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Abstract

Large Language Models (LLMs) have shown
great potential in Natural Language Process-
ing (NLP) tasks. However, recent literature
reveals that LLMs hallucinate intermittently,
which impedes their reliability for further uti-
lization. In this paper, we propose a novel self-
detection method to detect which questions an
LLM does not know. Our proposal is empir-
ical and applicable for continually upgrading
LLMs compared with state-of-the-art methods.
Specifically, we examine the divergence of the
LLM’s behaviors on different verbalizations for
a question and examine the atypicality of the
verbalized input. We combine the two compo-
nents to identify whether the model generates a
non-factual response to the question. The above
components can be accomplished by utilizing
the LLM itself without referring to any other
external resources. We conduct comprehensive
experiments and demonstrate the effectiveness
of our method for recently released LLMs in-
volving Llama 2, Vicuna, ChatGPT, and GPT-4
across factoid question-answering, arithmetic
reasoning, and commonsense reasoning tasks.

1 Introduction

With the significant improvements in large lan-
guage models (LLMs) such as PaLM (Chowdh-
ery et al., 2022), ChatGPT (Ouyang et al., 2022),
GPT-4 (OpenAI, 2023), LLAMA 2 (Touvron et al.,
2023), and Vicuna (Chiang et al., 2023), LLMs
have been applied in various natural language
tasks. Unfortunately, LLMs still produce unex-
pected falsehoods (Bang et al., 2023; Li et al.,
2023), i.e., they are unaware of what they do
not know and generate responses indiscriminately.
For example, ChatGPT generates falsehoods for
a knowledge quiz and math problem, as shown in
Table 1. These intermittent errors can severely hin-
der the LLMs’ reliability in practice, which makes

* Co-corresponding authors.
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Figure 1: Two paradigms for detecting hallucinations.
The dashed lines denote the LLM generation process.
The solid lines denote non-factuality detection.

detecting what they do not know an important re-
search problem (Hendrycks et al., 2021; Lin et al.,
2022; Kadavath et al., 2022).

There are two main paradigms to detect non-
factuality: the calibration-based and the self-
detection methods. The first class of methods cali-
brates the model confidence to better detect false-
hoods of the generations (See Figure 1(a)). Among
them, Mielke et al. (2022) train auxiliary calibra-
tors, Lin et al. (2022) and Jiang et al. (2021) im-
prove the calibration through fine-tuning the lan-
guage model. We propose a self-detection method
that does not require further fine-tuning.

The self-detection methods directly leverage the
LLMs themselves to detect whether they halluci-
nate (See Figure 1(b)). For example, Kadavath
et al. (2022) prompt the LLMs to predict the con-
fidence score on whether their responses are true,
and Si et al. (2023) directly utilizes the token prob-
abilities of the generations as the confidence score;
Wang et al. (2023) and Manakul et al. (2023) de-
tect the falsehoods by sampling answers with a
high temperature and examining self-consistency
between them. However, the performance of these
works is limited as LLMs tend to be overconfident
about their own outputs and these work would be
less effective after the models are trained more
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Knowledge Quiz: The lyricist of Kadam Kadam Badhaye Ja Khushi ke Geet Gaye Ja
Q1: Who has written the lyrics to patriotic song kadam
kadam badhaye ja khushi ke geet gaye ja?

Q2: Who is the lyricist of the patriotic song Kadam
Kadam Badhaye Ja Khushi ke Geet Gaye Ja?

R1: The lyrics of the patriotic song Kadam Kadam Badhaye
Ja Khushi Ke Geet Gaye Ja were written by Shri Ravi
Shankar Sharma.

R2: The lyricist of the patriotic song Kadam Kadam
Badhaye Ja Khushi ke Geet Gaye Ja is Shri Pyarelal
Santoshi.

Correct Answer: Vanshidhar Shukla .

Math Problem
Q1: Tom’s restaurant gets 6 reservations a night. They
normally order 2 meals that cost $5 each and a $5 bottle
of wine. How much do they make a week if they are open
2 days a week?

Q2: Kanan’s restaurant gets 6 reservations a night. They
normally order 2 meals that cost $5 each and a $5 bottle
of wine. How much do they make a week if they are open
2 days a week?

R1: They make 6*2=12 meals a night. So they make 12*10
=120 a night. That means they make 120*2=240 a week.

R2: They make 2*6=12 meals a night. So they make 12*2=24
on meals. They also make 6*5=30 on wine. So they make
24+30=54 a night. That means they make 54*2=108 a week.

Correct Answer: 180 .

Table 1: Two examples of completely different responses for the different verbalized but semantically equivalent
questions.

aligned (OpenAI, 2023; Ouyang et al., 2022; Zhao
et al., 2023).

