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Abstract

Current decoder-based pre-trained language
models (PLMs) successfully demonstrate mul-
tilingual capabilities. However, it is unclear
how these models handle multilingualism. We
analyze the neuron-level internal behavior of
multilingual decoder-based PLMs, Specifically
examining the existence of neurons that fire
“uniquely for each language” within decoder-
only multilingual PLMs. We analyze six lan-
guages: English, German, French, Spanish,
Chinese, and Japanese, and show that language-
specific neurons are unique, with a slight over-
lap (< 5%) between languages. These neurons
are mainly distributed in the models’ first and
last few layers. This trend remains consistent
across languages and models. Additionally, we
tamper with less than 1% of the total neurons in
each model during inference and demonstrate
that tampering with a few language-specific
neurons drastically changes the probability of
target language occurrence in text generation.1

1 Introduction

Recent studies have frequently demonstrated the
excellent multilingual abilities of pre-trained lan-
guage models (PLMs). Some PLMs explicitly mix
multilingual language corpus for pre-training (Lin
et al., 2021; Scao et al., 2022), whereas others
mainly use an English-dominant text corpus, with
the unintentional inclusion of a low percentage of
multiple language texts, which results in the acqui-
sition of multilingual skills, such as Llama2 (Tou-
vron et al., 2023). How do they exhibit multilingual
abilities?

Prior studies have focused on language-universal
neurons activated across multilingual inputs,
mainly focusing on encoder-based PLMs (Antverg
and Belinkov, 2022; Stańczak et al., 2022; Chen
et al., 2023; Stańczak et al., 2023; Varda and

1Code and model-generated texts are available at https:
//github.com/kojima-takeshi188/lang_neuron

Figure 1: Overview of our proposal. (Left) Finding
language-specific neurons that tend to be activated for
a target language. (Right) Controlling the detected
language-specific neurons by forcing their activation
during inference to manipulate the probability of target
language occurrence.

Marelli, 2023). In contrast to encoder-based mod-
els, which might be sufficient to abstract inputs,
decoder-based PLMs need to recover the language-
specific information in the later part of the gen-
eration. Therefore, language-specific processing
within these models should be a more complex and
essential functionality compared to the encoder-
based ones. However, few studies have focused
on the existence and activity of language-specific
neurons in decoder-based PLMs (See Section 2).

This study examines the behavior of language-
specific neurons in decoder-based PLMs. Specif-
ically, we analyze multiple decoder-based PLMs,
including XGLM (564M, 1.7B, 2.9B), BLOOM
(560M, 1.7B, 3B), and Llama2 (7B, 15B), for
six languages (English, German, French, Spanish,
Chinese, and Japanese). To investigate language-
specific neurons, we adopt an approach proposed
by Cuadros et al. (2022), which finds neurons that
activate on a certain group of sentences (Positive
sentences) but do not activate on other groups (Neg-
ative sentences). We treat the target language texts
as positive and any other language as negative, iden-
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tifying language-specific neurons that statistically
activate positive sentences (See Section 3). The
experimental results demonstrate that the identified
language-specific neurons are mainly distributed in
the first and last few layers of the model. This trend
remains consistent across multiple languages and
model variants. To verify the effect of the neurons,
we intervene in language-specific neurons in the
model during inference, showing that they can dras-
tically change the probability of the target language
occurrence during text generation (See Section 4).

2 Related Work

Previous studies analyzed the internal behavior
of PLMs for multilingual tasks by observing the
activation of their neurons. Several studies have
found that language-universal neurons are activated
across multilingual inputs in encoder-based PLMs
(mainly M-BERT, see Pires et al. (2019)) for var-
ious task settings, including syntactic or factual
knowledge tasks (Antverg and Belinkov, 2022;
Stańczak et al., 2022; Chen et al., 2023; Stańczak
et al., 2023; Varda and Marelli, 2023). However,
studies of encoder-based PLMs have not focused
on the identification of language-specific neurons.
Mueller et al. (2022); Bau et al. (2019) studied
decoder-based language models to find the multi-
lingually shared neurons. Similar to the encoder-
based PLMs, limited research has focused on the
existence and activity of language-specific neurons
in decoder-based language models.

Various methods can be used to identify and con-
trol neurons (Sajjad et al., 2022). Several studies
have identified and intervened in neurons for effec-
tive word editing or classification (Mu and Andreas,
2020; Dai et al., 2022; Mueller et al., 2022; Chen
et al., 2023; Varda and Marelli, 2023). In contrast,
few studies have investigated the identification and
intervention of neurons for full-text generation for
a desired concept, for example, Bau et al. (2019)
for LSTM models and Cuadros et al. (2022) for pre-
trained transformer models. Cuadros et al. (2022)
have proposed an approach for controlling text gen-
eration on Transformer-based decoder models, and
proven its effectiveness. Therefore, we use it as
an analytical tool in our experiments with decoder-
based PLMs.

3 Method

We identified and controlled neurons specific to
each language based on the approach of Cuadros

et al. (2022), with appropriate modifications for
our experiments. This approach was originally
developed to identify and control neurons that re-
spond to specific word-level concepts, such as ho-
mographs or gender biases. However, we aimed to
find neurons that grasp broader sentence-level and
language-specific concepts; therefore, we modified
the original approach for our purpose.

3.1 Finding Language-specific Neurons
First, we prepared text for each language. We con-
sidered a set of |L| languages. For each language
l ∈ L, we prepared Nl texts, which resulted in
N = N1+ ...+Nl+ ...+N|L| texts for all the lan-
guages. Let x = {xi}Ni=1 be the set of all the texts.
Our goal was to find neurons that activate text in
the target language lt ∈ L but do not activate text
in other languages L \ {lt}. For each text xi ∈ x,
we assigned a label bi = 1 if the text was in the
target language (i.e., l = lt); otherwise, bi = 0.
Therefore, we had

N = N+
lt
+N−

lt
(1)

sentences, where N+
lt

positive sentences consisted
of texts in the target language l (i.e., bi = 1) and
N−

lt
negative sentences consisted of texts in other

languages (i.e., bi = 0). For example, if the target
language lt was French, French texts were assigned
label 1, and texts in other languages, such as Ger-
man and Chinese were assigned label 0.

Second, we observed the activation value of each
neuron inside the model given the input text. We
assigned a unique index m ∈ M to each neu-
ron. |M | denotes the total number of neurons in
the model. Let zm,i ∈ zm be the output value
of neuron m when text xi ∈ x is provided as
an input to the model. Here, we explain in de-
tail how this value can be calculated. Specifi-
cally, text xi is composed of a sequence of T
tokens xi = {wi,1, ..., wi,t, ..., wi,T }. Therefore,
given the input text, there exist T output values
{zm,i,1, ..., zm,i,j , ...zm,i,T } for neuron m inside
the decoder-based Transformer model. We take
the average of the T neuron outputs to summarize
the output value of neuron m for the text i.

zm,i = f(zm,i,1, ..., zm,i,t, ...zm,i,T ), (2)

where f is the aggregation function of the average
operator. While the original approach (Cuadros
et al., 2022) defines f as a max-pooling operator,
our approach defines f as an average operator to
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identify neurons that consistently activate across to-
kens for language identification purposes. The out-
put values of the [PAD] token position are excluded
from the aggregation as an exception because they
are regarded as noise.

