
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pages 6845–6881

June 16-21, 2024 ©2024 Association for Computational Linguistics

Transformers Can Represent n-gram Language Models
Anej Svete Ryan Cotterell

{asvete, ryan.cotterell}@inf.ethz.ch

Abstract
Existing work has analyzed the representa-
tional capacity of the transformer architecture
by means of formal models of computation.
However, the focus so far has been on analyz-
ing the architecture in terms of language accep-
tance. We contend that this is an ill-suited prob-
lem in the study of language models (LMs),
which are definitionally probability distribu-
tions over strings. In this paper, we focus on
the relationship between transformer LMs and
n-gram LMs, a simple and historically relevant
class of language models. We show that trans-
former LMs using the hard or sparse attention
mechanisms can exactly represent any n-gram
LM, giving us a concrete lower bound on their
probabilistic representational capacity. This
provides a first step towards understanding the
mechanisms that transformer LMs can use to
represent probability distributions over strings.

https://github.com/rycolab/
transformer-ngrams

1 Introduction

Neural language models (LMs) have become the
backbone of many NLP systems. Their widespread
adoption has prompted a plethora of theoretical
work investigating what they can and cannot do
by studying their representational capacity. Most
state-of-the-art LMs are based on the transformer
architecture (Vaswani et al., 2017), whose theo-
retical abilities and limitations have been studied
extensively; see, e.g., the survey by Strobl et al.
(2023). But, many questions remain unanswered.
Most existing work studies the architecture in terms
of binary language recognition. This introduces
a category error between the object of study—an
LM, which is definitionally a distribution over
strings—and the theoretical abstraction—a set of
strings. To amend this discrepancy, we ask: What
classes of probability distributions over strings can
transformer LMs represent?

Formal models of probabilistic computation
provide a natural, well-understood, and precise
framework for studying the classes of probability
distributions language models can represent. Tra-
ditionally, the representational capacity of neural
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Figure 1: A transformer LM can simulate a 4-gram LM
using 3 heads. The stronger arrows from the heads to
the symbols show where the heads focus their attention.

networks, both in terms of lower bounds (what they
can provably do) as well as upper bounds (what
they can provably not do), has been studied in terms
of Boolean sequential models of computation, such
as finite-state automata and Turing machines (e.g.,
Kleene, 1956; Minsky, 1954; Siegelmann and
Sontag, 1992; Hao et al., 2018; Merrill, 2019; Mer-
rill et al., 2020, 2022; Merrill and Tsilivis, 2022).
Recent work has extended this paradigm to work
with probabilistic models of computation (Svete
and Cotterell, 2023; Nowak et al., 2023), but so far
only for LMs based on recurrent neural networks.

However, the sequential nature of classical
models makes the connection to the inherently
parallelizable transformer architecture less straight-
forward and has resulted in a number of results
upper-bounding their representational capacity
(Hahn, 2020; Bhattamishra et al., 2020; Chiang
and Cholak, 2022; Hao et al., 2022a; Merrill and
Sabharwal, 2023c). We connect transformer LMs
to a classical class of LMs that lend themselves
particularly well to parallelized computations:
n-gram LMs. We show that both hard as well as
sparse attention transformer LMs can represent any
n-gram LM (Theorems 3.1 and 4.1).1 This gives

1An analysis completely analogous to practical implemen-
tations would also consider soft attention transformer LMs,
whose full support when attending over the preceding symbols
makes the analysis trickier. We, therefore, omit its analysis
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us a concrete lower bound on their probabilistic
representational capacity. We also study the role of
the number of heads (Theorem 3.1) and the number
of layers (Theorem 3.2), illustrating a trade-off
between the number of heads, layers, and the com-
plexity of the non-linear transformations required
for the simulation of n-gram LMs. Altogether,
these results offer a step towards understanding
the probabilistic representational capacity of trans-
former LMs and the mechanisms they might em-
ploy to implement formal models of computation.

2 Preliminaries

Let Σ be an alphabet, i.e., a finite, non-empty set
of symbols, and Σ˚ the (infinite) set of all strings
formed from symbols of Σ. Most modern LMs
define p pyq for y P Σ˚ autoregressively—as a
product of conditional probability distributions:

p pyq def“ p pEOS | yq
|y|ź

t“1

p pyt | yătq . (1)

Here, EOS R Σ is a distinguished end-of-string
symbol. The EOS symbol enables us to define the
probability of a string purely based on the condi-
tional distributions. Such a factorization can be
done without loss of generality (Du et al., 2023).
We define Σ

def“ Σ Y tEOSu. Further, the condi-
tional probability distributions p pyt | yătq are usu-
ally defined based on vectorial representations of
yăt computed by some function enc : Σ˚ Ñ RD.
This leads us to the definition of representation-
based LMs below.

Definition 2.1. Let Σ be an alphabet and
enc : Σ˚ Ñ RD a representation function en-
coding strings as D-dimensional representations.
Let E P R|Σ|ˆD be an output matrix. A
representation-based LM p defines the conditional
probability distributions p pyt | yătq as2

p pyt | yătq def“ softmaxpE enc pyătqqyt . (2)

At a high level, we are interested in encoding an
arbitrary n-gram LM using a transformer LM. To
do so, we need a notion of equivalence between
language models. In this paper, we will work with
the following simple definition.

here and reserve it for a separate treatment.
2One could, more generally, swap the softmax for any

other normalization function, such as the sparsemax (Martins
and Astudillo, 2016). Here, however, we focus on the softmax
for conciseness.

Definition 2.2. Two LMs p and q over Σ˚ are
weakly equivalent if p pyq “ q pyq for all y P Σ˚.

This paper precisely explains and proves the fol-
lowing theorem, stated informally below.

Theorem 2.1 (Informal). For every n-gram LM,
there exists a weakly equivalent ({hard, sparse}
attention) transformer LM.

2.1 An Aside about Boolean Recognition
Fundamentally, Theorem 2.1 is about weak equiv-
alence (Definition 2.2) between two LMs. In this
subsection, we make our case against treating LMs
as recognizers. The most common manner of ana-
lyzing a language model as a recognizer is based on
using its representations as an input to a classifier
(Merrill, 2019; Merrill et al., 2020). We recapitu-
late a common definition below.

Definition 2.3. Let p be a representation-based LM
with the representation function enc : Σ˚ Ñ RD

and let g : RD Ñ t0, 1u be a classifier. The binary
language of p with g is defined as

Lg ppq def“ ty P Σ˚ | g penc pyqq “ 1u. (3)

Related is the notion of truncated recognition.

Definition 2.4 (Hewitt et al. (2020), Definition 4).
Let p be a language model over Σ˚ and α ą 0. The
α-truncated language of p is defined as

Lα ppq def“ ty P Σ˚ | p pEOS | yq ě α (4)

and p pyt | yătq ě α @t P r|y|su.
There are many results in the literature treat-

ing transformers’ ability to recognize languages
in the sense of the two definitions above. For in-
stance, transformers are unable to recognize the
Dyck language with more than one bracket type
and the PARITY language in the sense of Defini-
tion 2.3 (Hahn, 2020), but can recognize bounded
Dyck languages in the sense of Definition 2.4 (Yao
et al., 2021). Our indictment of analyzing Lg ppq
and Lα ppq is that proceeding in such a manner dis-
regards the probabilities assigned to strings by p,
which we view as essential to language modeling.
Moreover, Definition 2.3 depends on the form of
the classifier g while Definition 2.4 depends on the
hyperparameter α. For example, positively classi-
fied strings from a language could have their condi-
tional probabilities only slightly above the classifi-
cation threshold and the negatively classified ones
only slightly below the threshold (Hahn, 2020),
which hides the true distribution defined by the
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The quick brown fox jumps over . . .

p pfox | The quick brownq
p pjumps | quick brown foxq

p pover | brown fox jumpsq

¨
¨

¨

Figure 2: An illustration of how a 4-gram LM computes
the probability of a string. All conditional probabilities
can be computed in parallel and then multiplied into the
probability of the entire string.

LM. In this context, our contention is that Lg ppq
and Lα ppq are not useful definitions for studying
the representational capacity of LMs. Instead, we
advocate for analyzing LMs as probabilistic formal
languages.

2.2 Language Modeling with n-grams

The next-symbol probabilities in n-gram LMs are
computed under the n-gram assumption.

Assumption 2.1. The n-gram assumption states
that the conditional probability of the symbol yt
given yăt only depends on n ´ 1 previous symbols
yt´1
t´n`1

def“ yt´1, . . . , yt´n`1:

p pyt | yătq “ p
`
yt | yt´1

t´n`1

˘
. (5)

We will refer to yt´1
t´n`1 as the history of yt.

Padding. Eq. (5) assumes the existence of n ´ 1
preceding symbols that define the conditional
distribution p pyt | yătq. To ensure this is the case
even at the beginning of the string, it is standard to
pad the input string with n ´ 1 beginning-of-string
symbols BOS. For ease of notation, we index the
n ´ 1 BOS tokens with indices ´n ` 2, . . . , 0 so
that n-gram LMs conveniently fit the autoregres-
sive factorization from Eq. (1). We also define
Σ

def“ Σ Y tBOSu.
Despite their simplicity, n-gram LMs have a sto-

ried place in language modeling (Shannon, 1948;
Baker, 1975a,b; Jelinek, 1976; Bahl et al., 1983;
Jelinek, 1990; Bengio et al., 2000, 2003, 2006;
Schwenk, 2007; Heafield, 2011; Heafield et al.,
2013). Because the conditional probabilities of
n-gram LMs only depend on the previous n´1 sym-
bols, different parts of the string can be processed
independently, i.e., in parallel. This facilitates a
natural connection to transformer LMs since paral-
lelizability is a prevalent feature of the architecture
and one of its main advantages over other neural
LMs such as RNN LMs (Vaswani et al., 2017).

2.3 Transformer Language Models
Transformer LMs are LMs whose conditional
distributions p pyt | yătq are computed by a trans-
former. A transformer is a composition of multiple
transformer layers, each of which implements
the attention mechanism. We give definitions of
these building blocks in what follows.

Notation. We use bold, unitalicized letters such
as x P RD to denote real-valued vectors and itali-
cized letters xj P R for their entries. Capital bold
letters such as X P RNˆD denote matrices. All
vectors are column vectors unless transposed. We
define the vertically stacking operator p¨ ; ¨ ¨ ¨ ; ¨q,
which denotes the vertical concatenation of the
D-dimensional column vectors x1, . . . ,xN into
a ND-dimensional vector px1; ¨ ¨ ¨ ;xN q P RND

and the concatenation of the D-dimensional row
vectors xJ

1 , . . . ,x
J
N into a matrix X P RNˆD with

N rows and D columns. Given the matrix X “`
xJ
1 ; ¨ ¨ ¨ ;xJ

N

˘
, we write Xn “ `

xJ
1 ; ¨ ¨ ¨ ;xJ

n

˘
for

the submatrix composed of the first n rows. We call
a function f : RD ˆ RD Ñ R whose purpose is to
evaluate the compatibility of two vectors a scoring
function. A normalization function π : RN Ñ
∆N´1 maps vectors in RN to N probabilities.
Here, ∆N´1 def“

!
x P r0, 1sN | řN

n“1 xn “ 1
)

is
the pN ´ 1q-dimensional probability simplex. This
notation is summarized in Tab. 1.

The Attention Mechanism. The attention mech-
anism works as follows. It takes a query vector
q P RD and two matrices: The matrix K P RNˆD

of keys and the matrix V P RNˆD of values and
computes a weighted average of the value vectors
based on the compatibilities of the key vectors and
the query vector, as determined by a scoring func-
tion f . A formal definition is given below.

Definition 2.5 (Attention Mechanism). Let f be
a scoring function and π a normalization func-
tion. Let q P RD be a query vector and
let K “ `

kJ
1 ; ¨ ¨ ¨ ;kJ

N

˘ P RNˆD and V “`
vJ
1 ; ¨ ¨ ¨ ;vJ

N

˘ P RNˆD be matrices of keys and
values, respectively. An attention mechanism
Att : RD ˆ RNˆD ˆ RNˆD Ñ RD is defined as

Att pq,K,Vq def“
Nÿ

n“1

snvn, (6)

where

s
def“ π pf pq,k1q , . . . , f pq,kN qq (7)
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Symbol Type Meaning

rN s Ă N The set t1, . . . , Nu for N P N.
y P Σ A symbol, element of Σ.

Σ,Σ,Σ alphabet Σ is a set of symbols, Σ def“ Σ Y tBOSu, Σ def“ Σ Y tEOSu
y P Σ˚ A string over Σ.
yi
j P Σ˚ A substring of y, a string.

JyK P t0, 1u|Σ| One-hot encoding of the symbol y P Σ.
D P N Size of the contextual representations in the transformer.

∆N´1 Ď RN The N ´ 1-dimensional probability simplex.
f RD ˆ RD Ñ R A scoring function.
π RN Ñ ∆N´1 A normalization function.

