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Abstract

Large language models (LLMs) have revolu-
tionized numerous domains with their impres-
sive performance but still face their challenges.
A predominant issue is the propensity for these
models to generate non-existent facts, a con-
cern termed hallucination. Our research is mo-
tivated by the observation that previous instruc-
tion tuning methods force the model to com-
plete a sentence no matter whether the model
knows the knowledge or not. When the ques-
tion is out of the parametric knowledge, it will
try to make up something and fail to indicate
when it lacks knowledge. In this paper, we
present a new approach called Refusal-Aware
Instruction Tuning (R-Tuning). This approach
is formalized by first identifying the disparity
in knowledge encompassed by pre-trained pa-
rameters compared to that of instruction tuning
data. Then, we construct the refusal-aware data
based on the knowledge intersection, to tune
LLMs to refrain from responding to questions
beyond its parametric knowledge. Experimen-
tal results demonstrate R-Tuning effectively
improves a model’s ability to answer known
questions and refrain from answering unknown
questions. Furthermore, when tested on out-of-
domain datasets, the refusal ability was found
to be a meta-skill that could be generalized to
other tasks. Further analysis surprisingly finds
that learning the uncertainty results in better
calibration and an improved ability to estimate
the uncertainty than uncertainty-based testing.1

1 Introduction

Large language models (LLMs) have demonstrated
remarkable performance across numerous tasks;
however, they are also plagued by various issues,
such as the propensity of large models to fabricate
non-existent facts, a phenomenon commonly re-
ferred to as hallucination (Maynez et al., 2020a).

1Our code is available at https://github.com/
shizhediao/R-Tuning.

Parametric Knowledge

[What Model Already Knows]

Instruction Tuning Data

[What Model Might Not Know]

Intersection of 

Parametric Knowledge & Instruction Tuning Data

Figure 1: An illustration of the parametric knowledge
distribution and the instruction tuning data distribution.
Pre-training embeds a large volume of parametric knowl-
edge, while fine-tuning may involve knowledge that is
not necessarily in the parametric knowledge. We ex-
plore the benefits of differentiating instruction tuning
data based on parametric knowledge.

Towards mitigating the hallucination, current main-
stream approaches include retrieval-based meth-
ods (Peng et al., 2023; Li et al., 2023b; Luo et al.,
2023), verification-based methods (Manakul et al.,
2023; Elaraby et al., 2023; Cohen et al., 2023; Du
et al., 2023; Gou et al., 2023), and so forth.

In this paper, we first identify the cause of hallu-
cination, attributing it to the significant gap exist-
ing between the knowledge derived from human-
labeled instruction tuning datasets and the paramet-
ric knowledge of LLMs. In the process of devel-
oping a large model, previous studies (Min et al.,
2022; Wang et al., 2023; Zhou et al., 2023) demon-
strate that almost all knowledge is acquired in the
pre-training stage, while instruction tuning teaches
formatting and chain-of-thought prompting guides
knowledge elicitation. Consider Figure 1 as an
example. During pre-training, models embed a
large volume of factual knowledge, compressing
it within their parameters and the fine-tuning pro-
cess may include data that is out of the paramet-
ric knowledge. However, traditional fine-tuning
methods force the models to complete each sen-
tence. Even when faced with questions beyond
their knowledge boundary, they venture to provide
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an answer. Training a model exclusively on cor-
rect answers inadvertently teaches it to guess rather
than admit its ignorance. Consequently, if we never
train the model to articulate "I don’t know" as a
response, it remains unequipped to do so when con-
fronted with unknowns. Addressing this challenge,
we assert that enabling a model to astutely respond
based on its own knowledge limit is of paramount
importance. This motivates us to tune our model on
the intersection of parametric knowledge and the
instruction tuning data, leading to a model express-
ing its confidence value and refusing to answer
unknown questions.

In light of this, we propose a novel instruction
tuning method, Refusal-Aware Instruction Tuning
(R-Tuning). R-Tuning aims to endow the model
with refusal-aware answering ability by recogniz-
ing when they should — and shouldn’t — claim
knowledge. Specifically, R-Tuning introduces two
steps: (1) measure the knowledge gap between
parametric knowledge and the instruction tuning
data, and identify uncertain questions. By inferring
the model on the training data once and comparing
the prediction and label, the instruction tuning data
is split into uncertain data D0 and certain data D1.
(2) construct the refusal-aware data by padding the
uncertainty expression after the label words, and
then finetune the model on the refusal-aware data.

We conduct two types of experiments: single-
task and multi-task, with nine datasets. In the
single-task experiments, R-Tuning demonstrates
the ability to refuse to answer uncertain questions
and improve the accuracy of the willingly answered
questions. In the multi-task setting, our method
not only demonstrates the advantages of multi-
task learning on in-domain datasets but also ex-
hibits superior generalization performance on out-
of-domain datasets. This verifies that refusal-aware
answering is a kind of meta ability, which is not
dependent on a specific task and could benefit from
multi-task training and joint inference. With more
downstream tasks, R-Tuning could abstract and
learn such meta ability better.

In addition to the supervised method in refusal-
aware data identification, we propose an unsuper-
vised method to measure the knowledge gap (Sec-
tion 5.1) by prompting the LLMs to answer multi-
ple times for a question, and identify answers with
high consistency as certain data, while others with
low consistency as uncertain data. The experimen-
tal results surprisingly find the effectiveness of this

unsupervised method. One way to interpret our
method is that it involves learning the uncertainty
of the training data as part of instruction tuning.
Further analysis surprisingly shows that learning
uncertainty during training and then using it to fil-
ter and respond to questions yields better results
than directly applying uncertainty filtering on test
data. This finding suggests that learning uncer-
tainty improves the model’s training in both esti-
mating uncertainty and answering questions. This
finding highlights the advantages of incorporating
uncertainty learning into large model training, both
in reducing computational overhead during testing
and in improving overall model accuracy.

In summary, our contributions are:
• We investigate the knowledge gap present be-

tween the instruction tuning data and the para-
metric knowledge and attribute the hallucination
issue to forcing the model to complete answers
with traditional instruction tuning.

• To address this issue, we propose a novel in-
struction tuning approach, R-Tuning, that dis-
tinguishes instruction tuning data based on the
model’s own knowledge. R-Tuning constructs a
refusal-aware dataset and then tunes the model
to refrain from responding to questions beyond
its parametric knowledge.

• Experimental results demonstrate the effective-
ness and generalization abilities of R-Tuning.
We find that the model’s learned refusal ability
functions as a meta-skill, being task-agnostic and
enhanced through multi-task training.

2 Refusal-Aware Instruction Tuning

In this section, we first introduce the refusal-aware
instruction tuning method (R-Tuning), the core idea
of which is divided into two steps: the first step
involves identifying and recognizing the uncertain
data instances within the instruction tuning dataset,
which are beyond the parametric knowledge bound-
ary of the original model. The second step is to
construct certain and uncertain dataset. Then, we
will detail the instruction tuning and inference ex-
traction process. An illustration of R-Tuning is
shown in Figure 2.

2.1 Refusal-Aware Data Identification

The first step of R-Tuning is to measure the model’s
knowledge gap between the parametric knowl-
edge of LLMs and the instruction tuning data.
It asks for the model’s prediction when given
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Figure 2: Illustration of R-Tuning to construct refusal-aware datasets D0 and D1.

a question and applies certain metrics to deter-
mine when the model does know. Here we use
QA as an example. Given a training dataset
D = {(q1, a1), (q2, a2), ..., (qn, an)} consisting of
n question-answer pairs, we introduce a super-
vised identification strategy. We first apply the
pre-trained model M to answer all the questions in
D and split the questions into two sets based on the
comparison between the prediction and label. If the
model’s prediction matches the label, the question
is assigned to the certain set D1, and otherwise,
it belongs to the uncertain set D0. As shown in
Figure 2, in the left part, because the prediction
(Paris) matches the ground-truth label (Paris), it
belongs to certain data D1, demonstrating that the
model’s parametric knowledge possesses the capa-
bility to answer this question. On the contrary, in
the right part, the mismatch between the prediction
and the ground-truth label results in this question
being categorized into uncertain data D0. Finally,
the training dataset would be split into two sets
(i.e., D0 and D1) with the recognition of the knowl-
edge gap between parametric knowledge and the
knowledge required by the questions in the training
set. In addition to this supervised strategy requiring
ground-truth labels, we also explore an effective
unsupervised method, which will be discussed in
the analysis (Section 5.1).

