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Abstract

Extremely weakly-supervised text classifica-
tion aims to classify texts without any labeled
data, but only relying on class names as super-
vision. Existing works include prompt-based
and seed-based methods. Prompt-based meth-
ods prompt language model with instructions,
while seed-based methods generate pseudo-
labels with word matching. Both of them have
significant flaws, including zero-shot instabil-
ity and context-dependent ambiguities. This
paper introduces SetSync, which follows a new
paradigm, i.e. wordset-based, which can avoid
the above problems. In SetSync, a class is rep-
resented with wordsets, and pseudo-labels are
generated with wordsets matching. To facilitate
this, we propose to use information bottleneck
to identify class-relevant wordsets. Moreover,
we regard the classifier training as a hybrid
learning of semi-supervised and noisy-labels,
and propose a new training strategy, termed
sync-denoising. Extensive experiments on 11
datasets show that SetSync outperforms all ex-
isting prompt and seed methods, exceeding
SOTA by an impressive average of 8 points.

1 Introduction

As a fundamental task in NLP, text classification
has a wide range of real-world applications. How-
ever, the substantial annotation costs present sig-
nificant challenges and obstacles to its practical
implementation. As a result, extremely weakly-
supervised text classification (WTC) has garnered
considerable attention (Wang et al., 2023a), which
requires no human-annotated datasets, but relies
solely on the class names as supervision signals to
perform the text classification task.

Generally, weakly-supervised text classification
involves two main steps: pseudo-labels generation
and text classifier training, as shown in Fig. 1.
1) Firstly, pseudo-labels for unlabeled texts are
generated according to class names, which can
be roughly divided into two major mainstream,
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Figure 1: WTC consists of two major steps, namely
pseudo-labels generation and classifier training. Firstly,
we utilize wordset to generate pseudo-labels, which can
avoid the problem of zero-shot instability in prompt
methods and the context-dependent in seed methods.
Moreover, we regard classifier training in WTC as a hy-
brid learning of semi-supervised and noisy-labels, and
propose a new training strategy called sync-denoising.

namely prompt methods (Han et al., 2022a) and
seed methods (Wang et al., 2021). The prompt
methods generate pseudo-labels by prompting lan-
guage models (e.g. GPT) with instructions, and
the seed methods first expand the seed class names
into a larger set of related words and then gener-
ate pseudo-labels with a matching strategy. Fig. 1
shows a specific example. 2) In the subsequent
text classifier training step, the text classifier will
be trained on generated pseudo-labels. The train-
ing strategies of the classifier mainly include fully-
supervised training and self-training, where the for-
mer directly trains the classifier on pseudo-labeled
data, and the latter utilizes self-training to exploit
texts that are not assigned pseudo-labels.

Although previous methods have achieved some
success, we observe that they are still sub-optimal:
1) Prompt methods tend to have a lower perfor-
mance, as reported in a recent review (Wang et al.,
2023a). This is because language models are
known to exhibit bias towards text sequences more
common in their pre-training data, which can lead
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to instability in zero-shot settings. 2) Seed methods
are known to be context-dependent and prone to
ambiguity. For example, in the case of Fig. 1, the
text “I am not in a bad mood” is an example of
positive emotion being mislabeled as negative due
to the presence of "bad" seed keywords in the neg-
ative class. In this case, the combination of “bad”
and “not” can express the emotion accurately. Al-
though there have been some methods to solve the
context-dependency problem before (Mekala and
Shang, 2020; Zhang et al., 2021), we believe that
they are still not thorough and perfect enough. 3)
Additionally, existing methods do not consider the
noise of pseudo-labels in the training of classifier.
Specifically, existing WTC works extensively uti-
lize self-training to make full use of samples with-
out any pseudo-labels (Meng et al., 2020b; Zhang
et al., 2021). However, during the self-training, in-
correct pseudo-labels will lead to the propagation
and expansion of errors, ultimately contributing to
a decrease in classifier performance.

In this paper, we solve the above problem with a
novel framework called SetSync, where we embark
on enhancing WTC from two primary perspectives:
pseudo-labels generation based on wordsets and
classifier training with sync-denoising. To begin
with, considering the context-dependency ambigu-
ities in seed methods, we believe that individual
seed words alone cannot effectively represent a
category. Thus, we propose to utilize wordsets to
represent a category and generate pseudo-labels,
where a wordset is a collection that contains some
keywords. For example, {not, bad} and {good} are
two wordsets for class positive, while {never, good}
is a wordset for class negative, as shown in Fig. 1.
The previous seed word expansion can be seen as a
special case of ours, where each wordset contains
only one word. Thus, with the help of information
bottleneck (IB) (Bayat and Wei, 2019) theory, we
propose wordsets information bottleneck (WIB) to
mine category-related wordsets. Information bottle-
neck was originally proposed for signal processing,
attempts to find a short code of the input signal but
preserve maximum information. Contrasting with
the continuous nature of signal space, the space
of words is inherently discrete. Applying IB di-
rectly to wordset mining will face problems such
as high time complexity and difficulty in optimiza-
tion. Therefore, we propose WIB in discrete space,
which uses high-frequency filtering combined with
frequent itemset mining for optimization.