In this paper, we consider detecting non-
factuality as that a model does not know which
knowledge is related to the question or does not un-
derstand the queried question, outputting the non-
factual response. A model is expected to provide
correct and consistent answers regardless of the
ways the questions are verbalized. Therefore, if it
responds drastically differently to the different ver-
balizations, we consider the model does not know
the question.

Built on the above hypothesis, we propose a
novel self-detection method that includes 1) exam-
ining the divergence of the LLM’s behaviors on
different verbalized questions and 2) examining
whether the verbalization of the question is typical
in the LLM as shown in Figure 2. Specifically, for
the first component, we first diversify the queried
question to several semantically equivalent verbal-
izations. Then, we examine the divergence between
the answers corresponding to the questions. For
the second component, we use the negative log-
likelihood of the verbalized question as the indica-
tor of atypicality in the language model. Concur-
rent work (Zhang et al., 2023) has also mentioned
rephrasing the original question to alternatives and
checking the consistency of the answers with the
original answer. In contrast, we further propose to
examine the representativeness of the input for the
model and examine the divergence in the answer
distribution. Our self-detection method is applica-
ble for continually upgrading LLMs.

To verify the effectiveness of our method, we
conducted extensive experiments on GPT-4, Chat-
GPT, Vicuna, and Llama 2 across three types of

tasks: factoid question answering, commonsense
reasoning, and arithmetic reasoning tasks. The
experimental results demonstrate the superior per-
formance of our self-detection method.

In summary, our contributions are as follows:

• We show existing LLMs intermittently retain
the verbalization-sensitive problem, generat-
ing drastically contradicting responses to the
questions with the same semantics but verbal-
ized differently.

• We introduce a self-detection suit that relies
solely on an LLM itself, enabling a light de-
tection of whether an LLM is unknown for a
question.

• We prob what an LLM knows and does not
know and show a correlation between the un-
known to the popularity, the reasoning steps,
and the formulations.

2 Related Work

Model Calibration Calibration is a well-studied
topic in traditional neural networks (Hendrycks and
Gimpel, 2017; Guo et al., 2017; Pereyra et al., 2017;
Qin et al., 2021), aiming to provide a confidence
score that aligns well with the true correctness like-
lihood. Jagannatha and Yu (2020), Jiang et al.
(2021) and Kadavath et al. (2022) show BERT (De-
vlin et al., 2019), DistilBERT (Sanh et al., 2019),
T5 (Raffel et al., 2020), BART (Lewis et al., 2020),
GPT-2 (Radford et al., 2019), GPT-3.5 (Ouyang
et al., 2022) are not well-calibrated on the language
tasks.

Post-hoc methods like temperature scaling and
feature-based fitting on a development set are
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widely used (Guo et al., 2017; Desai and Durrett,
2020; Hendrycks et al., 2019; Jiang et al., 2021),
which are straightforward to implement. Boot-
strapping and ensembling methods (Osband et al.,
2016; Lakshminarayanan et al., 2017; Sun et al.,
2022; Radford et al., 2019) are explored for the
traditional DNN models. Li et al. (2022); Ye and
Durrett (2022); Dong et al. (2022); Yuksekgonul
et al. (2023) fine-tune and optimize the calibra-
tion for BERT, RoBERTa, T5 and Alpaca respec-
tively. Mielke et al. (2022) and Lin et al. (2022)
fine-tune the BlenderBot (Roller et al., 2020) and
GPT-3 (Brown et al., 2020) separately for calibra-
tion and express the models’ uncertainty in a verbal-
ized statement. The calibration tuned for specific
tasks makes it challenging to generalize on out-of-
distribution data (Guo et al., 2017).

Hallucination Detection LLMs such as Chat-
GPT (Ouyang et al., 2022), GPT-4 (OpenAI, 2023),
Vicuna (Chiang et al., 2023), Llama 2 (Touvron
et al., 2023) and Claude (Anthropic, 2023) have
obtained remarkable performance on various lan-
guage tasks (Bang et al., 2023; Rangapur and Wang,
2023). However, recent work (Mallen et al., 2023;
Bang et al., 2023; Li et al., 2023; Yin et al., 2023)
show that LLMs may produce hallucinated con-
tents, i.e., non-factual responses. The importance
of the hallucination problem has been highlighted
by several work (Lin et al., 2022; Ji et al., 2023) as
it hinders the reliability of the LLMs.

Kadavath et al. (2022) and Agrawal et al. (2023)
use LLMs to evaluate the sampled answers but can
not evaluate their self-generated answers due to
overconfidence. Si et al. (2023) and Manakul et al.
(2023) utilize their confidence scores like token
probability to indicate the confidence of their out-
put. Recent work (Wang et al., 2023; Si et al., 2023;
Mündler et al., 2023; Kuhn et al., 2023) examines
the self-consistency score among the randomly
sampled answers which are generated through a
higher temperature. Both the confidence score of
the model output and sample-based score highly
rely on the current model training, which means
the methods would not be that effective after the
models are trained to be more aligned.