2.2 Refusal-Aware Data Construction

The refusal-aware data is further constructed by
incorporating a prompt template. We introduce a
padding method, which keeps the original labels
while appending the uncertainty expression at the
end. The template is

Q : {Question}, A : {Answer}.{Prompt}. (1)

The certain dataset D1 is constructed by append-
ing "I am sure" after the template, while the un-
certain dataset D0 is constructed by appending "I

am unsure" after the template. The prompt we are
using is Are you sure you accurately answered the
question based on your internal knowledge? As
shown in Figure 2, by appending certain and un-
certain expressions, R-Tuning teaches the model
to express uncertainty toward questions. This tem-
plate provides all label knowledge to the model
while instructing them to express uncertainty at the
same time. On the contrary, we can also directly
replace the label word with uncertainty expressions.
We call this strategy as replacement method and
investigate its effectiveness in Section A.3.

2.3 Training and Inference
With the refusal-aware dataset, we then apply
the standard procedures of fine-tuning a language
model. The model takes a sequence t1, t2, . . . , tT
consisting of the questions and answers, and pre-
dicts the answer part based on each question. The
training objective is the standard cross-entropy loss
L which can be defined as:

L = − 1

T

T∑

i=1

logP (ti|t1, t2, . . . , ti−1). (2)

Here, P (ti|t1, t2, . . . , ti−1) is the probability
of the ith token ti given the preceding tokens
t1, t2, . . . , ti−1, as predicted by the language
model. Note that we calculate the loss solely for
the answer part and the uncertainty part, while ex-
cluding the loss attributed to the question part.

During the inference, we first fit the input ques-
tion into the template (1) and the model will output
its answer. Then the designed prompt template
Are you sure you accurately answered the question
based on your internal knowledge? I am will be
appended to the question and answer. Based on this
prompt, the model can output its uncertainty about
the previous context. We will use the weighted
combination of the probability of uncertainty ex-
pression and answer prediction as the confidence
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value to calculate the AP score in the evaluation
phase (Section 3.3).

3 Experimental Settings

In this section, we first provide an overview of the
benchmark datasets and the corresponding evalu-
ation settings. Then the baseline models and the
implementation details are presented in the follow-
ing subsections, respectively.

3.1 Datasets

Given the diverse data formats across tasks, we
unify the downstream data into two formats:
• Question-Answering: Given a question, the

model directly predicts its answer. We include
ParaRel (Elazar et al., 2021), HotpotQA (Yang
et al., 2018), SelfAware (Yin et al., 2023),
HaluEval (Li et al., 2023a), FalseQA (Hu et al.,
2023), and NEC (Liu et al., 2023) in our experi-
ments.

• Multiple-Choice: Given a question with several
choices, the model chooses one option. We in-
clude MMLU (Hendrycks et al., 2021), WiCE
(Kamoi et al., 2023), and FEVER (Thorne et al.,
2018) in our experiments.
More information about data processing and

evaluation is described in Appendix A.1.
We design two types of experiments:
• Single-task: The single-task experiments ver-

ify the effectiveness of learning on individual
tasks. We conduct experiments on ParaRel and
MMLU datasets, respectively. We manually split
the datasets into the training set, in-domain test
set, and out-of-domain test set. Each dataset
contains domain annotations for their questions.
Questions in the first half of the domains are
selected as in-domain while the remaining are
out-of-domain.

• Multi-task: The multi-task experiments aim to
evaluate the model’s generalization performance.
We choose five datasets - ParaRel, MMLU,
WiCE, HotpotQA, and FEVER, and mix them to
construct a new training dataset. As for testing,
we evaluate the performance on their correspond-
ing test set (in-domain) and an unseen test set
(i.e., HaluEval) (out-of-domain).

3.2 Baselines

We consider three baseline models as follows:
• Pretrain-T: Evaluate the performance of original

pre-trained checkpoints on the entire test set.

• Pretrain-W: To verify the effectiveness of will-
ingly answered questions, we evaluate the perfor-
mance of the original pre-trained checkpoints on
the test set that our fine-tuned models are willing
to answer. Intuitively, if the willingly answered
questions are within the base model’s knowledge,
this baseline should perform well.

• Vanilla: Fine-tune the model on D with all ques-
tions and ground-truth labels. This is the tradi-
tional instruction tuning method.

3.3 Evaluation
For models that could only output either the an-
swer or an unknown expression, we evaluate the
questions that our model is willing to answer. The
accuracy is calculated as follows:

accuracy =
# of correctly answered questions
# of willingly answered questions

.

(3)
For R-Tuning, because it could output both the

question’s answer and the uncertainty, we first
prompt the model to provide an answer and then
prompt it to provide its uncertainty. Then we can
evaluate the precision-recall tradeoff based on the
uncertainty and prediction performance. We in-
troduce the Average Precision (AP) score, which
measures the precision in identifying and ranking
relevant predictions. AP score originates from the
object detection field (Everingham et al., 2010) by
ranking the prediction results by confidence from
high to low and calculating the precision at each
threshold. The AP score is the average of these
precision scores, which is calculated as follows:

AP =
n−1∑

k=0

(R(k + 1)−R(k))× P (k), (4)

where n is the number of data, k is the number of
data we select for the current threshold. P and R
denote precision and recall, which are defined as

P(k) =
# of correct answers above k-threshold

# of answers above k-threshold
,

(5)

R(k) =
# of correct answers above k-threshold

# of correct answers
.

(6)
An ideal model predicts the correct answers with
high confidence and the hallucinated wrong an-
swers with relatively low confidence, leading to a
high AP score. On the other hand, the AP score is
low if the model predicts every answer with high
confidence, as the precision at every threshold will
not be high and the average will be relatively low.
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Figure 3: Single-task experiments on ParaRel and MMLU datasets with accuracy (%). R-Tuning is calculated on
the willingly answered questions. Pretrain-W is verified on these questions. Others are calculated over the entire
dataset.

Dataset Domain Models R-Tuning Vanilla

ParaRel

ID
OpenLLaMA-3B 93.23 92.89

LLaMA-7B 93.64 93.32
LLaMA-13B 94.44 94.00

OOD
OpenLLaMA-3B 69.41 68.42

LLaMA-7B 74.61 78.08
LLaMA-13B 77.30 64.12

MMLU

ID
OpenLLaMA-3B 24.96 24.19

LLaMA-7B 59.05 58.16
LLaMA-13B 68.87 51.93

OOD
OpenLLaMA-3B 24.75 26.08

LLaMA-7B 68.69 66.38
LLaMA-13B 77.41 67.38

Table 1: Single-task experiments of R-Tuning and
Vanilla on ParaRel and MMLU datasets with AP scores
(%). ID and OOD denote in-domain and out-of-domain
settings, respectively.

3.4 Implementation
We choose OpenLLaMA-3B (Geng and Liu, 2023),
LLaMA-7B, and LLaMA-13B (Touvron et al.,
2023) as the base models in our experiments. We
use LMFlow2 (Diao et al., 2023a) to conduct in-
struction tuning, setting epoch to 1, learning rate to
2e−5, and batch size to 4. All the experiments are
implemented on Nvidia A100-40GB GPUs.