Third, language-specific neurons were identi-
fied. We regarded the dataset {xi, bi, zm,i}Ni=1 as
the prediction task samples. Specifically, we re-
garded texts {xi}Ni=1 as inputs to the model, labels
{bi}Ni=1 as their ground truth, and the output values
of neurons {zm,i}Ni=1 as the prediction scores of
the ground truth. We can measure the performance
of neuron m for the task using its average preci-
sion (APm = AP (zm, b) ∈ [0, 1]), which is the
area under the precision-recall curve with different
prediction thresholds. We measured APm for all
neurons and ordered them in descending order.

In the original approach, only the top-k neurons
in descending order were defined as identified neu-
rons. However, this only considers strong positive
correlations (i.e., the top-k highest AP neurons)
with labels, leaving out strong negative correlations
(i.e., the top-k lowest AP neurons) with labels. We
hypothesize that not only the top-k neurons but also
the bottom-k neurons are strongly related to a spe-
cific language. Therefore, we extended the original
approach by considering not only the top-k neurons
but also the bottom-k neurons, defining them as
language-specific neurons. We validate our claim
experimentally in Section 4. We set k = 1000
as the default value across the experiments. Note
that the neurons at the input layer (word embed-
dings) and output layer (projection layers) were
excluded from the measurement because it is clear
that these layers consist of language-specific mod-
ules: they consist of language-specific characters
or (sub-)words.

3.2 Controlling Language-specific Neurons
We controlled text generation by overriding the
output values of the top-k and bottom-k neurons
with fixed values during inference. Specifically, we
calculated the fixed value for each neuron m as
follows:

z̄m = Median({zm|b = 1}). (3)

This is the median of the neuron outputs for the
target language texts. During inference, we inter-
vened in the top-k and bottom-k neurons by replac-
ing their outputs with fixed values in the forward
pass and observed whether the models generated
texts in the target language.

Model # Params # Layers # Neurons
XGLM 564M 24 221,184

1.7B 24 442,368
2.9B 48 884,736

BLOOM 560M 24 221,184
1.7B 24 442,368

3B 30 691,200
Llama2 7B 32 1,359,872

13B 40 2,129,920

Table 1: Model list used for the experiments.

en de fr es zh ja
XGLM 49.0 5.4 4.7 5.3 8.1 4.0
BLOOM 30.0 - 12.9 10.8 16.2 -
Llama2 89.7 0.2 0.2 0.1 0.1 0.1

Table 2: Distribution of languages in pre-training data.

4 Experiment Settings

4.1 Models

XGLM (Lin et al., 2021), BLOOM (Scao et al.,
2022), and Llama2 (Touvron et al., 2023) were
used in the experiments. XGLM and BLOOM
are explicitly referred to as multilingual language
models. By contrast, Llama2 was trained almost
entirely on an English text corpus, with minimal
inclusion of other languages. Table 1 lists the mod-
els used in the experiments. All the models were
downloaded from HuggingFace (Wolf et al., 2019).
Table 2 describes the distribution of languages in
the pretraining dataset for each model2.

4.2 Datasets

The following six languages were used in the
experiment: English (en), German (de), French
(fr), Spanish (es), Chinese (zh), and Japanese (ja).
These six languages are frequently targeted in prior
studies of multilingual language models; they are
among the top seven languages in terms of the
percentage of languages included in the XGLM
pre-training data (Lin et al., 2021). Owing to the
limitations of the available computer resources, the
number of languages analyzed was limited to six,
as described in the limitations section.

To create a language-specific text corpus, we
combined two datasets, PAWS-X (Yang et al.,
2019) and FLORES-200 (Costa-jussà et al., 2022).

2XGLM information is cited from https:
//huggingface.co/facebook/xglm-2.9B. BLOOM
information is cited from https://huggingface.co/
bigscience/bloom#languages.
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Figure 2: Distribution of Top, Middle, Bottom-1000
neurons across layers. 1st row:(XGLM-564M, de). 2nd
row:(BLOOM-1b7, fr). 3rd row:(Llama2-13b, zh).

PAWS-X is a dataset for paraphrase identification
between two texts for seven languages, including
the aforementioned languages. FLORES-200 is
a dataset of machine translation tasks for more
than 200 languages. The sample sentences in these
tasks were of good quality, had a wide variety of
text types, and covered the six languages required
for our experiments. Therefore, a combination of
these factors was used. For this experiment, texts
were randomly sampled in a 1:1 ratio from the two
datasets to create ground- truth texts for each lan-
guage.

Following Cuadros et al. (2022), we apply a
setting of N−

lt
> N+

lt
to account for the much

larger variance of negative than positive examples.
Negative samples contain texts from five language,
whereas positive samples contain texts from only
one language. Specifically, we prepared 500 texts
for each language, totaling 3000 texts for all six
languages. As Cuadros et al. (2022) pointed out,
the choice of N+

lt
and N−

lt
is arbitrary, usually a

tradeoff between the computing resources available
and the quality of the representation required. In
addition, Cuadros et al. (2022) set the sample sizes
of both positive and negative examples between
100 and 1000. Therefore, we considered 500 to
be a reasonable value. After specifying a target
language, we identified language-specific neurons
for the target language using the method described
in Section 3.

5 Results and Discussion

The experimental results are summarized in this
section. See the Appendix for the full results across

de en es fr ja zh
de 2000 41 74 39 44 34
en 41 2000 34 41 49 40
es 74 34 2000 57 77 22
fr 39 41 57 2000 21 93
ja 44 49 77 21 2000 27
zh 34 40 22 93 27 2000

Table 3: The number of overlapping language-specific
neurons between languages (XGLM-564M).

all models and languages.

5.1 Finding Language-specific Neurons

We identified language-specific neurons using the
method described in Section 3. Figure 2 shows
histograms of the identified neurons for each layer
in each model. Most of the top-1000 neurons with
higher AP orders are distributed in the first and
last few layers of the model. Similarly, most of
the bottom-1000 neurons were distributed in the
first and last few layers. In contrast, the middle-
1000 neurons (around the median) in AP order were
distributed mainly in the middle layers. It was also
found that the distributional property was the same
across languages, model sizes, and model variants.

In addition, it was confirmed that language-
specific neurons that fire in one language have little
overlap with those of all other languages. Table 3
shows the cross tables of the number of overlap-
ping neurons between the six languages, indicating
an overlap of less than 5 % for every language pair.

The following interpretation is possible regard-
ing the inner behavior of decoder-based PLMs
based on the findings in Figure 2 and the prior
study of multilingual models (Muller et al., 2021),
which suggests that encoder-based PLMs process
cross-lingual transfer in lower layers and language-
agnostic semantic concepts (e.g., task prediction)
in higher layers: The first few layers of decoder-
based PLMs mainly process cross-lingual transfers
to transform the lexical or syntax representations of
each language into language-independent semantic
representations. The middle layers of the models
are primarily language-independent semantic un-
derstanding and representation processing. The
last few layers of the models translate the semantic
representations back into syntax and lexical infor-
mation for the target language. This interpretation
aligns with a recent study (Wendler et al., 2024),
which suggested that the last few layers of Llama2
models are responsible for the conversion process
to a target language.
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Figure 3: Model-generated text examples with unconditional text generation setting by XGLM-564M. Given a
[BOS] token as input, the model generates outputs through a random sampling method.

Figure 4: Model-generated text examples with conditional text generation setting by Llama-2-7b. Given a machine
translation task as input, the model generates outputs through a greedy decoding method.

