
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pages 663–677

June 16-21, 2024 ©2024 Association for Computational Linguistics

InsCL: A Data-efficient Continual Learning Paradigm for Fine-tuning
Large Language Models with Instructions

Yifan Wang1∗, Yafei Liu2∗, Chufan Shi1, Haoling Li1,
Chen Chen2, Haonan Lu2, Yujiu Yang1†

1 Tsinghua University 2 OPPO AI Center
{wangyifa22,scf22,li-hl23}@mails.tsinghua.edu.cn

{liuyafei,chenchen4,luhaonan}@oppo.com yang.yujiu@sz.tsinghua.edu.cn

Abstract
Instruction tuning effectively optimizes Large
Language Models (LLMs) for downstream
tasks. Due to the changing environment in real-
life applications, LLMs necessitate continual
task-specific adaptation without catastrophic
forgetting. Considering the heavy computa-
tional cost, replay-based Continual Learning
(CL) methods are the simplest and most widely
used for LLMs to address the forgetting issue.
However, traditional replay-based methods do
not fully utilize instructions to customize the
replay strategy. In this work, we propose a
novel paradigm called Instruction-based Con-
tinual Learning (InsCL). InsCL dynamically
replays previous data based on task similar-
ity, calculated by Wasserstein Distance with
instructions. Moreover, we further introduce
an Instruction Information Metric (InsInfo) to
quantify the complexity and diversity of instruc-
tions. According to InsInfo, InsCL guides the
replay process more inclined to high-quality
data. We conduct extensive experiments over
16 tasks with different training orders, observ-
ing consistent performance improvements of
InsCL. When all tasks have been trained, In-
sCL achieves performance gains of 3.0 Rela-
tive Gain compared with Random Replay, and
27.96 Relative Gain compared with No Replay.

1 Introduction

Large Language Models (LLMs) show remarkable
capabilities from a wide range of Natural Lan-
guage Processing (NLP) tasks (Brown et al., 2020;
Ouyang et al., 2022; Touvron et al., 2023), demon-
strating large potential in handling various task-
specific settings. To complete realistic downstream
tasks, recent works suggest that instruction tuning
is an incredible method for unleashing the power of
LLMs (Wei et al., 2021; Peng et al., 2023; Shi et al.,
2023). However, in real-life applications, the con-
sistent emergence of new corpora and knowledge

∗Equal contribution.
† Corresponding author.

Figure 1: The framework of InsCL, the index denotes
task id. D represents task data, and R represents the
sampled data to replay. InsCL dynamically replays α∗

data for each previous task based on the task similarity
calculated via Wasserstein Distance W . The dots repre-
sent instructions included in each task, and the darker
colors represent higher InsInfo. The size of each color
bar denotes the corresponding amount of replay data.

changes task schemas frequently, necessitating con-
tinual task-specific adaptation for LLMs (Jin et al.,
2021; Daruna et al., 2021). Accordingly, Contin-
ual Learning (CL) is proposed to learn a sequence
of tasks incrementally, updating models for the
changing environment without catastrophic forget-
ting (Goodfellow et al., 2013; Kemker et al., 2018).

Considering the heavy burden on computing
time and GPU memory of tuning LLMs, replay-
based methods are the simplest and most effec-
tive among all traditional CL methods. Despite
several replay-based methods that have been well-
studied (Sun et al., 2019; Wang et al., 2020; Mi
et al., 2020; Qin et al., 2022), some traditional
strategies cannot achieve optimal performance in
continual instruction tuning due to the unique data
composition. To address this issue, we propose
a data-efficient paradigm called Instruction-based
Continual Learning (InsCL), applied to continual
fine-tuning LLMs with natural language instruc-
tions. InsCL effectively utilizes instructions as
high-quality task descriptions, designing a dynamic
instruction-information-based replay method. As
shown in Figure 1, when the new task Di comes, In-

663

sCL will sample replay data R from all the previous
tasks (here we list two previous tasks in Figure 1).

InsCL dynamically replays α∗ data from previ-
ous tasks based on their similarity with the cur-
rent task. We draw on the application of Opti-
mal Transport (Torres et al., 2021) in comparing
different distributions and adopt Wasserstein Dis-
tance (Liu et al., 2022) as a similarity measure.
Since instructions naturally contain high-quality
task-related descriptions, we use instructions to cal-
culate Wasserstein Distance instead of using the
full amount of data, significantly reducing the com-
putational cost (Cuturi, 2013). For the previous
tasks that are more different from the current task,
InsCL allocates a larger replay scale (larger bar
width in Figure 1).