Q, K, V , O RD Ñ RD The query, key, value, and output functions.
F RD Ñ RD The final transformer LM transformation function.
enc Σ˚ Ñ RD The string representation function.
r Σ ˆ N Ñ RD The position-augmented representation function.
L P N Number of layers.
H P N Number of heads.
H RHD Ñ RD The head combining function.

p¨ ; ¨ ¨ ¨ ; ¨q Vertical concatenation operator of vectors or matrices.

Table 1: A summary of the notation used in the paper.

is the vector of normalized scores between the
query q and the keys in K.

The most standard implementation of the scoring
function f is the (scaled) inner product f pq,kq def“
xq,ky. Some of our results rely on this standard
formulation. However, some also rely on the more
general, but still simple and just as efficiently com-
putable scoring functions.

The Transformer Architecture. A transformer
layer uses the attention mechanism to compute aug-
mented representations zt “ Att pqt,Kt,Vtq of
the input representations Xt “ px1; ¨ ¨ ¨ ;xtq. The
query qt, the keys Kt, and values Vt are all trans-
formations of the input representations Xt.

Definition 2.6. Let Q,K, V,O : RD ÑRD be the
query, key, value, and output functions. A trans-
former layer is a function L : RTˆD Ñ RTˆD

that computes

L
`
xJ
1 ; . . . ;x

J
T

˘ “ `
zJ
1 ; . . . ; z

J
T

˘ P RTˆD (8)

for t P rT s where

at
def“ Att pqt,Kt,Vtq ` xt P RD (9a)

zt
def“ O patq ` at P RD. (9b)

Here, we define

qt
def“ Q pxtq P RD (10a)

Kt
def“
´
K px1qJ ; ¨ ¨ ¨ ;K pxtqJ¯ P RtˆD (10b)

Vt
def“
´
V px1qJ ; ¨ ¨ ¨ ;K pxtqJ¯ P RtˆD. (10c)

Note: For simplicity, we do not include layer nor-
malization.

Without further modification, the transforma-
tions applied by the transformer layer are position-
invariant, which necessitates the addition of explicit
positional information.
Definition 2.7. A position-augmented symbol rep-
resentation function r : Σ ˆ N Ñ RD is a func-
tion representing symbols and their positions as
D-dimensional vectors.

Position-augmented symbol representation func-
tions are often implemented as an addition or con-
catenation of separate symbol-only and position-
only representation functions (Vaswani et al., 2017).
Here, we define it more generally as any function
of the symbol and its position.
Definition 2.8. A static encoding R is a function
R : ΣT Ñ RTˆD defined for any T P N as

R pyq def“
´
r py1, 1qJ; ¨ ¨ ¨ ; r pyT , T qJ¯ . (11)

Multiple transformer layers are stacked into a
transformer, which computes the (deep) contextual
representations of all symbols in the string.
Definition 2.9. For L P N, let Lℓ for ℓ P rLs be
transformer layers. Let R be a static encoding. An
L-layer transformer T is defined as

T pRq def“ LL ˝ ¨ ¨ ¨ ˝ L1 ˝ R. (12)

A transformer computes the contextual represen-
tations of the symbols y “ y1 ¨ ¨ ¨ yT as

`
xLJ
1 ; ¨ ¨ ¨ ;xLJ

T

˘ def“ T pRq pyq . (13)
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If R is clear from the context or arbitrary, we will
omit it as an argument to T and just write T pyq.

Definition 2.10. Let T be a transformer,
F : RD Ñ RD the final representation transforma-
tion function, and y P Σ˚ with |y| “ T . We define

enc pyq def“ F
`
xL
T

˘
, (14)

where xL
T is the representation of the T th symbol in

y computed by T , i.e.,
`
xLJ
1 ; ¨ ¨ ¨ ;xLJ

T

˘ “ T pyq.

Transformer Language Models. So far, we
have only defined how the transformer architecture
can be used to compute the contextual representa-
tions of the symbols. To complete the definition,
we define a transformer language model as follows.

Definition 2.11. A transformer LM pT is the
representation-based autoregressive LM with the
representation function enc from Eq. (14). That is,
pT defines the conditional probability distributions

pT pyt | yătq def“ softmaxpE enc pyătqqyt . (15)

2.3.1 Variants of the Attention Mechanism
In this subsection, we discuss many common vari-
ants of the attention mechanism. First, multi-
headed attention uses H attention heads to com-
pute H representations of the symbols in the string.
The representations constructed by the different at-
tention heads are concatenated into a long vector
and projected down to the output size of a single
head with a head-combiner function H.

Definition 2.12. For L,H P N, let Lh
ℓ : RTˆD Ñ

RTˆD, ℓ P rLs, h P rHs be transformer layers.
Define Lℓ : RTˆD Ñ RTˆHD as

Lℓ pXq def“
´
L1
ℓ pXqJ ; ¨ ¨ ¨ ;LH

ℓ pXqJ¯J
. (16)

Furthermore, let H : RHD Ñ RD. An L-layer
transformer with H heads computes:

T pRq def“ LL ˝ H ˝ ¨ ¨ ¨ ˝ H ˝ L1 ˝ R, (17)

where H is applied row-wise to project the repre-
sentations of H heads to RD.

Attention types. Attention weights are computed
by normalizing the scores f pq,k1q , . . . , f pq,ktq.
The choice of the projection function π determines
the type of attention and has concrete implications
on representational capacity (Hao et al., 2022a).

Definition 2.13. Hard attention is computed with
the hardmax projection function:

hardmax pxqd def“
#

1
m if d P argmax pxq
0 otherwise

(18)

for d P rDs, where x P RD and m
def“

| argmax pxq | is the cardinality of the argmax set.

We also introduce sparse attention, which uses
the sparsemax normalization function to compute
the attention weights.

Definition 2.14. Sparse attention is computed with
the sparsemax projection function:

sparsemaxpxq def“ argmin
pP∆D´1

∥p ´ x∥22. (19)

3 Hard Attention Transformer LMs

This section presents a set of results describing the
representational capacity of hard attention trans-
former LMs. Concretely, we show that transformer
LMs with hard attention can represent n-gram
LMs, either using n ´ 1 heads (Theorem 3.1) or
n ´ 1 layers (Theorem 3.2). Simulation is possible
even with a single head and a single layer (Theo-
rem 3.3) but might require a more elaborate set of
non-linear transformations and positional encod-
ings whose precision scales linearly with the string
length.

Theorem 3.1. For any n-gram LM, there exists a
weakly equivalent single-layer hard attention trans-
former LM with n ´ 1 heads.

Proof intuition. Given an n-gram LM p, we can
construct a weakly equivalent LM pT defined by
a transformer T that looks back at the preceding
n ´ 1 positions using n ´ 1 heads, each of them
uniquely attending to exactly one position. The
symbols attended to can be used to identify the full
history, which can be used to access the conditional
distribution over the next symbol. This is illustrated
in Fig. 1. See Appendix B.2 for the full proof. ■

Theorem 3.1 shows that transformer LMs
with hard attention can represent n-gram LMs,
establishing, to the best of our knowledge, the
first concrete relationship between transformer
LMs and probabilistic languages. A natural
follow-up question then is whether n ´ 1 heads are
necessary to correctly simulate an n-gram LM.
Besides aiming to illuminate different mechanisms
enabling the implementation of classical LMs, this
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question also follows the line of inquiry about the
uniqueness and interpretability of the representa-
tions of formal models by neural LMs (Liu et al.,
2023). The following two theorems show that
the intuitive construction using n ´ 1 heads is far
from unique: Theorem 3.2 shows that a similarly
simple simulation is possible with n ´ 1 layers and
a single head, while Theorem 3.3 shows that even
a transformer LM with a single head and a single
layer can simulate an n-gram LM, albeit with
more complex position invariant transformation F .
This suggests that there is no canonical way of de-
termining whether a transformer LM has learned an
n-gram LM by looking at individual components
(e.g., positions attended to by the different heads).

Theorem 3.2. For any n-gram LM, there exists
a weakly equivalent pn ´ 1q-layer hard attention
transformer LM with a single head.

Proof intuition. Whereas the transformer LM con-
structed in Theorem 3.1 used n ´ 1 heads to look
at all the n ´ 1 positions of interest, an n ´ 1-
layer transformer LM can use the n ´ 1 layers to
look back at the immediately preceding position
and copy it forward n ´ 1 times (keeping the cur-
rent symbol there as well). After n ´ 1 layers of
such transformations, the entire history can be read
from the current contextual representation. See
Appendix B.2 for the full proof. ■

Apart from using hard attention, both trans-
former LMs used in Theorems 3.1 and 3.2 rely
on modeling assumptions often found in practical
implementations of the transformer: The transfor-
mations Q,K, and V are linear functions, the scor-
ing function is implemented as a dot-product and
positional encodings are bounded. This makes the
results comparable to practical implementations.
The following theorem, in contrast, shows that if
we permit the use of less standard components,
transformer LMs can identify the history of interest
using only a single head and a single layer.

Theorem 3.3. For any n-gram LM, there exists a
weakly equivalent single-layer hard attention trans-
former LM with a single head.

Proof intuition. The bulk of this construction lies
in the encoding yt´1

t´n`1 in a vector that can be con-
structed by a single attention head in one layer.
This is done by an attention head that (1) puts
non-zero attention on only the previous n ´ 1 sym-
bols and (2) encodes the identities and the positions
of symbols in a |Σ|-dimensional value vector. The

value vector can then be decoded into a one-hot
encoding of yt´1

t´n`1 by an n ´ 1-layer MLP that de-
fines F , which allows us to match the conditional
probabilities of the n-gram LM as in Theorems 3.1
and 3.2. See Appendix B.2 for the full proof. ■

4 Sparse Attention Transformer LMs

While the results in §3 concretely characterize
the abilities of hard attention transformer LMs,
the assumption of hard attention is somewhat
removed from practical implementations of the
model. Those most often rely on differentiable nor-
malization functions, such as the softmax.3 How-
ever, the full support of the softmax function makes
the connection to formal models of computation
difficult (Hahn, 2020). To bring the theoretical
models closer to practical implementations yet still
be able to make clear analogies to formal models
of computation, we now consider sparse attention
transformers, which use the sparsemax normaliza-
tion function. The sparsity allows sparse attention
transformers to simulate n-gram LMs just like
hard attention transformers while relying on differ-
entiable operations.

Theorem 4.1. For any n-gram LM, there exists
a weakly equivalent single-layer sparse attention
transformer LM with n ´ 1 heads.

Proof intuition. The intuition behind the simula-
tion with sparse attention is similar to the hard
attention one; each head attends to a single posi-
tion, as illustrated in Fig. 1. Effectively, the con-
struction results in a sparse attention transformer
that simulates hard attention. In contrast to The-
orems 3.1 and 3.2, we here require a model with
unbounded positional encodings and a non-linearly
transformed dot-product scoring function. Intu-
itively, the unbounded positional encodings are re-
quired to scale the unnormalized attention scores
to differ enough for the sparsemax to focus on a
single position. The rest of the proof follows that of
Theorem 3.1; see Appendix C for the details. ■

Theorem 4.1 (representing an n-gram LM with
n´1 heads) could naturally be extended to analogs

3As noted in §1, the analysis of soft attention transformers
requires a different type of analysis in terms of approximation
of the probabilities. A complete study would have to consider
the approximation over arbitrarily long strings (since Σ˚ is
an infinite set), which is difficult by simply scaling model
parameters to a large constant. We focus on exact simula-
tion here, but conjecture that soft attention transformers can
approximate LMs whose average string length is finite.
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of Theorem 3.2 (representing an n-gram LM with
n ´ 1 layers) and Theorem 3.3 (representing an
n-gram LM with a single head and a single layer)
using a similar adaptation of the construction from
the hard attention case to the sparse attention one
as in Theorem 4.1.

5 Space Complexity

In §3 and §4, we describe lower bounds that tell us
what types of probability distributions transformer
LMs can represent, but do not say how efficiently
they can do so. The space complexity of simulating
n-gram LMs is discussed in this section. We focus
on hard-attention transformer LMs with multiple
heads or multiple layers (Theorems 3.1 and 3.2)
since their modeling assumptions (bar hard atten-
tion) are closest to practical implementations. The
constructive proofs of Theorems 3.1 and 3.2 allow
us to directly analyze the space requirements for
the simulation of n-gram LMs, both in terms of
(1) the size of the contextual representations Xh

ℓ as
well as (2) the number of bits required to represent
the individual entries of the vectors xh

ℓ,t.