5.2 Controlling Language-specific Neurons

To show the effectiveness of the identified
language-specific neurons, we investigated whether
the models could control language in text gener-
ation by intervening with language-specific neu-
rons. We conducted the investigation using uncon-
ditional and conditional (i.e., machine translation)
text-generation settings.

5.2.1 Unconditional text generation

In the experiments on unconditional text gener-
ation, we do not provide models with any input
prompt, i.e., only a [BOS] token as a prompt. Each
model repeated text generation 100 times with
random sampling decoding (temperature=0.8, top
p=0.9) by changing the random seed from 1 to 100

each time the model started to generate text. Figure
3 illustrates model-generated text examples with
the intervention setting in each class of language-
specific neurons. It was shown that by changing
language-specific neurons for intervention, we can
change the language of the output texts.

To quantitatively measure the probability of oc-
currence of a target language, we classified the
generated texts into language categories using the
language identification classifier FastText (Joulin
et al., 2017b,a). We classified each text into the
target language if the classification score exceeded
a threshold of 0.5 (Wenzek et al., 2020; Touvron
et al., 2023) and calculated the probability of the
target language occurrence, i.e., the evaluation met-
ric was accuracy.
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before after
Top Bottom Both

XGLM en 40.0 62.0 77.0 89.0
(564M) de 0.0 89.0 31.0 95.0

fr 0.0 86.0 7.0 90.0
es 2.0 71.0 5.0 78.0
zh 7.0 82.0 50.0 79.0
ja 7.0 92.0 61.0 99.0
- 9.3 80.3 38.5 88.3

BLOOM en 37.0 78.0 67.0 88.0
(1b7) de 0.0 60.0 0.0 86.0

fr 13.0 80.0 72.0 98.0
es 18.0 44.0 94.0 97.0
zh 6.0 1.0 89.0 90.0
ja 0.0 67.0 35.0 97.0
- 12.3 55.0 59.5 92.7

Llama2 en 83.0 82.0 89.0 89.0
(7b) de 0.0 2.0 6.0 23.0

fr 2.0 1.0 8.0 7.0
es 1.0 4.0 4.0 35.0
zh 0.0 2.0 4.0 50.0
ja 1.0 1.0 12.0 10.0
- 14.5 15.3 20.5 35.7

Table 4: Probability of language occurrence within the
generated texts before and after intervention. Values in
the "-" rows are the average values across six languages.

Table 4 summarizes the results. This demon-
strates that intervention in language-specific neu-
rons increases the probability of the target language
occurrence in unconditional text generation for
each language. In other words, the desired lan-
guage could be generated by intentionally igniting
target neurons. It should be noted that the BLOOM
models achieve a high probability of German and
Japanese text occurrence by intervention, although
the models do not explicitly include German and
Japanese in their pre-training datasets, as described
in Table 2. It is possible for a small number of these
languages to be unintentionally mixed, leading to
unintentional ability acquisition. For example, an
English text and its translation to language may be
present in a single document (Briakou et al., 2023).

We conducted a study by intervening in only the
top-1000 neurons, only the bottom-1000 neurons,
and both groups of neurons. Interestingly, some
languages did not respond to control by intervening
only in the top-1000 or only the bottom-1000 neu-
rons. This suggests that it is possible to effectively
control language by intervening in both groups of
neurons. In principle, the top-k neurons are corre-
lated with positive activation values. Conversely,
the bottom-k neurons were correlated with nega-
tive activation values. Figure 5 validates this hy-
pothesis. These findings align with those of Wang

Figure 5: (Top) Distributional difference of activation
values of the top-1000 neurons between target (on) and
non-target languages (off). (Bottom) Distributional dif-
ference of activation value of the bottom-1000 neurons.

Figure 6: Ablation study of text generation by varying
the number of neurons for intervention. x-axis: log10(k)

et al. (2022), who suggested that neurons with both
positive and negative correlations with labels are
important for identifying target neurons.

We conducted an ablation study by changing
the number of intervening neurons and analyzed
its effect on the probability of target language oc-
currence. Additionally, we verified the quality of
each model-generated text using the BLEU-4 score
(BLEU). We evaluated BLEU only for texts iden-
tified by the language identifier as belonging to
the target language. Specifically, for each model-
generated text identified as the target language, we
set the text as a hypothesis and all positive texts as
references, and measured the BLEU score. We av-
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FLORES200 IWSLT2017 WMT
Accuracy BLEU Accuracy BLEU Accuracy BLEU

XGLM-564M de 0.0 → 38.0 0.0 → 0.0 0.0 → 15.0 0.0 → 0.0 0.0 → 17.0 0.0 → 0.0
XGLM-564M es 0.0 → 3.0 0.0 → 0.0 → → → →
XGLM-564M ja 0.0 → 0.0 0.0 → 0.0 0.0 → 0.0 0.0 → 0.0 → →
XGLM-564M fr 0.0 → 0.0 0.0 → 0.0 0.0 → 3.0 0.0 → 0.0 0.0 → 1.0 0.0 → 0.0
XGLM-564M zh 0.0 → 1.0 0.0 → 0.0 0.0 → 2.0 0.0 → 0.0 0.0 → 2.0 0.0 → 0.0
BLOOM-1b7 de 0.0 → 56.0 1.3 → 1.3 0.0 → 35.0 1.0 → 1.8 0.0 → 37.0 2.9 → 1.7
BLOOM-1b7 es 0.0 → 2.0 1.2 → 1.2 → → → →
BLOOM-1b7 ja 0.0 → 6.0 0.2 → 0.1 0.0 → 8.0 0.1 → 0.2 → →
BLOOM-1b7 fr 0.0 → 16.0 1.7 → 2.8 0.0 → 2.0 1.0 → 1.5 0.0 → 9.0 1.7 → 2.7
BLOOM-1b7 zh 0.0 → 21.0 0.3 → 0.2 0.0 → 3.0 0.2 → 0.3 0.0 → 34.0 0.5 → 0.6
Llama2-7b de 0.0 → 66.0 2.6 → 17.7 0.0 → 48.0 1.2 → 12.5 2.0 → 53.0 5.3 → 15.2
Llama2-7b es 4.0 → 77.0 3.3 → 16.6 → → → →
Llama2-7b ja 0.0 → 58.0 0.3 → 10.4 1.0 → 57.0 0.2 → 4.5 → →
Llama2-7b fr 1.0 → 58.0 4.1 → 21.5 0.0 → 32.0 1.0 → 11.1 0.0 → 36.0 2.1 → 13.2
Llama2-7b zh 1.0 → 76.0 1.0 → 11.5 3.0 → 82.0 0.6 → 7.8 12.0 → 86.0 2.4 → 11.3
Llama2-13b de 0.0 → 22.0 1.5 → 8.8 0.0 → 37.0 0.6 → 10.0 4.0 → 32.0 3.3 → 9.7
Llama2-13b es 2.0 → 14.0 1.8 → 4.3 → → → →
Llama2-13b ja 7.0 → 54.0 2.4 → 11.0 4.0 → 75.0 0.7 → 6.1 → →
Llama2-13b fr 0.0 → 23.0 1.6 → 10.5 0.0 → 9.0 0.7 → 4.7 1.0 → 15.0 2.2 → 6.6
Llama2-13b zh 20.0 → 93.0 4.4 → 19.1 40.0 → 96.0 5.8 → 9.6 57.0 → 99.0 13.5 → 18.9

Table 5: Results of conditional text generation. Values on the left side of the arrows (→) were measured without
intervention on the language-specific neurons; values on the right side were measured during intervention on the
neurons. FLORES200 includes translation tasks of English to the other five languages, while IWSLT2017 does not
include tasks of English to Spanish, and WMT does not include tasks of English to Spanish or Japanese.

eraged the BLEU scores across all model-generated
texts that were identified as the target language.
Figure 6 shows the results of the intervention in
Spanish neurons for XGLM-564M. This shows that
increasing the number of intervening neurons up
to 1000-10000 (3-4 on the logarithm of 10 in this
figure) generally increases the probability of target
language occurrence, but increasing beyond that
degrades text quality. Eventually, the sentence col-
lapses and both language identification and quality
significantly decrease. This tendency exists regard-
less of language or model variation. See Appendix
C.2 for the complete results.

