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Abstract

Diffusion models have exhibited remarkable
capabilities in text-to-image generation. How-
ever, their performance in image-to-text gener-
ation, specifically image captioning, has lagged
behind Auto-Regressive (AR) models, casting
doubt on their applicability for such tasks. In
this work, we revisit diffusion models, high-
lighting their capacity for holistic context mod-
eling and parallel decoding. With these bene-
fits, diffusion models can alleviate the inherent
limitations of AR methods, including their slow
inference speed, error propagation, and unidi-
rectional constraints. Furthermore, we iden-
tify the prior underperformance of diffusion
models stemming from the absence of an ef-
fective latent space for image-text alignment,
and the discrepancy between continuous dif-
fusion processes and discrete textual data. In
response, we introduce a novel architecture,
LaDiC, which utilizes a split BERT to cre-
ate a dedicated latent space for captions and
integrates a regularization module to manage
varying text lengths. Our framework also in-
cludes a diffuser for semantic image-to-text
conversion and a Back&Refine technique to
enhance token interactivity during inference.
LaDiC achieves state-of-the-art performance
for diffusion-based methods on the MS COCO
dataset with 38.2 BLEU@4 and 126.2 CIDEr,
demonstrating exceptional performance with-
out pre-training or ancillary modules. This indi-
cates strong competitiveness with AR models,
revealing the previously untapped potential of
diffusion models in image-to-text generation.1

1 Introduction

In recent years, there has been a surge of impressive
applications of diffusion models in text-to-image
generation tasks (OpenAI, 2023; Podell et al., 2023;

* Equal contribution.
† Corresponding author.
1Code released at https://github.com/wangyuchi369/
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Figure 1: Inference process for image captioning.
(a) Token-by-token generation manner of AR-based
model. (b) Gradually denoising generation manner of
the diffusion-based model (Ours).

Dai et al., 2023). However, the inverse process
of image-to-text generation remains less explored.
Some pioneering efforts (Li et al., 2022b; Yuan
et al., 2022) have attempted to integrate diffusion
models into text generation tasks. They mainly fol-
lowed the traditional Encoder-Decoder framework,
utilizing the diffusion model as a text decoder. Sub-
sequent research (He et al., 2023b; Liu et al., 2023a)
introduces visual capability into this paradigm by
treating visual inputs as special tokens or encoded
hidden states, thereby extending the research scope
to the realm of multi-modal tasks, such as image-
to-text generation. However, their performance has
consistently lagged behind that of Auto-Regressive
(AR) models (Li et al., 2022a; Zhang et al., 2021;
Wang et al., 2022). Only through intricate architec-
ture (Luo et al., 2022) or external data (Zhu et al.,
2022) can they barely achieve comparable results,
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Figure 2: (a) Inference time of AR model (BLIP) and our diffusion model (LaDiC) as generated caption length
increases. (b) BLEU score of BLIP and LaDiC with increasing generated caption length. (c) LaDiC’s ability of
custom generation.

raising doubts about whether diffusion models have
inherent limitations, potentially making them less
suitable for the image-to-text task.

In this study, we aim to dispel this doubt by
deeply reexamining the diffusion-based image-to-
text paradigm and unveiling its distinct benefits.
Unlike conventional AR approaches that sequen-
tially generate captions token by token (Fig. 1a),
diffusion-based models take Gaussian noise as in-
put and iteratively denoise it under image guid-
ance to simultaneously produce the entire cap-
tion (Fig. 1b). This Non-AutoRegressive (NAR)
diffusion-based model exhibits three key advan-
tages: (1) Parallel Decoding: Diffusion-based
models emit all tokens in parallel, significantly
reducing inference time for lengthy target cap-
tions. As illustrated in Fig. 2a, the inference time
of AR models like BLIP (Li et al., 2022a) prolif-
erates as text length increases, while our model
can emit all tokens concurrently, ensuring stable
inference time regardless of the length increase.
For instance, when the caption length reaches 16,
our model is approximately 3× faster than BLIP.
(2) Holistic Context Consideration: Unlike the
uni-directional information flow of AR models
(left to right), diffusion-based models can consider
more holistic contexts, mitigating error accumu-
lation (He et al., 2023b). As depicted in Fig. 2b,
the BLEU metric of BLIP-generated captions de-
clines rapidly with increasing text length, whereas
our diffusion-based model maintains performance.
(3) Flexible Generation: AR models adhere to a
fixed unidirectional generation manner, whereas
our model demonstrates much greater flexibility.
We can custom generate captions based on tokens
in nearly any position, as shown in Fig. 2c, a capa-
bility challenging for AR image captioning models.

Despite the above benefits, the underperfor-

mance of diffusion models on image-to-text tasks
hinders their popularity. Upon examining prior
diffusion-based models, we deduce that their un-
satisfactory performance primarily stems from two
factors: (I) Two significant gaps in translating be-
tween images and text, i.e., 1) the gap between vi-
sual information and textual representation, and 2)
the gap between high-level text semantics and spe-
cific words. Simultaneously addressing both gaps
within the previous paradigm as shown in Fig. 3,
proves to be a challenging task for diffusion models.
(II) Substantial discrepancies exist between text
and other modalities with continuous inputs (e.g.,
images). For instance, classical continuous diffu-
sion models naturally align with the pixel space but
struggle to transition directly to the discrete text
space. Additionally, generated images have a fixed
size, while caption lengths vary, presenting another
challenge for diffusion models in determining the
boundaries of generated captions. Given these con-
siderations, we meticulously design a novel archi-
tecture LaDiC, a Latent Diffusion-based Captioner,
for further amplifying the capability of diffusion
models in image-to-text generation. As depicted
in Fig. 1b and Fig. 3, rather than directly gener-
ating discrete text from image representation, we
treat the diffuser as an interface translating image
information to high-level text representation (sen-
tence latent). This approach alleviates the diffusion
model’s burden, enabling it to leverage its power-
ful generation capabilities in high-level semantic
spaces (Ramesh et al., 2022), while the Non-Auto-
Regressive (NAR) text decoder retains its ability
to generate discrete tokens from latent space. Dur-
ing training, a text encoder is employed to generate
ground-truth text latent codes, and during inference,
it can be discarded.

Technically, we leverage BERT (Devlin et al.,
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Figure 3: Comparison of the pipeline between our LaDiC and that of previous diffusion-based models. We introduce
text latent space to alleviate the burden on the diffuser.