Moreover, observing pseudo-labels, we can find
it is a hybrid setting of semi-supervised and noisy-
label learning, i.e. only a portion of the texts
have pseudo-labels and they contain errors. There-
fore, we propose a new training strategy, named
sync-denoising to train the classifier, where noisy
pseudo-labels and unlabeled data participate in
training synchronously under a unified denoising
framework. We assume that the noise levels of
pseudo-labels and unlabeled data obey two inde-
pendent Gaussian distributions and dynamically
sample weights from them for denoising learning.

We conducted extensive experiments on 11 text
benchmarks. Results show that our method sub-
stantially outperforms all existing seed-based and
prompt-based methods, improving the accuracy of
all 11 datasets by about 8 points on average.

2 Related Work

2.1 Weakly-supervised Text Classification

Weakly-supervised text classification (WTC) aims
to use various weakly supervised signals to perform
text classification. There are many sources of weak
supervision signals, including: 1) external knowl-
edge bases(Gabrilovich et al., 2007; Yin et al.,
2019), 2) seed words(Meng et al., 2020b; Zhang
et al., 2021; Mekala and Shang, 2020; Wang et al.,
2021; Zhao et al., 2023a), 3) heuristic rules(Badene
et al., 2019; Shu et al., 2020), 4) language mod-
els (prompt methods)(Holtzman et al., 2022; Han
et al., 2022b). Among these, the most popular
ones at present are seed-words and prompt methods,
where the former generates pseudo-labels based on
word matching, and the latter generates the class
probability distribution of each text by prompting
a large language model.

Different from existing seed-based and prompt-
based methods, our SetSync belongs to a new
paradigm, named wordset-based method, which
can avoid the problem of zero-shot instability and
context-dependent ambiguities in previous works.

2.2 Noisy and Semi-supervised Learning

Noisy-label learning and semi-supervised learn-
ing are two research areas that have received
widespread attention. Noisy-label learning (NLL)
mainly studies the learning of labels with errors or
noise in a fully-supervised scenario. While semi-
supervised learning (SSL) studies that only a part
of the samples have labels, and these labels are all
correct. For NLL, existing methods can be divided
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into two major categories, i.e. loss correction (Han
et al., 2020; Liu et al., 2020) and sample selec-
tion (Li et al., 2020; Albert et al., 2021). For SSL,
pseudo-labeling methods with confidence thresh-
olds have gained widespread adoption(Sohn et al.,
2020b; Chen et al., 2023b), which train models
using pseudo-labels with prediction confidences
above thresholds while discarding others.

However, existing noisy-label learning assumes
that all samples have a label, and semi-supervised
learning assumes that the labels in the labeled data
are totally correct. Neither is adequate for the data
we are faced with, where only a small part of the
data has labels, and these labels are noisy. In this
paper, we propose a novel training strategy, named
sync-denoising, to solve the above data setting,
which jointly optimizes unlabeled and noisy la-
beled samples with a unified denoising framework.

3 Method

3.1 Problem Definition
The input of WTC consists of two parts: 1) a se-
ries of N unlabeled text X = {x1, x2, ..., xN}.
2) Class names for C categories, represented as
M = {m1,m2, ...,mC}. Our goal is to train a
text classifier, with only class names as supervi-
sion signals, whose performance is evaluated on an
additional test set.

3.2 Framework
The framework of SetSync is shown in Fig. 2,
which follows an iterative paradigm. The system
is initialized with class names as wordsets. In each
iteration, we first generate pseudo-labels for unla-
beled texts with set matching. Then, we train the
text classifier with the proposed sync-denoising.
Finally, we perform wordset mining with the assis-
tance of information bottleneck. The mined word-
sets will be used to generate pseudo-labels for the
next iteration. When the total number of iterations
reaches the threshold, the iteration stops.

3.3 Pseudo-Labels Generation
Given the unlabeled texts X = {x1, x2, ...xN} and
wordsets S = {S1,S2, ...SC} for C classes, where
Sc = {sc1, sc2, ...scT } is T wordsets for class c, the
pseudo-label for text xi is generated with wordset
matching as follows:

ŷli = argmax
c

{
T∑

j=1

I(scj ∈ xi)|∀(scj ∈ Sc)} (1)

where I(·) is indicator function. Here, we count the
number of wordsets of each category contained in
text xi. Typically, a text includes wordsets from a
single category, which becomes the pseudo-label.
While sometimes, a text contains wordsets from
multiple classes, and we take the category with the
most occurrences as the pseudo-label.

Initialization: At the beginning of the first
round of training, we initialize the wordset S using
the provided class names M, that is Sc = {sc1},
and sc1 = {mc}, i.e. for class c, it is initialized with
one wordset that contains only a class name.

3.4 Sync-Denoising Training

According to Eq.(1), some texts will be assigned
with pseudo-labels. However, there are still some
texts that do not contain any wordsets, i.e. remain
unlabeled, whose proportion of first-round is visu-
alized in Fig. 3.

Such training data will bring two important is-
sues: 1) How to leverage unlabeled texts without
pseudo-labels. 2) How to learn in the presence
of errors and noise in pseudo-labels. The former
is a problem addressed by semi-supervised learn-
ing (SSL), while the latter is tackled by noisy-label
learning (NLL). However, in SSL, it is assumed
that all labels are correct, whereas in NLL, it is
assumed that all samples have noisy labels. This
highlights a difference in our assumptions.

Existing WTC works directly use self-
training (an SSL method) to make use of unlabeled
texts. However, we observe that such a strategy
will lead to the further expansion and spread of
pseudo-labeling errors, as shown in Fig. 3.