4 Experimental Results

In the main experiments, we conduct single-task
experiments to verify the model’s refusal-aware
answering ability and multi-task experiments to
investigate the generalization of refusal ability.

4.1 Single-task Experiments
We first conduct single-task experiments on
ParaRel and MMLU datasets. The results are
shown in Figure 3 and Table 1. Firstly, we observe
that R-Tuning significantly outperforms other base-
lines by a large margin in terms of accuracy on the
questions it is willing to answer, compared with
others that simply answer all the questions. The

2https://github.com/OptimalScale/
LMFlow

results first demonstrate the effectiveness of the
refusal-aware answering ability. We also conclude
that R-Tuning answers more questions within its
parametric knowledge during pre-training, which is
reflected by the high accuracy of Pretrain-W (pre-
trained model evaluated on R-Tuning’s willingly
answered questions). Overall, it is observed from
Table 1 that R-Tuning outperforms Vanilla in terms
of the AP score, demonstrating the benefits of only
answering the questions that align with the model’s
parametric knowledge with high confidence. In
addition, we find that larger models achieve more
improvement compared with baselines as the gap
of the AP score becomes larger, indicating good
scalability of R-Tuning. The AP score of R-Tuning
grows steadily when the model size becomes larger,
while the AP score of Vanilla drops in ParaRel
(OOD) and MMLU (ID). This comparison shows
that Vanilla may suffer from confidence miscal-
ibration problems while R-Tuning is more well-
calibrated in terms of confidence. By combining
the prediction confidence and certainty confidence
to evaluate the output, R-Tuning is more reliable
when making predictions.

4.2 Multi-task Experiments

The results of multi-task experiments are shown in
Figure 4. Overall, R-Tuning consistently outper-
forms all baseline models in terms of the AP score
on both ID and OOD tasks, demonstrating its su-
periority by introducing the refusal-aware dataset.
A higher AP score signifies that the R-Tuning has
successfully ranked correct answers higher than
incorrect answers, demonstrating its effectiveness
in accurately identifying the desired predictions.
Especially, on the unseen dataset HaluEval-QA, R-
Tuning also achieves a higher AP score and demon-
strates its ability to express certainty to questions
from other distributions, and such ability can be
generalized well. The experiments on multi-task
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Figure 4: Multi-task experiments on the average of five in-domain (ID) datasets (ParaRel, MMLU, WiCE, HotpotQA,
and FEVER) and one out-of-domain (OOD) dataset (HaluEval-QA) with the AP curves.

datasets tell us that the refusal is a kind of meta-
skill of models and could be enhanced by several
different datasets. We provide the detailed AP
scores and curves for different datasets and model
sizes in Table 13 and Figure 8 in Appendix A.10.

In summary, R-Tuning reduces hallucinations by
disregarding inquiries outside of the model’s knowl-
edge domain. Meanwhile, R-Tuning performs well
with inquiries that are aligned with the model’s
parameterized knowledge. The better AP score
demonstrates a good trade-off between precision
and recall and the performance on multi-task exper-
iments demonstrates the generalization potential of
refusal-aware answering ability.

5 Analysis

In this section, we first introduce a variant, R-
Tuning-U, which adopts an unsupervised identi-
fication strategy for R-Tuning. Then we provide an
interpretation from the uncertainty perspective for
R-Tuning. In addition, we verify the refusal abil-
ity on unanswerable questions, which should not
receive answers from the model. More case studies
are shown in Table 9 in the Appendix for qualitative
analysis. Further analysis of the perplexity (Sec-
tion A.6) and uncertainty of the training datasets
(Section A.7) demonstrates the effectiveness of our
proposed method.

5.1 Unsupervised Identification
During the refusal-aware data identification pro-
cess, we apply a supervised way to identify un-

known questions by comparing the predictions and
labels. In this section, we introduce an unsuper-
vised identification method, R-Tuning-U, where
the refused questions are determined by the un-
certainty of the model. Specifically, R-Tuning-U
queries the model M k times and calculates the
uncertainty u across k predictions, which is calcu-
lated by the entropy based on k answers as follows:

u = −
k∑

j=1

p(aj |q) ln p(aj |q), (7)

where p(aj |q) is the frequency of a certain pre-
dicted answer aj given a question q.

Then the questions could be ranked according
to the uncertainty score u. For the 50% most un-
certain questions, we append the ground truth label
and uncertain expression (i.e., uncertain set D0),
while the remaining (i.e., certain set D1) are ap-
pended with the ground truth answers with certain
expressions. We set the temperature to 0.7 and
k = 10 in our experiments. We compare the per-
formance with the R-Tuning on the ParaRel and
MMLU datasets, and the results are shown in Ta-
ble 2. It is observed that R-Tuning-U generally
achieves a higher AP score, which reveals the fea-
sibility of constructing refusal-aware training data
by uncertainty. Comparing the output of the pre-
trained model with the ground-truth answer is not
the only way to evaluate its parametric knowledge.
Uncertainty can also be an indicator of whether the
pre-trained model is familiar with the knowledge.
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Dataset Domain Model R-Tuning R-Tuning-U Vanilla-C Vanilla-U

ParaRel

ID
OpenLLaMA-3B 93.23 93.33 88.53 76.96

LLaMA-7B 93.64 94.39 87.92 73.05
LLaMA-13B 94.44 95.39 89.40 79.68

OOD
OpenLLaMA-3B 69.41 71.98 65.54 47.81

LLaMA-7B 74.61 76.44 72.13 48.10
LLaMA-13B 77.30 80.87 69.12 50.52

MMLU

ID
OpenLLaMA-3B 24.96 24.60 24.25 21.64

LLaMA-7B 59.05 64.69 48.34 44.00
LLaMA-13B 68.87 66.00 58.69 60.17

OOD
OpenLLaMA-3B 24.75 25.52 23.05 25.26

LLaMA-7B 68.69 67.70 62.79 42.64
LLaMA-13B 77.41 72.66 70.09 64.31

Table 2: Performance comparison of R-Tuning, R-
Tuning-U, Vanilla-C, and Vanilla-U with AP scores (%)
on the ParaRel and MMLU dataset. Here Vanilla-U
denotes evaluating Vanilla-C’s answers with R-Tuning-
U’s sure confidence. ID and OOD denote in-domain
and out-of-domain, respectively. The corresponding AP
curves are shown in Figure 13.

An advantage of R-Tuning-U is that it does not
require the labels of uncertain questions.

5.2 Uncertainty Learning
Uncertainty learning improves AP score. One
perspective on interpreting our method is that R-
Tuning-U of selecting and learning through uncer-
tainty fundamentally involves learning the uncer-
tainty of the training data. A more direct baseline
is to perform vanilla fine-tuning and then use un-
certainty selection on the test dataset to respond, a
method we refer to as Vanilla-C. Vanilla-C prompts
the model to answer k times and choose the major-
ity as the answer. The uncertainty is proportional
to the distinct answers. In our experiment, we set
k = 10 for Vanilla-C and the confidence is calcu-
lated by:

Confidence =
maxni=1(ki)

k
, (8)

where n is the number of distinct answers gener-
ated, and ki is the number of occurrences of i-th
answer. We calculate the AP scores and compare
Vanilla-C with R-Tuning-U in Table 2. Surpris-
ingly, we find that learning uncertainty and then
filtering questions based on this uncertainty to pro-
vide answers yields better results than directly fil-
tering and answering questions using uncertainty
on the test dataset. In other words, differentiat-
ing instruction tuning data based on uncertainty
while learning both the correct answers and un-
certainty not only enables the learning of uncer-
tainty expressions but also, remarkably, improves
the accuracy of question-answering. This is an

unexpected but intriguing phenomenon. Learning
uncertainty from training data should not be as
accurate as using uncertainty estimations directly
from the test data. One possible explanation is
that for a Transformer model, to accurately pre-
dict the last token, the hidden states are adjusted
during training. These changes in hidden states
might help in better answering easier questions.
A potential hypothesis is this: predicting uncer-
tainty embeds information about confidence into
the hidden representation. This aids in generating
more confident hidden states when answering eas-
ier questions. This finding reveals the benefits of
learning the uncertainty of large models. It not only
avoids the extensive overhead of repeatedly calcu-
lating uncertainty during testing but also improves
training quality by learning uncertainty, thereby
enhancing the accuracy of uncertainty estimation.