5.1 Scaling with Respect to the Number of
Computational Steps

We first address the second point. Specifically, we
are interested in how the number of bits scales with
respect to t, the number of computational steps per-
formed during the generation of a string y P Σ˚.
As summarized by Tab. 2, the models constructed
in the proofs of Theorems 3.1 and 3.2 use positional

encodings with entries of the form
b

1
t for t P N,

i.e., they contain square roots of rational numbers.
This makes the scaling of the space complexity
difficult, as square roots of rational numbers are
not in general representable with a finite number
of bits. While this might seem discouraging, we
emphasize that these specific positional encodings
were only used to keep the contextual representa-
tions bounded and the scoring function in line with
the original formulation (Vaswani et al., 2017) and
concurrent work (Merrill and Sabharwal, 2023a).
A closer look at the constructions in the proof of
Theorems 3.1, 3.2 and 4.1 reveals that simpler (but
unbounded) positional encodings with a less stan-
dard scoring function can be used to the same ef-
fect. In particular, we can use positional encodings
that contain entries of the form t, which only re-
quire a logarithmic number of bits with respect to t.
Since such scaling is required to uniquely encode

the positional information in general (Merrill and
Sabharwal, 2023c), this represents an asymptoti-
cally optimal scaling of the space complexity of
the contextual representations.4

Importantly, n-gram LMs are real-time: they,
by definition, generate a symbol at each step of
the computation. This means that the scaling of
the space complexity with respect to the number of
computation steps coincides with its scaling with
respect to the length of the generated string y—the
scaling is logarithmic in |y|. This is in contrast to
non-real-time models of computation which might
not generate a symbol at each step of the compu-
tation; while those might still require an asymp-
totically optimal scaling with respect to t, the ad-
ditional computational steps that do not emit any
symbol might mean that the space complexity is
unbounded with respect to the length of the gen-
erated string. An example of such a model is a
transformer LM simulating a (probabilistic) Turing
machine, which would require the model to not
emit symbols at some points of the computation
(Nowak et al., 2023, 2024).

5.2 The Dimensionality of the Contextual
Representations

We now discuss the size of the contextual represen-
tations required for the simulation of n-gram LMs.
From a high level, we have to consider two stages:
(1) the contextual representations xh

ℓ,t of the differ-
ent layers and heads and (2) the size of the final
representation enc pyq. The contextual representa-
tions xh

ℓ,t in stage (1) are composed of the symbol
and positional encodings. The symbol representa-
tions include (two copies of) the one-hot encodings
while the positional encodings include between two
and 2n dimensions encoding positional information.
This means that the per-head and per-layer space
complexity scales with |Σ| and n. For stage (2)
we use the one-hot encodings of the entire history
yt´1
t´n`1, with which we index the matrix of |Σ|n´1

conditional probabilities defined by the n-gram
LM. While the size of enc pyq is theoretically only
lower-bounded by |Σ| (Yang et al., 2018; Svete and
Cotterell, 2023),5 reducing its size requires a lower-

4The construction in Theorem 3.3, in contrast, relies on
encoding the entire preceding string in a single dimension with
one digit per position in the string, which requires a number
of bits that scales linearly with respect to the string length. A
simplification to a logarithmic number of bits does not seem
as straightforward.

5This is because the (logits of the) conditional probabilities
can span a |Σ|-dimensional space.
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rank decomposition of the matrix of conditional
probabilities and a corresponding reparametriza-
tion of the contextual symbol representation. This
might require a blow-up in the number of bits re-
quired to represent individual dimensions, or, in
general, result in a real-valued vector that could not
be represented on a finite-precision system. Alto-
gether, most of the space complexity of the contex-
tual representations comes from the one-hot encod-
ings in enc pyq, which require |Σ|n´1 dimensions.

The discussion in this section can be summarized
by the following theorem.

Theorem 5.1. Let p be an n-gram LM over the
alphabet Σ. There exists a weakly equivalent hard-
attention transformer LM with contextual repre-
sentations x of size O pn|Σ|q and representation
enc pyq of size O

`|Σ|n´1
˘
. Each of x’s entries can

be represented with O plog2 p|y|qq bits for y P Σ˚.

6 Discussion and Related Work

To the best of our knowledge, §3 and §4 provide
the first results on the probabilistic representational
capacity of transformer LMs.

The relevance of n-gram LMs to modern LMs.
One might rightfully question the utility of con-
necting the state-of-the-art language modeling ar-
chitecture to n-gram LMs. LMs based on the
n-gram assumption indeed constitute some of the
simplest and least expressive classes of probability
distributions. Nevertheless, n-gram LMs provide
a useful playground and theoretical foundation for
contextualizing and interpreting the inner work-
ings of modern LMs. For example, n-gram LMs
have been found to comprise a crucial component
of in-context learning, where attention heads in
different layers of the model together identify in-
dividual n-grams and base their predictions on
the presence of such n-grams (Olsson et al., 2022;
Akyürek et al., 2024). The presence of specific
n-grams might therefore present the foundations of
in-context-based knowledge of transformer LMs.
As such, understanding the requirements for cor-
rect simulation of n-gram LMs is important for a
thorough grasp of the abilities of LMs to learn in
context. Encouraging n-gram-LM-based learning
has also been observed to aid in-context learning
abilities (Akyürek et al., 2024). Existing work has
also linked n-gram LMs to other neural network ar-
chitectures such as one-dimensional convolutional
neural networks (Merrill, 2019). Moreover, the
theoretical grounding in classical formal language

theory makes precise statements about n-gram
LMs possible while their simplicity makes them in-
herently interpretable and easy to analyze. n-gram
LMs also have a cognitive interpretation (Jäger and
Rogers, 2012). Most importantly, however, n-
gram LMs lend themselves to paralellized process-
ing, which affords a succinct and natural connec-
tion to transformer LMs and has been suggested
to be a crucial part of any theoretical treatment of
transformer LMs (Strobl et al., 2023; Merrill and
Sabharwal, 2023c).

Understanding the limitations and abilities of
hard attention transformer LMs. Our results
are the strongest in the hard attention setting, which
follows the trend of using hard attention in theo-
retical treatments. Hard attention makes singling
out the important aspects of the string (in our case,
the history) possible. Concretely, we showcase
three different mechanisms that make it possible for
transformer LMs to implement n-gram LMs with
hard attention and investigate the role of the number
of heads and layers. Particularly, our constructions
suggest a possible mechanism in which the differ-
ent transformer heads or layers can specialize in fo-
cusing on different positions in the string, a feature
that has previously been suggested as an explana-
tion of how transformer LMs process strings (El-
hage et al., 2021) and has been observed in trained
transformer LMs (Olsson et al., 2022; Akyürek
et al., 2024).6 Our presentation of multiple orthog-
onal mechanisms that can simulate n-gram LMs
equivalently well is another confirmation of the
observation that algorithmic principles learned or
implemented by neural LMs do not always cor-
respond to a single intuitive implementation of a
formal model of computation, which has concrete
implications on interpretability methods for the ar-
chitecture. This has been observed in practical
scenarios and warns us that focusing on individual
components of the model (that is, using myopic in-
terpretability methods) might result in misleading
interpretability results (Wen et al., 2023).

Probabilistic representational capacity. We
augment existing literature by providing an explicit
connection between transformer LMs and n-gram

6Note that the constructions presented in this paper are
purely meant to showcase the existence of a mechanism that
can be used to simulate n-gram LMs; we do not suggest
that the same mechanisms will be employed by models used
in practice, which is also why do not present any empirical
results. For example, the use of the sparse one-hot encodings
differs from the standard dense representations of symbols.
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language models. In line with work comparing
transformers to circuits (Merrill and Sabharwal,
2023c,a; Weiss et al., 2021; Hao et al., 2022b; Mer-
rill and Sabharwal, 2023b; Merrill et al., 2022; Chi-
ang et al., 2023; Angluin et al., 2023), we also show
the utility of analyzing transformers with paralleliz-
able models of computation, which go hand in hand
with the parallelizable nature of the transformer ar-
chitecture. Moreover, the formalization of an LM
with the output matrix indexed by the contextual
representation (cf. Definition 2.11) makes it easy
to connect existing results on the expressivity of
the transformer architecture with the probabilistic
setting by defining a mapping from the contextual
representation to the conditional probability distri-
bution through the output matrix. We suppose other
simple and parallelizable classes of distributions
might lend themselves well to similar probabilistic
treatments; probabilistic analysis may be particu-
larly interesting in the context of circuit complexity
with sigmoid-activated circuits (Maass et al., 1991),
(Smolensky et al., 1996, Chapter 4).

Connection to (sub-)regular languages This
work focuses on connecting transformer LMs to
n-gram LMs, which are a special instance of the
more general class of sub-regular LMs. In words,
sub-regular LMs are LMs that can be described
without using the full power of the probabilistic
finite-state automata (Jäger and Rogers, 2012). In
this sense, sub-regular LMs fall below regular lan-
guages in the Chomsky hierarchy and themselves
define their own hierarchy (Jäger and Rogers, 2012;
Heinz and Rogers, 2013; Avcu et al., 2017). For
example, some classes of sub-regular languages do
not require sequential processing of the input string
that is usually required by finite-state automata for
correct recognition. The intuitive connection be-
tween transformer LMs and n-gram LMs encour-
ages further work on the connections between other
classes of (sub-)regular LMs and transformer LMs.
Transformers have been linked to (sub)-regular lan-
guages by Yao et al. (2021) and Liu et al. (2023).
Yao et al. (2021) study the ability of transformers
to generate bounded hierarchical languages using
a transformer but do not extend their analysis to
the fully probabilistic case.7 Liu et al. (2023) con-
nect transformers with both hard and soft attention

7The natural connection of the transformer architecture to
both bounded hierarchical languages as well as to n-gram
LMs is interesting since those two classes of LMs can both be
represented particularly efficiently by recurrent neural LMs
(Svete et al., 2024).

to general finite-state automata (FSAs), which de-
fine a strictly larger set of languages than n-gram
languages. This additional generality, however,
comes with some caveats. Liu et al. (2023, The-
orem 1)—their most general result—relies on a
model whose depth scales (logarithmically) with
the string length. As such, no particular finite-
size transformer construction can simulate FSAs
on strings of arbitrary length (which is required
for equivalence). This is in contrast to our results,
which feature transformers of fixed size with re-
spect to the string length. While Liu et al. (2023,
Theorem 2) also provides a result using a finite-
depth transformer for a subset of FSAs, that con-
struction results in a network much bigger and
deeper than ours. For example, their construction

would result in
´

|Σ|n´1
¯2 pn ´ 1q log |Σ| layers in

contrast to n ´ 1 layers with a single head in our
case. Our focus on n-gram LMs thus allows for a
more compact and simpler representation. Worth
noting is that despite being close to our analysis,
none of the related work treats probability distribu-
tions over strings but rather focuses on the binary
decision of whether a string belongs to a language
or not based on the conditional probabilities output
by the model, or, in the case of Liu et al. (2023),
only the computation of state sequences. Trans-
former LMs are studied probabilistically by Xie
et al. (2022), who provide a Bayesian interpreta-
tion of their ability to learn in context by study-
ing the learning abilities of hidden Markov models
(HMMs). While HMMs are equivalent to proba-
bilistic finite-state automata, Xie et al. (2022) do
not connect the in-context learning ability to con-
crete representational capacity results. Rather, they
seek to explain the behavior of in-context learning
as implicit Bayesian inference.

7 Conclusion

We study the representational capacity of trans-
former LMs with n-gram LMs. We show how the
parallelizable nature of n-gram LMs is easy to cap-
ture with the transformer architecture and provide
multiple lower bounds on the probabilistic represen-
tational capacity of transformer LMs. Concretely,
we show that transformer LMs can represent n-
gram LMs both with hard and sparse attention, ex-
hibiting multiple mechanisms transformer LMs can
employ to simulate n-gram LMs. Altogether, our
results reinforce the utility of non-sequential mod-
els of computation for the study of transformers,
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particularly in the language modeling setting.

Limitations

We connect transformer LMs to n-gram LMs
because of their parallelizable nature and their tra-
ditional popularity in NLP. However, n-gram LMs
describe a very simple class of LMs, meaning that
the lower bounds are somewhat less relevant than
the characterization in terms of more expressive
formal models of computation would be. Accord-
ingly, we expect that the lower bounds are some-
what loose and that transformer LMs can represent
more than n-gram LMs, which is also in line
with the empirical success of transformer LMs. We
leave it to future work to tighten the established
lower bounds.

As with most theoretical investigations of
transformers, our results are strongest and the most
precise in the hard attention setting. However,
hard attention is not used in practice, which limits
the applicability of the results. The constructions
presented in this paper are also purely meant to
showcase the existence of a mechanism that can
be used to simulate n-gram LMs. They do not
suggest that the same mechanisms will be learned
by models used in practice. Indeed, the very sparse
representations are not in line with the common
dense contextual representations usually learned
by trained models.

We also only focus on lower bounds of the repre-
sentational capacity. We do not consider any upper
bounds and existing results for similar models to
ours suggest that the lower bound is indeed some-
what loose (Yao et al., 2021).8 That is, we expect
that transformer LMs can represent much more
than n-gram LMs, and expect that many of the
existing results on the computational power of such
models can be extended to the probabilistic setting.