In this paper, we try to solve the learning in this
data setting, where the training data consists of
pseudo-labeled data D̂L = {xli, ŷli}NL

i=1 and unla-
beled data DU = {xui }NU

i=1, and the pseudo-labels
{ŷli}NL

i=1 are noisy. We proposed a sync-denoising
training strategy, which jointly optimize pseudo-
labeled and unlabeled data through a unified de-
noising framework, where the sample weights of
both are sampled through two independent Gaus-
sian distributions.

3.4.1 Revisit Semi-supervised Learning

In recent research on semi-supervised learn-
ing (Sohn et al., 2020b; Chen et al., 2023a), the
labeled data DL and unlabeled data DU are opti-
mized with objective L = Ls+Lu, where Ls is the
supervised loss with ground-truth labels {yli}NL

i=1 in
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Figure 2: In SetSync, an iteration starts with class names as initial wordsets. Each iteration involves generating
pseudo-labels via set matching, training the classifier with sync-denoising, and conducting wordset mining with
wordsets information bottleneck. The mined wordsets are then updated to the initial sets for the next cycle.
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Figure 3: Left: The proportion of texts that keep unla-
beled. Right: The proportion of errors in pseudo-labels
gradually increases with iterations of self-training.

DL, and Lu is unsupervised loss with consistency
between weak and strong augmentation in DU .

Formally, the supervised loss Ls of the cross-
entropy loss H on BL-sized batch is formulated
as:

Ls =
1

BL

BL∑

i=1

H(yli,p(y|xli)) (2)

where p(y|xli) ∈ RC is the model’s prediction.
For the unsupervised loss Lu, the consistency

between weak augmentation ω(xui ) and strong aug-
mentation Ω(xui ) on BU -sized batch of unlabeled
data is constrained by the following formula:

Lu =
1

BU

BU∑

i=1

λ(xui )H(p̂i,p(y|Ω(xui ))) (3)

where p̂i = argmaxp(y|ω(xui )), i.e. the one-hot
pseudo-label generated from weak augmentation.
λ(xui ) is the binary or continuous weight of xui ,
which is used to filter out samples that may be
predicted incorrectly.

3.4.2 Synchronous Denoising
Here, we impose label-denoising training on SSL.
Coincidentally, Eq.(3) utilize λ(xui ) to filter uncon-
fidence predictions, which inspires us to use the
same paradigm to denoise noisy labeled data D̂L.

Hence, we employ a unified framework to simulta-
neously conduct denoising learning of labeled data
and unsupervised learning of unlabeled data, both
sharing the same optimization formula as follows:

Ls&u =
1

B

B∑

i=1

λ̂(xi)H(ỹi,p(y|Θ(xi))) (4)

In Eq.(4), we optimize both labeled and unla-
beled data with weighted cross-entropy loss, where
B is the batch size, and λ̂(xi) is the sample
weight. Θ(xi) is the mixture of weak and strong
augmentation of sample xi, formally Θ(xi) =
{ω(xi),Ω(xi)}. In our unified framework, we si-
multaneously predict weak and strong augmenta-
tion samples, with different target ỹi.

For target ỹi, according to whether xi is pseudo-
labeled or unlabeled, it is formulated as:

ỹi =

{
ŷli, if xi ∈ D̂L

argmaxp(y|ω(xi)), if xi ∈ DU

(5)

where the pseudo-labels from Eq.(1) and prediction
from weak augmentation is utilized as a target for
pseudo-labeled and unlabeled data, respectively.

3.4.3 Dynamic Gaussian Weight
For the sample weight λ̂(xi), existing works of
NLL measure the probability of label errors based
on the magnitude of the loss function value (Kim
et al., 2022). While the semi-supervised learning
derives weight λ̂(xi) from the prediction confi-
dence of xi (Sohn et al., 2020a; Chen et al., 2023a).

Here, we go one step further. We assume that
the underlying probability mass function of loss
values in pseudo-labeled samples D̂L and the pre-
diction confidence in unlabeled samples DU obey
two dynamic Gaussian distributions respectively,
where the mean and variance are µl

t, σ
l
t for loss
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values in D̂L, and µu
t , σu

t for prediction confidence
in DU . Since samples with higher loss values in
D̂L are more prone to be erroneous than those with
lower loss values, we can convert the deviation of
the sample loss values from the mean µl

t of the
Gaussian distribution into the probability of label
correctness, which will be used as weight λ̂(xi).
Similarly, the greater the prediction confidence in
DU , the greater the probability of being correct.
Therefore, λ̂(xi) can be derived as:

λ̂(xi) =





λmax exp(− (l(xi)−µl
t)

2

2σl
t
2 ),

if xi ∈ DL and l(xi) > µl
t

λmax exp(− (maxp(xi)−µu
t )

2

2σu
t
2 ),

if xi ∈ DU and maxp(xi) < µu
t

λmax, otherwise
(6)

where l(xi) is the loss value of labeled sample xi,
and l(xi) = H(ŷli,p(y|Θ(xi)). maxp(xi) is the
prediction confidence of unlabeled sample, and is
an abbreviation of maxp(y|Θ(xi)). λmax is the
max value of weight, which is a hyperparameter.