Uncertainty learning improves the calibra-
tion and prediction. To verify our hypothesis,
we conduct further experiments. We first intro-
duce Vanilla-U, which generates the prediction
by Vanilla-C and expresses its confidence by R-
Tuning-U. Firstly, we find calibration of R-Tuning-
U becomes better. We consider the Expected Cal-
ibration Error (ECE) metric (Guo et al., 2017),
which measures the difference between accuracy
and confidence on given confidence intervals. From
the Table 16, it is observed that R-Tuning-U im-
proves the calibration, which potentially better in-
dicates answers and improves AP scores. More re-
sults are shown in Figures 11, 12. Secondly, from
Table 14, we observe that R-Tuning-U improves
accuracy compared with Vanilla-C. Furthermore,
we also use R-Tuning-U as a scorer to measure the
confidence of the answers from both R-Tuning-U
and Vanilla-C. The results of Table 15 demonstrate
that R-Tuning-U generally receives higher confi-
dence scores than Vanilla-C, which is consistent to
the improved accuracy of R-Tuning-U. Finally, Fig-
ures 9 and 10 show that score differences become
more salient as the models get larger. We conclude
that refusal ability is an emergent ability (Wei et al.,
2022).

5.3 Unanswerable Questions

In addition to the open-ended question-answering
dataset where all the questions are answerable, we
also test the performance of R-Tuning on several
refusal benchmarks containing unanswerable ques-
tions. These questions either contradict common
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Dataset Model R-Tuning Vanilla Pretrain-T

FalseQA
OpenLLaMA-3B 87.32 2.07 9.98

LLaMA-7B 96.62 18.35 8.92
LLaMA-13B 95.90 6.00 24.10

NEC
OpenLLaMA-3B 95.72 0.96 7.31

LLaMA-7B 99.18 20.55 2.02
LLaMA-13B 98.17 2.36 4.76

SA
OpenLLaMA-3B 90.99 5.23 18.90

LLaMA-7B 95.45 34.79 16.96
LLaMA-13B 96.61 12.21 28.00

Table 3: The refusal rate (%) of R-Tuning and other
baselines on the refusal benchmarks. SA is the unan-
swerable part of the SelfAware dataset. The refusal
rate of R-Tuning-R on the unanswerable datasets is ex-
tremely high, while the refusal rate of other fine-tuned
methods and pre-trained models is low.

sense or make up some concepts, and should not re-
ceive answers from the model. We verify R-Tuning
on such datasets, and the results are shown in Ta-
ble 3. For baseline models, we provide explicitly
in the prompt that they could refuse to answer the
questions. We observe that R-Tuning refuses nearly
all these unanswerable questions, which meet our
expectations, while other baselines answer most of
the questions even though they are told to refuse.
In conclusion, the R-Tuning possesses the ability
to refuse questions that contradict common sense
or out of their parametric knowledge.

5.4 Perplexity and Entropy

We further demonstrate the rationale of our method
by evaluating the perplexity and the entropy of cer-
tain data D1 and uncertain data D0. The results are
shown in Table 4 and Table 5 respectively. Specifi-
cally, we calculate the perplexity of each training
question using the pre-trained model to estimate its
understanding of them. The lower perplexity of D1
shows that the pre-trained model is more familiar
with them and is likely to provide correct answers,
while the high perplexity of D0 corresponds to the
hallucinations it provides, instead of the correct
answers. Besides, larger models generally have a
lower perplexity, which explains why they perform
better on various tasks.

We also leverage GPT-3.5-turbo to answer
the questions from D0 and D1, and calculate
the entropy of the solutions to each question. If
GPT-3.5-turbo provides multiple solutions to
the question, the entropy is relatively high, other-
wise it should be low. We observe that the entropy
of answers from D1 is significantly lower than the
entropy of D0, which explains that our method di-

Dataset Model D1 D0

ParaRel
OpenLLaMA-3B 57.92 63.08

LLaMA-7B 45.81 52.08
LLaMA-13B 42.79 48.75

MMLU
OpenLLaMA-3B 32.95 462.36

LLaMA-7B 22.20 115.87
LLaMA-13B 22.12 81.41

WiCE
OpenLLaMA-3B 61.28 203.43

LLaMA-7B 20.93 19.40
LLaMA-13B 17.73 19.56

HotpotQA
OpenLLaMA-3B 144.89 170.38

LLaMA-7B 49.97 60.19
LLaMA-13B 42.60 55.20

FEVER
OpenLLaMA-3B 88.38 72.11

LLaMA-7B 38.46 43.69
LLaMA-13B 39.00 44.14

Table 4: Perplexity of the training datasets. We run the
pre-trained models on the context and questions and
calculate the average perplexity.

vides the data into two folds. The uncertain data is
intrinsically more difficult than certain data. And
R-Tuning strategy on D0 and D1 teaches the model
to answer easy questions with certainty while being
conservative in answering difficult questions. More
detailed analysis of the perplexity and the entropy
are shown in Appendix A.6 and Appendix A.7

6 Related Work

In this section, we review the progress on halluci-
nations of large language models (LLMs) and the
uncertainty quantification methods.

6.1 Hallucinations of LLMs

Despite the outstanding performance of LLMs with
high fluency and coherence, they are still likely to
hallucinate unfaithful and nonfactual facts (Maynez
et al., 2020b; Li et al., 2023c). The origin of hallu-
cination is varied. The training data, model train-
ing, and model inference processes all have the po-
tential to contribute to hallucination (Zhang et al.,
2023c; Ji et al., 2023; Huang et al., 2023b). A
large amount of training data may contain misinfor-
mation and bias (Dziri et al., 2022; Penedo et al.,
2023), leading the model to imitate the falsehood
(Lin et al., 2022). Moreover, events evolve over
time (Wen et al., 2021; Reddy et al., 2023), and
outdated data used for training may contribute to
the temporal misalignment problem (Livska et al.,
2022; Luu et al., 2022). Additionally, LLMs tend to
overestimate their abilities, leading them to some-
times generate incorrect answers with high con-
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Dataset Model D1 D0

ParaRel
OpenLLaMA-3B 0.426 0.709

LLaMA-7B 0.475 0.694
LLaMA-13B 0.436 0.744

MMLU
OpenLLaMA-3B 0.347 0.389

LLaMA-7B 0.330 0.400
LLaMA-13B 0.239 0.457

WiCE
OpenLLaMA-3B 0.250 0.280

LLaMA-7B 0.254 0.270
LLaMA-13B 0.265 0.252

HotpotQA
OpenLLaMA-3B 0.534 0.747

LLaMA-7B 0.605 0.719
LLaMA-13B 0.528 0.797

FEVER
OpenLLaMA-3B 0.413 0.219

LLaMA-7B 0.279 0.286
LLaMA-13B 0.189 0.350

Table 5: Entropy of the training datasets. It is calculated
from the frequency of every predicted answer among all
predictions. A larger entropy denotes greater uncertainty
of the system.

fidence and fail to identify unknown questions
(Yin et al., 2023; Ren et al., 2023; Kadavath et al.,
2022). Besides, the alignment with human prefer-
ence could be problematic, as LLMs may generate
responses favoring the users, rather than providing
the truth (Perez et al., 2022; Radhakrishnan et al.,
2023; Wei et al., 2023b). Moreover, the generation
process, including the randomness during infer-
ence (Chuang et al., 2023), the snowballing effect
to maintain self-consistency with early mistakes
(Zhang et al., 2023a), and early local optimization
(Azaria and Mitchell, 2023), may also introduce
hallucinations.