While we present a comprehensive analysis
of transformer LMs in the context of n-gram
LMs, we do not consider various aspects of the
relationship that could be interesting. This is
done to keep the presentation focused and concise.
For example, we do not consider whether such
simulations can be learned from data, an interest-
ing avenue for future research. Lastly, note that
while we focus here specifically on the commonly
deployed transformer-based language models,
there are many other interesting applications of

8For example, we cannot say that the lower bounds imply
any limitations of hard attention transformer LMs.

transformers, such as encoder-only acceptors of
unweighted languages. These applications are
better covered by existing work.
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A Modelling Assumptions

As encouraged by Strobl et al. (2023), we provide in Tab. 2 a short summary of the assumptions behind
the specific transformer architecture we consider in this work. This aims to facilitate the placement of the
results in the context of existing work and to make the results more accessible to the reader.

Lower bound PE Precision Attention Attention Architecture Notes

Q n-gram LMs

¨
˝

b
1

t`kb
1 ´ 1

t`k

˛
‚

k“0,...,n´1

Q, R hard decoder-only n ´ 1 heads, 1 layer Theorem 3.1

Q n-gram LMs

¨
˚̊
˚̊
˚̊
˝

b
1
tb

1 ´ 1
tb

1
t`1b

1 ´ 1
t`1

˛
‹‹‹‹‹‹‚

Q, R hard decoder-only 1 head, n ´ 1 layers Theorem 3.2

Q n-gram LMs 1, t, 10´t Q, R hard decoder-only 1 head, 1 layer Theorem 3.3
Q n-gram LMs 1, t Q, R sparse decoder-only n ´ 1 heads, 1 layer Theorem 4.1

Table 2: A summary of the main assumptions about the models in the style of Strobl et al. (2023, Table 1). Hard
attention here refers to average-hard in the vocabulary of Strobl et al. (2023).

B Proofs: Hard Attention

This section provides detailed proofs of all theorems about the representational capacity of hard-attention
transformer LMs stated in the main part of the paper.

B.1 Computing Logical AND with an MLP
Definition B.1. A ReLU-activated multi-layer-perceptron (MLP) MLP: RN Ñ RM is a function defined
as the composition of functions f1, ¨ ¨ ¨ ,fL

MLP pxq def“ pfL ˝ fL´1 ˝ ¨ ¨ ¨ ˝ f1q pxq (20)

where each fℓ for ℓ P rLs is defined as

fℓ pxq def“ ReLU pWℓx ` bℓq ℓ P rL ´ 1s (21a)

fL pxq def“ WLx ` bL (21b)

where Wℓ P RNℓˆMℓ is a weight matrix with dimensions Nℓ and Mℓ specific to layer ℓ, bℓ P RMℓ is a
bias vector. We refer to MLPs by the number of hidden layers, e.g., a one-layer-MLP is an MLP with one
hidden layer.

In our construction, simulating a n-gram LM with a transformer LM requires a component of the
transformer to perform the logical AND operation between specific entries of binary vectors x P BD. The
following lemma shows how this can be performed by an MLP with appropriately set parameters.
Lemma B.1. Consider m indices i1, . . . , im P rDs and vectors x,v P BD such that

vi “ 1 ti P ti1, . . . , imuu , (22)

i.e., with entries 1 at indices i1, . . . , im. Then, it holds for the MLP MLP pxq def“ ReLU
`
vJx ´ pm ´ 1q˘

that
MLP pxq “ 1 if and only if xik “ 1 for all k “ 1, . . . ,m. (23)

In other words,
MLP pxq “ xi1 ^ ¨ ¨ ¨ ^ xim . (24)

Proof. By the definition of v, vJx ď m for all x P BD. Furthermore, vJx “ m if and only if xik “ 1
for all k “ 1, . . . ,m. The ReLU function maps all other values to 0 and does not change the output value
1 in this case. ■
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B.2 Proofs of the Hard Attention Case
This subsection contains all proofs of the representational capacity of hard attention transformer LMs.
We tackle three cases: the simulation with n ´ 1 heads and a single layer, with n ´ 1 layers and a single
head, and lastly, the simulation with a single head and a single layer. All sections first outline the intuition
behind the proofs and then provide the details in the form of finer-grained lemmata.

B.2.1 Simulation with n ´ 1 Heads: The Intuition
We now outline the intuition behind the construction of a hard attention transformer LM simulating
an n-gram LM, as first presented in Fig. 1.9 To ease the exposition, we start with the final step of the
construction: Assuming we have identified the appropriate history yt´1

t´n`1 after combining the head values
using the head combining function H, we show how pT can encode the conditional probability distribution
p pyt | yt´n`1:t´1q. The intuition of this step is simple: Knowing what the individual p

`
yt | yt´1

t´n`1

˘

for yt P Σ are, we can simply put their logits into a vector and combine the constructed vectors for all
possible histories into the output matrix E:10,11

Ey,yt´1
t´n`1

def“ log p
`
yt | yt´1

t´n`1

˘
(25)

In the following, we write enc pyătq as shorthand notation for enc pyătq def“ F
`
xL
t´1

˘
(i.e., the rep-

resentation which is linearly transformed by E to compute p pyt | yătq after normalization) where
XL “ T pRq pyătq. If we one-hot encode the identified history with T as

enc pyătq def“ Jyt´1
t´n`1K (26)

we can then, using the formulation of the transformer LM from Definition 2.11, use the enc pyătq to look
up the appropriate column in E containing the logits of the conditional probabilities given the identified
history for all possible yt P Σ, i.e., pE enc pyătqqy “ log p

`
y | yt´1

t´n`1

˘
.

We now consider the preceding step of the simulation: Identifying the history given that the n ´ 1 heads
identified the symbols y1, . . . , yn´1 in the positions they attended to. If we concatenate the values of the
n ´ 1 heads into a vector v, this vector of size pn ´ 1q |Σ| will contain the multi-hot representation of the
history of interest:

v “

¨
˚̋

Jy1K
...

Jyn´1K

˛
‹‚ (27)

and vi|Σ|`j “ 1 if and only if m pyiq “ j for a bijection m : Σ Ñ “|Σ|‰ that determines the indices of
the one-hot representations of the symbols. We would then like to transform this vector into a vector
u P R|Σ|n´1

such that
ui “ 1 ðñ i “ s py1, . . . , yn´1q (28)

for a bijection s : Σ ˆ ¨ ¨ ¨ ˆ Σlooooomooooon
n´1 times

Ñ “|Σ|n´1
‰
. This can be equivalently written as

ui “ 1 ðñ vj|Σ|`mpyjq “ 1 for all j “ 1, . . . , n ´ 1 (29)

where i “ s py1, . . . , yn´1q. This is an instance of performing the logical AND operation, which can
be implemented by an MLP as described in Lemma B.1. This MLP will form the transformation H
combining the information obtained from all the heads of the transformer.

This brings us to the final part of the proof: Identifying the symbols at the previous n ´ 1 positions by
the n ´ 1 transformer heads. To show how this can be done, let us consider the parameters we can still set
to define a transformer:

9For simplicity, we disregard the role of residual connections in the following outline. Residual connections are, however,
considered in the full proof later.

10To be able to take the log of 0 probabilities, we work over the set of extended reals R “ R Y t´8,8u.
11Throughout the paper, we implicitly index the matrices directly with symbols and histories. We assume that the symbols and

histories are ordered in some way and that the matrices are ordered accordingly.
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• The position-augmented symbol representations r. Inspired by concurrent work from Merrill and
Sabharwal (2023a), we use the representations of the form

r pyt, tq “

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̋

JytKb
1
tb

1 ´ 1
tb

1
t`1b

1 ´ 1
t`1

...b
1

t`n´1b
1 ´ 1

t`n´1

˛
‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‚

P R2n (30)

This results in vectors r pyt, tq of size |Σ| ` 2 ` 2 pn ´ 1q. Note that such a symbol represen-
tation function can be implemented by concatenating or adding symbol- (JytK) and position-

(
b

1
t , . . . ,

b
1 ´ 1

t`n´1 ) specific components, which is in line with most practical implementations
of the transformer architecture.

• The attention scoring function f . We will use the standard dot-product scoring function

f pq,kq def“ xq,ky. (31)

f will, together with the positional encodings, allow us to easily single out the relevant positions in
the string.

• The parameters of each of the attention heads, that is, the transformations Q, K, and V . Each of
those will take the form of a linear transformation of the symbol (and positional) representations. We
describe them and their roles in more detail below.

The parameters of all the heads will be identical, with the only difference being a single parameter that
depends on the “index” of the head, h. In the following, we describe the construction of a single head. At
any time step t (i.e., when modeling the conditional distribution p pyt | yătq), the head h will attend to the
symbol at position t´h, yt´h. In Fig. 1, for example, Head 3 attends to the position t´3, which is denoted
by the stronger arrow to that position. We now describe the individual transformations Qh, Kh, Vh, and
Oh of the head h. All of them will be affine transformations. Since we are considering only the first layer
of the transformer, we can think of the inputs to the layer as the original symbol representations together
with their position encodings (rather than some contextual representations at higher levels). As mentioned,
the head h will be responsible for identifying the symbol at position t ´ h. Therefore, we want it to put
all its attention to this position. In other words, given the query qt´1, we want the attention function in
Eq. (31) to be uniquely maximized by the key of the symbol at position t ´ h. Notice that, therefore,
the key does not have to depend on the identity of the symbol at position t ´ h—only the positional
information matters. Let us then consider the following query and key transformations for head h:

Qh : r pyt, tq ÞÑ
¨
˝

b
1
tb

1 ´ 1
t

˛
‚ (32)

Kh : r pyt, tq ÞÑ
¨
˝

b
1

t`hb
1 ´ 1

t`h

˛
‚. (33)

Given such a query and such keys, the scoring function computes

f pqt,kjq “
C¨
˝

b
1
tb

1 ´ 1
t

˛
‚,

¨
˝

b
1

j`hb
1 ´ 1

j`h

˛
‚
G
. (34)
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Eq. (34) is an inner product between two unit vectors, and is therefore maximized if and only if they
are the same, that is, if j “ t ´ h. This is exactly the position that we want the head h to attend to.12

Intuitively, both transformations keep only the positional information. The query transformation “injects”
the knowledge of which position should maximize the attention score, while the key transformation
simply “exposes” the positional information about the symbol. The constants 1 and ´1 and the index
of the position ensure that the inner product simply computes the difference between the position of the
symbol and the position of interest.

This leaves us with the question of how to use the position of the symbol of interest (t ´ h) to extract
the one-hot encoding of the symbol at that position. Due to the information contained in the symbol
representations r pyjq, this is trivial:

V : r pyt, tq ÞÑ JyjK. (35)

With this, the identity of the symbol is carried forward through the attention mechanism. Notice that
the only head-depend transformation is the query transformation—it depends on the index of the head,
determining the position of interest, meaning that every head defines a different query transformation,
while the keys and values transformations are the same among all heads. This concludes the outline of the
proof.

B.2.2 Simulation with n ´ 1 Heads: Proofs
This subsection formally proves the construction intuited in Appendix B.2.1 by proving a sequence of
lemmata that formalize each of the steps described in the intuition. Specifically,

1. Lemma B.2 shows how the one-hot encodings of individual symbols in the history can be combined
into the one-hot encoding of the history.

2. Lemma B.3 shows that the scoring function is maximized at the position of interest.

3. Lemma B.4 shows how the one-hot encodings of the symbols in the history can be identified by the
hard attention mechanism.

4. The proof of Theorem 3.1 shows how the construction of the one-hot encoding of the current history
allows us to define the appropriate next-symbol conditional distribution of the n-gram LMs.

Lemma B.2. Let T be a transformer with H “ n ´ 1 heads. Let zh “ Jyt´hK be the output of the hth

head at time t. Then, there exists a function H implemented by a single-layer MLP such that

H pz1, . . . , zn´1q “ Jyt´1
t´n`1K. (36)

Proof. Let y “ y1 . . . yn´1 P Σn´1 and let i be the index in
“|Σ|n´1

‰
that corresponds to y. Furthermore,

let i1, . . . , in´1 be the indices corresponding to the symbols y1, . . . , yn´1 in z1, . . . , zn´1. Then, we have

Jyt´1
t´n`1Ki “ 1 ðñ z1,i1 “ 1 ^ ¨ ¨ ¨ ^ zn´1,in´1 “ 1 (37)

Eq. (36) is an instance of the logical AND operation on the indices encoding the individual histories, which
can be implemented by an MLP as shown in Lemma B.1. ■

The next lemma presents a useful equality about the standard dot-product attention scoring function:
For unit vectors, the attention score is maximized if and only if the vectors are identical. We will use this
fact in our construction to attend to particular positions in the string.