In Eq.(6), we applied distinct truncations to two
Gaussian distributions. For pseudo-labeled data
D̂L, we truncate the part of the Gaussian distribu-
tion where the loss value l(xi) is less than the mean
µl
t, making it λmax. For loss value that larger than

µl
t, since it’s more likely to have the wrong label,

we down-weight it according to how far it deviates
from µl

t. For unlabeled data DU , it is the opposite;
Since higher confidence corresponds to lower error
probability, we truncate in the opposite direction.

3.4.4 Parameter Estimation
Then, we estimate the parameters of two Gaussian
distributions, i.e. µl

t, σ
l
t and µu

t , σu
t , separately.

Since the training process is a dynamic process,
the two Gaussian distribution are also changing
dynamically. Therefore, our parameters are also
updated with momentum. In particular, for µl

t, σ
l
t

of labeled data, we calculate the empirical mean
and variance of the loss values in the batch of tth
iteration as:

µl
b =

1

B

B∑

i=1

l(xi) σl
b =

1

B

B∑

i=1

(l(xi)− µl
b)

2 (7)

Then, the parameters at tth is estimated with EMA
with unbiased variance as follows:

µl
t = ϵ · µl

b + (1− ϵ) · µl
t−1

σl
t = ϵ · B

B − 1
· σl

b + (1− ϵ) · σl
t−1

(8)

where ϵ is a hyperparameter. Similarly, the param-
eters µu

t , σu
t for unlabeled data are also estimated

in the same way. According to the real-time esti-
mated Gaussian parameters, we employ Eq.(6) for
the dynamic weight generation and utilize Eq.(4)
to optimize the classifier.

3.5 Wordsets Information Bottleneck
As mentioned before, we found that seed words
alone are not enough to accurately characterize
a category, so we utilize wordsets to represent a
category and generate pseudo-labels. In this paper,
we propose to mine class-relevant wordsets with
information bottleneck (IB) (Bayat and Wei, 2019).

Given the input signal X and label Y , the objec-
tive of IB is maximized to find the most informative
yet compressed representation Z by optimizing:

max
Z

I(Y,Z) s.t.I(X,Z) ≤ Ix (9)

where I(·, ·) is mutual information, Ix is informa-
tion constraint between X and Z. By introducing
a Lagrange multiplier β, we can get the uncon-
strained form:

max
Z

I(Y, Z)− βI(X,Z) (10)

where the hyperparameter β can be used to trade-
off informativeness and compression.

Here, in wordset mining, we focus on mining the
wordsets that is compressed with minimum infor-
mation loss in terms of class properties, and we pro-
pose the wordsets information bottleneck (WIB).
In particular, for a class c, the maximally informa-
tive yet compressed wordsets can be obtained with
WIB by optimizing the following objective:

max
s

I(c, s)− β

∑
xi∈X cI(s ∈ xi)I(xi, s)∑

xi∈X cI(s ∈ xi)
(11)

where s is the wordset to be solved. X c is the set
of texts predicted by the classifier to be class c. We
use the average mutual information of a wordset
and the text containing it to calculate I(X,Z).

Unlike continuous space in signal processing,
words are discrete space and non-derivable. To
solve Eq.(11), an intuitive idea in discrete space
is to enumerate all possible wordsets s and find
the top ones. However, due to huge enumeration
combinations in discrete space, it is not feasible.

Here, we combine high-frequency screening and
frequent itemset algorithm to solve the approxi-
mate optimal solution of Eq.(11). Our method
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is based on the prior knowledge that a category-
specific wordset occurs with high frequency in this
class, and the words included in the high-frequency
wordset are also high-frequency. Therefore, we
first use high-frequency screening to filter out low-
frequency words, then use the frequent item set
mining algorithm to mine high-frequency wordsets,
and finally utilize Eq.(11) to evaluate the wordsets.

3.5.1 High-frequency Screening

Firstly, we need to build a high-frequency vocab-
ulary Φc for each category c. To achieve this, we
aggregate the texts predicted with class c by the
trained classifier, which is denoted as X c. Then,
we count the frequency of each word wi in X c as
TF (wi)

c =
∑

xj∈X c I(wi ∈ xj). For each class c,
we keep top Z1 words with the highest TF (wi)

c,
which is denoted as Φc.

According to the high-frequency vocabulary Φc,
we simplify the original texts by filtering low-
frequency words. For each text xi of class c, we
keep only those words that appear in the vocabu-
lary Φc, and the result is denoted as x̃i = {wi|wi ∈
xi and wi ∈ Φc}. Through filtering operations, we
can greatly reduce the number of words in each
text, thus speeding up the mining process.

3.5.2 Frequent Wordsets Mining

According to the simplified texts x̃i, we mine fre-
quent itemsets in each class c. Treat each x̃i
of class c as a transaction, and we use the FP-
Growth (Borgelt, 2005) algorithm to mine frequent
itemsets that appears in as many x̃i as possible. We
choose FP-Growth for its better time complexity.
Then, Z2 itemsets with the highest support will be
output from FP-Growth for class c, which is de-
noted as S̃c = {s̃c1, s̃c2, ..., s̃cZ2

}, where the support
of a itemset refers to the probability of occurrence
of that itemset in all x̃i of class c.