2019) to generate the text latent space and propose
a post-processing submodule including normaliza-
tion and reassignment procedures for addressing
problems like variable length of text. Furthermore,
the diffuser serves as a bridge between image and
text, aiming to fit the distribution of the text latent
space conditioned on the image, wherein we utilize
a cross-attention mechanism for better modality
fusion. Lastly, during inference, we propose the
Back&Refine technique to provide more interac-
tion between tokens. At a high level, we intuitively
summarize our model in Fig. 1(b). The generation
process commences with Gaussian noise, and at
each step, we subtract a certain amount of noise
conditioned on the image. As the number of steps
increases, the denoised text latent, or sentence fea-
ture of BERT in our model, converges toward the
ground-truth sentence feature. Ultimately, the well-
denoised sentence feature is passed through the
NAR frozen text decoder to concurrently generate
discrete words.

We conducted experiments mainly on the COCO
dataset (Lin et al., 2014) to validate our model’s
capabilities. Remarkably, without pretraining or ex-
ternal modules, our model achieves 38.2 BLEU@4
and 126.2 CIDEr, significantly surpassing both
diffusion-based methods and traditional NAR mod-
els. In addition to the unique advantages discussed
earlier, our model also matches the performance of
well-established pretrained AR models and outper-
forms BLIP in image paragraph captioning. These
results underscore the potent generative ability and
immense potential of diffusion models in image-to-
text generation. We aspire that our work offers a
fresh perspective, fostering future research on dif-
fusion models for image-to-text generation or even
other text-centered multimodal generation tasks.

2 Related Works

2.1 Diffusion Models and their Applications

Diffusion models have recently emerged as pow-
erful generative models, with representative foun-

dational architectures such as DDPM (Ho et al.,
2020b) and DDIM (Song et al., 2020). These
methods gradually transform samples into Gaus-
sian noise and train a model to recover them, pre-
senting a simple and stable learning objective for
addressing issues like posterior and mode collapse
that challenge prior models like VAE (Kingma and
Welling, 2013) and GAN (Goodfellow et al., 2014).

The impressive generative capabilities of diffu-
sion models have led to their application across a
spectrum of fields, including image (Ramesh et al.,
2022; Dai et al., 2023), audio (Liu et al., 2023b),
video (Blattmann et al., 2023; Bai et al., 2024),
3D (Poole et al., 2022), and human avatar (He et al.,
2023a; Hu et al., 2023), among others. Yet, their
application to text is still in its initial state. How to
adapt discrete tokens into a diffusion model is an
ongoing challenge. Existing approaches for tack-
ling this problem generally fall into two categories:
(1) Discrete Text Diffusion Models (Austin et al.,
2021; Reid et al., 2022; He et al., 2022), which
mimic the diffusion process on the discrete space
by directly corrupting text with [MASK] tokens.
(2) Continuous Text Diffusion Models (Li et al.,
2022b; Gong et al., 2022; Dieleman et al., 2022;
Yuan et al., 2022; Lin et al., 2022), which use con-
tinuous embeddings to represent each token and
then perform the classical diffusion process. While
these approaches demonstrate the feasibility of ap-
plying diffusion models to text generation and show
comparability with AR methods, they are limited to
unimodal representations and may overlook high-
level overall semantics to some extent. Further-
more, we notice the work (Lovelace et al., 2023),
which explores the concept of a text latent space.
Yet its diffusion model, designed for predicting
BART’s (Lewis et al., 2019) hidden states, still re-
lies on an AR generation mechanism, which suffers
from its issues like low inference efficiency.

2.2 Image-to-text Generation
Image-to-text generation, especially the image cap-
tioning task, aims to describe the content of an
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Figure 4: An overview of our LaDiC model. It mainly consists of Text Encoder, Diffuser, and Text Decoder. On the
left is the diffusion process, and on the right is the denoising process. Initially, the sentence c is converted into a text
latent space X by the text encoder. Subsequently, diffusion is performed on the text latent space, wherein a diffuser
is trained to denoise noisy text latent representations xt. Finally, the predicted text latent representation x̂0 without
noise is passed through a NAR text decoder to generate the final sentence ĉ.

image in natural language. Other task variants
include dense captioning, which illustrates each
object in the picture (Johnson et al., 2016), and
paragraph captioning, which generates a detailed,
lengthy paragraph (Krause et al., 2016) and so on.
Early AR approaches for captioning (Karpathy and
Fei-Fei, 2017; Vinyals et al., 2014) employed an
encoder-decoder architecture with a CNN (Con-
volutional Neural Network) to encode images and
an RNN (Recurrent Neural Network) to generate
captions. With the advent of Transformer (Vaswani
et al., 2017) and large-scale pretraining methods,
pretrained vision-language models (Li et al., 2022a;
Zhang et al., 2021; Li et al., 2020; Ren et al., 2023,
2021; Zhao et al., 2023; Liu et al., 2023c) emerged
and achieved high performance.

In contrast to the unidirectional generation of
AR models, NAR models generate entire captions
in parallel. MNIC (Gao et al., 2019) introduced
the mask token strategy, and NAIC (Guo et al.,
2020) employed reinforcement learning in NAR
caption generation. A special class of NAR meth-
ods, diffusion-based models has recently emerged.
Most diffusion-based models (Xu, 2022; He et al.,
2023b; Liu et al., 2023a) follow the paradigm uti-
lized in continuous diffusion models mentioned
above. Additionally, Bit Diffusion (Chen et al.,
2022a) encodes captions into binary bits, and DD-
Cap (Zhu et al., 2022) applies a discrete diffusion
model to captioning. SCD-Net (Luo et al., 2022)

is the state-of-the-art diffusion-based model with
a semantic-conditional diffusion process. How-
ever, its cascaded architecture is relatively complex
and requires an external retrieval module, limit-
ing its further extension. Our work reexamines
the diffusion-based paradigm and proposes a novel,
compact architecture with improved performance.

3 Methodology

In this section, we introduce our diffusion-based
image captioning model, LaDiC. In § 3.1, we
present the overall architecture of LaDiC, including
its training and inference pipeline. Subsequently,
from § 3.2 to § 3.4, we offer a detailed illustration.

3.1 Overview

As illustrated in Fig. 3, we utilize a text encoder to
transform the discrete text space C into a continu-
ous text latent space X . Subsequently, a diffuser is
trained to establish a connection between the image
representation space V and the text space X , and fi-
nally, a text decoder maps the text latent codes back
to the discrete text space C. Specifically, in Fig. 4,
given an image v ∈ V and its corresponding cap-
tion c ∈ C, we encode the caption c into the latent
space, yielding its latent code x0 ∈ X . Then, we
employ the diffusion model’s diffusion-denoising
procedure. Initially, various levels of noise (intro-
duced by different timesteps t) are added to x0 to
generate a noisy version xt (left panel). Subse-
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quently, the diffuser acts as a denoiser, recovering
x0 conditioned on the images v (right panel). Once
the diffuser is trained, a function f : xt

v−→ x0 is
established, connecting the image space V and the
latent space X . During inference, given an image
v∗, xt (t → ∞) is replaced with pure Gaussian
noise x∞ ∼ N(0, I) and iteratively denoised by

f , resulting in x∞
v∗−→ x̂∗0, where x̂∗0 represents

the predicted text latent code. Finally, the decoder
converts the acquired latent code back into discrete
text ĉ∗ ∈ C.