Xiong et al. (2024) combine the LLMs verbal-
ized statement, self-consistency of the randomly
sampled answers, and the consistency between the
induced answers. This work proposes to add ad-
ditional instruction to the prompt for generating
induced answers. Concurrent work (Zhang et al.,

2023; Cohen et al., 2023) utilizes several verifier
LLMs to cross-check whether a language model
generates falsehoods. Zhang et al. (2023) also
rephrases the original question to alternative inputs
and checks the consistency of the answers with
the original answer as the confidence score. We
propose a unified method that examines the diver-
gence of the LLMs’ behaviors across the diversified
questions besides the consistency pair and the atyp-
icality of the verbalized input in the LLMs. Our
proposal is self-detection without referring to any
other LLMs or external resources.

3 Inconsistency and Atypicality in LLMs

We attribute the non-factuality of an LLM to the
generative characteristics which sample the most
possible tokens sequentially. It means even if the
LLM does not know the exact knowledge related
to the question or even does not understand the
question (understand the instruction), it still gen-
erates plausible responses as observed in previous
work (Cao et al., 2021; Zhuo et al., 2023).

Consequently, if an LLM returns contradicting
responses to the semantically equivalent questions,
the LLM does not know the knowledge for the
question. Besides, if the textual verbalization of
a question is not representative in the LLM, i.e.,
atypical, it would be hard to understand resulting in
a lower-quality response (Yuksekgonul et al., 2023).
Two examples of ChatGPT are shown in Table 1,
where the Q1 and Q2 describe the same question
with different verbalizations, but their answers are
completely different.

So, we 1) examine the divergence between the
responses (R = {r1, ..., rn}) to a question set
(Q = {q1, ..., qn}), where any two questions qi
and qj are semantically equivalent; 2) then examine
whether the verbalized question q is representative
in the LLM using the atypicality A(q) of the input.

4 Self-Detecting What LLMs Do Not
Know

In this section, we introduce our framework
including consistency-based detection 4.1 and
verbalization-based detection 4.2 as shown in Fig-
ure 2.

4.1 Consistence-based Detection

Given a question, we first diversify the original
question to several questions (Section 4.1.1). Then,
we examine the consistency among the generated
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Figure 2: The framework of self-detecting what language models do not know.

responses corresponding to the diversified ques-
tions (Section 4.1.2).

4.1.1 Diversifying Question Verbalizations
We diversify question q to several textual verbal-
izations Q(q) = {q1, ..., qn} that express the same
meaning.

Model-based Generation For those open QA
questions, we exploit a LLMs itself (eg., Chat-
GPT, Vicuna) to generate paraphrased questions
through the prompt: Given the following
question [QUESTION], paraphrase it to
have different words and expressions but
is semantically equivalent. The unbroken
instruction for the task is shown in Table 8 in Ap-
pendix A.1.

After obtaining the paraphrased questions, we
filter out the unsatisfied ones by prompting the
language model to detect whether two questions
are semantically equivalent and the instruction is
shown in Table 10.

Rule-based Generation For commonsense rea-
soning and arithmetic reasoning questions, we use
expert-defined rules for diversification, as those
questions are sensitive to numerical numbers, mod-
ifiers, and logical relationships. We exchange the
order of choices provided for the question to obtain
n paraphrased questions for commonsense reason-
ing. We substitute the person names of a question
with new names to obtain n paraphrased questions
for arithmetic reasoning problems, as the second
example in Table 1.

4.1.2 Calculating Consistency Score
We examine the consistency among the generated
responses R(q) = {r1, ..., rn} according to the
diversified questions Q(q) = {q1, ..., qn}. For gen-
eration, we employ the LLM using the greedy de-
coding strategy to avoid unexpected randomness of
the generative model as much as possible.

Consistency Determination Firstly, we examine
whether any two answers are consistent I(ri, rj) ∈
{0, 1}. For these answers with fixed formats like
multiple-choice answers, we extract the final an-
swer using regular expressions and check whether
the final answer exactly matches (EM) the other
one. For these free-form answers, we use the LLM
itself to handle the inconsistency detection by ask-
ing whether the two answers are the same or contra-
dicting, as shown below. The I(ri, rj) is inferred
from the generated contents using keywords "Con-
tradicted" or "Same".

Determine whether the answer ’A1’ is
’Contradicted’ or ’Same’ with the answer ’A2’
for the question ’Q’. You need to check whether
the two answers exactly describe the same thing
such as the same entity, digit, or arithmetical
results. If the two answers are the same, give
"Same", otherwise give "Contradicted" as the
result.

Table 2: The instruction for determining whether two
answers are consistent.