5.2.2 Conditional text generation

In experiments of conditional text generation, mod-
els were given machine translation tasks and re-
quired to solve them in a zero-shot prompting set-
ting, but with an unusual prompt format: “Translate
an English sentence into a target language. English:
{source text} Target Language:”. In other words, it
is a prompt for a translation task that does not con-
cretely specify the target language. The aim of the
prompt was to accurately check whether the manip-
ulation of language-specific neurons could lead to
the output of the target language. Using this prompt
as an input, the models started to generate text us-
ing a greedy decoding strategy. For this experiment,
we randomly selected 100 machine translation sam-

ples from FLORES200, IWSLT2017 (Cettolo et al.,
2017), and WMT (Bojar et al., 2014, 2016, 2018)3,
respectively. Two evaluation metrics were used to
measure translation quality: Accuracy of measur-
ing the probability that the target language text is
generated, and BLEU. In the unconditional text-
generation setting, we measured the quality of only
the generated texts in the target language. How-
ever, in the conditional text-generation setting, we
calculated the BLEU score between each generated
text and the corresponding ground-truth text by fol-
lowing the standard method of BLEU evaluation in
machine translation tasks (Papineni et al., 2002).

Table 5 summarizes the experimental results of
the conditional text generation. There were two
main findings from these results. First, interven-
tions in language-specific neurons tend to increase
the probability of producing the target language
(accuracy). Second, the translation quality (BLEU)
of Llama2 models increased drastically along with
accuracy. In contrast, the translation quality of
XGLM and BLOOM did not significantly improve
compared to the accuracy improvement. We investi-
gated the reason for this by qualitatively analyzing
the generated texts. XGLM and BLOOM were
forced to output the target languages to some de-
gree via intervention, but the output texts were not

3We used En → Fr tasks from WMT14, En → De tasks
from WMT16, and En → Zh tasks from WMT18.
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“Translate a sentence “Translate an English sentence
from English to a target language.” into a target language.”

Accuracy BLEU Accuracy BLEU
de 0.0 → 62.0 2.8 → 16.5 0.0 → 66.0 2.6 → 17.7
es 5.0 → 78.0 4.0 → 16.5 4.0 → 77.0 3.3 → 16.6
ja 0.0 → 55.0 0.3 → 9.2 0.0 → 58.0 0.3 → 10.4
fr 0.0 → 58.0 3.4 → 21.3 1.0 → 58.0 4.1 → 21.5
zh 1.0 → 79.0 1.2 → 12.7 1.0 → 76.0 1.0 → 11.5

“Translate an English sentence “Translate an English sentence
into German.” into Japanese.”

Accuracy BLEU Accuracy BLEU
de 96.0 → 99.0 32.8 → 24.4 0.0 → 2.0 0.3 → 1.2
es 0.0 → 1.0 2.0 → 2.6 0.0 → 2.0 0.1 → 0.4
ja 0.0 → 0.0 0.3 → 0.4 100.0 → 99.0 24.3 → 19.7
fr 0.0 → 3.0 2.6 → 3.1 0.0 → 3.0 0.2 → 1.0
zh 0.0 → 2.0 0.8 → 0.4 0.0 → 96.0 1.3 → 14.9

Table 6: Results of conditional text generation with different prompt settings for Llama2-7b.

related to translation. For instance, when we inter-
vened in German neurons, XGLM tended to output
a word “Deutsch”. BLOOM tended to generate
text unrelated to the translation or simply repeated
the source text in English. Conversely, Llama2
tended to output translated text in the correct tar-
get language, resulting in improved accuracy and
BLEU scores. This experiment showed that in-
tervention in language-specific neurons can guide
some models in the right direction, even when the
models promptly receive an ambiguous translation
task. Figure 4 shows examples of model-generated
text for Llama2-7b model. See Section D.2 for
additional examples.

We conducted several baseline experiments by
changing the prompts to validate the robustness
of the model outputs against prompts for the ma-
chine translation settings. Specifically, we tried
the following four prompts: 1.“Translate a sen-
tence from English into a target language. English:
{source text} Target Language:”, 2.“Translate an
English sentence into a target language. English:
{source text} Target Language:”, 3.“Translate an
English sentence into German. English: {source
text} German:”, 4.“Translate an English sentence
into Japanese. English: {source text} Japanese:”.

The first and second prompts are ambiguous be-
cause they do not explicitly specify the target lan-
guage. The second prompt is the same as that in
Table 5. Regarding the third and fourth prompts,
we explicitly describe the target languages in the
prompts: German from Western languages and
Japanese from Eastern languages. Here, we focus
on the Llama-2-7b model because it has signifi-

cantly improved both accuracy and BLEU scores,
as described in Table 5. Similar to the experiment
shown in Table 5, we conducted experiments in
which the model was asked to solve a translation
task under a specified prompt, while intervening in
language-specific neurons.

The experimental results are presented in Ta-
ble 6. The first and second prompts significantly
increased the probability of target language oc-
currence and BLEU scores with intervention in
language-specific neurons for all languages. In
contrast, the third and fourth prompts caused few
changes when we intervened in language-specific
neurons for most languages. One possible reason
is that explicitly specifying the target language in
a prompt automatically fires specific neurons in
that language, which may offset the effects of other
language-specific neurons.

The only exception was the intervention in Chi-
nese neurons under the fourth prompt “Translate
an English sentence into Japanese.”, which in-
creases the probability of Chinese text generation
and BLEU scores. One possible reason is that some
Japanese and Chinese neurons have similar firing
patterns within the Llama-2-7b model. As shown
in Table 7 in the Appendix, the Llama-2-7b model
had a higher language-specific neuron overlap be-
tween Japanese and Chinese than the other pairs.
As these two languages share many characters with
similar surface morphologies, the high similarity
between the two languages may have contributed
to these results. However, it should be noted that
this is not universally true across models; in some
cases, the overlap of neurons in this language pair

6926



is not always high in models other than Llama2, as
described in Table 7 in the Appendix.

6 Conclusion

This study provides new insights into the activ-
ity of language-specific neurons in decoder-based
multilingual pre-trained language models: the ex-
istence of neurons that fire uniquely for each lan-
guage. The experimental results demonstrate that
language-specific neurons mainly exist in the first
and last few layers, regardless of the language,
model size, and model variants. We further an-
alyzed the effectiveness of the identified neurons
by intervening in the neurons, that is, by replacing
the output values with fixed activation values at
inference with both unconditional and conditional
settings. Using this approach, we can change the
probability of the target language occurrence.