Recently, a variety of works have been done to-
wards hallucination detection and mitigation. For
hallucination detection, Azaria and Mitchell (2023)
propose a classifier trained on the internal states
of LLMs. Lee et al. (2023) create a benchmark
for measuring the factuality of generation, using
factual and nonfactual prompts. Manakul et al.
(2023) introduce SelfCheckGPT, making use of the
consistency of multiple responses from LLM. For
hallucination control, retrieval-augmented meth-
ods (Peng et al., 2023; Xie et al., 2023; Yue et al.,
2023; Lyu et al., 2023; Asai et al., 2023) have
shown effectiveness in mitigating the hallucina-
tion. Other methods, such as knowledge-aware
fine-tuning (Li et al., 2022), corruptions denois-
ing (Chen et al., 2023), low-confidence validation
(Varshney et al., 2023), uncertainty-based response
ranking (Wan et al., 2024), question-knowledge

alignment (Zhang et al., 2023b), knowledge in-
jection and teacher-student model (Elaraby et al.,
2023), also improve the factuality of generation
from multiple perspectives. Previous studies show
the importance of the early discovery of hallucina-
tion (Zhang et al., 2023a). In addition, Huang et al.
(2023a) found that LLMs cannot rectify themselves
with their initial capabilities, displaying the impor-
tance of fine-tuning and external feedback. Our
proposed method instructs the model to be aware
of its knowledge gap between the instruction tun-
ing datasets and the parametric knowledge, so that
it possesses the refusal ability when it encounters
instructions out of its knowledge.

6.2 Uncertainty Quantification of LLMs

Uncertainty quantification is a long-standing prob-
lem in machine learning. In the deep learning era,
Guo et al. (2017) first identify the predictive confi-
dence (a.k.a, predictive probability) of deep neural
network lack of calibration in terms of the ECE
metric (Expected Calibration Error) (Naeini et al.,
2015). Chen et al. (2022) further study the inves-
tigate the calibration problem of pre-trained large
language models and observe the same miscalibra-
tion problem on large language models. Active-
Prompt (Diao et al., 2023b) introduces uncertainty
to select questions for chain-of-thought annotation
and demonstrates its effectiveness in actively and
judiciously selecting and annotating the most help-
ful exemplars for in-context learning of LLMs.
Knowledge assessment for LLMs (Dong et al.,
2023) is also relevant to our study.

7 Conclusion

In this paper, we propose a simple yet effective
method, R-Tuning, to teach LLMs to refuse un-
known questions. It identifies the difference be-
tween instruction tuning data and parametric knowl-
edge and splits the training data into certain and
uncertain parts. Then, R-Tuning constructs the
refusal-aware data by appending uncertainty ex-
pressions to the uncertain part. Empirically, R-
Tuning outperforms the traditional finetuning base-
line regarding AP score, illustrating a good trade-
off between prediction and confidence. R-Tuning
not only shows the refusal ability on in-domain
data but also demonstrates such ability could be
generalized to unseen tasks. It displays that refusal
is a fundamental ability and could be abstracted via
multi-task learning, so we call it meta-skill.
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8 Limitations

Despite that R-Tuning demonstrates remarkable
performance in selecting and rejecting questions,
there are still limitations to consider. First of all,
R-Tuning only possesses the ability to say I am
sure and I am unsure, where the confidence is bi-
nary. However, generating a quantitative value to
verbally express its confidence for questions will
be more accurate. Additionally, we only adopt
answer checking and uncertainty quantification to
evaluate whether relevant knowledge is within the
pre-trained model’s parametric knowledge. There
are other rigorous methods to evaluate, such as
comparing the instruction-tuning datasets with the
pre-training datasets. One can follow Kandpal et al.
(2023) to identify the relevant knowledge by entity
linking pre-training datasets. Due to the high com-
putational cost of the entity linking method, we
plan to explore optimization methods to improve
efficiency in future work.
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Dataset Example (Our Format) Original Size Actual Size Used

ParaRel (Elazar et al., 2021)
Question: Which country is Georgi Parvanov a citizen of?
Answer: Bulgaria

Total data: 253448
Training data: 5575
ID test data: 5584
OOD test data: 13974

MMLU (Hendrycks et al., 2021)

Question: Which of the following did the post-war welfare state of 1948 not aim to provide:
(A) free health care and education for all (B) a minimum wage
(C) full employment (D) universal welfare.

Answer: B

Total data: 14033
Training data: 2448
ID test data: 2439
OOD test data: 9155

WiCE (Kamoi et al., 2023)

Evidence: The first results of the auction for 3DO’s franchises and assets...
Claim: The rights to the M̈ight and Magicn̈ame were purchased for $1.3 million by Ubisoft.
Question: Does the evidence support the claim?

(A) supported (B) partially supported (C) not supported
Answer: A

Training data: 3470
Dev data: 949
Test data: 958

Training data: 3470
Test data: 958

HotpotQA (Yang et al., 2018)
Context: Arthur’s Magazine was an American literary periodical published in ...
Question: Which magazine was started first Arthur’s Magazine or First for Women?
Answer: Arthur’s Magazine

Training data: 99564
Dev data: 7405
Test data: 14810

Training data: 10000
Test data: 7405

FEVER (Thorne et al., 2018)

Evidence: David Bowie is the second studio album by the English musician David Bowie...
Claim: David Bowie has an album.
Question: Does the evidence support or refute the claim or not enough information?

(A) supports (B) refutes (C) not enough info
Answer: A

Training data: 145449
Dev data: 9999
Test data: 9999

Training data: 10000
Test data: 9999

SelfAware (Yin et al., 2023)

Answerable Question: What is Nigeria’s northernmost climate?
Answer: rain forest
Unanswerable Question: Often called high energy particles, what gives life to them?
Answer: None

Answerable Question: 2337
Unanswerable Question: 1032

Unanswerable: 1032

HaluEval (Li et al., 2023a)
Knowledge: Jonathan Stark (born April 3, 1971) is a former...
Question: Which tennis player won more Grand Slam titles, Henri Leconte or Jonathan Stark?
Answer: Jonathan Stark

QA-data: 10000
Dialogue: 10000
Summarization: 10000
User query:5000

QA-data: 10000

FalseQA (Hu et al., 2023)
Unanswerable Question: List the reason why mice can catch cats?
(This is a question that contradicts common sense)

Unanswerable Question: 2365 Unanswerable: 2365

NEC (Liu et al., 2024)
Unanswerable Question: How long is the typical lifespan of Leogoteo in the wild?
(There is no such creature called Leogoteo.)

Unanswerable Question: 2078 Unanswerable: 2078

Table 6: Illustration and statistics of the datasets. For ParaRel and MMLU, we manually split the datasets into
training and test sets. For WiCE, HotpotQA, and FEVER, we directly use the original training set. For SelfAware,
FalseQA, and NEC, we directly test models on their unanswerable questions.
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A Appendix

A.1 Datasets
We conduct our experiments on nine datasets,
which are described as follows.
• ParaRel (Elazar et al., 2021): a dataset of factual

knowledge with various prompts and relations
that are originally for mask prediction. To align
the dataset with the requirements of our auto-
regressive models, we first change the format
into question-answering and our models read the
questions and generate the answers. Then, du-
plicated prompts of different templates but with
the same entities are omitted for our question-
answering task. It finally comes up with 25, 133
prompt-answer pairs of 31 domains. We split
the ParaRel into two sets - the first 15 domains
as in-domain data and the last 16 domains as
out-of-domain data. We also equally split the
in-domain data into training data and test data.

• MMLU (Hendrycks et al., 2021): MMLU cov-
ers 57 tasks including mathematics, computer
science, history, law, and more, which requires
extensive world knowledge and problem-solving
ability. The dataset is of multiple-choice format,
and we can directly use it in our experiments.