After determining the sample size based on task
similarity, InsCL leverages instruction information
to guide the sampling process more inclined to
high-quality data. Prior works have shown that the
performance with less but high-quality data can
be comparable with full data (Toneva et al., 2018;
Abbas et al., 2023; Tirumala et al., 2023). For in-
struction tuning scenarios, early attempts (Wang
et al., 2022a; Xu et al., 2023a; Ding et al., 2023)
affirm that LLMs’ performance can be improved by
increasing the training template complexity and di-
versity. Inspired by this, we propose an Instruction
Information Metric (InsInfo) to quantify the com-
plexity and diversity of instructions. With InsInfo-
guided sampling, InsCL replays more high-quality
data (longer bar length in Figure 1). We empir-
ically demonstrate that replaying more data with
high InsInfo helps to alleviate the forgetting issue.

The main contributions of this paper include:
(1) We propose InsCL, a novel replay-based CL
paradigm for instruction tuning. InsCL allocates
replay size based on task similarity, dynamically re-
playing high-quality data with high InsInfo. (2) Ex-
periments are conducted over 16 tasks with differ-
ent training orders, demonstrating the effectiveness
of InsCL. (3) We further analyze the forgetting phe-
nomenon in continual instruction tuning. Without
replaying, we found that complex reasoning tasks
suffer from a higher forgetting rate, where forget-
ting instances are mainly instruction-unrelated.

2 Related Work

2.1 Instruction Tuning

Recently, LLMs have demonstrated impressive per-
formance across various NLP tasks. After being

Instruction : In this task, you’re given reviews from
Amazon’s products. Your task is to generate the Sum-
mary of the review.
Input : Totally screwed up my system. Instructions

terrible. Disk gives long list of files, had to determine
what does what. Has already wasted 4 hours of my time.
I gave up and pulled the thing. Don’t buy this.
Output : Terrible. Instructions are non-existent.

Table 1: A case of data template in instruction tuning.

unsupervised pre-trained on large-scale raw text,
LLMs are further trained via instruction tuning to
generate appropriate outputs based on the given
input instructions (Sanh et al., 2021; Mishra et al.,
2021; Chung et al., 2022). Prior works supervised
fine-tuned (SFT) LLMs with datasets consisting
of {instruction, input, output} pairs, as shown in
Table 1, and evaluated on another set of held-out
tasks (Wei et al., 2021; Longpre et al., 2023). They
demonstrate that the performance of unseen tasks
can be improved with more tasks and templates. To
improve the diversity and complexity of instruction,
a broad range of open-source instruction tuning
datasets are proposed. Some are gathered through
crowd-sourcing (Conover et al., 2023; Zhou et al.,
2023) while others are distilled from strong propri-
etary models (Wang et al., 2022a; Peng et al., 2023;
Taori et al., 2023).

With the help of various low-cost methods of
constructing high-quality templates, instruction
datasets can expand easily over time as new tasks
appear. When the data scale grows dynamically,
we can easily obtain sufficient task-specific data.
Considering this, rather than evaluating zero-shot
ability on held-out tasks, we are more concerned
about adapting an instruction-tuned model to a new
task without suffering from catastrophic forgetting.
In this work, we fine-tune LLMs in a continuous
manner and analyze their performance on previous
tasks, aiming to explore the forgetting issue in a
changeable environment.

2.2 Traditional CL Methods

CL aims to learn a sequence of tasks incrementally
without forgetting the previously learned knowl-
edge. Early attempts in CL can be generally di-
vided into three categories: (1) Consolidation-
based methods aim at protecting important pa-
rameters. As the representative of the regulariza-
tion sub-family, EWC (Kirkpatrick et al., 2017)
constrains the loss based on parameter importance

664

calculated by the fisher information matrix. Sev-
eral works distill the model from the previous stage
to keep relevant knowledge (Zhang et al., 2020;
Monaikul et al., 2021; Liu et al., 2021; Qin and
Joty, 2021). (2) Architecture-based methods add
task-specific parameters to the base model for each
task (Rusu et al., 2016; Gu et al., 2020; Madotto
et al., 2020). By separating trainable parameters,
the model can mitigate the impact on old tasks
when updating parameters. However, the model
scale grows linearly when tasks increase, bring-
ing inevitable memory costs. (3) Replay-based
methods store a small subset of previous training
examples and replay when the new task comes. Sun
et al. (2019); Zhang et al. (2022) leverage language
models to generate pseudo-examples for previous
tasks, but the quality of examples cannot be guar-
anteed (Ke et al., 2021).

Despite the success of traditional CL methods,
their backbones are relatively small in scale, such
as BERT (Devlin et al., 2018) and RoBERTa (Liu
et al., 2019). Under LLMs’ full fine-tuning sce-
narios, consolidation-based and architecture-based
methods will bring additional parameter storage
and training costs. Considering the heavy burden
on computing time and GPU memory, replay-based
CL methods are the simplest and most widely used
in tuning LLMs as data-efficient methods that do
not change the model structure.