This task is a strength of the latest LLMs even
in a zero-shot measure as it demands basic logical
reasoning abilities (Qin et al., 2023; Liu et al., 2023;
Zhong et al., 2023) and we conduct the human
evaluation for this component at the experiments.

Consistency Calculation A common way of cal-
culating the consistency score is:

Consistency(R(q)) =
1

n− 1

∑

ri,ri ̸=r

I(ri, r)

(1)
where r is the response for the original question q.

We further compute the divergency of the re-
sponse distribution to characterize the uncertainty
about the question. Based on consistency, we group
the responses into several clusters and obtain a
cluster distribution Ω = {ω1, ..., ωk} for the n re-
sponses. Specifically, we perform the following
clustering algorithm 1:
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Algorithm 1 Clustering Answers

1: Input: R(q), {I(ri, rj)}
2: Output: Ω = {ω1, ..., ωk}
3: Initialization: ω1 = {ro}, where ro is ran-

domly sampled from R(q)
4: for all rj ∈ R(q), rj ̸= ro do
5: Clustered = False
6: for all ωl ∈ Ω do
7: Randomly draw a response ri from ωl

8: if I(rj , ri) == 1 then
9: ωl ← ωl + ri, Clustered = True

10: Break
11: end if
12: end for
13: if Clustered == False then
14: ωnew = {rj},Ω← Ω+ ωnew

15: end if
16: end for

After clustering, we calculate the entropy of the
answer distribution as another consistency score:

Entropy(R(q)) =
∑

l

N(ωl)

n
log

N(ωl)

n
(2)

where N(ωl) is the number of responses in the clus-
ter ωl. The entropy measures the degree of diver-
gence between the responses to the same question.
A higher entropy indicates greater randomness in
the generations. It corresponds to a lower probabil-
ity of providing correct answers for the question,
which suggests the LLM is less likely to know the
question.

4.2 Verbalization-based Detection
We then compute the atypicality of the input. In-
spired by (Yuksekgonul et al., 2023), current LLMs
are autoregressive models that compute a marginal
distribution P (x) as its confidence score. We com-
pute the negative log-likelihood of the verbalized
input as the indicator of the atypicality:

A(q) = − logP (q) = −
T∑

t

logP (xt|X<t) (3)

where xt and X<t indicate a token and a token
set in the question q. We add a normalized score
A(q)/N(q) in this component, where N(q) is the
number of tokens in question q. We use A(q) along
with its normalized version as the atypicality of
the input to quantify whether the verbalized input
is representative in the language model. A higher

value of A(q) would indicate that the verbalization
is more atypical for the language model.

Finally, we combine the two components (de-
tailed in Section 5.1) to predict the final confidence
score that the LLM does not know the question.

5 Experiments

5.1 Experimental Settings
Datasets We evaluate the effectiveness of our
self-detection on factoid question answering, arith-
metic reasoning, and commonsense reasoning
tasks. For factoid question answering, we use
FaVIQ (Park et al., 2022) and ComQA (Abuja-
bal et al., 2019) as our benchmark dataset. For
arithmetic reasoning, we use GSM-8K (Cobbe
et al., 2021) and SVAMP (Patel et al., 2021).
For commonsense reasoning, we use ARC-
Challenge (Clark et al., 2018) and Common-
senseQA (Talmor et al., 2019). For FaVIQ, we
randomly split the a-set into train, dev and test
sets, and samples 500, 500, and 200 instances re-
spectively. For other datasets, we use the built-in
splits and sample the same number of instances for
training, validating and testing.

Models We self-detect the SOTA LLMs includ-
ing ChatGPT (gpt-3.5-turbo), GPT-4, Vicuna-13B
and Llama2-13B (Llama2-13B-chat). For GPT-
series models, we request the openAI APIs1 to ob-
tain the responses. We deploy the models Vicuna
and Llama 2 ourselves each using two A100 40G
GPUs.

Evaluation Metrics We report PR AUC to mea-
sure whether our predicting score correlates well
with a nonfactual response. For each question in
the datasets, we have a golden answer. For factoid
question answering tasks, we prompt GPT-4 to ver-
ify the correctness of the response by comparing
it with the golden answer similar to what we de-
scribed before. For arithmetic and commonsense
reasoning questions, we check whether the final
answer exactly matches the golden answer, while
the final answer is extracted using regular expres-
sions. If the extraction fails, we prompt GPT-4 to
assess whether the answer is correct as we did in
the factoid question answering tasks.