We hope that this study facilitates a deeper under-
standing of decoder-based PLMs and provides new
insights for future research on multilingual decoder-
based PLMs. Future research should include
proposing language-specific model-compression
methods. Future research also includes proposing
new fine-tuning methods for downstream tasks to
facilitate generalization to languages that are not
included in the training dataset. For example, only
fine-tuning the middle-layer parameters in decoder-
based PLMs.

7 Limitation

This study only analyzes open models whose pa-
rameters were publicly available. It is not possible
to analyze closed models with parameters that are
not publicly available, such as ChatGPT or GPT-4
(OpenAI, 2023). Although we focused our analysis
on six languages, other languages need to be exam-
ined in future studies. Analysis of encoder-decoder-
based PLMs, such as mT5 (Xue et al., 2021), re-
mains important but is beyond the scope of this
study due to the fundamental differences in model
architecture from decoder-only PLMs.
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A Text Examples from Language-Specific
Text Corpus

Figure 7 lists text examples from the language-
specific corpus, which is a combination of
FLORES-200 and PAWS-X.

B Identification of Neurons

B.1 Distribution of Language-Specific
Neurons Across Layers

B.1.1 Histogram
Figure 8, 9, 10, 11, 12, 13, 14, and 15 describes
the distribution of language-specific neurons across
layers in each model using a histogram.

B.1.2 Estimation of Beta Distribution
Parameters

To quantitatively analyze the shape of the distribu-
tion, we regarded it as a sampling subset from a
beta distribution and estimated its parameters of
that beta distribution. The beta distribution has two
parameters, α and β. If α < 1 and β < 1, then the
distribution becomes convex downward. If α > 1
and β > 1, then the distribution becomes convex
upward. Table 7 lists the parameter-estimation re-
sults. It is clearly shown that the distribution of the
top-1000 and bottom-1000 neurons generally has
the parameters α < 1 and β < 1, supporting the
claim that language-specific neurons exist in the
first and last few layers. In contrast, the estimated
parameters of the middle N neurons are α > 1

and β > 1, indicating that language-independent
neurons exist in the middle layers.

B.2 Overlapping language-specific neurons
between languages.

Table 8a - 8f describe cross-table check results to
count the number of overlapping language-specific
neurons between languages.

B.3 Activation Values of Top and
Bottom-1000 Neurons

Figure 16, 17, 18, 19, 20, and 21 are histograms of
the activation values for the top and bottom-1000
neurons. It was found that the top-1000 neurons
activate positive values when we inputted positive
text (on). In contrast, the bottom-1000 neurons
tended to activate negative values when negative
texts were given (off).

C Intervention in Neurons for
Unconditional Text Generation

C.1 Effect of Intervention on Generated
Language

Table 9 summarizes the probability of the target
language occurrence in the generated texts before
and after the intervention.

C.2 Ablation Study of Changing the Number
of Neurons for Intervention

Figures 22, 23, and 24 show the results of the abla-
tion study when changing the number of neurons
interventions.

C.3 Model-Generated Text Examples For
Unconditional Setting

• Figure 25 describes a summary of model-
generated unconditional text examples.

• Figure 26 lists model-generated text examples
without any interventions.

• Figure 27, 28, 29 list model-generated text ex-
amples with top-1000 and bottom-1000 neu-
rons intervention.

• Figure 30, 31, 32, 33, 34, and 35 list model-
generated text examples by changing the num-
ber of neuron interventions.

C.4 Detail Setting of Unconditional Text
Generation

A random sampling decoding method was used for
unconditional text generation using the following
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settings in all experiments for unconditional text
generation:

• temperature: 0.8

• top-p: 0.9

• maximum output length: 64

• prompt (input token for models):

– XGLM: </s> is automatically set.

– BLOOM: nothing is automatically set.
We explicitly set </s>.

– Llama2: <s> is automatically set.

D Intervention in Neurons for
Conditional Text Generation

D.1 Effect of Intervention on Conditional Text
Generation

Tables 10, 11, and 12 summarize the probability of
target language occurrence in the generated texts
before and after the intervention.

D.2 Model-Generated Text Examples For
Conditional Setting

• Figure 36 describes a summary of model-
generated conditional text examples.

• Figure 37 lists model-generated text examples
without any interventions.

• Figures 38, 39, and 40 list model-generated
text examples with top-1000 and bottom-1000
neurons intervention.

D.3 Detail Setting of Conditional Text
Generation

A greedy decoding method was used for condi-
tional text generation. For evaluation of machine
translation, the first line of model-generated text
(sentences before the first linebreak code “¥n”) is
used as translated sentences to omit useless subse-
quent sentences.

The following settings were used in all experi-
ments for conditional text generation:

• maximum output length: 128

E Detail Setting of Datasets

To create a language-specific text corpus, we mixed
the following two datasets: dev split of PAWS-
X (Yang et al., 2019) and test split of FLORES-
200 (Costa-jussà et al., 2022). To create transla-
tion tasks for conditional text generation, we ran-
domly sampled tasks from the devtest split of FLO-
RES200, test split of IWSLT2017 (Cettolo et al.,
2017), and test split of WMT (Bojar et al., 2014,
2016, 2018). All datasets were downloaded from
HuggingFace (Wolf et al., 2019).

F Detail Setting of BLEU-4 metrics

We used NLTK library (Bird et al., 2009) to
measure the BLEU scores for both unconditional
and conditional text generation. Specifically, the
sentence_bleu function was used with method2
SmoothingFunction option for unconditional text
generation. corpus_bleu function was used with
method2 SmoothingFunction option for condi-
tional text generation. To enable the comparison
of BLEU scores across models, we tokenized all
texts using a multilingual tokenizer, XGLM, whose
pre-training corpus includes a large proportion of
texts in the six target languages (Lin et al., 2021).

G License

G.1 Model

• XGLM: MIT [link]

• BLOOM: bigscience-bloom-rail-1.0 [link]

• Llama2: Meta license [link]

G.2 Dataset

• PAWS-X: No License (Free to use) [link]

• FLORES200: cc-by-sa-4.0 [link]

• IWSLT2017: cc-by-nc-nd-4.0 [link]

• WMT14: Unknown [link]

• WMT16: Unknown [link]

• WMT18: Unknown [link]

H Total computation for Experiments

We executed the experiments mainly for running
the inference (both identification and intervention
of language-specific neurons) for each model us-
ing the following number of A100(40GB) GPUs
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and approximate computing hours per run. We run
GPUs 60 times per model (6 languages × (1 for
identification of language-specific neurons + 6 for
unconditional text generation by changing the num-
ber of neurons to intervene + 3 for conditional text
generation)) for the production run. The computa-
tional resource of AI Bridging Cloud Infrastructure
(ABCI) provided by the National Institute of Ad-
vanced Industrial Science and Technology (AIST)
was used for the experiments.

• XGLM 564M: 1GPU × 0.5hrs × 60 runs.

• XGLM 1.7B: 1GPU × 0.5hrs × 60 runs.

• XGLM 2.9B: 1GPU × 0.5hrs × 60 runs.

• BLOOM 560M: 1GPU × 0.5hrs × 60 runs.

• BLOOM 1.7B: 1GPU × 0.5hrs × 60 runs.

• BLOOM 3B: 1GPU × 0.5hrs × 60 runs.

• Llama2 7B: 8GPUs × 1hrs × 60 runs.