• WiCE (Kamoi et al., 2023): WiCE is a natu-
ral language inference (NLI) dataset for textual
entailment. Each data sample consists of evi-
dence and a claim, and the model should decide
whether the evidence supports, partially supports,
or doesn’t support the claim. We turn the dataset
into multiple-choice questions with 3 choices for
each question.

• HotpotQA (Yang et al., 2018): HotpotQA is
a question-answering dataset that requires com-
plex reasoning among documents. We evaluate
by providing the context documents and ques-
tions to see if the model can answer them. Since
the test set of HotpotQA requires answer submis-
sion, we instead use the development set to do
the evaluation.

• FEVER (Thorne et al., 2018): FEVER is a
dataset containing claims and supporting knowl-
edge. The claims are classified as SUPPORTED,
REFUTES, or NOT ENOUGH INFO. We turn it
into a multiple-choice NLI task.

• SelfAware (Yin et al., 2023): a dataset contain-
ing both answerable questions and unanswerable
questions. We evaluate the unanswerable ques-
tions. It is expected to see our finetuned models
refusing the unanswerable questions while other

baselines do not possess such ability.
• HaluEval (Li et al., 2023a): HaluEval is a

dataset containing question-answering, dialogue,
summarization, and user-query with correct an-
swers and hallucinated answers. We only take
the question-answering part.

• FalseQA (Hu et al., 2023): FalseQA is a new
open-domain dataset with questions inconsistent
with common sense. There are no correct an-
swers to the questions.

• NEC (Liu et al., 2024): NEC is also a new open-
domain dataset with questions containing some
make-up concepts. There are also no correct
answers to the questions.
For question-answering tasks, to compare the an-

swer generated by our model with the ground-truth
answer, we examine whether the first few output
tokens contain the ground-truth answer. We don’t
adopt exact matching (EM) as the generation is not
strictly controllable. For multiple-choice questions,
we restrict the model to generate one token and
select the choice with maximum probability among
the candidate choices by argmaxx∈C logits(x),
where C is the set of candidate choices. Consid-
ering the huge size of HotpotQA and FEVER, we
randomly sample 10K training data from them, re-
spectively. More details about the original datasets
are shown in Appendix A.1 and Table 6. In Fig-
ure 6, we present the distribution of constructed
refusal-aware data D0 and D1.

Details about the original datasets are shown in
Table 6. In Figure 6, we present the distribution of
constructed refusal-aware data D0 and D1.

A.2 Implementation

We choose OpenLLaMA-3B (Geng and Liu, 2023),
LLaMA-7B, and LLaMA-13B (Touvron et al.,
2023) as the base models in our experiments. We
use LMFlow3 (Diao et al., 2023a) to conduct in-
struction tuning, setting epoch to 1, learning rate to
2e−5, and batch size to 4. All the experiments are
implemented on Nvidia A100-40GB GPUs. We
conduct experiments with a hyper-parameter sweep
consisting of learning rates in {1e−5, 2e−5, 5e−5}
and batch-size in {2, 4, 8} on the training set.

A.3 Label Replacement

In the main experiments, we adopt the padding
method for data construction. In addition to

3https://github.com/OptimalScale/
LMFlow
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Figure 5: The performance of R-Tuning-R on ParaRel and MMLU datasets. ID and OOD denote in-domain and
out-of-domain test datasets, respectively.

Dataset Model R-Tuning-R R-Tuning Vanilla Pretrain-T

FalseQA
OpenLLaMA-3B 98.31 87.32 2.07 9.98

LLaMA-7B 97.67 96.62 18.35 8.92
LLaMA-13B 99.07 95.90 6.00 24.10

NEC
OpenLLaMA-3B 99.90 95.72 0.96 7.31

LLaMA-7B 99.52 99.18 20.55 2.02
LLaMA-13B 99.90 98.17 2.36 4.76

SA
OpenLLaMA-3B 99.22 90.99 5.23 18.90

LLaMA-7B 98.55 95.45 34.79 16.96
LLaMA-13B 99.71 96.61 12.21 28.00

Table 7: The refusal rate (%) of R-Tuning and R-Tuning-
R, and other baselines on the refusal benchmarks. SA
is the unanswerable part of the SelfAware dataset. The
refusal rate of R-Tuning-R on the unanswerable datasets
is extremely high, while the refusal rate of other fine-
tuned methods and pre-trained models is low.

padding, we can directly replace the label words
with uncertainty expressions for uncertain ques-
tions and keep the original label words for certain
questions, which is called the replacement strategy,
leading to a variant R-Tuning-R. For example, the
certain part of the training questions D1 is con-
structed as follows:

Q : {Question}, A : {Answer}, (9)

while the uncertain dataset D0 is constructed as
follows:

Q : {Question}, A : {Uncertainty Expression}.
(10)

There are many different ways for the uncer-
tainty expression. To increase the diversity, we
take the 16 expressions of uncertainty text from Yin
et al. (2023). These 16 expressions are listed in the
Appendix Section A.5.

We conduct experiments with R-Tuning-R on
ParaRel and MMLU datasets by comparing it with
vanilla fine-tuning strategy and the original pre-
trained models. The results are shown in Figure
5. Firstly, on both in-domain and out-of-domain
test sets, the accuracy of R-Tuning-R is higher than
Pretrain-T, which benefits from only answering

certain questions. More detailed results with an-
swer rate are reported in Table 8, where we find
the model is able to refuse a certain amount of
questions. Then, R-Tuning-R outperforms Vanilla
with a significantly higher accuracy on its will-
ingly answered questions, which demonstrates the
effectiveness of our method. It is promising as R-
Tuning-R is trained with fewer ground-truth labels,
while Vanilla is trained on all labels of the full train-
ing data. Generally, larger models possess more
powerful refusal abilities. In Figure 5, we observe
that on the willingly answered questions, larger
models achieve a higher accuracy. In addition, the
high accuracy of Pretrain-W reveals that those se-
lected questions are within parametric knowledge
of the pre-trained model. In summary, compared
with vanilla fine-tuning, R-Tuning-R provides the
model with the refusal ability to refuse unknown
questions, which eventually improves the accuracy
and prevents them from making hallucinated an-
swers. Table 9 shows the case studies of how R-
Tuning-R works. There are significant differences
when they encounter questions out of their knowl-
edge. The Vanilla model is proactive in making up
an answer, which is a hallucination and makes no
sense. However, R-Tuning-R refuses them explic-
itly with keywords do not know, not known, and
impossible. The ability of R-Tuning-R to refuse
unknown questions results in fewer hallucinations.

Despite this refusal ability, there are two is-
sues with R-Tuning-R: (1) the replacement method
throws away valuable labels which could be lever-
aged for training. (2) R-Tuning could either only
output the answer or only output the certainty, but
cannot respond to both, leading to difficulties in
considering the precision and recall simultaneously.
To leverage all ground-truth labels during the tun-
ing process, and instruct models to predict answers
and express uncertainty at the same time, we em-
ploy the padding strategy in our main approach,
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Dataset Domain Models R-Tuning-R (%) Answer Rate (%) Vanilla (%) Pretrain-T (%) Pretrain-W (%)

ParaRel

In-Domain
OpenLLaMA-3B 82.79 44.65 60.58 36.23 71.48

LLaMA-7B 85.95 44.11 63.72 37.79 72.23
LLaMA-13B 87.06 44.00 66.53 41.53 78.51

Out-of-Domain
OpenLLaMA-3B 44.04 40.80 38.68 30.18 46.73

LLaMA-7B 69.54 28.07 43.38 34.44 63.09
LLaMA-13B 76.13 30.16 41.82 34.48 68.99

MMLU

In-Domain
OpenLLaMA-3B 21.99 5.79 21.12 21.22 18.44

LLaMA-7B 46.35 9.56 33.25 26.77 41.20
LLaMA-13B 57.47 42.52 42.97 41.41 55.54

Out-of-Domain
OpenLLaMA-3B 24.55 2.41 23.93 25.44 27.27

LLaMA-7B 55.56 12.96 38.56 31.09 44.01
LLaMA-13B 67.31 48.32 51.19 47.60 62.53

Table 8: Detailed performance of R-Tuning-R on ParaRel and MMLU dataset. The answer rate means the percentage
of willingly answered questions of R-Tuning-R.