Baselines We compare our self-detection with
recent SOTA methods including: 1). Token-
level probability (TokenProbs for short), proposed

1https://platform.openai.com/docs/
api-reference
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ARC CommonsenseQA GSM-8K SVAMP FaVIQ ComQA

ChatGPT
Random 10.78 22.49 11.77 17.94 45.96 27.05
ConsistAnswers 14.24 25.96 52.71 30.50 57.09 31.76
SelfCheckGPT 23.60 39.38 21.14 25.68 52.26 39.56
SelfDetection (w/o Atypicality) 40.86 40.23 56.29 28.18 59.65 42.86

GPT-4
Random 6.29 9.71 6.91 7.13 37.67 23.02
ConsistAnswers 27.44 35.47 22.39 25.99 51.30 37.34
SelfCheckGPT 21.15 39.26 12.99 22.87 46.66 46.31
SelfDetection (w/o Atypicality) 36.45 42.71 36.83 24.78 56.26 58.95

Vicuna-13B
Random 35.45 51.15 35.94 54.92 31.56 35.32
TokenProbs 40.66 52.39 39.03 60.00 34.39 59.18
Perplexity 41.27 52.01 37.63 61.60 36.43 59.58
ConsistAnswers 42.69 54.13 43.97 63.28 24.44 50.84
SelfCheckGPT 40.43 54.52 36.49 60.35 18.81 26.52
SelfDetection 54.55 62.93 53.31 71.19 39.45 66.97
SelfDetection (w/o Atypicality) 48.23 59.76 43.24 67.85 30.45 60.93
SelfDetection (w/o Consistency) 48.76 55.37 42.83 60.73 31.95 50.29

Llama2-13B
Random 64.27 58.93 34.25 57.43 31.44 37.27
TokenProbs 64.10 62.92 35.12 55.73 33.21 43.84
Perplexity 64.08 62.88 35.18 55.87 33.53 44.70
ConsistAnswers 71.17 61.79 47.43 63.84 59.16 65.34
SelfCheckGPT 69.59 60.95 33.77 59.79 40.69 41.23
SelfDetection 77.73 71.95 50.38 70.33 39.83 52.36
SelfDetection (w/o Atypicality) 65.88 65.13 40.80 61.34 41.42 52.42
SelfDetection (w/o Consistency) 70.90 64.00 38.19 62.08 34.19 40.26

Table 3: The PR-AUC of different methods for ChatGPT (gpt3.5-turbo), GPT-4, Vicuna-13B and Llama2-13B on 6
representative datasets of commonsense reasoning, arithmetic reasoning, and question answering tasks. The best
results are shown in bold.

in (Manakul et al., 2023), measures the response’s
likelihood and the average of the token probabili-
ties is used as the confidence score; 2). Perplexity,
the reciprocal of the (normalized) language model
probability, is used to indicate the uncertainty (Si
et al., 2023); 3). Self-consistency of answers (Con-
sistAnswers for short) is calculated as the consis-
tency of the sampled answers while the answers are
sampled using a high-temperature value (0.7) lead-
ing to 10 different predictions (Si et al., 2023); 4).
SelfCheckGPT (Manakul et al., 2023) combines
the averages of the main response’s BERTScore
with the most similar sentence of each drawn sam-
ple and the token-level probability.

Implementation Details For paraphrasing, we
set a high temperature 1.0 to obtain 10 re-phrasings
for each question. We incorporate the 10 re-
phrasings for each question and expand the orig-
inal training sets and validation sets to 10 times
larger. To generate the corresponding answers,
we use the default template of each model and
employ greedy decoding setting temperature 0.0
to avoid unexpected randomness. This decoding
strategy still fits for filtering wrong paraphrases

and determining consistency. We employ an XG-
Boost to fit the four features (Consistency(R(q)),
Entropy(R(q)), A(q) and its normalized version
A(q)/N(q)) in the expanded training sets and
choose hyperparameters from the expanded dev
sets. The implementation codes are accessible at
this URL2. We report the performance of the six
original test sets.

5.2 Overall Performance

In Table 3, we report the overall performance of
six methods on ChatGPT, GPT-4, Vicuna-13B, and
Llama2-13B across six datasets. Since we can-
not obtain the token probabilities for ChatGPT and
GPT4, we omit perplexity and token probability
methods and only report the performance of Self-
Detection without atypicality. The random method
assigns a score between 0 and 1 randomly denot-
ing whether the generation is nonfactual serving as
the lowest baseline for comparison. The PR-AUC
values across different models are not comparable.
This is because the ground-truth labels of the four
models, whether the models know the answer to

2https://github.com/yukunZhao/Self-DETECTION
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a question, are not the same as we report the un-
known ratios of each model in Appendix A.2. We
compare different methods within the same model.

We see that compared with recent methods, our
self-detection method mostly achieves the best per-
formance on the six data sets, validating the effec-
tiveness of our method on different LLMs. Specif-
ically, self-detection shows significant improve-
ments for the commonsense reasoning task on ARC
and CommonsenseQA, compared to the previous
baselines. In math problems, GSM8k and SVAMP,
the self-detection method demonstrates mostly opti-
mal performance, and the consistAnswers serve as
a strong baseline. For the two QA datasets FAVIQ
and ComQA, the self-detection method performs
the best except on Llama 2, and the consistAnswers
method serves as a strong baseline.