3.5.3 Information Bottleneck Ranking

With the results S̃c from FP-Growth, we score each
s̃ci ∈ S̃c with Eq.(11), where the mutual informa-
tion is calculated using the representations of the
last layer of trained classifier. For each class c, we
keep the top T wordsets with the highest score and
update them into the initialized wordsets. Then,
with updated wordsets, we restart a new round
of training. When the total number of iterations
reaches M , the iteration stops.

4 Experiments

For experimental settings and hyperparameter,
please refer to the Appendix.C.

4.1 Datasets

All our experimental settings and datasets follow a
recent WTC benchmark(Wang et al., 2023b), which
replicated WTC methods using standardized eval-
uation criteria, including seed-based and prompt-
based approaches. Following the benchmark, we
conducted experiments on 11 text datasets from di-
verse domains. and the input class names are also
the same. More details can refer to Appendix.A.

4.2 Compared Methods

We compared seed-based and prompt-based
methods following the benchmark(Wang et al.,
2023b). Seed methods included LoT-Class (Meng
et al., 2020b), X-Class (Wang et al., 2021),
ClassKG (Zhang et al., 2021) and NPPrompt (Zhao
et al., 2023a), while prompt methods in-
cluded prompt baseline (Wang et al., 2023a),
prompt+DCPMI (Holtzman et al., 2021) and
prompt+ProtoCal (Han et al., 2023). Prompt meth-
ods use GPT-2, while seed methods use BERT (ex-
cept NPPrompt-Roberta) as classifier. More details
of compared methods can refer to Appendix.B.

4.3 Performance Comparison

The evaluation results are summarized in Tab.1.
Our method achieved the highest average re-
sults, surpassing SOTA on most datasets regard-
less of whether BERT-base or BERT-large was
used as the classifier. SetSync outperformed
ClassKG by 9.0 points and the best prompt
method (Prompt+DCPMI) by 24.70 points with
BERT-base. With BERT-large, it exceeded pre-
vious SOTA (X-class) by 8.54 points on average.
SetSync demonstrated strong performance on both
short and long texts, highlighting its effectiveness
and generalizability.

4.4 Ablation Study

We perform further module inspections, all experi-
ments use BERT-base as the classifier.

4.4.1 Effect of Different Modules
We investigate the effectiveness of sync-denoising
training and wordsets mining, and present the
results in Fig. 4. We compared sync-denoising
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Method Model IMDB Yelp-2 Yelp-5 AGNews 20News 20News-Fine NYT-S NYT-S-Fine NYT NYT-Loc DBpedia Average

PROMPT

Prompt
GPT2-small 56.42 47.36 7.62 38.42 36.32 28.76 22.45 38.90 33.44 60.32 13.93 34.90
GPT2-medium 35.80 33.57 25.87 69.36 55.16 46.03 54.08 46.14 24.92 79.00 24.52 44.95

Prompt
+ DCPMI

GPT2-small 70.13 65.34 23.01 72.67 61.64 37.45 73.93 63.19 55.20 70.40 51.10 58.55
GPT2-medium 63.24 87.00 11.34 74.13 61.15 52.74 79.80 67.66 58.44 87.35 57.30 63.65

Prompt
+ ProtoCal

GPT2-small 70.35 65.89 23.77 72.66 58.62 36.77 53.69 29.82 55.15 65.80 51.97 53.14
GPT2-medium 70.58 88.60 36.62 75.26 62.58 48.55 51.97 46.85 59.04 72.45 66.46 61.54

SEED

LoT-Class
BERT-base 58.56 67.96 24.92 73.94 70.57 9.40 61.36 23.05 48.59 67.13 57.98 51.2
BERT-large 81.03 77.03 25.17 68.25 65.71 45.51 44.00 37.11 43.08 80.55 58.04 56.86

X-Class
BERT-base 82.89 85.44 28.80 81.81 76.98 58.78 91.94 61.06 67.19 86.38 89.50 73.71
BERT-large 82.05 90.39 31.02 85.91 77.52 59.98 87.53 68.40 68.73 85.77 87.91 75.02

ClassKG
BERT-base 88.08 92.21 32.33 88.10 81.72 52.29 84.12 49.59 60.79 92.81 94.75 74.25
BERT-large 90.96 93.10 39.41 87.30 83.84 51.62 80.95 59.95 56.31 91.03 72.74 73.38

NPPrompt
Roberta-base 85.19 81.17 14.20 80.42 68.92 48.64 77.76 55.23 64.46 53.85 60.36 62.75
Roberta-large 85.67 93.58 23.45 83.62 69.82 43.33 77.93 35.91 59.96 65.83 47.11 62.38

WORD SET

SetSync
(Ours)

BERT-base 90.18 93.31 45.94 89.76 83.40 68.99 92.23 89.79 78.67 93.83 89.67 83.25
BERT-large 92.52 94.12 51.65 88.91 84.01 67.29 89.50 91.05 76.73 94.82 88.60 83.56

Table 1: Performance comparison. All methods take class names as input. Accuracy on the test set is reported.
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Figure 4: The classifier performance of each iteration
when changing the training strategies.

with various training strategies, including fully-
supervised, semi-supervised (self-training (Pseudo-
Label, 2013), fixmatch (Sohn et al., 2020a), soft-
match (Chen et al., 2023a)), and noisy-label learn-
ing (co-teaching (Han et al., 2018), SaFER (Qi
et al., 2023)), reporting the performance of each
round for each training strategy. From Fig. 4, we
can see that: 1) Our sync-denoising training outer-
formed all other strategies. Fully-supervised train-
ing on pseudo-labeled data had the worst perfor-
mance. Semi-supervised and noisy-label learning
were slightly better than fully-supervised, but with

