss.

LEWC(θ) = LCE(θ) + αLKD(θ)

In our experiments, the weight of the KD term
is set to 0.1.

• Dynamic Knowledge Distillation (Dynamic-
KD) (Cao et al., 2021) propose dynamically
adjusting the weight of KD loss to better al-
leviate CF in a multi-stage CL scenario. The
bias correction module is omitted due to its
incompatibility with the pretrained model.

• Prune Then Expand (PTE) (Gu et al., 2021)
employs unstructured pruning to trim the gen-
eral domain model, followed by training the
pruned parameters for the target domain. In
the context of multi-stage CL, we uniformly
distribute the pruned parameters across all sub-
sequent tasks.

C Implementation Details

pretrained Model. All methods are implemented
with the Fairseq toolkit (Ott et al., 2019). We
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Method Domain

General IT Koran Law Medical Subtitles

Seq-finetune 6.28 17.62 6.35 12.91 11.69 9.20
EWC 5.23 5.64 1.55 4.70 6.12 5.46
KD 3.97 12.85 4.91 8.69 5.74 6.16
Dynamic-KD 2.59 1.81 0.87 1.85 1.49 0.76
PTE 0.00 0.60 0.23 0.33 0.24 0.40
F-MALLOC(Ours) 0.00 0.71 0.27 0.62 0.61 0.57

Table 6: Standard deviation of BLEU score of the proposed F-MALLOC and CL baselines over 5 random task
sequences.

Domain order EWC PTE F-MALLOC

BLEU FR[%] BLEU FR[%] BLEU FR[%]

IT→Koran→Law→Medical→Subtitles 32.72 10.10 39.58 - 40.55 0.24
Koran→Medical→IT→Law→Subtitles 32.78 12.11 39.36 - 40.70 0.32
Law→IT→Medical→Subtitles→Koran 29.94 16.40 39.55 - 40.76 1.12
Subtitles→Law→Koran→Medical→IT 35.21 5.15 39.48 - 40.39 0.69
Medical→Law→Koran→Subtitles→IT 31.16 13.59 39.37 - 40.47 1.17

Table 7: Result in different domain orders. The best-performing regularization-based baseline, EWC, and
architecture-based baseline, PTE, were chosen for comparison.

adopt the WMT’19 German-English news trans-
lation task winner (Ng et al., 2019) as the pre-
trained general domain model. It is a Transformer
encoder-decoder model (Vaswani et al., 2017) with
6 layers, 1,024-dimensional representations, 8,192-
dimensional feed-forward layers, and 8 attention
heads. Apart from WMT’19 training data, this
model is trained on over 10 billion tokens of back-
translation data and finetuned on the Newstest test
sets from years before 2018. In our experiments,
we do not use ensembles or n-best reranking.

Hyper-parameters. Unless explicitly stated oth-
erwise, consistent hyperparameters are applied
across all experiments. We utilize the Adam opti-
mizer (Kingma and Ba, 2015) with the same learn-
ing rate scheduler as detailed in Vaswani et al.
(2017). The learning rate is set to 1e-4 for all sys-
tems during the fine-tuning process. Training is
stopped when there is no performance improve-
ment for 5 consecutive validation steps.

For inference, we employ beam search with a
beam size of 5 for all systems. The default parame-
ter of BLEU is utilized in evaluation.

All experiments are done on 8 NVIDIA RTX
3090 GPUs.

D Standare Deviations

This section reports the standard deviations of the
results in Table 1. We only include the CL base-
lines here, since Non-CL baselines‘ performance

is independent of the domain order. As shown in
Table 6, F-MALLOC achieves low standard devia-
tions, indicating its robustness.

E Result in Different Domain Orders

Table 7 shows the performance of F-MALLOC
along with two strong baselines, EWC and PTE,
in other domain orders. F-MALLOC outperforms
both EWC and PTE, highlighting its efficacy across
different domain order scenarios.
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