Lemma B.3. Given a fixed t P N, f , define

g pjq def“
C¨
˝

b
1

t´1b
1 ´ 1

t´1

˛
‚,

¨
˝

b
1

j`hb
1 ´ 1

j`h

˛
‚
G

(38)

12Note that while the choice of the positional encodings in this construction is uncommon in practice, the popular sinusoidal
positional encodings (Vaswani et al., 2017) have also been linked to the ability of the transformer-based models to attend to
specific positions of interest based on linear transformations of the positional encodings (Vaswani et al., 2017).
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for j P rt ´ 1s. Then, g is maximized at j “ t ´ 1 ´ h:

argmax
jPrt´1s

¨
˝
C¨
˝

b
1

t´1b
1 ´ 1

t´1

˛
‚,

¨
˝

b
1

j`hb
1 ´ 1

j`h

˛
‚
G˛
‚“ t ´ 1 ´ h. (39)

Proof. The two arguments to the inner product in Eq. (39) are unit vectors. Inner products of unit vectors
are at most 1, with the maximum achieved only if the two vectors are identical. This means that the
function in Eq. (39) is maximized if and only if

¨
˝

b
1

t´1b
1 ´ 1

t´1

˛
‚“

¨
˝

b
1

j`hb
1 ´ 1

j`h

˛
‚ ðñ (40a)

c
1

t ´ 1
“
c

1

j ` h
ðñ (40b)

1

t ´ 1
“ 1

j ` h
ðñ (40c)

j “ t ´ 1 ´ h. (40d)

■

The following lemma presents the core of the proof of Theorem 3.1, exhibiting the construction of a
transformer head that can single out and one-hot encode a symbol at a specific position in the input string.
The lemma relies on a simple pre-processing of the input string, where the string is prepended (padded)
with n ´ 1 beginning of string symbols y1 “ . . . “ yn´1

def“ BOS, which is common practice in language
modeling literature, especially when talking about n-gram LMs. We will denote Σ

def“ Σ Y tBOSu. This
enables a cleaner presentation of the concrete construction of the attention mechanism.

The idea of the proof. Lemma B.4 contains a number of technical definitions of the parameters of a
transformer layer (cf. Definition 2.6. Together, they describe a single head of a transformer layer (which
will contain H “ n ´ 1 such heads) that is able to extract the one-hot encoding of a particular symbol
in the history. The layer of n ´ 1 heads will then be able to extract the n ´ 1 symbols, as required by
Lemma B.2. We now describe a single head more formally. Define the following position-augmented
symbol representation function of the transformer head h:

r py, tq “

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̋

JyK
0|Σ|b

1
tb

1 ´ 1
tb

1
t`1b

1 ´ 1
t`1

...b
1

t`n´1b
1 ´ 1

t`n´1

˛
‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‚

P R2|Σ|`2n. (41)

Here, J¨K P t0, 1u|Σ| one-hot encodes symbols over Σ. This means that the entire static representations
contain multiple components:

• two |Σ|-dimensional slots for symbol representations and

• n 2-dimensional slots for head-specific positional representations.
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We further define
f pq,kq def“ xq,ky, (42)

Q pxq def“ Qx, Q P R2ˆp2|Σ|`2nq, (43a)

K pxq def“ Kx, K P R2ˆp2|Σ|`2nq, (43b)

V pxq def“ Vx, V P Rp2|Σ|`2nqˆp2|Σ|`2nq, (43c)

O pxq def“ Ox, O P Rp2|Σ|`2nqˆp2|Σ|`2nq, (43d)

Q:,2|Σ|`1:2|Σ|`2
def“ I2 (44a)

K:,2|Σ|`2h`1:2|Σ|`2h`2
def“ I2, (44b)

V|Σ|`1:2|Σ|,1:|Σ|
def“ I|Σ| (44c)

O1:|Σ|,1:|Σ|
def“ ´I|Σ| (44d)

We can visualize these matrices as

Q “
|Σ| |Σ| 2 pn´1q2

1st symbol slothkkkkikkkkj 2nd symbol slothkkkkikkkkj 0th position slothkkkkikkkkj n ´ 1 position slotshkkkkikkkkj
p qI2 2

(45a)

K “
|Σ| |Σ| 2h 2 pn´1´hq2

1st symbol slothkkkkikkkkj 2nd symbol slothkkkkikkkkj h ` 1 position slotshkkkkikkkkj hth position slothkkkkikkkkj n ´ h position slotshkkkkikkkkj
p qI2 2

(45b)

V “

1st symbol slothkkkkikkkkj 2nd symbol slothkkkkikkkkj n position slotshkkkkikkkkj
˜ ¸

1st symbol slot (|Σ|)
I|Σ| 2nd symbol slot (|Σ|)

n position slots (2n)

(45c)

O “

1st symbol slothkkkkikkkkj 2nd symbol slothkkkkikkkkj n position slotshkkkkikkkkj
˜ ¸´I|Σ| 1st symbol slot (|Σ|)

2nd symbol slot (|Σ|)
n position slots (2n)

(45d)

where 0N is a N -dimensional vector of zeros, IN is the N -dimensional identity matrix and the unspecified
elements of Q,K, V, O are 0.

Lemma B.4. Let Σ be an alphabet and y P Σ˚. For any t “ 1, . . . , |y|, the hth transformer head
(h P rn ´ 1s) defined with the parameters specified in Eq. (41) to Eq. (44d) outputs

zt´1 “
¨
˝

0|Σ|
Jyt´1´hK

02n

˛
‚. (46)

In particular, this means that the output zt´1 at time step t ´ 1 contains the one-hot encoding of the
symbol at position t ´ h ´ 1.13

13For technical reasons—the residual connections—the output is not Jyt´1´hK but larger (with additional zeros), as shown in
Eq. (46). This, however, is equivalent for the purposes of Lemma B.2 and later Theorem 3.1.
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Proof. Fix t P r|y|s. We compute the representation of yăt computed by the head. First, observe that the
matrix defining the query function Q projects onto the first two components of the positional encoding
from the representation of yt´1:

Q pr pyt´1qq “ Q r pyt´1q “
¨
˝

b
1

t´1b
1 ´ 1

t´1

˛
‚. (47)

Similarly, the matrix defining the key transformation projects onto the hth positional encoding slot, i.e.,
the dimensions 2|Σ| ` 2h ` 1 and 2|Σ| ` 2h ` 2:

K pr pyjqq “ K r pyjq “
¨
˝

b
1

j`hb
1 ´ 1

j`h

˛
‚ (48)

for j “ ´n ` 2, . . . , t ´ 1.
This results in the scoring function

f pqt´1,kjq def“ xqt´1,kjy “
C¨
˝

b
1

t´1b
1 ´ 1

t´1

˛
‚,

¨
˝

b
1

j`hb
1 ´ 1

j`h

˛
‚
G
. (49)

In particular, as shown in Lemma B.3, f is maximized for

j “ t ´ 1 ´ h. (50)

This means that

hardmax pf pqt´1,k1q , f pqt´1,k2q , . . . , f pqt´1,kt´1qqj “ 1 tj “ t ´ 1 ´ hu . (51)

The definition of V further means that

V pr pyjqq “ V r pyjq “
¨
˝
0|Σ|
JyjK
02n

˛
‚, (52)

giving us, by Eq. (9a),

at´1 “ vt´1´h ` xt´1 “
¨
˝

Jyt´1K
Jyt´1´hK

02n

˛
‚. (53)

The definition of O then gives us

zt´1 “ O pat´1q ` at´1 (54a)

“ Oat´1 ` at´1 (54b)

“
¨
˝

´I|Σ|
˛
‚
¨
˝

Jyt´1K
Jyt´1´hK

02n

˛
‚`

¨
˝

Jyt´1K
Jyt´1´hK

02n

˛
‚ (54c)

“
¨
˝

´Jyt´1K
0|Σ|
02n

˛
‚`

¨
˝

Jyt´1K
Jyt´1´hK

02n

˛
‚ (54d)

“
¨
˝

0|Σ|
Jyt´1´hK

02n

˛
‚, (54e)

which is what we wanted to prove. ■
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Lemmas B.2 and B.4 show that we can define a transformer that one-hot encodes the history of interest
yt´1
t´n`1. We now show how to define an output matrix E to define a weakly equivalent transformer LM.

Concretely, we define E P R|Σ|ˆ|Σ|n´1

with

Ey,yt´1
t´n`1

def“ log p
`
yt | yt´1

t´n`1

˘
. (55)

Theorem 3.1. For any n-gram LM, there exists a weakly equivalent single-layer hard attention trans-
former LM with n ´ 1 heads.

Proof. Let T be a transformer LM with n ´ 1 heads defined with the parameters specified in Eq. (41) to
Eq. (44d) (h P rn ´ 1s). Let y P tBOSun´1Σ˚ with |y| “ T be a string and XL “ `

xLJ´n`2; . . . ;x
LJ
T

˘ “
T pyq. We derive:

pT pyq “ pT pEOS | yq
Tź

t“1

pT pyt | yătq (56a, Autoregressive LM.)

“ softmax
`
E F

`
xL
T

˘˘
EOS

Tź

t“1

softmax
`
E F

`
xL
t´1

˘˘
yt

(56b, Definition 2.11.)

“ softmaxpE JyT´n`2:T KqEOS

Tź

t“1

softmax
`
E Jyt´1

t´n`1K
˘
yt

(56c, Lemma B.2.)

“ exp pE JyT´n`2:T KqEOSř
yPΣ exp pE JyT´n`2:T Kqy

Tź

t“1

exp
`
E Jyt´1

t´n`1K
˘
ytř

yPΣ exp pE JyT´n`1:t´1Kqy
(56d, Definition of softmax.)

“ exp
`
log p

`
EOS | yT

t´n`2

˘˘
ř

yPΣ exp
`
log p

`
y | yT

t´n`2

˘˘
Tź

t“1

exp
`
log p

`
yt | yt´1

t´n`1

˘˘
ř

yPΣ exp
`
log p

`
y | yt´1

t´n`1

˘˘ (56e, Eq. (55).)

“ p pEOS | yT´n`2:T q
Tź

t“1

p
`
yt | yt´1

t´n`1

˘ “ p pyq (56f, The n-gram LM is autoregressive.)

■

B.2.3 Simulation with n ´ 1 Layers: The Intuition

This section presents the construction of a transformer LM with a single head but n ´ 1 layers that is
weakly equivalent to a given n-gram LM. We again outline the intuition first before giving the technical
details below as part of Lemma B.5. The construction we present resembles the one from the proof of
Theorem 3.1. The main difference is that, instead of using n ´ 1 attention heads to identify the history,
we instead use n ´ 1 transformer layers. Intuitively, each of the n ´ 1 layers iteratively adds one of the
n ´ 1 symbols needed to identify the history, resulting in the identification of the full history after the
pn ´ 1q st layer. Once the history is identified, the pn ´ 1q st layer can compute the conditional distribution
over the next symbol as in the proof of Theorem 3.1. This can be illustrated as the following sequence of
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transformations:14

X1 :

¨
˚̊
˚̊
˚̋

Jy1K Jy2K Jy3K ¨ ¨ ¨ JytK ¨ ¨ ¨ JyT K
0|Σ| 0|Σ| 0|Σ| ¨ ¨ ¨ 0|Σ| ¨ ¨ ¨ 0|Σ|
0|Σ| 0|Σ| 0|Σ| ¨ ¨ ¨ 0|Σ| ¨ ¨ ¨ 0|Σ|

...
...

...
. . .

...
. . .

...
0|Σ| 0|Σ| 0|Σ| ¨ ¨ ¨ 0|Σ| ¨ ¨ ¨ 0|Σ|

˛
‹‹‹‹‹‚

(57a)

X2 :

¨
˚̊
˚̊
˚̋

Jy1K Jy2K Jy3K ¨ ¨ ¨ JytK ¨ ¨ ¨ JyT K
0|Σ| Jy1K Jy2K ¨ ¨ ¨ Jyt´1K ¨ ¨ ¨ JyT´1K
0|Σ| 0|Σ| 0|Σ| ¨ ¨ ¨ 0|Σ| ¨ ¨ ¨ 0|Σ|

...
...

...
. . .

...
. . .

...
0|Σ| 0|Σ| 0|Σ| ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 0|Σ|

˛
‹‹‹‹‹‚

(57b)

...

Xn´1 :

¨
˚̊
˚̊
˚̋

Jy1K Jy2K Jy3K ¨ ¨ ¨ JytK ¨ ¨ ¨ JyT K
0|Σ| Jy1K Jy2K ¨ ¨ ¨ Jyt´1K ¨ ¨ ¨ JyT´1K
0|Σ| 0|Σ| Jy1K ¨ ¨ ¨ Jyt´2K ¨ ¨ ¨ JyT´1K

...
...

...
. . .

...
. . .