3.2 Latent Space Tailored for Text

As discussed in § 1, the text latent space X serves
as a bridge between image space V and discrete text
space C, significantly alleviating the burden on dif-
fusion models. Therefore, careful design of the text
latent space is essential, aiming to incorporate rich
text semantic information and facilitate the integra-
tion of image information by the diffuser. Basically,
we leverage BERT (Devlin et al., 2019) to construct
such a high-level semantic latent space and mean-
while harness abundant inherent knowledge from
the pre-trained corpus. Moreover, we highlight
the pivotal importance of selecting a latent space
with appropriate information density aligned with
that of the image, facilitating the fusion of visual
information. On the one hand, prior studies (He
et al., 2023b; Liu et al., 2023a) have typically con-
verted discrete text into a continuous form using
a simple embedding layer. If we regard this word
embedding space as a form of shallow text latent
space, we notice a lack of interaction between to-
kens and overall semantic modeling, which poses
a challenge in aligning images with these indepen-
dent token embeddings. On the other hand, it is
noteworthy that the information density of vision
is lower than that of text (He et al., 2021), with
large portions of image pixels often containing re-
dundancy, while natural language tokens typically
convey rich semantic information. To address this
discrepancy, instead of employing the entire BERT
model as a text encoder, we opt to divide the BERT
model into two parts, utilizing the lower portion
as the text encoder and the upper portion as the
decoder. Setting the text latent space based on the
middle layer of BERT yields improved alignment
between vision and language, thereby enhancing
performance. In addition, to improve the decoder’s
ability to reconstruct the text space, we make the
parameters in the language model head trainable.

However, this BERT sentence feature space still
exhibits drawbacks. To achieve a more standard-
ized sentence feature space conducive to noise addi-
tion, we employ normalization. We gather a subset
of all captions from the dataset and compute the
mean and standard deviation of their corresponding
latent codes, µ̂(x) and σ̂(x). During training, these
statistics are utilized to regularize the feature space
of BERT by operating on each sample as follows:
norm(x) = [x− µ̂(x)]/[σ̂(x) + ϵ] . During infer-
ence, an unnorm module is applied to the predicted
x̂0 before feeding it to the decoder. Moreover, a dis-
crepancy between applying the diffusion model to
text and image is the variable length of text, which
forces the model to implicitly learn this supervised
signal. In LaDiC, we extract all positions of special
tokens like [CLS], [SEP], [PAD], whose represen-
tations will be messy in contextual embeddings,
forming a set S . We then reassign what we call an
empty token to the latent code in these locations,
namely pasting vectors with all 0s, as demonstrated
in Equ. 1. Here, xfinali represents the i-th position
of the final latent codes.

xfinali =

{
[norm(x)]i i /∈ S
0, i ∈ S

(1)

Through this technique, for short captions with pad
tokens at the end, the diffuser can quickly iden-
tify this repeated pattern and easily recover these
unified zero vectors, implicitly learning sentence
boundaries. This approach avoids the need for an
additional module for predicting sentence length,
as seen in DDCap (Zhu et al., 2022). Furthermore,
despite a fixed length given during inference, the to-
ken forecasted as a pad will be mapped to the empty
token defined above, and can be easily erased by
postprocessing. Through these two regularization
modules, we regularize the sentence feature space
of BERT and finally obtain a latent space X tai-
lored for captions.

3.3 Diffuser Mapping Image to Text
The caption diffuser serves as an interface trans-
forming the vision space V into the text latent
space X . To fit the distribution of space X by
diffusion models, firstly we sample xt, the noisy
version of the latent code x0 ∈ X , as xt|x0 ∼
N (

√
ᾱtx0,

√
1− ᾱtI), where ᾱt =

∏t
i=1 αi =∏t

i=1(1−βi) and βt ∈ (0, 1) is the variance sched-
ule. A notable property of this setting is that as
t → ∞, xt is equivalent to an isotropic Gaus-
sian distribution, aligning with the starting state
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of inference. Then for the denoising process, we
use a Transformer encoder and predict the orig-
inal x0 based on the image directly, denoted as
x̂0 = fϕ(xt, v, t), where ϕ represents the parame-
ters of the diffuser. A rigorous mathematical ex-
planation of the diffusion model can be found in
App. D if necessary.

In contrast to some previous approaches that in-
ject image information by appending the [CLS]
token of the vision encoder to text (Xu, 2022; He
et al., 2023b), our LaDiC model adopts the cross-
attention mechanism, treating text as the query to
extract information from related image patches. We
hypothesize that this approach will inject vision
information more effectively and verify it in the
ablation study. Additionally, we adapt classifier-
free guidance (Ho and Salimans, 2022) to this
task by randomly zeroing out some images and
feeding them into the model together with nor-
mal training samples. During inference, a linear
combination of the conditional estimate fϕ(xt, v, t)
and unconditional one fϕ(xt, ∅, t) is performed:
x̂0 = (1 +w)fϕ(xt, v, t)−wfϕ(xt, ∅, t) where w
is a predefined hyperparameter.

We use a two-fold loss to train the caption dif-
fuser in LaDiC. The first one is the loss Llatent,
operating within the text latent space. This loss
calculates the Mean Squared Error (MSE) between
the predicted text latent x̂0 = fϕ(xt, v, t) and the
original text latent x0. The second one is the loss
Lcaption in the discrete caption space. Specifically,
let x̂i0 be the i-th position of the text latent and wi

be the i-th word in the ground-truth caption. The
probability of correctly predicting wi in the vocab-
ulary given x̂i0 is pθ(w

i|x̂i0), where θ represents
the parameters of the diffuser and language model
head in text decoder. This loss makes the output
of the caption diffuser shrink faster, sharing the
same intuition with XE loss in (Luo et al., 2022)
and anchor loss in (Gao et al., 2022). Meanwhile,
it also helps train the language model head in the

decoder. In summary, the final loss L is:

L = Llatent + λLcaption

= ∥fϕ(xt, v, t)− x0∥ − λ

n∏

i=1

pθ(w
i|x̂i0),

(2)

where λ is a hyper-parameter.