Pseudo-Labeled Unlabeled IMDB Yelp-2 Yelp-5 AGNews

maxp(xi) maxp(xi) 88.83 91.97 40.09 87.55
maxp(xi) l(xi) 87.89 91.89 41.24 86.20

l(xi) l(xi) 89.36 92.10 42.98 88.65
l(xi) maxp(xi) 90.18 93.31 45.94 89.76

Table 2: Results of different noise estimation methods.

limited improvement. 2) Classifier performance
gradually improved with iterations in all strategies,
which demonstrating the effectiveness of our word-
sets mining algorithm. In addition,we observed
that the 2nd round typically showed the most sig-
nificant improvement. This is mainly due to the use
of mined wordsets to generate high-quality pseudo-
labels, greatly improving the performance.

4.4.2 Different Noise Estimation

In sync-denoising training of classifier, we esti-
mated pseudo-labeled data and unlabeled text’s
prediction noise using loss value and prediction
confidence, respectively. We try to change it, with
results shown in Tab. 2. We can see that using loss
values to evaluate noise on pseudo-labeled data and
using prediction confidence to evaluate unlabeled
data achieved the best results. This is because for
pseudo-label data, the loss value can be a good
measure of the consistency between the model’s
prediction and the pseudo-label. For abnormal sam-
ples with incorrect labels, the consistency will be
greatly reduced, so that its noise level can be eval-
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Figure 5: The influence of β and T of WIB.

Pseudo-Labels Generation IMDB Yelp-2 Yelp-5 AGNews

Random Selection 0.872 0.855 0.529 0.863
Length Accumulation 0.915 0.903 0.570 0.879
Score Accumulation 0.931 0.925 0.581 0.891

Majority Voting 0.934 0.919 0.595 0.892

Table 3: Pseudo-label accuracy in the second round with
different pseudo-label generation methods.

uated. For unlabeled samples, the loss value is
a measure of the consistency between weak and
strong augmentation. Since most of the strong
augmentation are difficult samples, the results are
likely to be wrong. Therefore, this consistency is
not as reliable as the prediction confidence.

4.4.3 Ablation on WIB
Here, we perform experiments on β and T in word-
sets information bottleneck, where β is a lagrange
multiplier that trade-off informativeness and com-
pression, and T is the number of reserved wordsets
in each round. We report the accuracy and coverage
of the pseudo-labels, and the performance of classi-
fier over iterations in Fig. 5. We can see that: 1) A
higher T will bring higher pseudo-label coverage
and also reduce pseudo-label accuracy. 2) A higher
β will lead to higher compression, thereby extract-
ing higher coverage wordsets. Likewise, higher
compression ratios reduce accuracy. 3) Our system
is robust to these hyperparameters, and these pa-
rameter selections can achieve high performance.

4.4.4 Ablation on Pseudo-Label Generation
We conduct further experiments on pseudo-label
generation. When a text contains only one cate-
gory of wordsets, its category is easy to determine.
However, when a text contains multiple categories,
we try to use different methods to determine its
pseudo-labels, including random selection, score
accumulation, length accumulation, majority vot-
ing. The length accumulation accumulates the total
number of words in wordsets of each class. The
score accumulation accumulates the scores of word-
sets in each class, where the score is obtained from
the previous round of WIB. Majority voting is for-

{'poor'}

{'unprofessional', 'horrible', 'rude'}
{'attitude', 'rude', 'manager'}
{'room', 'disgusting'}
{'horrible', 'senders', 'box', 'rude'}

{'average'}

{'flavor', 'dry', 'okay'}
{'steak', 'bland', 'average'}
{'tasteless', 'flavor', 'slightly'}
{'beans', 'beef', 'salsa', 'average'}

{'good'}

{'return', 'recommend'}
{'enjoyable', 'show'}

{'enjoyable', 'forward', 'entree'}
{'luckily', 'intimately', 'trattoria'}

{'bad'} {'excellent'}

{'not', 'worth'}
{'bizarre', 'hummus'}
{'unsanitary', 'overcooked'}
{'unsatisfied', 'mayo', 'reviewers', 'recommendations'}

{'recommended', 'highly'}
{'chocolate', 'amazing', 'perfect'}
{'flavors', 'yummy', 'fun', 'favorite'}
{'relax', 'helpful', 'amazing', 'fabulous', 'spa'}

Figure 6: Wordsets example.The gray area represents
the wordset initialized for the class, while the dashed
lines indicate the wordsets updated after three iterations.

Model AG News DBPedia IMDB Yelp-2 Yelp-5

GPT-3 83.4 82.5 88.8 92.6 42.9
ChatGPT-3.5 83.8 92.0 92.7 97.2 73.8
SetSync (BERT-base) 88.5 90.1 90.9 93.3 45.9
SetSync (BERT-large) 87.3 89.3 92.3 94.1 51.6

Table 4: Performance comparison with ChatGPT.

mulated as Eq.(1). We report the second-round
pseudo-labels accuracy in Tab.3. We can see that
majority voting achieved relatively stable and good
results in most cases, followed by score accumula-
tion. Score accumulation may cause performance
degradation in some cases due to the imbalance of
scores between different categories.