Input Questions R-Tuning-R Vanilla Ground-Truth
What field does Lee Alvin DuBridge work in? I do not know the answer. Music. Physics.

Where was Blaine Willenborg born? It is not known. New York. Miami
Where did Hippolyte Le Bas die? It is impossible to know. Lyon Paris

(a) Examples of R-Tuning-R refusing questions that are out of its parametric knowledge. R-Tuning-R expresses its unknown
when it does not know the answer. Vanilla produces hallucinated answers when it does not know the answer.

Input Questions R-Tuning-R Vanilla Ground-truth
Where is Lion Air headquartered? Jakarta. Jakarta. Jakarta.

What does Jacobo Zabludovsky work as? journalist. journalist. journalist.
What is the native language of Joseph Conombo? French. French. French.

(b) Examples of R-Tuning-R answering questions within parametric knowledge.

Table 9: Case study of refused and willingly answered questions with R-Tuning-R and Vanilla.

where every question is appended with the ground-
truth label and the uncertainty expression, indicat-
ing whether the model is confident or not.

A.4 Case Studies of R-Tuning-R

In this section, we display the detailed statistics
in Table 8, and illustrate more case studies of R-
Tuning-R in Table 9.

A.5 Uncertainty Text

In this section, we list the 16 uncertainty expres-
sions from Yin et al. (2023):

1. The answer is unknown.

2. The answer is uncertain.

3. The answer is unclear.

4. There is no scientific evidence.

5. There is no definitive answer.

6. There is no right answer.

7. There is much debate.

8. There is no known case.

9. There is no concrete answer to this question.

10. There is no public information available.

11. It is impossible to know.

12. It is impossible to answer.

13. It is difficult to predict.

14. It is not known.

15. We do not know.

16. I’m not sure.
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Dataset Model D1 D0

ParaRel
OpenLLaMA-3B 57.92 63.08

LLaMA-7B 45.81 52.08
LLaMA-13B 42.79 48.75

MMLU
OpenLLaMA-3B 32.95 462.36

LLaMA-7B 22.20 115.87
LLaMA-13B 22.12 81.41

WiCE
OpenLLaMA-3B 61.28 203.43

LLaMA-7B 20.93 19.40
LLaMA-13B 17.73 19.56

HotpotQA
OpenLLaMA-3B 144.89 170.38

LLaMA-7B 49.97 60.19
LLaMA-13B 42.60 55.20

FEVER
OpenLLaMA-3B 88.38 72.11

LLaMA-7B 38.46 43.69
LLaMA-13B 39.00 44.14

Table 10: Perplexity of the training datasets. We run
the pre-trained models on the context and questions and
calculate the average perplexity.

A.6 Perplexity of Datasets

Perplexity measures how well the language model
predicts a given text. Lower perplexity means bet-
ter prediction and understanding of the text. Ac-
cording to the refusal-aware data identification, we
split the training data into two sets: D0 (uncertain
questions) and D1 (certain questions). To uncover
why the pre-trained model responds to them differ-
ently, we calculate the average perplexity on these
two datasets with the pre-trained models. The per-
plexity is calculated as follows:

PPL(X) = exp

{
−1

t

t∑

i=1

log pθ(xi | x<i)

}
,

(11)
where X denotes a sentence consisting of tokens
and X = (x1, x2, . . . , xt). Specifically, we cal-
culate the perplexity of the training questions to
estimate the pre-trained model’s understanding of
them. The results are shown in Table 10. We ob-
serve that D1 has a lower perplexity, demonstrating
that the pre-trained model is more familiar with the
questions and is likely to provide the correct an-
swer. For D0, its higher perplexity shows that these
questions are not familiar to the model and out of
the model’s knowledge, and this is the reason why
the model tends to hallucinate text instead of pro-
viding the correct answers. We also observe that
larger models have a lower perplexity and random-
ness on the questions, which is why larger models
generally perform better on various tasks.

By instructing our model to express uncertainty

Dataset Model D1 D0

ParaRel
OpenLLaMA-3B 0.426 0.709

LLaMA-7B 0.475 0.694
LLaMA-13B 0.436 0.744

MMLU
OpenLLaMA-3B 0.347 0.389

LLaMA-7B 0.330 0.400
LLaMA-13B 0.239 0.457

WiCE
OpenLLaMA-3B 0.250 0.280

LLaMA-7B 0.254 0.270
LLaMA-13B 0.265 0.252

HotpotQA
OpenLLaMA-3B 0.534 0.747

LLaMA-7B 0.605 0.719
LLaMA-13B 0.528 0.797

FEVER
OpenLLaMA-3B 0.413 0.219

LLaMA-7B 0.279 0.286
LLaMA-13B 0.189 0.350

Table 11: Entropy of the training datasets. It is cal-
culated from the frequency of every predicted answer
among all predictions. A larger entropy denotes greater
uncertainty of the system.

toward relatively random questions in terms of per-
plexity, the model develops a better understanding
of uncertainty and ambiguity and learns the ability
to recognize when it does not know. This abil-
ity is crucial in situations where simply providing
a definite answer may be inappropriate or even
harmful. On the other hand, since our model is
also trained with data with certain expressions, it
becomes more proficient at handling less random
questions, and answering them with confidence and
certainty. Overall, R-Tuning improves the model’s
ability to adapt to different levels of question ran-
domness.

To verify the pre-trained model is less familiar
with the uncertain questions while more confident
with certain questions, we also plot the confidence
distribution on certain questions and uncertain ques-
tions, shown in Figure 7 in Appendix A.9. It is
observed that a larger percentage of certain ques-
tions occupies the high confidence intervals, which
means when the model provides correct answers, it
generally shows larger confidence.
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A.7 Entropy of Answers

Domain Model R-Tuning-R Answer Rate Min-loss Answer Rate

ID
OpenLLaMA-3B 82.79 44.65 91.83 26.52

LLaMA-7B 85.95 44.11 85.78 41.57
LLaMA-13B 87.06 44.00 88.00 48.33

OOD
OpenLLaMA-3B 44.04 40.80 59.66 20.92

LLaMA-7B 69.54 28.07 55.52 49.15
LLaMA-13B 76.13 30.16 60.42 55.75

Table 12: Accuracy (%) and answer rate (%) of R-
Tuning-R and min-loss training on ParaRel dataset. The
loss is calculated by the first token of the ground-truth
answer. ID and OOD denote in-domain and out-of-
domain, respectively.

In addition to evaluating the difference be-
tween certain and uncertain questions with pre-
trained models, we further leverage GPT (Brown
et al., 2020) to investigate the patterns of cer-
tain and uncertain questions. Specifically, we
query gpt-3.5-turbo five times with Chain-
of-Thought prompts (Wei et al., 2023a) with a
temperature of 0.7, and calculate the entropy of
the answers toward the same question (Diao et al.,
2023b). If the model provides many different an-
swers to the same question, the entropy should be
high. Otherwise, the entropy should be low. The
results are shown in Table 11. We observe that
the average entropy of the answers on certain data
D1 is lower than the entropy of uncertain data D0

data in most cases, which illustrates that when fed
with certain questions, gpt-3.5-turbo is more
likely to generate consistent answers. It will gen-
erate hallucinated answers to uncertain questions
with much higher chances.