3.4 Back&Refine Technique during Inference

We observe that diffusion models exhibit a certain
degree of independence in both spatial and tem-
poral dimensions during the inference process. In
terms of the temporal aspect, in the typical infer-
ence process of diffusion models like DDIM (Song
et al., 2020), which gradually denoise with time
progress, the model initially predicts x̂0 from xt,
then obtains a less noisy version xt−1 from a dis-
tribution of p(xt−1|xt, x̂0). However, (Chen et al.,
2022a) found that in this manner, the previously
estimated x̂0 is simply discarded in a new inference
step. In response, they propose a self-conditioning
technique, utilizing the previously generated re-
sult to improve sample quality. However, there
is little exploration in the spatial dimension, i.e.,
the positions of each word in a sentence. In con-
trast to AR models with explicit sequential depen-
dencies across tokens, the diffusion model emits
all tokens in parallel. Undoubtedly, this approach
boosts the inference speed but partially loses the
information flow between tokens. Considering that
some tokens are easily recovered, such as the main
objects in the picture, adding the same scale of
noise to these well-restored tokens as the others
is somewhat unreasonable and wasteful. On the
contrary, we should leverage these informative to-
kens. Therefore, we propose a technique named
Back&Refine. As illustrated in Fig. 5, let’s say we
want to predict a sentence with a sequence length L
and a sampling step T . Then at time T/2, several
tokens are considered good enough, measured by
the confidence scores of our model. We rank these
scores and label tokens that fall in the lagging half.
For these L/2 tokens that the model is not currently
confident about, we try to reproduce them by nois-
ing them with complete Gaussian noise, while the
others remain unchanged as information. Then we
set the current t = T and start a brand new denois-
ing procedure. We will demonstrate the tuning of
this technique in the experiments and offer another
example for deeper understanding in App. A.5.
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Model # Images BLEU@4 CIDEr METEOR SPICE ROUGE-L CLIP-Score BERT-Score

Autoregressive

Show and Tell (Vinyals et al., 2014) - 31.4 97.2 25.0 18.1 53.1 69.7 93.4
CLIPCap (Mokady, 2021) - 33.5 113.1 27.5 21.1 - - -
OSCAR† (Li et al., 2020) 7M 36.5 123.7 30.3 23.1 - - -
ViTCap† (Fang et al., 2021) 4M 36.3 125.2 29.3 22.6 58.1 - -
VinVL† (Zhang et al., 2021) 6M 38.2 129.3 30.3 23.6 60.9 76.6 88.5
BLIP† (Li et al., 2022a) 129M 39.7 133.3 - - - 77.4 94.4
GIT† (Wang et al., 2022) 4M 40.4 131.4 30.0 23.0 - - -

Traditional Non-autoregressive
NAICKD (Guo et al., 2020) 0.1M 28.5 98.2 23.6 18.5 52.3 - -
MNIC (Gao et al., 2019) 0.1M 31.5 108.5 27.5 21.1 55.6 - -
FNIC (Fei, 2019) 0.1M 36.2 115.7 27.1 20.2 55.3 - -

Diffusion model based

DiffCap (He et al., 2023b) 0.1M 31.6 104.3 26.5 19.6 55.1 73.6* 92.2*
Bit Diffusion (Chen et al., 2022b) 0.1M 34.7 115.0 - - 58.0 - -
DDCap (Zhu et al., 2022) 0.1M 35.0 117.8 28.2 21.7 57.4 74.1* 93.4*
SCD Net (Luo et al., 2022) 0.1M 37.3 118.0 28.1 21.6 58.0 74.5* 93.4*
LaDiC (ours, 5 steps) 0.1M 35.1 115.2 27.4 21.3 56.7 77.1 93.8
LaDiC (ours, 30 steps) 0.1M 38.2 126.2 29.5 22.4 58.7 77.3 94.4

Table 1: Model performance on COCO dataset. † indicates pretrained models, and we gray them out since they
use much more training data. * represents the results of models reproduced by ourselves. Our model achieves
state-of-the-art performance across various metrics for both diffusion-based and traditional NAR models, and
exhibits comparable performance with some well-established pretraining auto-regressive frameworks, despite being
trained on significantly less data. The inference time measured on an A100 GPU for 5 steps is 0.020 s/img and 30
steps is 0.105 s/img.

4 Experiments

4.1 Experimental Settings

Dataset and Metrics We conduct our experi-
ments on MS COCO Karpathy split (Lin et al.,
2014; Karpathy and Fei-Fei, 2014), which com-
prises 113,287 training images, 5,000 validation
images, and 5,000 test images. Each image is as-
sociated with 5 reference captions. For evaluating
model performance, following the common prac-
tice of image captioning community, we use sev-
eral metrics including BLEU@4 (Papineni et al.,
2002), CIDEr-D (Vedantam et al., 2014), ME-
TEOR (Banerjee and Lavie, 2005), ROUGE-L (Lin,
2004), and SPICE (Anderson et al., 2016). Ad-
ditionally, we employ two model-based metrics:
CLIP-Score (Hessel et al., 2021) to assess semantic
alignment between generated captions and images,
and BERT-Score (Zhang et al., 2019) to evaluate
text quality.

Implementation Details In our LaDiC model,
the encoder and decoder are frozen, except for the
LM-head. The weights of the encoder and decoder
are initialized from the bottom 6 layers and top 6
layers of BERTbase, respectively. The rationale
for selecting such a latent space is explained in
App. A.4. For the diffusion forward process, we
employ the widely used cosine β schedule and

adopt the noise factor (Gao et al., 2022). The dif-
fuser consists of 12 transformer encoder blocks
with additional cross-attention layers in each block,
and the weights are randomly initialized. To ex-
tract image features, we use the pretrained image
encoder from BLIPbase (Li et al., 2022a), which
employs ViT-B/16, for a fair comparison with BLIP.
The model is trained on 8×V100 GPUs for 60
epochs with a peak learning rate of 5e-5 and a
warmup ratio of 0.1. Further details can be found
in App. C.

4.2 Quantitative Analysis

We benchmark our LaDiC model against prior base-
lines, encompassing auto-regressive, traditional
non-autoregressive, and diffusion-based models,
leveraging the COCO dataset (refer to Tab. 1).
Our model achieves state-of-the-art performance
across various metrics for both diffusion-based
and traditional NAR models. Specifically, LaDiC
achieves 38.2 BLEU@4 and 126.2 CIDEr, marking
improvements of 0.9 and 8.2, respectively, com-
pared to the previous state-of-the-art method, SCD-
Net. Remarkably, a variant of our model, utilizing
only 5 inference steps, even outperforms all prior
diffusion-based models in both CLIP-Score and
BERT-Score. Moreover, in addition to its distinc-
tive advantages over AR models, it is noteworthy
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BLIP: a baseball player holding a bat next to 
home plate.

GT 1: a baseball player is going to swing a bat.
GT 2: a man is at bat at a baseball game with 
a crowd watching.

Ours 1: a batter getting ready to swing at a 
baseball game.

Ours 3: a baseball player is swinging a bat at 
a game.

Ours 2: a baseball player standing near an 
umpire at home plate.