Overall, our self-detection achieves the best per-
formance because we capture the essence of identi-
fying what a language model knows. If a question
is atypical or the answers for a question are unsta-
ble, the probability of its response being coinciden-
tally correct aligns with the consistency level of its
responses and its atypicality.

5.3 Ablation Study

We see the performance of SelfDetection drops
when we remove atypicality or consistency indicat-
ing the effectiveness of each component in Table 3.
We also see the performance drops greater when we
remove consistency compared with atypicality in
most datasets, which reveals that the divergence be-
tween the answers for diversified questions is more
crucial for the SelfDetection method. Additionally,
we see the performance falls behind self-detection
in most cases when we combine ConsistAns with
atypicality in Table 12 in Appendix A.3, which
again verifies the benefits of using verbalizations.

We conduct a simple linear combination of the
two components and see the performance is com-
parable with the XGBoost fitted one in Table 13
in Appendix A.3. The way of combinations of the
components is not vital in our method.

Besides, we see the performance is continuously
improved when combining our components with
the previously proposed tokenProbs, perplexity,
consistAnswers, and SelfCheckGPT as shown in
Figure 3. We do not report the performance of all
combinations of these components as this is not the
focus of this paper.

ARC CSQA
GSM-8K

SVAMP
FaVIQ

ComQA

0.4

0.6

0.8

1.0
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(a) Comparison on Vicuna-13B
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ComQA

0.4
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(b) Comparison on Llama2-13B

Figure 3: The PR AUC when combining our method
and previous proposed TokenProbs (T), Perplexity (P),
ConsistAnswers (C), and SelfCheckGPT (S).

Question Type Google Bing

Unknown 7,497k 1,255k
Known 10,929k 2,647k

Table 4: The number of search results for unknown and
known questions.

5.4 Unknown Questions Study

We analyze the unknown and known questions of
ChatGPT on question answering, arithmetic reason-
ing, and commonsense reasoning tasks across the
six datasets. The known and unknown questions
are determined based on the golden correctness
label.

Knowledge Popularity We find that the LLM is
prone to be ignorant of the atypical knowledge for
openQA tasks. For example, when asked about the
lyric writer of a less popular song, the model may
produce different answers for differently verbalized
questions as shown in Table 1. Besides, the most
frequent answer is not always the correct one. We
use the number of returned search results of Google
and Bing as an indicator of the popularity of the
knowledge for the question. In Table 4, we see the
number of search results for unknown questions
is significantly lower than for known questions.
This suggests that the LLM has relatively poorer
memorization of unpopular knowledge.

Reasoning Steps For arithmetic reasoning and
commonsense reasoning questions, if the solution
requires more reasoning steps, or contains different
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Tom’s restaurant gets 6 reservations a night.
They normally order 2 meals that cost $5 each
and a $5 bottle of wine. How much do they make
a week if they are open 2 days a week?

A family wants to adopt for enviro-ethical
reasons, what did they abhor?" (A) abandon;
(B) foster child; (C) orphan; (D) biological
child; (E) give away

Table 5: Two failed questions for ChatGPT that require
longer reasoning steps.

Question Type Vicuna-13B Llama2-13B

Unknown 228.4 202.4
Known 204.0 185.1

Table 6: The negative log-likelihoods for unknown and
known questions.

arithmetic operations simultaneously, the model
tends to confuse the order of operations. This leads
to incorrect answers. As shown in the first example
in Table 5, the LLM needs to calculate the cost of
a reservation first, which includes 2 meals with $5
and a bottle of wine with $5. Then calculate the
cost of a night and a week.

For commonsense reasoning tasks, if the so-
lution requires two or more reasoning steps, the
model is more likely to make mistakes. As shown
in the second example in Table 5, the model needs
to reason the subject being concentrated on "adop-
tion" first, and then "enviro-ethical reasons".

Distracting Formulations When Distracting for-
mulations exist, the model is prone to generate
unexpected errors. We use "distracting" instead of
"adversarial" to illustrate that the formulations are
not crafted but are built-in.

nell collects cards. she had 239 baseball
cards and 38 10 cards. she gave some of her
cards to jeff and now has 376 10 cards and 111
baseball cards left. how many more 10 cards
than baseball cards does nell have?

The performer was ready to put on a show and
stepped onto the launch platform, what was
his job? (A) ocean; (B) battleship; (C) cape
canaveral florida; (D) trapeze; (E) nasa

Table 7: Two questions with distracting formulations.

As two examples shown in Table 7, the model
should calculate the number of baseball cards that
Neil has more than 10 cards, instead of being dis-
tracted by calculating how many cards Jeff has. The
presence of "Cape Canaveral Florida" is a distrac-
tor compared to "trapeze" as the question mentions
"launch platform".