Therefore, we can conclude that R-Tuning di-
vides the data into two folds. The uncertain ques-
tions are generally more difficult than certain ques-
tions because gpt-3.5-turbo’s answers vary
more with the uncertain data. R-Tuning endows
the model with abilities to identify and differentiate
the difficulties of the questions. Therefore, our fine-
tuned model becomes proactive in answering easy
questions with certainty while being conservative
in answering difficult questions, which eventually
increases the precision and prevents the fine-tuned
model from making too many mistakes.

A.8 Min-Loss Training

Dataset Model R-Tuning Vanilla

ParaRel
OpenLLaMA-3B 69.79 69.62

LLaMA-7B 77.45 77.91
LLaMA-13B 77.69 72.67

MMLU
OpenLLaMA-3B 24.38 24.39

LLaMA-7B 54.19 63.88
LLaMA-13B 73.81 74.95

WiCE
OpenLLaMA-3B 56.74 61.05

LLaMA-7B 55.02 65.47
LLaMA-13B 71.12 67.17

HotpotQA
OpenLLaMA-3B 46.54 36.90

LLaMA-7B 57.57 41.92
LLaMA-13B 57.99 44.76

FEVER
OpenLLaMA-3B 94.22 85.38

LLaMA-7B 93.30 88.24
LLaMA-13B 95.23 94.99

HaluEval-QA
OpenLLaMA-3B 73.85 72.11

LLaMA-7B 77.17 76.22
LLaMA-13B 80.36 75.73

Average
OpenLLaMA-3B 61.09 58.24

LLaMA-7B 69.11 68.94
LLaMA-13B 76.03 71.71

Table 13: Multi-task experiments of R-Tuning and
Vanilla with AP scores (%). Vanilla adopts the con-
fidence of the predicted answer to rank the result, while
R-Tuning adopts the combination of the confidence of
the predicted answer and the confidence of certainty.

Compared with the append verbalizer, replace ver-
balizer (e.g., R-Tuning-R) is a clear-cut way of pro-
ducing uncertainty expressions by throwing away
valuable labels which could potentially be lever-
aged for training. In address of this dimension
of concern, we consider a modified cross entropy
learning objective that pushes up the correct an-
swer token and keeps the uncertainty expressions
as the second most probable token choice. We call
it min-loss training, which is optimized by gradi-
ent descent over the min loss between guessing the
correct answer or just uncertainty expressions. It is
formulated as follows:

min(L(predict,GT ), L(predict, IDK)), (12)

where L denotes the cross-entropy loss. To do
so, we split the training data in half and adopt
a two-stage training strategy. In the first stage,
we train our model using the original method
where the prompt template uses The answer
is {ground-truth} if the model answers cor-
rectly, otherwise The answer is unknown.
Once the model learns such a pattern after the first
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Dataset Domain Model R-Tuning-U acc. R-Tuning-U conf. Vanilla-C acc. Vanilla-C conf.

ParaRel

ID
OpenLLaMA-3B 61.57 61.50 59.81 75.01

LLaMA-7B 65.26 71.25 62.68 77.35
LLaMA-13B 70.47 77.15 65.76 78.50

OOD
OpenLLaMA-3B 38.39 43.88 37.66 61.56

LLaMA-7B 42.97 56.00 42.12 63.41
LLaMA-13B 48.40 61.25 40.77 61.20

MMLU

ID
OpenLLaMA-3B 23.25 44.33 25.54 46.23

LLaMA-7B 41.86 51.06 34.65 53.64
LLaMA-13B 41.90 53.87 39.57 58.60

OOD
OpenLLaMA-3B 25.01 41.97 23.81 44.77

LLaMA-7B 45.88 55.22 42.66 58.52
LLaMA-13B 51.74 59.45 50.38 65.53

Table 14: Performance of R-Tuning-U compared with Vanilla-C on the ParaRel and MMLU datasets. ID and OOD
denote in-domain and out-of-domain, respectively.

Dataset Domain Model R-Tuning-U Vanilla-C

ParaRel

ID
OpenLLaMA-3B 49.96 49.93

LLaMA-7B 50.02 48.80
LLaMA-13B 59.56 59.28

OOD
OpenLLaMA-3B 52.26 52.16

LLaMA-7B 49.45 48.52
LLaMA-13B 61.21 61.10

MMLU

ID
OpenLLaMA-3B 45.01 44.88

LLaMA-7B 50.97 50.95
LLaMA-13B 44.65 43.12

OOD
OpenLLaMA-3B 43.10 42.98

LLaMA-7B 58.34 58.33
LLaMA-13B 64.13 62.37

Table 15: The average sureness probability (%) of R-
Tuning-U and Vanilla-C.

training stage, we calculate the min-loss with the
equation 12. We only consider the loss of the un-
known and the ground-truth label, and we mask the
tokens before them. Since the ground-truth label
may consider more than one token, we calculate
the loss for the first token.

We evaluate the performance of min-loss strat-
egy on the ParaRel dataset, and the results are
shown in Table 12. It shows min-loss training
outperforms R-Tuning-R in small models and in-
domain settings. However, it underperforms R-
Tuning-R in out-of-domain test sets. We also no-
tice that in out-of-domain test sets, the accuracy of
the model of 3B size is nearly the same as 7B’s and
13B’s, but its answer rate is much lower. We iden-
tify such issues as a trade-off between the accuracy
and the answer rate. When the model is proactive in
answering more questions, it will inevitably make
more mistakes. As the intrinsic parametric knowl-
edge of the model is limited, there is no method to

Dataset Domain Model R-Tuning-U Vanilla-C

ParaRel

ID
OpenLLaMA-3B 0.018 0.255

LLaMA-7B 0.057 0.250
LLaMA-13B 0.064 0.228

OOD
OpenLLaMA-3B 0.054 0.291

LLaMA-7B 0.132 0.271
LLaMA-13B 0.124 0.258

MMLU

ID
OpenLLaMA-3B 0.212 0.246

LLaMA-7B 0.092 0.243
LLaMA-13B 0.120 0.239

OOD
OpenLLaMA-3B 0.172 0.258

LLaMA-7B 0.093 0.209
LLaMA-13B 0.078 0.200

Table 16: The ECE (Expected Calibration Error) of R-
Tuning-U and Vanilla-C.

fine-tune a model with both high accuracy and a
high answer rate.

A.9 Confidence Distribution of Training
Dataset

We calculate the confidence of the certain data D1

and uncertain data d0, and they are shown in Fig-
ure 7.

A.10 AP Scores of Each Dataset and Model
Size with Figures

We calculate the AP scores for each dataset with dif-
ferent model sizes in multi-task experiments. The
results are shown in Table 13 and Figure 8.
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Certain Data

Uncertain Data

Figure 6: The data distribution of the refusal-aware datasets obtained from supervised identification strategy. The
title of each sub-figure consists of the dataset name and the size of the pre-trained model used to evaluate.
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Figure 7: The confidence distribution of the training datasets on certain data and uncertain data. The title of each
sub-figure consists of the dataset name and the size of the pre-trained model used to evaluate.
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Figure 8: The AP curves on ParaRel, MMLU, WiCE, HotpotQA, FEVER, and HaluEval-QA datasets. The title of
each sub-figure consists of the dataset name and the size of the pre-trained model used to evaluate.
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Figure 9: The scatter distribution of sure probability of R-Tuning-U and Vanilla-C.

Figure 10: The distribution of sure probability of R-Tuning-U and Vanilla-C. They are both ranked by the confidence
score.
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Figure 11: The ECE (Expected Calibration Error) on ParaRel dataset of R-Tuning-U and Vanilla-C.
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Figure 12: The ECE (Expected Calibration Error) on MMLU dataset of R-Tuning-U and Vanilla-C.

7138



Figure 13: The AP curves of R-Tuning, R-Tuning-U, Vanilla-C, and Vanilla-U on ParaRel and MMLU datasets.
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