Figure 6: An example generated by our model.

that LaDiC exhibits comparable performance with
well-established pretraining auto-regressive frame-
works such as ViTCap and VinVL, despite being
trained on significantly less data.

To evaluate our model’s capacity for considering
holistic context, we tackle the task of image para-
graph captioning (Krause et al., 2016) to generate a
multi-sentence description of an image. Our model
seamlessly adapts to paragraph captioning by ex-
tending the predefined length without additional
special designs. Training our model on the dataset
from (Krause et al., 2016) yields a BLEU@4 score
of 7.3, surpassing finetuned BLIP’s 6.1 and high-
lighting our model’s advantage in mitigating error
accumulation (refer to App. B.1 for more details).
All these quantitative indicators above substanti-
ate the accuracy and high quality of the captions
generated by our model.

4.3 Case Studies and Human Evaluation

We conduct a case study to illustrate the faithful-
ness and diversity of the captions generated by
LaDiC. As depicted in Fig. 6, the generated cap-
tions are not only reasonable and fluent but also
exhibit inherent diversity due to the varied sam-
pling noises introduced at the start of inference.
Additional examples can be found in App. A.1. In
the context of image paragraph captioning genera-
tion, Fig. 7 reveals a notable difference. While each
sentence in the captions generated by BLIP demon-
strates good quality, they tend to appear somewhat
independent of each other, with many initiating
with “the man” and occasionally featuring repeti-
tions. Conversely, by leveraging a broader context,
our model produces sentences with a more cohesive
logical relationship.

We conduct user studies to evaluate the gener-
ated captions of LaDiC, inviting volunteers to rate
captions on a five-point scale (1-5) for accuracy,
conciseness and fluency. The results, presented in
Tab. 2, demonstrate that our model surpasses the
previous diffusion-based state-of-the-art SCD-Net

Finetuned BLIP:
a man playing tennis. the man is wearing a 
white shirt and black shorts. the man is 
holding a tennis racket in his hand. the man 
is wearing a white shirt and black shorts.

Ours:
a man playing tennis is standing on a tennis 
court. there is a green tennis ball above him. 
he is wearing white shirt, and blank shorts. 
there is a white line on the court.

Figure 7: An example generated by fine-tuned BLIP
model and ours in image paragraph captioning.

Model SCD-Net BLIP Ours

Fluency 2.8 4.9 4.5

Accuracy 3.3 4.2 4.4

Conciseness 3.4 4.4 4.7

Table 2: Results of human evaluation.

in both aspects and achieves comparable results
with BLIP. Details can be found in App. B.2.

4.4 Unleashing the Speed of Diffusion Model
Despite their powerful generative capabilities, dif-
fusion models are notorious for their slow infer-
ence speed. Most previous works require more
than 50 inference steps, significantly slower than
traditional NAR methods, which typically involve
around 10 refinement procedures. However, as
shown in Tab. 1, our model achieves remarkable
performance even with just 5 steps. We attribute
this surprising convergence speed to specific tech-
niques employed in our LaDiC model. Firstly, the
direct prediction of x0 and the definition of caption
loss enable the model to rapidly learn the distribu-
tion of discrete caption text, akin to the consistency
model (Song et al., 2023). Secondly, the carefully
selected noise schedule and noise factor signifi-
cantly enhance the learning process of diffusion
models. Regarding observed latency, the results
in Tab. 3 (measured on a single A40 GPU with a
batch size of 256) and Fig. 2a demonstrate that our
model showcases a rapid inference speed, excelling
not only in the domain of diffusion-based models
but also when compared to auto-regressive models.

4.5 Customizing the Generation Process
In contrast to the unidirectional generation man-
ner of AR models, our LaDiC model adeptly fills
in empty words at almost any position within a
sentence, harnessing its capability to capture more
holistic information, as demonstrated in Fig. 2c.
Technically, when provided with a caption contain-
ing blanks, we extract contextual embeddings of
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Model DiffCap DDCap Ours

Inference latency(s/img) 0.625 0.113 0.049

Table 3: Inference latency of diffusion-based models.

the given tokens and mask the blank tokens with
Gaussian noise. The standard denoising process
is then applied, with the exception of reinserting
the embeddings of predefined tokens back to their
respective positions after each inference step, ensur-
ing that the given information is retained. Through
this method, our model functions as a customized
generator based on the provided tokens. Additional
results can be found in App. A.2.

4.6 Analysis for the Back&Refine Technique

Regarding the Back&Refine technique, as dis-
cussed in § 3.4, we specify that when predict-
ing a sentence with a sequence length of L and a
sampling step of T , we opt to backtrack at time
t = T/2 (T → 0) and discard l = L/2 to-
kens. As for the tuning of these two hyperparam-
eters, we present an experiment conducted with
Back&Refine applied once in Tab. 4. Analysis of
these results reveals that choosing an early back-
tracking time (t = 0.8T ) leads to inadequate recov-
ery of well-stored tokens, failing to provide suffi-
cient information and resulting in performance just
similar to scenarios without Back&Refine. Con-
versely, backtracking at a late time (t = 0.2T )
does not yield significant improvement, as easy-to-
restore tokens are typically recovered quickly, and
the additional steps introduce an undesirable drop
in inference speed. Similarly, dropping the major-
ity of tokens in the Back procedure (0.8L) results in
a situation akin to scenarios without Back&Refine.
Dropping too few tokens (0.2L) may introduce
many mistaken tokens, adversely affecting perfor-
mance. Therefore, we deliberately choose the set-
ting t = T/2 and l = L/2 for our final version.
Furthermore, an alternative option is to establish a
confidence score threshold instead of directly drop-
ping the last half. However, in the majority of our
early experiments, these two settings exhibit a neg-
ligible performance gap. Consequently, we opt for
the simpler second method in our final version.

4.7 Ablation study

To validate the effectiveness of our core designs,
we conduct ablation studies on the COCO dataset.
Owing to the extensive time required for the ab-

BLEU-4 CIDER

w/o Back & Refine 37.3 121.5

t = 0.5T ; l = 0.5L (Our final version) 38.2 126.2

t = 0.8T ; l = 0.5L 38.1 126.6

t = 0.2T ; l = 0.5L 37.5 122.9

t = 0.5T ; l = 0.8L 37.6 123.5

t = 0.5T ; l = 0.2L 37.5 122.3

Table 4: Results of different settings of Back&Refine
Technique.