...
0|Σ| 0|Σ| 0|Σ| ¨ ¨ ¨ Jyt´n`1K ¨ ¨ ¨ JyT´n`2K

˛
‹‹‹‹‹‚

(57c)

Such representations can be constructed by starting with the initial symbol encoding (X1) and then
passing over the information from the tth symbol to the contextual representations of the pt ` 1q st symbol
in X2 by adding a shifted the contextual representation of the tth symbol. This is performed n ´ 1 times,
resulting in contextual representations of the form Xn´1 where the tth contextual representation contains
the (ordered) information about the preceding n ´ 1 symbols, i.e., the required history. Intuitively, the ℓth

transformation of the contextual representation xℓ´1
t should be of the form

xℓ
t “ xℓ´1

tloomoon
The previous ℓ ´ 1

symbols.

` Ó xℓ´1
t´1loomoon

The symbol ℓ symbols back
shifted one “cell” downward.

(58)

The first term is simply the residual connection of the transformer layer. The second term is the shifted
representation of the symbol yt´ℓ, which can be performed by a simple linear transformation in the value
transformation V .

B.2.4 Simulation with n ´ 1 Layers: Proofs
We now make the intuition presented in the previous section more formal. Concretely, we only investigate
how to identify the correct n ´ 1 symbols in the history with the n ´ 1 layers. We then rely on Lemma B.2
and the derivation from the proof of Theorem 3.1 again to convert this information into a weakly
equivalent transformer LM. Let ℓ P rn ´ 1s. Define the following parameters of the attention head of the
ℓth transformer layer:

r py, tq def“

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̋

JyK
0|Σ|

...
0|Σ|b

1
tb

1 ´ 1
tb

1
t`1b

1 ´ 1
t`1

˛
‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‚

P Rpn´1q|Σ|`4, (59)

14We leave out the positional encodings for clarity.
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f pq,kq def“ xq,ky, (60)

Q pxq def“ Qx, Q P R2ˆppn´1q|Σ|`4q (61a)

K pxq def“ Kx, K P R2ˆppn´1q|Σ|`4q (61b)

V pxq def“ Vx, V P Rppn´1q|Σ|`4qˆppn´1q|Σ|`4q, (61c)

O pxq def“ Ox, O P Rppn´1q|Σ|`4qˆppn´1q|Σ|`4q, (61d)

Q:,pn´1q|Σ|`1:pn´1q|Σ|`2
def“ I2, (62a)

K:,pn´1q|Σ|`3:pn´1q|Σ|`4
def“ I2, (62b)

V1`ℓ|Σ|:1`pℓ`1q|Σ|,1`pℓ´1q|Σ|:1`ℓ|Σ|
def“ I|Σ|, (62c)

where the unspecified elements of Q,K, and V are 0. Schematically, V looks as follows:

V “

pℓ´1q|Σ| |Σ| pn´1´ℓq|Σ| 4

pℓ ´ 1q symbol slotshkkkkikkkkj ℓth symbol slothkkkkikkkkj pn ´ 1 ´ ℓq symbol slotshkkkkikkkkj 4 position slotshkkkkikkkkj
¨
˚̋

˛
‹‚

ℓ|Σ|
I|Σ| |Σ|

pn´1´pℓ`1qq|Σ|
4

(63)

That is, I|Σ| occupies the “cell” ℓ cells down and ℓ ´ 1 right of the top-left corner. Moreover, the matrix
O is a matrix of all zeros, meaning that O pxq “ 0 for all x. Again, notice that the position-augmented
symbol representation function r can be implemented by concatenating or summing a symbol- and a
position-specific component.

Lemma B.5. With the parameters defined above, it holds that

xℓ
t´1 “

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˝

Jyt´1K
Jyt´1´1K
Jyt´1´2K

...
Jyt´1´ℓK
0|Σ|

...
0|Σ|b

1
tb

1 ´ 1
tb

1
t`1b

1 ´ 1
t`1

˛
‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‚

(64)

Proof. We prove the lemma by induction. As in the proof of Lemma B.4, we pad the input string with
n ´ 1 BOS symbols to resolve the case when t ´ 1 ă n ´ 1.

Base Case. For ℓ “ 1, the claim follows from the definition of the symbol representation function r.
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Inductive Step. For ℓ ą 1, we assume that the claim holds for ℓ ´ 1. We then prove that it holds for ℓ
as well. By the construction of the keys and values matrices, as in the proof of Lemma B.4, it holds that
the attention head puts all its attention for query qℓ

t´1 on the key kℓ
t´2. This means that

aℓt´1 “ xℓ´1
t´1 ` vℓ

t´2. (65)

By the induction hypothesis, we have that

xℓ´1
t´1 “

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˝

Jyt´1K
Jyt´2K
Jyt´3K

...
Jyt´1´pℓ´1qK

0|Σ|
...

0|Σ|b
1
tb

1 ´ 1
tb

1
t`1b

1 ´ 1
t`1

˛
‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‚

(66) xℓ´1
t´2 “

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˝

Jyt´2K
Jyt´3K
Jyt´4K

...
Jyt´2´pℓ´1qK

0|Σ|
...

0|Σ|b
1
tb

1 ´ 1
tb

1
t`1b

1 ´ 1
t`1

˛
‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‚

. (67)

Furthermore, by definition of V, we have that

vℓ
t´2 “ V

´
xℓ´1
t´2

¯
(68a)

“ Vxℓ´1
t´2 (68b)

“

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˝

0|Σ|
...

0|Σ|
Jyt´2´pℓ´1qK

0|Σ|
...

0|Σ|b
1
tb

1 ´ 1
tb

1
t`1b

1 ´ 1
t`1

˛
‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‚

(68c)
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Inserting this into Eq. (65), we get that aℓt´1 satisfies the required equality:

aℓt´1 “ xℓ´1
t´1 ` vℓ

t´2 (69a)

“

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˝

Jyt´1K
...

Jyt´1´pℓ´1qK
0|Σ|

...
0|Σ|b

1
tb

1 ´ 1
tb

1
t`1b

1 ´ 1
t`1

˛
‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‚

`

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˝

0|Σ|
...

0|Σ|
Jyt´2´pℓ´1qK

0|Σ|
...

0|Σ|b
1
tb

1 ´ 1
tb

1
t`1b

1 ´ 1
t`1

˛
‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‚

“

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˝

Jyt´1K
...

Jyt´1´pℓ´1qK
Jyt´2´pℓ´1qK

0|Σ|
...

0|Σ|b
1
tb

1 ´ 1
tb

1
t`1b

1 ´ 1
t`1

˛
‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‚

“

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˝

Jyt´1K
...

Jyt´1´pℓ´1qK
Jyt´1´ℓK
0|Σ|

...
0|Σ|b

1
tb

1 ´ 1
tb

1
t`1b

1 ´ 1
t`1

˛
‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‚

(69b)

Since the computation of xℓ
t´1

def“ zℓt´1 “ O
`
aℓt´1

˘ ` aℓt´1 “ aℓt´1 with the definition of O as the zero
function gives us zℓt´1 “ aℓt´1, we get the required equality, which finishes the proof. ■

This allows us to prove the following theorem.

Theorem 3.2. For any n-gram LM, there exists a weakly equivalent pn ´ 1q-layer hard attention
transformer LM with a single head.

Proof. Lemma B.5 shows that the n ´ 1-layer transformer can identify the history of interest. Applying
Lemma B.2 and the same derivation as in the proof of Theorem 3.1 shows that we can construct a weakly
equivalent hard attention transformer. ■

B.2.5 Simulation with a Single Layer and a Single Head: Intuition
While the construction presented here is considerably less intuitive than that of Theorem 3.1, the steps of
the proof remain the same—they include the identification of the individual symbols and their positions in
the history, combining them into the one-hot encoding of the entire history, and using that to compute the
correct next-symbol conditional distributions. This proof focuses on encoding the entire history of interest
yt´1
t´n`1 into a single vector in a way that can be decoded to index the conditional probability distribution

as in Definition 2.11. This can then be used to index the appropriate conditional probability distributions
as in the proof of Theorem 3.1.

Again, we outline the intuition first. Fix t ď |y|. We decompose the computation of the representation
enc pyătq constructed by a single-layer-single-head transformer network as follows.

1. Attending exactly to the history of interest with a single head and a single layer. This can be done by
assigning the same attention score with the scoring function to all positions within the history yt

t´n`1

and a lower score to all other positions. Keeping the definitions of Q and V from Theorem 3.1, we
can achieve that by defining

f pqt´1,kjq “ ´ReLUpxqt´1,kjyq (70)

which assigns positions in the history score 0 and others negative scores. This is illustrated in Fig. 3.
Concretely, the scoring function f together with hard attention results in attention weights of the
form

sj “ 1

n ´ 1
1 tj ě t ´ n ` 1u . (71)
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y1 ¨ ¨ ¨ yt´6 yt´5 yt´4 yt´3 yt´2 yt´1 yt

j

f pqt´1,kjq

0

´1

´2

´3

...

´t ` n ´ 1

´

´

´

´ ‚

‚

‚

‚

‚ ‚ ‚

Figure 3: An illustration of the attention scores in a single-layer-single-head transformer network for a history
yt´3:t´1 “ yt´3yt´2yt´1 when determining the conditional distribution p pyt | yătq.

2. Storing the order of the symbols in the history. We will define the position-augmented representations
as position-scaled one-hot encodings of the input symbols. In particular, define

r pyt´1, jq def“
¨
˝
10´j ¨ Jyt´1K

t
1

˛
‚P R|Σ|`2 (72)

This effectively stores the information about both the position of the current symbol (with the
magnitude) as well as the identity of the symbol yj (with the index of the non-zero entry). Unlike in
the multi-head or multi-layer case, note that in this case, the function r is not a concatenation (or
addition) of two separate components (one for symbols and one for positions).

Ignoring residual connections, Eq. (71) then implies that

at´1 “
t´1ÿ

j“t´n`1

1

n ´ 1
10´jJyjK. (73)

For simplicity, we now write a
def“ at´1. The individual entries of a will correspond to symbols in Σ. The

digits of these symbols will encode the positions of the symbols in the history. Concretely, a will have
a non-zero digit in the ith position if and only if the symbol y appears in the string yăt at position i for
i P rt ´ 1s. For example, in a 5-gram LM over the alphabet Σ “ ta, bu, the contextual representation a
for the history yt´4:t´1 “ abaa will be

a “ 1

4

ˆ
10t´1 ` 10t´3 ` 10t´4

10t´2

˙
“ 1

4
10´t

ˆ
0.1011
0.0100

˙
. (74)

Such representations therefore uniquely encode the history of interest.

Decoding the representations of the history. The representations a, therefore, contain the information
about the history of interest compactly represented in a |Σ|-dimensional vector a. We now want to
construct a function that transforms the constructed vector a into a one-hot encoding of the history. To
make a invariant with respect to t, we first scale it by n´1

10n´t and define

a1 “ n ´ 1

10n´t
a. (75)
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10´n

1

x

y

Figure 4: The step function 1 txu and the approximated step function that matches 1 txu outside of r0, 10´ns.

Then

a1
y “

n´1ÿ

i“1

1 ty “ yi`t´nu 10´i. (76)

In words, the |Σ| entries of a1 are of the form a1
y “ 0.d1 . . . dn´1, where di “ 1 if and only if y appears in

the history yăt at position t ´ n ` i.
We now focus on a specific symbol y P Σ with the entry a1

y in the vector a1 and decode it into a vector
that can be used to construct a one-hot encoding of the relevant history yt´1

t´n`1 with F . The “decoding
function” will take the form of a n ´ 1-layer ReLU-activated MLP. Intuitively, each of the n ´ 1 layers
will contain |Σ| neurons, where each of them will compute the values di for a particular y P Σ. Now, d1
can be computed as

d1 “ 1
␣
101 ¨ ay ´ 1 ` 10´n ą 0

(
. (77)

Since 1 t¨u is not a continuous function, and, unlike in Appendix B.1, the arguments can now take arbitrary
real values, it cannot be implemented using a composition of ReLU functions. We can, however, simulate
the discontinuous function with a linear combination of two ReLU functions that together define the same
function as 1 t¨u on a subset of R relevant for our purposes. Notice that, as long as d1 “ 1, we have
that 101 ¨ ay ´ 1 ` 10´n ě 10´n while we have 101 ¨ ay ´ 1 ` 10´n`1 “ 101 ¨ 0 ´ 1 ` 10´n ă 0 if
d1 “ 0. This means that our approximation of 1 t¨u only has to map values greater or equal to 10´n to 1,
rather than all positive values. This allows us to continuously transition from 0 to 1 as the input to the
ReLU function increases from 0 to 10´n. Such a piecewise linear approximation of 1 t¨u can be easily
implemented by a linear combination of ReLU functions, i.e., with an MLP. See Fig. 4 for an illustration
of the approximation.
d2 can then be computed as

d2 “ 1
␣
102 ¨ ay ´ 101d1 ´ 1 ` 10´n ą 0

(
(78)

and, in general,

di “ 1

#
10i ¨ ay ´

i´1ÿ

j“1

10i´jdj ´ 1 ` 10´n ą 0

+
. (79)

The computation of di requires i layers (since dj for j ă i have to be computed first), meaning that
n ´ 1 layers are required in total. Altogether, these layers compute the values di for a single y P Σ.
Replicating this computation for every y P Σ and concatenating the results gives us the desired contextual
representation z.