• Llama2 13B: 8GPUs × 3hrs × 60 runs.
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Figure 7: Text examples from language-specific text corpus, which is a mixture of FLORES-200 and PAWS-X.
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Figure 8: Histogram of language neurons across layers in xglm-564M.
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Figure 9: Histogram of language neurons across layers in xglm-1.7B.

6934



Figure 10: Histogram of language neurons across layers in xglm-2.9B.
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Figure 11: Histogram of language neurons across layers in bloom-560m.
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Figure 12: Histogram of language neurons across layers in bloom-1b7.
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Figure 13: Histogram of language neurons across layers in bloom-3b.
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Figure 14: Histogram of language neurons across layers in Llama2-7b.
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Figure 15: Histogram of language neurons across layers in Llama-2-13b.

6940



Model Language Top Middle Bottom
xglm-564M en [0.58, 0.56] [1.33, 1.45] [0.68, 0.51]
xglm-564M de [0.66, 0.61] [1.29, 1.41] [0.81, 0.65]
xglm-564M fr [0.65, 0.53] [1.4, 1.48] [0.58, 0.52]
xglm-564M es [0.51, 0.52] [1.31, 1.4] [0.43, 0.53]
xglm-564M zh [0.65, 0.63] [1.3, 1.42] [0.86, 0.66]
xglm-564M ja [0.62, 0.63] [1.19, 1.25] [0.85, 0.78]
xglm-1.7B en [0.68, 0.48] [1.29, 1.45] [0.52, 0.5]
xglm-1.7B de [0.67, 0.54] [1.34, 1.57] [0.8, 0.59]
xglm-1.7B fr [0.72, 0.52] [1.29, 1.45] [0.67, 0.51]
xglm-1.7B es [0.69, 0.49] [1.22, 1.43] [0.6, 0.48]
xglm-1.7B zh [0.63, 0.5] [1.24, 1.3] [0.61, 0.47]
xglm-1.7B ja [0.56, 0.49] [1.26, 1.26] [0.56, 0.56]
xglm-2.9B en [0.54, 0.36] [1.28, 1.43] [0.84, 0.43]
xglm-2.9B de [0.5, 0.47] [1.19, 1.52] [0.99, 0.56]
xglm-2.9B fr [0.42, 0.46] [1.21, 1.47] [0.56, 0.47]
xglm-2.9B es [0.38, 0.41] [1.19, 1.5] [0.46, 0.4]
xglm-2.9B zh [0.59, 0.39] [1.21, 1.44] [0.69, 0.39]
xglm-2.9B ja [0.5, 0.37] [1.14, 1.36] [0.56, 0.4]
bloom-560m en [0.56, 0.47] [1.26, 1.22] [0.48, 0.39]
bloom-560m de [1.74, 0.66] [0.94, 1.08] [1.7, 0.77]
bloom-560m fr [0.56, 0.48] [1.2, 1.14] [0.69, 0.44]
bloom-560m es [0.52, 0.45] [1.27, 1.26] [0.44, 0.4]
bloom-560m zh [0.69, 0.56] [1.17, 1.15] [0.67, 0.52]
bloom-560m ja [0.46, 0.57] [1.28, 1.2] [0.64, 0.68]
bloom-1b7 en [0.54, 0.48] [1.26, 1.24] [0.56, 0.37]
bloom-1b7 de [2.14, 0.62] [1.1, 1.2] [1.22, 0.64]
bloom-1b7 fr [0.61, 0.47] [1.16, 1.17] [0.63, 0.4]
bloom-1b7 es [0.65, 0.46] [1.24, 1.18] [0.64, 0.4]
bloom-1b7 zh [0.8, 0.52] [1.27, 1.31] [0.71, 0.53]
bloom-1b7 ja [0.8, 0.49] [1.29, 1.23] [0.8, 0.63]
bloom-3b en [0.56, 0.42] [1.23, 1.23] [0.56, 0.36]
bloom-3b de [2.12, 0.65] [1.08, 1.15] [1.35, 0.62]
bloom-3b fr [0.83, 0.43] [1.27, 1.26] [0.67, 0.36]
bloom-3b es [0.95, 0.44] [1.2, 1.12] [0.66, 0.36]
bloom-3b zh [0.89, 0.48] [1.19, 1.17] [0.58, 0.45]
bloom-3b ja [0.82, 0.47] [1.28, 1.27] [0.75, 0.57]
Llama-2-7b-hf en [0.91, 0.33] [1.28, 1.38] [0.96, 0.35]
Llama-2-7b-hf de [1.06, 0.53] [1.4, 1.63] [0.75, 0.43]
Llama-2-7b-hf fr [1.37, 0.56] [1.2, 1.39] [1.03, 0.45]
Llama-2-7b-hf es [1.76, 0.58] [1.3, 1.69] [1.17, 0.46]
Llama-2-7b-hf zh [0.48, 0.7] [1.2, 1.33] [0.51, 0.57]
Llama-2-7b-hf ja [0.6, 0.53] [1.17, 1.27] [0.56, 0.42]
Llama-2-13b-hf en [0.65, 0.36] [1.25, 1.32] [0.83, 0.39]
Llama-2-13b-hf de [0.94, 0.53] [1.26, 1.41] [0.57, 0.39]
Llama-2-13b-hf fr [0.98, 0.51] [1.22, 1.51] [0.68, 0.39]
Llama-2-13b-hf es [1.68, 0.61] [1.29, 1.7] [1.11, 0.46]
Llama-2-13b-hf zh [0.48, 0.52] [1.12, 1.2] [0.48, 0.48]
Llama-2-13b-hf ja [0.63, 0.38] [1.11, 1.21] [0.55, 0.33]

Table 7: Estimation of Beta distribution parameters from the histogram of neurons across layers in top-1000,
middle-1000, and bottom-1000 groups, respectively.
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(a) xglm-564M

de en es fr ja zh
de 2000 41 74 39 44 34
en 41 2000 34 41 49 40
es 74 34 2000 57 77 22
fr 39 41 57 2000 21 93
ja 44 49 77 21 2000 27
zh 34 40 22 93 27 2000

(b) xglm-1.7B

de en es fr ja zh
de 2000 12 14 9 43 9
en 12 2000 21 22 23 28
es 14 21 2000 60 22 17
fr 9 22 60 2000 7 30
ja 43 23 22 7 2000 30
zh 9 28 17 30 30 2000

(c) xglm-2.9B

de en es fr ja zh
de 2000 10 6 1 14 5
en 10 2000 13 10 8 11
es 6 13 2000 28 12 16
fr 1 10 28 2000 7 12
ja 14 8 12 7 2000 30
zh 5 11 16 12 30 2000

(d) bloom-560m

de en es fr ja zh
de 2000 12 19 20 12 61
en 12 2000 76 91 61 87
es 19 76 2000 168 70 47
fr 20 91 168 2000 42 56
ja 12 61 70 42 2000 5
zh 61 87 47 56 5 2000

(e) bloom-1b7

de en es fr ja zh
de 2000 10 22 15 20 59
en 10 2000 55 88 26 59
es 22 55 2000 140 28 10
fr 15 88 140 2000 24 39
ja 20 26 28 24 2000 8
zh 59 59 10 39 8 2000

(f) bloom-3b

de en es fr ja zh
de 2000 8 12 12 15 43
en 8 2000 64 45 34 46
es 12 64 2000 98 14 26
fr 12 45 98 2000 18 25
ja 15 34 14 18 2000 11
zh 43 46 26 25 11 2000