We report the negative log-likelihoods averaged
across the six datasets of the known and unknown

10 20 30
The number of diversified questions

0.3

0.4

0.5

0.6

0.7

0.8

PR
 A

UC

GSM-8K
CommonsenseQA
FaVIQ

Figure 4: The performance of different numbers of
diversified questions for the self-detection.

questions as the indicator of the atypical input in
Table 6. We show that the unknown questions cor-
relate with a higher score, i.e., higher atypicality.

5.5 Impact of Diversified Questions

We examine whether the number of paraphrased
questions affects self-detection performance. Due
to time and cost constraints, we only report the
performance for ChatGPT on three representative
datasets (FaVIQ, CommonsenseQA, and GSM8K)
corresponding to the three tasks. We report the per-
formance when the number of paraphrased ques-
tions is set to 10, 20, and 30. We observe that
as the number of paraphrased questions increases,
there is a slight improvement, as shown in Figure 4.
Our analysis reveals that some unknown questions
may be answered coincidentally correctly when
the number of questions is small. This inconsis-
tency can be detected as the number of paraphrased
questions increases. Additionally, for questions
where the model is confident, the model continues
to answer consistently, even with more questions.
The two phenomena explain the improvement with
more questions.

Finally, we conduct human evaluations on each
sub-step of our self-detection in Appendix A.4 and
report the costs when we call the OpenAI APIs in
Appendix A.5.

6 Conclusion

In this paper, we propose a simple yet effective
method to self-detect whether an LLM generates
non-factual responses, without referring to any
other external resources. We conducted extensive
experiments on four recent LLMs– ChatGPT, GPT-
4, Vicuna, and Llama 2 on three different types
of tasks and demonstrated the effectiveness of our
method and each two components. The two pro-
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posed components along with the existing methods
can be combined for further utilization. Further-
more, we explore the question types that LLMs
may struggle with, like low popularity and distract-
ing formulations. Our method is applicable for con-
tinually upgrading LLMs. It can assist the LLMs
to detect and improve their specific weaknesses,
improving their reliability in the future.

Limitations

While our method is effective, it still has several
limitations. Our self-detection method utilizes a
model itself to diversify the verbalizations and thus
the diversity is constrained by the LLM’s abilities.
In the future, we plan to collect more end-user ques-
tions from conversational agents or search engines
to diversify the original questions to capture the
built-in ambiguity of the questions. The ambigu-
ity helps to further detect certain vulnerabilities of
the model. Besides, we detect the model’s non-
factuality through the divergence of the generated
answers. It is unable to detect the cases where
the model generates consistently but incorrectly,
resulting the false negatives. Utilizing additional
verifier LLMs or incorporating external knowledge
for cross-checking is prevalent and we believe these
would help to improve the detection performance.
As this is not the focus of our paper, we omit the
combinations with them.
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A Appendix

A.1 Prompts
We show the instruction to diversify the question
verbalizations in Table 8. We recently optimized
the instruction for the diversifying task by asking
the model to provide 10 rephrased questions once.
It helps to decrease the number of generations for
the re-phrased questions to 1. The prompt is shown
in Table 9 and we will report the performance with
this new prompt in future work.

Given a question, paraphrase it to have
different words and expressions but have the
same meaning as the original question. Please
note that you should not answer the question,
but rather provide a re-phrased question.

Table 8: The instruction for the diversifying task.

Paraphrase the input question to have different
words and expressions but have the same meaning
as the original question. Output the various
paraphrases separated by ’<br>’. Please note
that you should not answer the question, but
rather paraphrase it.

Table 9: The new instruction for diversifying.

The instruction for detecting wrong paraphrases
of the question is in Table 10.

Determine whether the paraphrased question
describes the same thing as the original
question, and give "Contradicted" if they are
not the same otherwise give "Same" as the
result.

Table 10: The instruction for detecting wrong para-
phrases.

A.2 Evaluation of the Upgrading LLMs
We report the ratios of unknown questions for the
continually upgrading models across the openQA,
commonsense reasoning, and arithmetic reasoning
tasks, where the unknown and known questions are
determined by the golden correctness labels. As
shown in Table 11. We see that GPT-4 performs
the best and ChatGPT is weaker. Vicuna-13B and
Lllam2-13B perform closely and both of them are
weaker than the GPT series in terms of all tasks.

A.3 Additional Experiments
Ablation on Diversifying Verbalizations We
also report the performance when we combine

Dataset ChatGPT GPT4 Vicuna Llama 2

ARC 0.10 0.05 0.57 0.36
CSQA 0.19 0.13 0.47 0.34
GSM8k 0.11 0.05 0.64 0.65
SVAMP 0.15 0.07 0.44 0.43
FaVIQ 0.43 0.32 0.67 0.67
ComQA 0.30 0.27 0.44 0.42

Table 11: Comparison of the ratios of unknown ques-
tions for different LLMs. CSQA is commonsenseQA
for short.