4.5 Qualitative Analysis

Using the Yelp-5 dataset as an example, we initial-
ized the wordset with class names and updated it
over three iterations, as shown in Fig. 6. From the
results, it is evident that our method employed a
wordset to represent each category, allowing for
a more accurate expression of nuanced sentiment
compared to individual seed words. This explains
our higher performance on the Yelp-5 dataset and
enables a more granular and precise interpretation
of sentiments, essential in effective dataset under-
standing and analysis.

4.6 Comparison with ChatGPT

We also conducted a comparative study with
ChatGPT-3.5 and GPT-3. However, given the huge
scale of the datasets, using ChatGPT-3.5 to predict
all test sets of 11 datasets (about 60K texts) would
incur a high cost. Therefore, we chose to conduct
experiments on a part of the datasets. More exper-
imental details can refer to Appendix.D, and the
prompts for ChatGPT and GPT-3 can be found in
Tab.7. The results are shown in Tab. 4. From the
results, we can see that ChatGPT-3.5 can achieve
the highest results on some datasets. Meanwhile,
our method can surpass GPT-3 on all datasets and
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beat ChatGPT-3.5 on some datasets.

5 Conclusion

In this paper, we introduce SetSync, which uti-
lize wordsets to represent categories and generate
pseudo-labels. To achieve this, we propose a class-
relevant wordsets mining algorithm with wordsets
information bottleneck. Moreover, we revisit the
classifier training in WTC and propose a new train-
ing strategy, called sync-denoising, which jointly
optimize unlabeled and noisy labeled samples with
a unified denoising framework. Extensive exper-
iment results on 11 datasets shows that SetSync
substantially outperforms all existing methods.
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A Details of Datasets

These datasets can be divided into the following
four categories:

1) Sentiment Analysis:

• IMDB(Maas et al., 2011): Contains movie
reviews from the IMDB website.it’s a binary
classification dataset (positive or negative)

• Yelp-2 and Yelp-5(Zhang et al., 2016): These
datasets are derived from Yelp reviews. Yelp-
2 is a binary classification dataset (positive
or negative reviews), while Yelp-5 has a finer
classification with five classes, rating reviews
from one to five stars.

2) Topic Classification:

• AGNews(Zhang et al., 2016): Classifies news
articles into four main topics: World, Sports,
Business, and Science/Technology.

• 20News and 20News-Fine(Lang, 1995):
Topic classification of newsgroup articles, cov-
ering a range of topics, with the “Fine” version
offering more detailed classification.

3) Entity Recognition and Classification:

• DBpedia(Zhang et al., 2016): Entities ex-
tracted from Wikipedia, categorized into 14
different classes, used for multi-class classifi-
cation and entity recognition.

4) News Text and Fine-grained Analysis:

• NYT, NYT-Fine, NYT-Topics and NYT-
Loc(Meng et al., 2020a): Articles from The
New York Times, used for various text analy-
sis tasks. NYT for broader classification tasks,
NYT-Fine for detailed analysis of sub-topics,
NYT-Topics for thematic categorization of
news into specific areas like politics or sports,
and NYT-Loc for geographic-focused analy-
sis.

B Details of Compared Methods

In this paper, the Compared Methods align with the
published benchmark paper(Wang et al., 2023b)
and include a comparison between the Seed and
Prompt methods.

B.1 Seed Approach
The Seed methods, except for NPPrompt, are all
based on Bert (base and large).

• LotClass(Meng et al., 2020b) expand related
words using masked language models and
matches texts by fine-tuning.

• Xclass(Wang et al., 2021) retrieves related
words by searching for words with similar rep-
resentations and matches texts with clustering-
enhanced similarity.

• ClassKG(Zhang et al., 2021) Transform the
dependency among related words into a key-
word graph annotation task.

• NPPrompt(Zhao et al., 2021) based on
Roberta, obtains related words by extracting
embedding similarity from pre-trained lan-
guage models, using them as prompts for a
generative language model to make predic-
tions, which are then aggregated for the final
match.

B.2 Prompt Approach
All prompt methods are based on GPT-2 (small and
medium).

• DC-PMI(Holtzman et al., 2022) uses empty
prompts to gauge a language model’s likeli-
hood for predicting labels, refining predictions
for each text.

• ProtoCal(Han et al., 2022b) works with un-
labeled data, obtaining predictive likelihoods
and clustering them to improve category pre-
dictions.

C Experimental Setting

The model training and evaluation is performed on
NVIDIA RTX 4090. The classifier is implemented
with ‘bert-base-uncased’ and ‘bert-large-uncased’,
which follows the setting in benchmark. The clas-
sifier is optimized with AdamW (Loshchilov and
Hutter, 2019), and the learning rate is 2e-6. The
batch size B is set to 64. The number of wordsets
mined each round T is set to 20. λmax in Eq.(6) is
set to 1. Momentum coefficient ϵ in Eq.(8) is set to
0.001. The initial value of µt and σt for labeled and
unlabeled data is set to 1

C and 1.0. The trade-off
coefficient β in Eq.(11) is set to 0.2. The parameter
Z1 to limit the size of Φc is set to 2000, and Z2 to

7177



Table 5: Dataset statistics.