#Row Cross-attention Caption loss PLM Norm-Reass Split B&R B@4 C

a 15.4 46.3
b ✓ 20.3 59.1
c ✓ ✓ 22.8 76.3
d ✓ ✓ ✓ 26.9 91.8
e ✓ ✓ ✓ ✓ 31.6 103.5
f ✓ ✓ ✓ ✓ ✓ 33.4 110.0
g ✓ ✓ ✓ ✓ ✓ ✓ 34.1 113.4

Table 5: Ablation on COCO dataset.

lation study, we opted for a subset of the dataset
and trained all models for 40 epochs, (at which
point the validation loss has already converged).
For the inference phase, we performed 5 steps. We
begin with a simple baseline that appends only the
[CLS] token of the image feature to the end of text
embeddings and then trains the diffuser to recover
them. Subsequently, we progressively incorporate
our proposed techniques to evaluate their perfor-
mance. As depicted in Tab. 5, all modules exhibit
performance gains. The use of PLM (BERT) and
regularization in this space significantly enhances
performance, emphasizing the importance of a re-
fined latent space. Techniques aimed at better cap-
turing visual information, such as cross-attention
and splitting the BERT, also play pivotal roles in
improving performance.

5 Conclusion

In this paper, we reexamine the diffusion-based
image-to-text paradigm and introduce a novel
architecture, denoted as LaDiC. Our model at-
tains state-of-the-art performance among diffusion-
based methods and demonstrates comparable capa-
bilities with some pre-trained AR models. More-
over, our extensive experiments reveal the exciting
advantages of diffusion models over AR models in
considering more holistic contexts and emitting all
tokens in parallel. Consequently, we posit that dif-
fusion models hold substantial potential for image-
to-text generation and we anticipate that our work
will open new possibilities in this field.
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Limitations

For simplicity and focus, this paper concentrates
on the main research topic of image-to-text gen-
eration. Nevertheless, we observe that our model
can be readily adapted to other modalities or even
pure text generation with minimal modifications.
We leave these potential extensions for future work,
and meanwhile, we hope this paper will inspire
confidence among researchers engaging in text-
centered multimodal generation tasks with diffu-
sion models and look forward to exciting future
works in this area. Furthermore, due to resource
constraints, the model parameters and datasets em-
ployed in our study are not extensive. Considering
the remarkable emergent abilities demonstrated by
scaling up autoregressive models like GPT, it be-
comes an intriguing and worthwhile exploration to
investigate whether our model or general diffusion
models, can exhibit similar scalability.

Risk Consideration: As a generative model, our
model may inadvertently produce results that are
challenging to distinguish from human-written con-
tent, raising concerns about potential misuse. Em-
ploying text watermark techniques could be benefi-
cial in mitigating this issue. Additionally, diffusion
models typically demand substantial computational
resources for training, leading to increased carbon
dioxide emissions and environmental impact.
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A Additional Results

A.1 Generated Samples from COCO Dataset

Additional examples generated by our LaDiC
model are presented in Fig. 10. It is shown that
our model adeptly captures the main objects and
their relationships in the depicted images. Simulta-
neously, the generated captions exhibit a high level
of fluency.

A.2 Custom Generation

Utilizing the partially adding noise technique de-
scribed in § 4.5, we observed that, unlike the unidi-
rectional generation approach of AR models, our
LaDiC model can effectively insert words into al-
most any position within a sentence. Fig. 11 offers
additional examples to illustrate the generalization
ability of this method.

A.3 Gradual Denosing Procedure during
Inference

As a generative model, the diffusion model is ca-
pable of modeling the distribution of any space by
being trained to progressively transform random
noise into a ground truth sample. In our model, we
opt to apply diffusion to the latent space of text, i.e.,
the sentence feature space of BERT. As illustrated
in § 1, our process begins with Gaussian noise. At
each step, we subtract a certain amount of noise.
As the number of steps increases, the denoised sen-
tence feature converges towards the ground-truth
sentence feature. Mathematically, our diffuser will
model such a distribution: P (Ti+1|Ti, I). Here, I
represents image features, Ti denotes the sentence
feature at the last step i, and Ti+1 signifies the new
sentence feature with reduced noise.

As an illustrative example, refer to a specific
case in Fig. 9. With an increase in steps, the Mean
Squared Error (MSE) distance between the cur-
rent sentence vector and the ground-truth sentence
vector diminishes, and the sentences generated by
the predicted sentence vector at each step become
progressively more fluent. These findings collec-
tively demonstrate the capability of our diffusion
model to gradually steer noised sentence vectors
towards ground-truth sentence vectors and gener-
ate high-quality samples. When we carefully check
the generated captions, notably, the main objects
initially emerge, and subsequently, more details
are incrementally added, resulting in increasingly
fluent sentences. This characteristic also serves
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Abstract

Recent progress on image captioning has made it possible
to generate novel sentences describing images in natural
language, but compressing an image into a single sentence
can describe visual content in only coarse detail. While one
new captioning approach, dense captioning, can potentially
describe images in finer levels of detail by captioning many
regions within an image, it in turn is unable to produce a
coherent story for an image. In this paper we overcome these
limitations by generating entire paragraphs for describing
images, which can tell detailed, unified stories. We develop
a model that decomposes both images and paragraphs into
their constituent parts, detecting semantic regions in images
and using a hierarchical recurrent neural network to reason
about language. Linguistic analysis confirms the complexity
of the paragraph generation task, and thorough experiments
on a new dataset of image and paragraph pairs demonstrate
the effectiveness of our approach.

1. Introduction
Vision is the primary sensory modality for human percep-

tion, and language is our most powerful tool for communi-
cating with the world. Building systems that can simultane-
ously understand visual stimuli and describe them in natural
language is therefore a core problem in both computer vi-
sion and artificial intelligence as a whole. With the advent
of large datasets pairing images with natural language de-
scriptions [20, 34, 10, 16] it has recently become possible to
generate novel sentences describing images [4, 6, 12, 22, 30].
While the success of these methods is encouraging, they all
share one key limitation: detail. By only describing images
with a single high-level sentence, there is a fundamental
upper-bound on the quantity and quality of information ap-
proaches can produce.

One recent alternative to sentence-level captioning is the
task of dense captioning [11], which overcomes this limita-
tion by detecting many regions of interest in an image and
describing each with a short phrase. By extending the task
of object detection to include natural language description,

1) A girl is eating donuts with a boy in a restaurant

2) A boy and girl sitting at a table with doughnuts.

3) Two kids sitting a coffee shop eating some frosted donuts

4) Two children sitting at a table eating donuts.

5) Two children eat doughnuts at a restaurant table.

Sentences

Paragraph
Two children are sitting at a table in a restaurant. The 
children are one little girl and one little boy. The little girl is 
eating a pink frosted donut with white icing lines on top of it. 
The girl has blonde hair and is wearing a green jacket with a 
black long sleeve shirt underneath. The little boy is wearing a 
black zip up jacket and is holding his finger to his lip but is 
not eating. A metal napkin dispenser is in between them at 
the table. The wall next to them is white brick. Two adults are 
on the other side of the short white brick wall. The room has 
white circular lights on the ceiling and a large window in the 
front of the restaurant. It is daylight outside.