ConsistAns (divergence of randomly sampled an-
swers without using diversifying verbalizations)
with Atypicality in Table 12. It falls behind our
SelfDetection in most datasets, which again reveals
the necessity of incorporating verbalizations for the
detection task.

Linear Combination of Our Components In
this paper, our method contains two components
(using consistency, entropy, atypicality, and its nor-
malized version specifically). We conduct a simple
linear combination where each feature is normal-
ized to [0, 1] and the weights are all set to 1. The
performance is shown in Table 13. We see the
performance is close to the fitted version using XG-
Boost.

A.4 Component Evaluation

We analyze the precision of each component in our
framework. For the first paraphrase module, we ran-
domly sampled 100 paraphrases generated from the
four LLMs. Then we manually label whether the
rephrased versions describe the same thing as the
original questions. We report the human-labeled
agreement ratio upon the 100 instances as the para-
phrase precision.

The precision for the commonsense reasoning
tasks is 100% as we only exchange the options as
the paraphrased version. In arithmetic reasoning
tasks, the precision is 99% as we only exchange the
subjects of the question for a paraphrased version,
with the remaining 1% errors due to the conflicts
between animal names and human names. For
openQA questions, the precisions for ChatGPT,
GPT-4, Vicuna-13B, and Llama2-13B are 95%,
95%, 93%, and 93% respectively.

Then, we evaluate the answer clustering perfor-
mance directly and omit evaluating the consistency
detection performance, as we group the answers
solely based on whether the two answers are con-
sistent. The precision is measured by calculat-
ing the proportion of answer-pairs in the intersec-
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ARC CommonsenseQA GSM-8K SVAMP FaVIQ ComQA

Vicuna-13B
SelfDetection 54.55 62.93 53.31 71.19 39.45 66.97
ConsistAns + Atypicality 51.32 58.66 53.12 67.43 37.33 60.04

Llama2-13B
SelfDetection 77.73 71.95 50.38 70.33 39.83 52.36
ConsistAns + Atypicality 78.22 68.61 51.92 68.90 40.24 54.11

Table 12: The PR-AUC of SelfDetection (Consistency + Atypicality) and ConsistAns + Atypicality on Vicuna-13B
and Llama2-13B.

ARC CommonsenseQA GSM-8K SVAMP FaVIQ ComQA

Vicuna-13B
SelfDetection 54.55 62.93 53.31 71.19 39.45 66.97
SelfDetection (LC) 53.16 59.37 51.34 68.15 37.65 61.60

Llama2-13B
SelfDetection 77.73 71.95 50.38 70.33 39.83 52.36
SelfDetection (LC) 72.51 70.21 49.38 68.39 37.84 52.02

Table 13: The PR-AUC of SelfDetection (fitting using XGBoost on dev set) and SelfDetection (LC) (LC is the
linear combination for short).

Methods QA CSQA Arith.

ChatGPT (gpt-3.5-turbo)
TP & PRL 0.00008 0.0002 0.00006
SCGPT & CA 0.002 0.004 0.0006
SelfDetect 0.004 0.004 0.0006

GPT-4
TP & PRL 0.0024 0.0068 0.0014
SCGPT & CA 0.046 0.105 0.014
SelfDetect 0.092 0.106 0.014

Table 14: The costs per question for the TokenProbs
(TP), Perplexity(PRL), ConsistAnswers (CA), Self-
CheckGPT (SCGPT) and SelfDetection methods on
OpenQA (QA), CommonsenseQA (CSQA) and arith-
metical reasoning (Arith.) tasks.

tion correctly assigned between the output cluster
Ω = {ω1, . . . , ωk} and the ground-truth cluster
C = {c1, . . . , cp}. We report the clustering preci-
sion in our manually labeled 400 clusters.

Precision(C,Ω) = 1

k

k∑

i=1

(max
j

|ωj∩ci|
2

)
(|ci|

2

) ,

We achieved 100% precision for the common-
sense reasoning task for the four LLMs. For
openQA questions, we achieve precisions of 89%,
90%, 83%, and 81% for ChatGPT, GPT-4, Vicuna-
13B and Llama2-13B respectively. For arithmetic
reasoning tasks, the precision scores are 92%, 93%,
89%, and 88% for ChatGPT, GPT-4, Vicuna-13B
and Llama2-13B respectively.

A.5 Costs
We report the costs for our self-detection and the
compared methods. For open-source models like
Vicuna, we deploy them ourselves for inference.
For those close-sourced like ChatGPT, we request
APIs. The costs per question in U.S. dollars across
different tasks are shown in Table 14.
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