(g) Llama-2-7b

de en es fr ja zh
de 2000 20 22 12 7 15
en 20 2000 16 14 11 11
es 22 16 2000 34 17 8
fr 12 14 34 2000 13 14
ja 7 11 17 13 2000 85
zh 15 11 8 14 85 2000

(h) Llama-2-13b

de en es fr ja zh
de 2000 14 13 11 5 23
en 14 2000 10 10 18 9
es 13 10 2000 23 16 1
fr 11 10 23 2000 9 34
ja 5 18 16 9 2000 80
zh 23 9 1 34 80 2000

Table 8: Cross-table check to count the number of overlapping language-specific neurons between languages.
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Figure 16: Activation value difference of top-1000 neurons between target language(on) and non-target lan-
guages(off). x-axis: activation value of neurons. y-axis: frequency.
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Figure 17: Activation value difference of top-1000 neurons between target language(on) and non-target lan-
guages(off). x-axis: activation value of neurons. y-axis: frequency.
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Figure 18: Activation value difference of top-1000 neurons between target language(on) and non-target lan-
guages(off). x-axis: activation value of neurons. y-axis: frequency.
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Figure 19: Activation value difference of bottom-1000 neurons between target language(on) and non-target
languages(off). x-axis: activation value of neurons. y-axis: frequency.
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Figure 20: Activation value difference of bottom-1000 neurons between target language(on) and non-target
languages(off). x-axis: activation value of neurons. y-axis: frequency.
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Figure 21: Activation value difference of bottom-1000 neurons between target language(on) and non-target
languages(off). x-axis: activation value of neurons. y-axis: frequency.
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before after
Top Bottom Both

xglm en 40.0 62.0 77.0 89.0
(564M) de 0.0 89.0 31.0 95.0

fr 0.0 86.0 7.0 90.0
es 2.0 71.0 5.0 78.0
zh 7.0 82.0 50.0 79.0
ja 7.0 92.0 61.0 99.0
- 9.3 80.3 38.5 88.3

xglm en 36.0 23.0 43.0 32.0
(1.7B) de 3.0 84.0 10.0 91.0

fr 1.0 54.0 5.0 70.0
es 3.0 53.0 9.0 69.0
zh 3.0 59.0 4.0 65.0
ja 9.0 83.0 17.0 87.0
- 9.2 59.3 14.7 69.0

xglm en 31.0 28.0 48.0 42.0
(2.9B) de 2.0 92.0 1.0 88.0

fr 1.0 60.0 3.0 61.0
es 1.0 67.0 5.0 73.0
zh 5.0 74.0 6.0 85.0
ja 11.0 81.0 3.0 80.0
- 8.5 67.0 11.0 71.5

bloom en 50.0 69.0 80.0 85.0
(560m) de 0.0 34.0 0.0 72.0

fr 13.0 37.0 85.0 93.0
es 9.0 72.0 69.0 97.0
zh 0.0 24.0 61.0 90.0
ja 0.0 60.0 0.0 74.0
- 12.0 49.3 49.2 85.2

before after
Top Bottom Both

bloom en 37.0 78.0 67.0 88.0
(1b7) de 0.0 60.0 0.0 86.0

fr 13.0 80.0 72.0 98.0
es 18.0 44.0 94.0 97.0
zh 6.0 1.0 89.0 90.0
ja 0.0 67.0 35.0 97.0
- 12.3 55.0 59.5 92.7

bloom en 32.0 41.0 87.0 96.0
(3b) de 0.0 44.0 2.0 55.0

fr 15.0 72.0 72.0 93.0
es 19.0 60.0 94.0 95.0
zh 7.0 24.0 91.0 90.0
ja 0.0 85.0 1.0 87.0
- 12.2 54.3 57.8 86.0

Llama-2 en 83.0 82.0 89.0 89.0
(7b) de 0.0 2.0 6.0 23.0

fr 2.0 1.0 8.0 7.0
es 1.0 4.0 4.0 35.0
zh 0.0 2.0 4.0 50.0
ja 1.0 1.0 12.0 10.0
- 14.5 15.3 20.5 35.7

Llama-2 en 64.0 90.0 81.0 94.0
(13b) de 3.0 2.0 3.0 16.0

fr 0.0 9.0 1.0 8.0
es 1.0 1.0 5.0 5.0
zh 3.0 10.0 6.0 5.0
ja 2.0 6.0 1.0 4.0
- 12.2 19.7 16.2 22.0

Table 9: Probability of language occurrence of generated texts before and after intervention. Top: intervention to
only top-1000 neurons. Bottom: intervention to only bottom-1000 neurons. Both: intervention to both top- and
bottom-1000 neurons. The metric is accuracy measured by the FastText language identifier.
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Figure 22: Ablation study of changing the number of neurons to intervene. x-axis: log10(k)
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Figure 23: Ablation study of changing the number of neurons to intervene. x-axis: log10(k)
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Figure 24: Ablation study of changing the number of neurons to intervene. x-axis: log10(k)
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Figure 25: Summary of Model-generated text examples by unconditional text generation setting
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Figure 26: Unconditionally model-generated text examples without interventions.
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Figure 27: Model-generated text examples from unconditional text generation settings with the top-1000 and
bottom-1000 language-selective neurons intervention.
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Figure 28: Model-generated text examples from unconditional text generation settings with top-1000 and bottom-
1000 language-selective neurons intervention.
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Figure 29: Model-generated text examples from unconditional text generation settings with top-1000 and bottom-
1000 language-selective neurons intervention.
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Figure 30: Model-generated text examples from unconditional text generation settings by varying the number of
interventions.
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Figure 31: Model-generated text examples from unconditional text generation settings by varying the number of
interventions.
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Figure 32: Model-generated text examples from unconditional text generation settings by varying the number of
interventions.
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Figure 33: Model-generated text examples from unconditional text generation settings by varying the number of
interventions.
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Figure 34: Model-generated text examples from unconditional text generation settings by varying the number of
interventions.
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Figure 35: Model-generated text examples from unconditional text generation settings by varying the number of
interventions.
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model language Accuracy BLEU
Before After Before After