Figure 1. Paragraphs are longer, more informative, and more
linguistically complex than sentence-level captions. Here we show
an image with its sentence-level captions from MS COCO [20]
(top) and the paragraph used in this work (bottom).

dense captioning describes images in considerably more de-
tail than standard image captioning. However, this comes at
a cost: descriptions generated for dense captioning are not
coherent, i.e. they do not form a cohesive whole describing
the entire image.

In this paper we address the shortcomings of both tra-
ditional image captioning and the recently-proposed dense
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Figure 8: An example from image paragraph captioning
dataset.

as inspiration for our Back&Refine Technique, as
discussed in § 3.4.

A.4 Exploration on the Choice of Latent
Space

In § 3.2, we addressed the information density gap
between vision and language by diffusing on the
middle layer of the BERT model. Regarding the
choice of different possible latent spaces, we con-
ducted preliminary experiments to investigate this
issue. We implemented various latent spaces ex-
tracted from different layers (specifically, the 3rd,
6th, and 9th layers of the BERTbase), with the find-
ings presented in Tab. 6. It is important to note that
in these initial tests, the model was trained for 40
epochs without incorporating caption loss and the
Back&Refine technique. Our results indicate that
the 6th layer outperforms the others, which is the
rationale behind its selection as our final setting in
the paper. Although we did not explore every layer,
our preliminary experiments already provided us
with a degree of confidence and suggested that lay-
ers proximal to the midpoint of BERT (while not
necessarily exactly the 6th layer due to different
datasets or hyperparameters) may have better align-
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Timestep MSE Generated Captions

T=1 0.2944 a girl is a her her.

T=2 0.2191 a young girl a a cat a cat.

T=5 0.0648 young girl holding a cat holding a cat.

T = 10 0.0262 a young girl holding a small cat.

Figure 9: Gradual denosing process of diffusion models.

BLEU-4 CIDER

Layer 3 of BERTbase 31.1 98.4

Layer 6 of BERTbase 33.7 112.3

Layer 9 of BERTbase 32.3 106.8

Table 6: Performance for different layers of BERT.

ment with image space.

A.5 The Self-Correction Ability of
Back&Refine Technique

In our Back&Refine technique, we utilize the pre-
served easy-to-restore tokens to facilitate the gen-
eration of hard-to-restore tokens. However, it is
important to emphasize that the remaining tokens
in the Back procedure still have opportunities for
revision in the Refine procedure rather than being
fixed. On the one hand, our initial experiments
find that well-restored tokens are inclined to be
preserved during the Refine procedure. This obser-
vation guides our intuition to leverage these well-
restored tokens to enhance the denoising process
for challenging-to-restore tokens. On the other
hand, it’s noteworthy that, as these well-restored
tokens are also required to pass through the Refine
procedure, there are still chances to address errors
inadvertently retained, such as grammar issues. For
example, in a real-case scenario, when the Back
procedure finishes, a sentence is “[] children is []
[] [] [] a pizza.” where the ungrammatical word “is”
is preserved. However, through the Refine proce-
dure, the final output caption is corrected to “Two
children are sitting at a table eating pizza.”

B Additional Details in Experiments

B.1 Details about Experiments on Image
Paragraph Captioning

The objective of image paragraph captioning is to
generate comprehensive paragraphs that describe
images, providing detailed and cohesive narratives.
This concept was initially introduced in (Krause

et al., 2016), where the authors proposed a dataset
comprising 19,551 images from MS COCO (Lin
et al., 2014) and Visual Genome (Krishna et al.,
2016), each annotated with a paragraph description.
An illustrative example is presented in Fig. 8.

To assess our model’s ability to consider holistic
context, we compare the performance of our model
and BLIP on this task. For our model, we extend
the predefined length to 60 and conduct training
over 120 epochs. For BLIP, we fine-tune from
BLIPbase using the same number of epochs and
an initial learning rate of 1e-5. Subsequently, we
evaluate the results using BLEU on the test set. In
the case of BLIP, the maximum length is set to 60,
and the number of beams is 5 during inference.

B.2 Human Evaluation

As a generative task, in addition to automatic met-
rics, it is imperative to assess results through human
subjective evaluation. To this end, we utilize MOS
(Mean Opinion Score) as our metric and enlist the
feedback of 20 experienced volunteers, who were
tasked with rating results on a scale of 1-5. They
evaluated the results from three perspectives: flu-
ency, accuracy, and conciseness. Fluency gauges
the quality of generated captions in terms of lan-
guage, accuracy assesses whether the main objects
and actions in the caption accurately reflect the pic-
ture, and conciseness evaluates the extent to which
generative captions are informative and succinct,
avoiding unnecessary details.

To ensure evaluation quality, we randomly sam-
pled 10 pictures from the COCO dataset and gener-
ated corresponding captions for SCD-Net, BLIP2,
and our LaDiC model. Subsequently, we shuffled
the three captions and required volunteers to rate
them. To guarantee the reliability of the evaluation,
we randomly selected 2 evaluators and calculated
their correlation on each metric. This procedure

2For BLIP, we utilized the following page for convenient
inference: https://replicate.com/salesforce/blip.
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Hyperparameters Values

Training

Batch size 64*8(GPUs)
Epoch 60

Peak Learning rate 5e-5
Learning rate schedule Linear

Warmup ratio 0.1
Optimizer AdamW

β1 0.9
β2 0.999

Inference

Method DDIM
Sampling Criterion Minimum Bayes Risk

Diffusion Process

Diffusion steps 1000
β minimum 0.0001
β maximum 0.02
β schedule Cosine

Classifier free probability 0.1
Classifier free weight 1

Self-conditioning probability 0.5

Loss

λ 0.2
Loss type l2

Image Encoder

Image size 224
Image Encoder BLIPbase

Diffuser Module

Sequence length 24
Hidden size 768

Layers 12
FFN size 3072

Attention heads 16

Table 7: More hyperparameters of our LaDiC model.

was repeated 5 times, and all results were found to
be satisfactory.

As depicted in Tab. 2, our model surpasses the
previous diffusion-based state-of-the-art SCD-Net
in all aspects, achieving comparable results with
BLIP. A slight decrease in text quality compared to
BLIP may be attributed to the substantial training
data used in BLIP’s pretraining.

C More Hyperparameters

We list more hyperparameters for LaDiC model in
Tab. 7.