Name Domain # Classes ||Unlabelled|| ||Eval|| Imbalance

IMDB Reviews/Sentiment 2 5000 5000 1.0
Yelp-2 Reviews/Sentiment 2 5600 3800 1.1
Yelp-5 Reviews/Sentiment 5 6500 5000 1.1
AGNews News/Topic 4 6000 7600 1.0
20News News/Topic 5 6254 5362 1.9
20News-Fine News/Topic 17 5589 4792 1.3
NYT-S News/Topic 9 4578 3925 17.1
NYT-S-Fine News/Topic 26 4034 3459 96.3
NYT News/Topic 5 5119 6400 30.7
NYT-Loc News/Location 10 5119 6400 17.1
DBpedia Wikipedia/Ontology 14 5600 7000 1.3

Table 6: Initial class name of each dataset.

Dataset Seed Words/Initial class name
IMDB positive; negative
Yelp-2 positive; negative
Yelp-5 poor; bad; average; good; excellent

AGNews politics; sports; business; technology
20News computer; sports; science; politics; religion

20News-Fine atheism; graphics; Microsoft; IBM; Mac; motif; autos; motorcycles; baseball;
hockey; encryption; electronics; medicine; space; Christian; guns; Arab

NYT politics; art; business; science; sport
NYT-S-Fine budget; gun; laws; gay; energy; environment; immigration; military; cosmos; insurance;

stocks; bank; abortion; music; baseball; economy; television; golf; tennis; hockey;
football; dance; movies; soccer; surveillance; basketball

NYT-S business; politics; sports; health; education; estate; arts; science; technology
NYT-Loc America; Iraq; Japan; China; Britain; Russia; Germany; Canada; France; Italy
DBpedia company; education; artist; athlete; politician; transportation;

place; nature; village; species; plant; album; movie; book

limit the output number from FP-Growth is set to
200. The wordsets change threshold ∆ is set to 0.1.
More details can refer to our code.

D Details of Compared ChatGPT

As the experiments of ChatGPT-3.5 on AG News,
DBPedia, and IMDB have already been reported
in a recent WTC work (Zhao et al., 2023b), we
directly reference its results. To be fair, we reran
our method on the test set they provided. Addi-
tionally, we have included additional experimental
results for Yelp-2 and Yelp-5, where the prompts
for ChatGPT is shown in Tab.7 and the experiments
is based on the June 2023 version of ChatGPT.

E Limitation

The running time of our method may be longer than
the seed methods, especially the mining part of fre-
quent itemsets. However, through more stringent
high-frequency filtering, the mining of frequent
itemsets can be significantly accelerated, but the
accuracy may be slightly lost. Our method requires
multiple rounds of iteration, which also means that
it will consume more time than non-iterative algo-
rithms. However, we need to state that this running
time is negligible compared to the time required
for large-scale annotation.
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Prompts for GPT-3 and ChatGPT-3.5

AG News :
[Descriptions] Definition: In this task, you are given a sentence.
Your job is to classify the following sentence into one of the four different categories.
The categories are: “politics”, “sports”, “business”, and “technology”. Input: [x]. Output:
DBPedia:
[Descriptions] Definition: In this task, you are given a sentence.
Your job is to classify the following sentence into one of the fourteen different categories.
The categories are: “company”, “school”, “artist”, “athlete”, “politics”,
“transportation”, “building”, “mountain”, “village”, “animal”, “plant”, “album”, “film”, and “book”. Input: [x]. Output:
IMDB:
[Descriptions] Definition: In this task, you are given a sentence.
Your job is to classify the following sentence into one of the two categories. The categories are: “bad" and “good". Input: [x]. Output:
Yelp-2:
[Descriptions] Definition: In this task, you are given a sentence.
Your job is to classify the following sentence into one of the two categories.
The categories are: “negative" and “positive". Input: [x]. Output:
Yelp-5:
[Descriptions] Definition: In this task, you are given a sentence.
Your job is to classify the following sentence into one of the five categories.
The categories are: “poor" , “bad", “average", “good", “excellent". Input: [x]. Output:

Table 7: Prompts for GPT-3 and ChatGPT-3.5.

Descriptions

AG News:
The politics category is related to politics, government, and law.
The sports category is related to sports, competition, and athletics.
The business category is related to business, portfolio, economics, and money.
The technology category is related to technology, software, system, and science.
DBPedia:
The company category is related to company, corporation, enterprise, brand, and business.
The school category is related to school, academy, university, and college.
The artist category is related to artist, art, painter, musician, singer, and creative.
The athlete category is related to athletes, sports, Olympic, and gym.
The politics category is related to politics, government, and law.
The transportation category is related to transportation, transport, vehicle, and traffic.
The building category is related to buildings, construction, and structure.
The mountain category is related to river, lake, bay, and mountain.
The village category is related to village, town, and rural.
The animal category is related to animal, wildlife, and nature.
The plant category is related to plant, shrub, tree, and forest.
The album category is related to album, lyrics, cd, and song.
The film category is related to film, movie, cinema, and video.
The book category is related to book, novel, and publication.
IMDB:
The bad category is related to negative and bad reviews.
The good category is related to positive and good reviews.
Yelp-2:
The negative category is related to negative and bad reviews.
The positive category is related to positive and good reviews.
Yelp-5:
The poor category is related to extremely negative and terrible reviews.
The bad category is related to negative and bad reviews.
The average category is related to moderate or average reviews.
The good category is related to positive and good reviews.
The excellent category is related to highly positive and exceptional reviews.

Table 8: Descriptions in Tab. 7
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