xglm-564M de 0.0 15.0 0.0 0.0
xglm-564M ja 0.0 0.0 0.0 0.0
xglm-564M fr 0.0 3.0 0.0 0.0
xglm-564M zh 0.0 2.0 0.0 0.0
xglm-564M - 0.0 5.0 0.0 0.0
xglm-1.7B de 0.0 18.0 0.0 1.4
xglm-1.7B ja 0.0 11.0 0.0 0.0
xglm-1.7B fr 0.0 0.0 0.0 0.0
xglm-1.7B zh 0.0 0.0 0.0 0.0
xglm-1.7B - 0.0 7.3 0.0 0.3
xglm-2.9B de 0.0 3.0 0.0 0.0
xglm-2.9B ja 0.0 0.0 0.0 0.0
xglm-2.9B fr 0.0 0.0 0.0 0.0
xglm-2.9B zh 0.0 0.0 0.0 0.0
xglm-2.9B - 0.0 0.8 0.0 0.0
bloom-560m de 0.0 4.0 0.3 0.4
bloom-560m ja 0.0 0.0 0.0 0.0
bloom-560m fr 0.0 0.0 0.0 0.0
bloom-560m zh 0.0 0.0 0.0 0.0
bloom-560m - 0.0 1.0 0.1 0.1
bloom-1b7 de 0.0 35.0 1.0 1.8
bloom-1b7 ja 0.0 8.0 0.1 0.2
bloom-1b7 fr 0.0 2.0 1.0 1.5
bloom-1b7 zh 0.0 3.0 0.2 0.3
bloom-1b7 - 0.0 12.0 0.6 0.9
bloom-3b de 0.0 32.0 0.7 1.0
bloom-3b ja 0.0 4.0 0.1 0.1
bloom-3b fr 0.0 6.0 0.4 0.7
bloom-3b zh 0.0 1.0 0.2 0.2
bloom-3b - 0.0 10.8 0.3 0.5
Llama-2-7b-hf de 0.0 48.0 1.2 12.5
Llama-2-7b-hf ja 1.0 57.0 0.2 4.5
Llama-2-7b-hf fr 0.0 32.0 1.0 11.1
Llama-2-7b-hf zh 3.0 82.0 0.6 7.8
Llama-2-7b-hf - 1.0 54.8 0.8 9.0
Llama-2-13b-hf de 0.0 37.0 0.6 10.0
Llama-2-13b-hf ja 4.0 75.0 0.7 6.1
Llama-2-13b-hf fr 0.0 9.0 0.7 4.7
Llama-2-13b-hf zh 40.0 96.0 5.8 9.6
Llama-2-13b-hf - 11.0 54.3 1.9 7.6

Table 10: Results of conditional text generation for IWSLT2017.
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model language Accuracy BLEU
Before After Before After

xglm-564M de 0.0 17.0 0.0 0.0
xglm-564M fr 0.0 1.0 0.0 0.0
xglm-564M zh 0.0 2.0 0.0 0.0
xglm-564M - 0.0 6.7 0.0 0.0
xglm-1.7B de 0.0 16.0 0.0 0.2
xglm-1.7B fr 0.0 0.0 0.0 0.0
xglm-1.7B zh 0.0 0.0 0.0 0.0
xglm-1.7B - 0.0 5.3 0.0 0.1
xglm-2.9B de 0.0 0.0 0.0 0.0
xglm-2.9B fr 0.0 0.0 0.0 0.0
xglm-2.9B zh 0.0 0.0 0.0 0.0
xglm-2.9B - 0.0 0.0 0.0 0.0
bloom-560m de 0.0 4.0 1.4 1.2
bloom-560m fr 0.0 0.0 0.5 0.6
bloom-560m zh 0.0 0.0 0.1 0.1
bloom-560m - 0.0 1.3 0.7 0.6
bloom-1b7 de 0.0 37.0 2.9 1.7
bloom-1b7 fr 0.0 9.0 1.7 2.7
bloom-1b7 zh 0.0 34.0 0.5 0.6
bloom-1b7 - 0.0 26.7 1.7 1.7
bloom-3b de 0.0 19.0 3.1 1.4
bloom-3b fr 0.0 7.0 1.2 4.0
bloom-3b zh 0.0 4.0 0.4 1.0
bloom-3b - 0.0 10.0 1.5 2.1
Llama-2-7b-hf de 2.0 53.0 5.3 15.2
Llama-2-7b-hf fr 0.0 36.0 2.1 13.2
Llama-2-7b-hf zh 12.0 86.0 2.4 11.3
Llama-2-7b-hf - 4.7 58.3 3.3 13.2
Llama-2-13b-hf de 4.0 32.0 3.3 9.7
Llama-2-13b-hf fr 1.0 15.0 2.2 6.6
Llama-2-13b-hf zh 57.0 99.0 13.5 18.9
Llama-2-13b-hf - 20.7 48.7 6.3 11.7

Table 11: Results of conditional text generation for WMT.
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model language Accuracy BLEU
Before After Before After

xglm-564M de 0.0 38.0 0.0 0.0
xglm-564M es 0.0 3.0 0.0 0.0
xglm-564M ja 0.0 0.0 0.0 0.0
xglm-564M fr 0.0 0.0 0.0 0.0
xglm-564M zh 0.0 1.0 0.0 0.0
xglm-564M - 0.0 8.4 0.0 0.0
xglm-1.7B de 0.0 21.0 0.0 1.3
xglm-1.7B es 0.0 0.0 0.0 0.0
xglm-1.7B ja 0.0 4.0 0.0 0.0
xglm-1.7B fr 0.0 0.0 0.0 0.0
xglm-1.7B zh 0.0 0.0 0.0 0.0
xglm-1.7B - 0.0 5.0 0.0 0.3
xglm-2.9B de 0.0 0.0 0.0 0.0
xglm-2.9B es 0.0 0.0 0.0 0.0
xglm-2.9B ja 0.0 0.0 0.0 0.0
xglm-2.9B fr 0.0 0.0 0.0 0.0
xglm-2.9B zh 0.0 0.0 0.0 0.0
xglm-2.9B - 0.0 0.0 0.0 0.0
bloom-560m de 0.0 6.0 0.4 0.3
bloom-560m es 0.0 9.0 0.2 0.6
bloom-560m ja 0.0 5.0 0.0 0.0
bloom-560m fr 0.0 0.0 0.5 0.6
bloom-560m zh 0.0 0.0 0.3 0.3
bloom-560m - 0.0 4.0 0.3 0.3
bloom-1b7 de 0.0 56.0 1.3 1.3
bloom-1b7 es 0.0 2.0 1.2 1.2
bloom-1b7 ja 0.0 6.0 0.2 0.1
bloom-1b7 fr 0.0 16.0 1.7 2.8
bloom-1b7 zh 0.0 21.0 0.3 0.2
bloom-1b7 - 0.0 20.2 0.9 1.1
bloom-3b de 0.0 31.0 1.4 0.8
bloom-3b es 0.0 7.0 1.4 2.3
bloom-3b ja 0.0 7.0 0.2 0.2
bloom-3b fr 0.0 1.0 1.8 1.8
bloom-3b zh 1.0 2.0 0.4 0.4
bloom-3b - 0.2 9.6 1.0 1.1
Llama-2-7b-hf de 0.0 66.0 2.6 17.7
Llama-2-7b-hf es 4.0 77.0 3.3 16.6
Llama-2-7b-hf ja 0.0 58.0 0.3 10.4
Llama-2-7b-hf fr 1.0 58.0 4.1 21.5
Llama-2-7b-hf zh 1.0 76.0 1.0 11.5
Llama-2-7b-hf - 1.2 67.0 2.3 15.5
Llama-2-13b-hf de 0.0 22.0 1.5 8.8
Llama-2-13b-hf es 2.0 14.0 1.8 4.3
Llama-2-13b-hf ja 7.0 54.0 2.4 11.0
Llama-2-13b-hf fr 0.0 23.0 1.6 10.5
Llama-2-13b-hf zh 20.0 93.0 4.4 19.1
Llama-2-13b-hf - 5.8 41.2 2.3 10.8

Table 12: Results of conditional text generation for FLORES200.

6966



Figure 36: Summary of model-generated text examples from conditional text generation settings
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Figure 37: Model-generated text examples from conditional text generation settings without interventions.
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Figure 38: Model-generated text examples from conditional text generation settings with top-1000 and bottom-1000
language-specific neurons intervention.
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Figure 39: Model-generated text examples from conditional text generation settings with top-1000 and bottom-1000
language-specific neurons intervention.
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Figure 40: Model-generated text examples from conditional text generation settings with top-1000 and bottom-1000
language-specific neurons intervention.
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