D Mathematical Details for Diffusion
Models

The training flow of the diffusion models is di-
vided into two phases: the forward diffusion pro-
cess and the backward denoising process. Given
a data point sampled from a real data distribu-
tion x0 ∼ q(x)3, we define a forward diffusion
process in which Gaussian noise is incrementally
added to the sample, generating a sequence of
noisy samples x1, ..., xT . The noise scales are
controlled by a variance schedule βt ∈ (0, 1),
and the density is expressed as q(xt|xt−1) =
N (xt;

√
1− βtxt−1, βtI). Based on the reparame-

terization trick (Ho et al., 2020a), a nice property
of the above process is that we can sample at any
arbitrary time step in a closed form:

xt =
√
atxt−1 +

√
1− αtϵt−1

=
√
at(

√
at−1xt−2 +

√
1− αt−1ϵt−2)

+
√
1− αtϵt−1

=
√
atat−1xt−2 + (

√
at(1− αt−1)ϵt−2

+
√
1− αtϵt−1)

=
√
atat−1xt−2 +

√
1− αtαt−1ϵt−2

=...

=
√
αtx0 +

√
1− αtϵ.

where αt = 1− βt and ᾱt =
∏t

i=1 αi. Thus:

q(xt|x0) = N (xt;
√
ᾱtx0,

√
1− ᾱtI), (3)

Furthermore, from this equation, it becomes evi-
dent that as T → ∞, xT converges to an isotropic
Gaussian distribution, aligning with the initial con-
dition during inference.

However, obtaining the closed form of the re-
versed process q(xt−1|xt) is challenging. Notably,
if βt is sufficiently small, the posterior will also
be Gaussian. In this context, we can train a model
pθ(xt−1|xt) to approximate these conditional prob-
abilities:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)),

where µθ(xt, t) and Σθ(xt, t) are parameterized by
a denoising network fθ like U-Net (Ronneberger
et al., 2015) or Transformer (Vaswani et al., 2017).

3We follow the notation and derivation process
of https://lilianweng.github.io/posts/2021-07-11-diffusion-
models.
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Ours: a teddy bear sitting on a book 
shelf.

GT: there is a stuffed bear sitting on a 
book shelf.

Ours: a group of people riding skis 
down a snowy slope.

GT: people are skiing on the snowy 
slopes in a designated area.

Ours: a group of people sitting 
around a table with drinks.

GT: a bunch of people are sitting 
around a table.

Ours: a red fire hydrant on a sidewalk 
near a street.

GT: a red fire hydrant on a city 
sidewalk.

Ours: two boys sitting on the floor playing 
a video game.

GT: two young boys sit on the carpet 
playing a video game.

Ours: two children are sitting at a table 
eating pizza.

GT: two children sitting at a little table 
eating pizza.

Ours: a group of people riding waves in 
the ocean.

GT: a group of surfers in the ocean riding 
on the waves.

Ours: a plate of food next to a cup of 
coffee.

GT: a plate of food and a cup of coffee 
on table.

Ours: a dog sitting in the passenger seat 
of a car.

GT: an image of a dog sitting in the 
passenger seat of a car.

Ours: a bicycle parked in the grass near 
a lake.

GT: A bike is parked on the grass in 
front of the lake.

Figure 10: More examples generated by our model on COCO datasets.

Similar to VAE (Kingma and Welling, 2013), we
can derive the variational lower bound to optimize
the negative log-likelihood of input x0 (Ho et al.,
2020b), :

Lvlb = Eq[DKL(q(xt|x0)||pθ(xT ))︸ ︷︷ ︸
LT

]− log pθ(x0|x1)︸ ︷︷ ︸
L0

+ Eq[
T∑

t=2

DKL(q(xt−1|xt, x0)||pθ(xt−1|xt))︸ ︷︷ ︸
Lt−1

].

With an additional condition on x0, the posterior
of the forward process q(xt−1|xt, x0) can be cal-
culated using Bayes theorem. Then in (Ho et al.,

2020b) they derive:

Lt = Ex0,ϵ

[
1

2||Σθ(xt, t)||22
||µ̃t(xt, x0)− µθ(xt, t)||2

]

= Ex0,ϵ

[
1

2||Σθ(xt, t)||22
|| 1√

at

(xt − βt√
1− at

ϵt)

− 1√
at

(xt − βt√
1− at

ϵθ(xt, t))||2
]

= Ex0,ϵ

[
β2
t

2αt(1− αt)||Σθ||22)
||ϵt − ϵθ(xt, t)||2

]

= Ex0,ϵ

[
β2
t

2αt(1− αt)||Σθ||22)
×

||ϵt − ϵθ(
√
αtx0 +

√
1− αtϵt, t)||2

]

Removing the coefficients, a much more simple
DDPM learning objective can be obtained:

Lsimple =

T∑

t=1

Eq

[
||ϵt(xt, x0)− ϵθ(xt, t)||2

]
,

where ϵt is the noise added in original data x0.
Applied to textual data, (Li et al., 2022b) introduces
an even simpler architecture to train a network to
predict x0 directly, with the loss function defined
as L = ||x0 − fθ(xt, t)||.
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Input: there is a boy [UNK] 
[UNK] [UNK] cows

Output: there is a boy standing 
by several cows

Input:  a [UNK] [UNK] is 
holding a [UNK] in her hand

Output: a young girl is 
holding a cat in her hand.

Input: [UNK] [UNK] [UNK] 
[UNK] [UNK] on the grass

Output: An old blue car parked 
on the grass

Output: a cup of coffee sitting in 
front of a computer.

Input: [UNK] [UNK] [UNK] [UNK] 
[UNK] in front of a computer.

Figure 11: More examples of custom generation.

During inference, the reverse process com-
mences by sampling noise from a Gaussian dis-
tribution p(xT ) = N (xT ; 0, I) and iteratively de-
noising it using pθ(xt−1|xt) until reaching x0. In
DDIM (Song et al., 2020), a general form is derived
from Equation 3.

xt−1 =
√
αt−1x0 +

√
1− at−1ϵt−1

=
√
αt−1x0 +

√
1− αt−1 − σ2

t ϵt

+ σtϵ

=
√
αt−1x0 +

√
1− αt−1 − σ2

t

(
xt −

√
atx0√

1− αt
) + σtϵ

qσ(xt−1|xt, x0) = N (xt−1;
√
at−1x0+

√
1− αt−1 − σ2

t (
xt −

√
atx0√

1− αt
), σ2

t I).

where σ2
t = ηβ̃t = η 1−αt−1

1−αt
βt, allowing us to ad-

just η as a hyperparameter to control the sampling
stochasticity. The special case of η = 0 renders
the sampling process deterministic. This model
is referred to as the denoising diffusion implicit
model (DDIM). It is noteworthy that DDIM shares
the same marginal distribution as DDPM. Conse-
quently, during generation, we can sample only a
subset of diffusion steps τ1, . . . , τS , and the infer-
ence process becomes:

qσ,τ (xτi−1 |xτt ,x0) = N (xτi−1 ;
√
ᾱt−1x0

+
√
1− ᾱt−1 − σ2

t

xτi −
√
ᾱtx0√

1− ᾱt
, σ2

t I)

which, significantly reduces inference latency.
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