With this construction, it holds for every y P Σ that di “ 1 if and only if the symbol y appears in
the history yt´1

t´n`1 at position t ´ n ` i. This, therefore, gives us enough information to reconstruct the
multi-hot encoding of the history of interest. As in Theorem 3.1, this can then be converted into a one-hot
encoding using another ReLU layer to implement the logical AND operation. This intuition is formalized
in the following section.

B.2.6 Simulation with a Single Layer and a Single Head: Proofs
We define the following parameters of the transformer head.15

15For simplicity, we ignore residual connections in this section since we do not require them and the omission makes the
presentation cleaner. By duplicating the representations as in Theorem 3.1, residual connections could easily be added back to
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• Static encodings

r pyt´1, jq def“
¨
˝
10´j ¨ Jyt´1K

1
t

˛
‚P R|Σ|`3 (80)

• Query, key, value, and output transformations

Q pxq def“ Qx ` bQ, Q P R2ˆp|Σ|`2q,bQ P R2, (81a)

K pxq def“ Kx, K P R2ˆp|Σ|`2q, (81b)

V pxq def“ Vx, V P R|Σ|ˆp|Σ|`2q, (81c)

O pxq def“ I|Σ|x, (81d)

Q:,|Σ|`1:|Σ|`2
def“
ˆ

0 1
´1 0

˙
, (82a)

bQ
def“
ˆ´ pn ´ 2q

0

˙
(82b)

K:,|Σ|`1:|Σ|`2
def“ I2 (82c)

V:,1:|Σ|
def“ I|Σ| (82d)

where the unspecified elements of Q,K, V, O are 0.

A large part of the proof of correctness will rely on identifying the digits of the contextual representations
of strings. We will rely heavily on the following definition.

Definition B.2. Let x P Q X `
10´pN`1q, 10´1

‰
be a rational-valued number with at most N digits in its

decimal representation. We define di pxq as the ith digit of x for i P rN s. We also group these N values
into the vector d pxq:

d pxq def“

¨
˚̋

d1 pxq
...

dN pxq

˛
‹‚. (83)

Lemma B.6. A transformer with the parameters and functions defined in Eq. (80)–Eq. (82d) computes
for string y P Σ˚

at´1 “
t´1ÿ

j“t´n`1

1

n ´ 1
10´jJyjK. (84)

Proof. By construction, we have

qt´1 “
ˆ
t ´ 1 ´ pn ´ 2q

´1

˙
(85a)

kj “
ˆ
1
j

˙
(85b)

vj “ 10´j ¨ Jyt´1K, (85c)

make this setting closer to the general transformer setting.
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thus

f pqt´1,kjq “ ´ReLUpxqt´1,kjyq (86a)

“ ´ReLU

ˆBˆ
t ´ 1 ´ pn ´ 2q

´1

˙
,

ˆ
1
j

˙F˙
(86b)

“ ´ReLUpt ´ 1 ´ n ` 2 ´ jq (86c)

“ ´ReLUpt ´ n ` 1 ´ jq (86d)

“
#
0 if j ě t ´ n ` 1

ă 0 otherwise
(86e)

meaning that

sj “ 1

n ´ 1
1 tj ě t ´ n ` 1u . (87)

This means that

at´1 “
t´1ÿ

j“t´n`1

1

n ´ 1
vj “

t´1ÿ

j“t´n`1

1

n ´ 1
10´jJyjK (88)

which is what we needed to prove. ■

Lemma B.7. Define

a1 def“ n ´ 1

10n´t
at´1 (89)

with at´1 from Lemma B.6. Indexing the |Σ| elements of a1 directly with y P Σ, it holds that

di
`
a1
y

˘ “ 1 ðñ yt´n`i “ y (90)

for all i P rN s and di pxq “ 0 for all i ą N .

Proof. By Lemma B.6, a contains entries of the form

ay “ 1

n ´ 1

t´1ÿ

j“t´n`1

1 ty “ yju 10´j (91a)

“ 1

n ´ 1

t´1´pt´nqÿ

j1“1

1
␣
y “ yj1`t´n

(
10´pj1`t´nq (91b, Change of variables.)

“ 1

n ´ 1

n´1ÿ

j“1

1 ty “ yj`t´nu 10n´t´j (91c, Change of variables.)

“ 10n´t

n ´ 1

n´1ÿ

j“1

1 ty “ yj`t´nu 10´j (91d, Distributivity.)

for y P Σ. Then

a1
y

def“ n ´ 1

10n´t
ay (92a)

“ n ´ 1

10n´t

10n´t

n ´ 1

n´1ÿ

j“1

1 ty “ yj`t´nu 10´j (92b)

“
n´1ÿ

j“1

1 ty “ yj`t´nu 10´j . (92c)

This implies that di
`
a1
y

˘ “ 1 ðñ yt´n`i “ y for i P rN s and that di pxq “ 0 for i ą N , which is what
we wanted to prove. ■
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Lemma B.8. Let x P Q X `
10´pN`1q, 10´1

‰
with di pxq P t0, 1u for i P rN s. Then, di pxq satisfy the

equality

di pxq “ 1

#
10i ¨ x ´

i´1ÿ

j“1

10i´j dj pxq ´ 1 ` 10´pN`1q ą 0

+
. (93)

for all i P rN s.

Proof. Let x P Q X `
10´pN`1q, 10´1

‰
with di pxq P t0, 1u for i P rN s. Then, by definition of di pxq, we

have that

x “
Nÿ

j“1

dj pxq10´j . (94)

This means that

10ix “ 10i
Nÿ

j“1

dj pxq10´j (95a)

“
Nÿ

j“1

dj pxq10i´j (95b)

“
i´1ÿ

j“1

dj pxq10i´j ` di pxq `
Nÿ

j“i`1

dj pxq10i´j , (95c)

implying that

10i ¨ x ´
i´1ÿ

j“1

10i´j dj pxq “ di pxq `
Nÿ

j“i`1

dj pxq10i´j . (96)

Suppose now that di pxq “ 1. Then

10i ¨ x ´
i´1ÿ

j“1

10i´j dj pxq ´ 1 ` 10´pN`1q “ di pxq `
Nÿ

j“i`1

dj pxq10i´j ´ 1 ` 10´pN`1q (97a)

“ 1 `
Nÿ

j“i`1

dj pxq10i´j ´ 1 ` 10´pN`1q (97b)

“
Nÿ

j“i`1

dj pxq10i´j ` 10´pN`1q ą 0, (97c)

meaning that

1

#
10i ¨ x ´

i´1ÿ

j“1

10i´j dj pxq ´ 1 ` 10´pN`1q
+

“ 1 “ di pxq. (98)
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Suppose, on the contrary, that di pxq “ 0. Then

10i ¨ x ´
i´1ÿ

j“1

10i´j dj pxq ´ 1 ` 10´pN`1q “ di pxq `
Nÿ

j“i`1

dj pxq10i´j ´ 1 ` 10´pN`1q (99a)

“ 0 `
Nÿ

j“i`1

dj pxq10i´j ´ 1 ` 10´pN`1q (99b)

“
Nÿ

j“i`1

dj pxq10i´j ` 10´pN`1q ´ 1 (99c)

“
N´pi`1qÿ

j1“1

dj1`i`1 pxq10i´j1´i´1 ` 10´pN`1q ´ 1 (99d)

“
N´pi`1qÿ

j1“1

dj1`i`1 pxq10´j1´1 ` 10´pN`1q

loooooooooooooooooooooooomoooooooooooooooooooooooon
ă1

´1 ă 0 (99e)

meaning that

1

#
10i ¨ x ´

i´1ÿ

j“1

10i´j dj pxq ´ 1 ` 10´pN`1q
+

“ 0 “ di pxq. (100)

This finishes the proof. ■

Lemma B.9. Let x P Q X `
10´pN`1q, 10´1

‰
with di pxq P t0, 1u for i P rN s. Given dj pxq for j ă i,

di pxq can be computed by a single layer MLP.

Proof. By Lemma B.8, we can use the knowledge of dj pxq for j ă i, di pxq to implement the function

di pxq “ 1

#
10i ¨ x ´

i´1ÿ

j“1

10i´j dj pxq ´ 1 ` 10´pN`1q ą 0

+
. (101)

with an MLP. For any i P rN s, the inner function

¨
˚̊
˚̋

d1 pxq
...

di´1 pxq
x

˛
‹‹‹‚ ÞÑ 10i ¨ x ´

i´1ÿ

j“1

10i´j dj pxq ´ 1 ` 10´pN`1q (102a)

“
C
¨
˚̊
˚̋

´10i´1

...
´101

10i

˛
‹‹‹‚

looooomooooon
WJ

,

¨
˚̊
˚̋

d1 pxq
...

di´1 pxq
x

˛
‹‹‹‚

G
´1 ` 10´pN`1qloooooooomoooooooon

b

(102b)

is an affine transformation. The indicator function in Eq. (101), however, is discontinuous and can thus not
be implemented by a composition of continuous ReLU MLPs. Here, we take advantage of the fact that

10i ¨ x ´
i´1ÿ

j“1

10i´j dj pxq ´ 1 ` 10´pN`1q P p´8, 0s Y
”
10´pN`1q,8

¯
looooooooooooooomooooooooooooooon

I

. (103)
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The MLP

MLPI pzq “ 10N`1
´
ReLUpzq ´ ReLU

´
z ´ 10´pN`1q

¯¯
(104a)

“ `
10N`1 ´10N`1

˘
ReLU

ˆˆ
1
1

˙
z `

ˆ
0

´10´pN`1q
˙˙

(104b)

matches 1 t¨ ą 0u on I , as we show next. See Fig. 4 for an illustration of the approximation. First, assume
that z ď 0. Then

MLPI pzq “ 10N`1
´
ReLUpzq ´ ReLU

´
z ´ 10´pN`1q

¯¯
“ 10N`1 p0 ´ 0q “ 0 “ 1 t0 ą 0u .

(105)
On the contrary, assuming z ě 10´pN`1q, we have that

MLPI pzq “ 10N`1
´
ReLUpzq ´ ReLU

´
z ´ 10´pN`1q

¯¯
(106a)

“ 10N`1
´
z ´

´
z ´ 10´pN`1q

¯¯
(106b)

“ 10N`1
´
z ´ z ` 10´pN`1q

¯
(106c)

“ 10N`1
´
10´pN`1q

¯
(106d)

“ 1 “ 1 tz ą 0u . (106e)

We can therefore construct the MLP MLP computing Eq. (101) on I by a composition of Eq. (102b)
(computing z in Eq. (104b)) and the MLP MLPI from Eq. (104b). ■

Lemma B.10. Let N P N. There exists an MLP MLP such that

MLP pxq “ d pxq (107)

for all x P Q X `
10´pN`1q, 10´1

‰
with di pxq P t0, 1u for i P rN s.

Proof. At a very high level, we will construct an N -layer MLP performing the transformations

x ÞÑ

¨
˚̊
˚̋

x
x
...
x

˛
‹‹‹‚ ÞÑ

¨
˚̊
˚̋

d1 pxq
x
...
x

˛
‹‹‹‚ ÞÑ

¨
˚̊
˚̋

d1 pxq
d2 pxq

...
x

˛
‹‹‹‚ ÞÑ ¨ ¨ ¨ ÞÑ

¨
˚̊
˚̋

d1 pxq
d2 pxq

...
dN pxq

˛
‹‹‹‚“ d pxq. (108)

By Lemma B.9, all individual transformations can be performed exactly by a single-layer MLP. The
composition of the N layers results in the vector d pxq.

The transformation x ÞÑ

¨
˚̊
˚̋

x
x
...
x

˛
‹‹‹‚is a simple linear transformation. We now construct the ℓth layer fℓ of

the MLP with parameters Wℓ and bℓ (cf. Definition B.1), assuming that it has the input

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˝

d1 pxq
d2 pxq

...
dℓ´1 pxq

x
...
x

˛
‹‹‹‹‹‹‹‹‹‹‚

. The
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layer fℓ has to satisfy

f

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˝

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˝

d1 pxq
d2 pxq

...
dℓ´1 pxq

x
x
...
x

˛
‹‹‹‹‹‹‹‹‹‹‹‹‚

˛
‹‹‹‹‹‹‹‹‹‹‹‹‚

“

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˝

d1 pxq
d2 pxq

...
dℓ´1 pxq
dℓ pxq
x
...
x

˛
‹‹‹‹‹‹‹‹‹‹‹‹‚

, (109)

i.e., it must copy all n ´ 1 entries apart from the ℓth one. Thus, Wk,k1 “ 1 tk “ k1u for k ‰ ℓ and bk “ 0
for all k ‰ ℓ (here, we write W and b for Wℓ and bℓ to avoid clutter). To define the remaining ℓth row,
we use Lemma B.9. It tells us that defining

Wℓ,:
def“
ˆ
10ℓ´1 ¨ ¨ ¨ 101 10ℓ 0 ¨ ¨ ¨ 0
10ℓ´1 ¨ ¨ ¨ 101 10ℓ 0 ¨ ¨ ¨ 0

˙
(110a)

bℓ
def“
ˆ ´1 ` 10´n

´1 ` 10´n ´ 10´n

˙
“
ˆ´1 ` 10´n

´1

˙
(110b)

will result in the ℓth row of fℓ computing exactly dℓ pxq after being multiplied by the matrix

W1 def“ `
10n 10n

˘
. (111)

This is what Eq. (109) requires. The parameters Wℓ,: and bℓ represent the parameters of the affine
transformation in Lemma B.9. Note that the matrix W1 is not part of the original definition of the MLP.
However, it can easily be absorbed into the matrix Wℓ`1 in the actual implementation (at the cost of
duplicating the size of the hidden state). We keep it here to make the presentation more intuitive. Since
any layer fℓ can be defined like this, and the final MLP is their composition, this finishes the proof. ■

Lemma B.11. Given at´1 from Lemma B.6, it holds that

∥at´1∥1 “ 10n´1´t

n ´ 1

1 ´ 1
10n´1

1 ´ 1
10

. (112)

Proof. By Lemma B.7, we have that

a
def“ at´1 “

t´1ÿ

j“t´n`1

1

n ´ 1
10´jJyjK (113)

We compute:

∥a∥1 “ 1

n ´ 1

t´1ÿ

j“t´n`1

10´j (114a)

“ 1

n ´ 1

t´1´pt´n`1qÿ

j1“0

10´pj1`t´n`1q (114b)

“ 1

n ´ 1
10´pt´n`1q

n´2ÿ

j“0

1

10j
(114c)

“ 10´pt´n`1q

n ´ 1

1 ´ 1
10n´1

1 ´ 1
10

(114d)

“ 10n´1´t

n ´ 1

1 ´ 1
10n´1

1 ´ 1
10

. (114e)

■
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Corollary B.1. Given a
def“ at´1 from Lemma B.6 and a1 def“ a1

t´1 from Lemma B.7, it holds that

1

∥a∥1
¨ 10 ¨ 1 ´ 1

10n´1

1 ´ 1
10

¨ a “ a1. (115)

Proof. By Lemma B.11, we can write

∥a∥1 “ 10n´1´t

n ´ 1

1 ´ 1
10n´1

1 ´ 1
10

“ 10n´t

n ´ 1
¨ Z (116)

and
1

∥a∥1
“ n ´ 1

10n´t
¨ 1

Z
(117)

where Z
def“ 1

10 ¨ 1´ 1
10n´1

1´ 1
10

is a constant independent of t. Then

1

∥a∥1
¨ 1

10
¨ 1 ´ 1

10n´1

1 ´ 1
10

¨ a “ n ´ 1

10n´t
¨ 1

Z
¨ 1

10
¨ 1 ´ 1

10n´1

1 ´ 1
10looooooomooooooon

Z

¨a (118a)

“ n ´ 1

10n´t
¨ 1

Z
¨ Z ¨ a (118b)

“ n ´ 1

10n´t
¨ a (118c)

“ a1 (118d)

■

Lemma B.12. Let Σ be an alphabet. Given the transformer parameters and functions defined in
Eq. (80)–Eq. (82d), there exists an MLP F (whose inputs are ∥¨∥1-normalized) that maps the contextual
representations a of yăt into a one-hot encoding of yt´1

t´n`1 for any string y P Σ˚ and any t P r|y|s.
Proof. By Lemma B.7, we have that

a “
t´1ÿ

j“t´n`1

1

n ´ 1
10´jJyjK (119)

and that di
`
a1
y

˘ “ 1 ðñ yt´n`i “ y for a1 def“ n´1
10n´t a (where a1

i “ 0 for i ą n ´ 1, from the same
lemma). We can express the entries of the one-hot encoding of the history yt´1

t´n`1, Jyt´1
t´n`1K, as

Jyt´1
t´n`1Kyt´n`1...yt´1

“ 1 ðñ d1

´
a1
yt´n`1

¯
^ ¨ ¨ ¨ ^ dn´1

´
a1
yt´1

¯
. (120)

By Lemma B.10, the vectors d
´
a1
yt´n`1

¯
, . . . ,d

´
a1
yt´1

¯
can be computed by an n ´ 1-layer MLP. Each

of these vectors is of size n ´ 1 and, among others, contains the values d1
´
a1
yt´n`1

¯
, . . . , dn´1

´
a1
yt´1

¯
.

Since the entries Jyt´1
t´n`1Kyt´n`1...yt´1

can be expressed as the results of the logical AND operation, their
computation can be performed by a single-layer ReLU MLP as per Lemma B.1. The MLP F can therefore
be constructed as a composition of three functions:

1. The scaling a ÞÑ 1
∥a∥1

¨ 1
10 ¨ 1´ 1

10n´1

1´ 1
10

¨ a, which results in a1 by Corollary B.1.

2. The concatenation of the |Σ| n ´ 1-layer MLPs computing d
`
a1
y

˘
for all y P Σ. This results in

pn ´ 1q |Σ| binary values altogether.
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3. The MLP performing the AND operation between the entries of d
`
a1
y

˘
.

This finishes the proof. ■

Theorem 3.3. For any n-gram LM, there exists a weakly equivalent single-layer hard attention trans-
former LM with a single head.

Proof. To show that there exists a weakly equivalent single-layer-single-head transformer LM to any
n-gram LM, we combine the lemmata in this section. Let T be a transformer LM defined with the
parameters and functions defined in Eq. (80)–Eq. (82d). By Lemma B.6, the representations at´1 “řt´1

j“t´n`1
1

n´110
´jJyjK computed by T contain information about the symbols and their positions in the

history yt´1
t´n`1. By Lemma B.12 then, a can be mapped to the one-hot encoding of the history with a

n ´ 1-layer MLP F . This one-hot encoding can then be used to index (the logits of) the probabilities
stored in the output matrix E defining a weakly equivalent transformer. ■

C Sparse Attention

We now prove a lemma analogous to Lemma B.4. It shows that a sparse attention transformer head
can isolate a particular symbol in the string. First, define the following position-augmented symbol
representation function of the transformer head h:

r py, tq def“

¨
˚̊
˝

JyK
0|Σ|
1
t

˛
‹‹‚P t0, 1u2|Σ|`2 (121)

and the scoring function
f pq,kq def“ ´ˇ̌

qJk
ˇ̌
. (122)

Here, the position-augmented symbol representation function r can again be implemented by concatenating
or summing a symbol- and a position-specific component. Lastly, we define the transformation matrices

Q pxq def“ Qx ` bQ, Q P R2ˆp2|Σ|`2q,bQ P R2, (123a)

K pxq def“ Kx, K P R2ˆp2|Σ|`2q, (123b)

V pxq def“ Vx, V P Rp2|Σ|`2qˆp2|Σ|`2q, (123c)

O pxq def“ Ox, O P Rp2|Σ|`2qˆp2|Σ|`2q, (123d)

Q:,2|Σ|`1:2|Σ|`2
def“ I2 (124a)

bQ
def“
ˆ

0
´h

˙
(124b)

K:,2|Σ|`1:2|Σ|`2
def“
ˆ

0 1
´1 0

˙
, (124c)

V|Σ|`1:2|Σ|,1:|Σ|
def“ I|Σ| (124d)

O1:|Σ|,1:|Σ|
def“ ´I|Σ| (124e)

where the unspecified elements of Q,K, V, O are 0.
Lemma C.1. Let Σ be an alphabet and y P Σ˚. For any t P r|y|s, a transformer head defined with the
parameters above outputs

zt´1 “
¨
˝

0|Σ|
Jyt´1´hK

02

˛
‚. (125)

In particular, this means that the output zt´1 at time step t ´ 1 contains the one-hot encoding of the
symbol at position t ´ h ´ 1.
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Proof. The construction is largely identical to the one in Theorem 3.1, with one crucial difference: It
relies on simpler, but unbounded positional encodings and a less-standard, but still easily implementable
attention scoring function in the form of an MLP.

It is easy to see that the query and value transformations result in:

qt´1 “ Q pr pyt, tqq “
ˆ

1
t ´ 1 ´ h

˙
(126a)

kj “ K pr pyj , jqq “
ˆ´j

1

˙
. (126b)

Thus, we get that

f pqt´1,kjq “ ´ˇ̌
qJ
t´1kj

ˇ̌
(127a)

“ ´
ˇ̌
ˇ̌
ˇ

ˆ
1

t ´ 1 ´ h

˙J ˆ´j
1

˙ˇ̌
ˇ̌
ˇ (127b)

“ ´|j ´ pt ´ h ´ 1q|. (127c)

f clearly has a unique maximum at j˚ “ t´1´h. Moreover, by construction, f
`
qt,kj˚

˘ ě f pqt,kjq`1
for any j ‰ j˚. This is a crucial property of the scoring function and one that allows sparsemax to uniquely
attend to j˚; by Lemma C.2, it holds that

sparsemax pf pqt´1,k1q , . . . , f pqt´1,kt´1qq “ hardmax pf pqt´1,k1q , . . . , f pqt´1,kt´1qq , (128)

meaning that

sparsemax pf pqt´1,k1q , . . . , f pqt´1,kt´1qqj “ 1 tj “ t ´ 1 ´ hu (129)

as in the proof of Lemma B.4. This is exactly the same as Eq. (51). Since O and V result in the same
vectors as in Lemma B.4, the remainder of the proof is the same as in Lemma B.4. ■

Lemma C.2. Let x P RD. If
D

max
d“1

xd ě D
max
d“1

dRargmax pxq
xd ` 1, then sparsemax pxq “ hardmax pxq.

Proof. Let x P RD and let xp1q ě xp2q ě . . . ě xpDq be the non-increasing entries of x. Due to the
additive invariance of the softmax (Martins and Astudillo (2016, Proposition 2)), we can assume that
xp1q “ 0 and xp2q ď ´1. By Martins and Astudillo (2016, Proposition 1),

sparsemax pxqd “ max p0, xd ´ τ pxqq , (130)

where

τ pxq def“
řkpxq

j“1 xpjq ´ 1

k pxq (131)

and

k pxq def“ max

˜
k P rDs | 1 ` kxpkq ą

kÿ

j“1

xpjq

¸
. (132)

It suffices to show that k pxq “ 1. For k “ 1, we get

1 ` 1 ¨ xp1q “ 1 ` 1 ¨ 0 “ 1 “ 1 ě 0 “ xp1q. (133)
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For k “ 2, we get

1 ` 2 ¨ xp2q “ 1 ` xp2q ` xp2q (134a)

ď 1 ´ 1 ` xp2q (134b)

“ xp2q (134c)

“ xp1q ` xp2q (134d)

“
2ÿ

j“1

xpjq, (134e)

meaning that the condition from Eq. (132) is not fulfilled for k “ 2. This implies that k pxq “ 1 and
τ pxq “ xp1q ´ 1. Thus, we get that

sparsemax pxqp1q “ max
`
0, xp1q ´ xp1q ` 1

˘ “ 1 (135)

and

sparsemax pxqpdq “ max
`
0, xpdq ´ xp1q ` 1

˘ “ max

¨
˚̋
0, xp1qloomoon

ď´1

´0 ` 1

˛
‹‚“ 0 (136)

for d ą 1. ■

This allows us to prove the main theorem for sparse-attention transformer LMs.

Theorem 4.1. For any n-gram LM, there exists a weakly equivalent single-layer sparse attention
transformer LM with n ´ 1 heads.

Proof. Lemma C.1 shows how individual heads of the transformer can identify the symbols in the position
of interest. n ´ 1 of them can identify the entire history. The proof then follows the same reasoning as
that of Theorem 3.1. ■

Adapting the same proof strategy to Theorem 3.2 would naturally result in an analogous result for n ´ 1
layers and a single head.

Notice that Lemma C.1 requires different and less standard positional encodings, which are, crucially,
unbounded. Constructing a sparse attention transformer with bounded positional encodings seems more
difficult; the contextual representations would in that case either converge or be non-unique with t Ñ 8
and since the sparsemax always contracts (Martins and Astudillo, 2016, Proposition 2), attending to
individual positions would be difficult. While the positional encodings and the scoring function used in
the proof of Lemma C.1 are somewhat less standard than those used in Lemma B.4, similar positional
encodings and the same scoring function have been used in theoretical analyses before and even in
practical implementations (Pérez et al., 2021).
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