2.3 CL for LLMs instruction tuning
Due to the scaling laws for neural language mod-
els, LLMs emerge with capabilities when the scale
increases. They can be better adapted to various
downstream tasks through instruction tuning, of-
fering immense practical value in real-world ap-
plications. The exploration of CL for LLMs is
still in its early stages. Continual-T0 (Scialom
et al., 2022) first fine-tuned LLMs with instructions
in an incremental manner, claiming that well-pre-
trained models can be continual learners by ran-
domly replaying several previous examples. Sev-
eral works (Song et al., 2023; Wang et al., 2023)
focus on CL methods with parameter-efficient tun-
ing (Hu et al., 2021), largely alleviating the for-
getting issue under limited training resources. For
full fine-tuning, replay-based methods were pre-
liminarily investigated (Yin et al., 2023), proving
that replaying data based on diverse instructions
can alleviate catastrophic forgetting and help better
generalize to unseen tasks. However, there is still a
lack of detailed analysis of replay strategies.

In this work, we focus on the appropriate replay-
based method for LLMs’ full fine-tuning with in-
structions. Considering that instructions naturally
provide high-quality task-related descriptions, it is
necessary to fully utilize instruction information to
customize a replay strategy for instruction tuning.

3 Method

Continual Learning of LLMs focuses on adapting
an instruction-tuned model to handle a sequence
of tasks in a specific application scenario. This
approach accounts for consistently emerging ma-
terials while processing the tasks simultaneously.
We define n tasks to be learned as a sequence
D = {D1, . . . , Dn}. When LLMs are tuned with
i-th task, we form a replay dataset Rα

j by sampling
examples from Dj , where j ∈ [1, i− 1]. Formally,
the training data augmented with replay data is
defined as:

Dα
i = Di ∪

i−1∑

j=1

Rα
j

where α is the replay hyper-parameter, controlling
the sampling quantity from previous tasks.

3.1 Dynamic Replay
Prior works optimize CL methods based on the
similarity between previous tasks and the current
one (Mi et al., 2020; Xu et al., 2023b; Gogoulou
et al., 2023). As the similarity increases, it becomes
easier to retain knowledge from previous tasks. In-
spired by this, we propose a dynamic replay strat-
egy based on task similarity, replaying more data
from previous tasks with large differences.

The concept of task similarity is at the core of
various machine learning paradigms, such as do-
main adaptation and meta-learning. Optimal Trans-
port (Alvarez-Melis and Fusi, 2020; Torres et al.,
2021) offers a way to calculate the least amount
of cost for transferring between different distribu-
tion pairs. As the representative of the Optimal
Transport framework, Wasserstein Distance (Chen
et al., 2022; Liu et al., 2022) provides a metric for
calculating the similarity between two dataset dis-
tributions. The definition of Wasserstein Distance
is as follows:

W (µA, µB) = inf
π

(∫

R
d(xA, xB)dπ(xA, xB)

)

where π ∈ ∏
(µA, µB) is meant to be the set of

all joint probabilities that exhibit µA and µB as

665

marginal distributions. The d denotes a metric for
calculating the cost matrix, and here we define it
as the cosine distance. For instruction tuning, NLP
tasks can be described via natural language instruc-
tions. We consider the instruction embeddings for
a task pair as xA and xB , and calculate the propor-
tion of instructions for each task as a probability
distribution. Consequently, we measure task sim-
ilarity by calculating their Wasserstein Distance.
When LLMs are fine-tuned on the current task Di,
the amount of dynamic replay data for the j-th
previous task is defined as:

α∗
j =

Wj,i∑i−1
k=1Wk,i

× α, j ∈ [1, i− 1]

where Wj,i denotes the Wasserstein Distance be-
tween Dj and Di. We dynamically allocate the
amount of previous data to replay according to its
similarity with the current task. With the help of
dynamic replay, LLMs selectively recall the corre-
sponding knowledge.

3.2 Instruction Information Metric

It has been proven that a small amount of high-
quality data can achieve a promising performance,
demonstrating the rationality of careful data se-
lection (de Masson D’Autume et al., 2019; Wang
et al., 2020; Ke and Liu, 2022; Zhou et al., 2023).
Inspired by this, we propose an Instruction Informa-
tion Metric (InsInfo) to guide the sampling process,
collecting high-quality replay data for continual
instruction tuning.

Considering complex and diverse instructions
induce impressive performance, a more compre-
hensive analysis of multiple intentions embedded
within instructions is necessary. High-performing
open-source LLMs demonstrate the ability to an-
notate queries with tag entities, and the precision
and consistency are proven through manual anno-
tation (Lu et al., 2023). Consequently, we em-
ploy GPT-4 (OpenAI, 2023) as an intention tag-
ger and clean the raw tags, representing instruc-
tions at a fine-grained entity level. The detailed
process of obtaining normalized tags is shown in
Appendix A.1. After obtaining fine-grained an-
notations for instructions, we utilize the number
and frequency of tags as quantifiable indicators of
diversity and complexity. Motivated by Inverse
Document Frequency (IDF), one of the most use-
ful and widely used concepts in information re-
trieval (Gupta et al., 2022; Tayal et al., 2023), we

Algorithm 1: InsInfo-guided sampling
Data: Dataset Dj , Instruction Pool Ii,

Replay Number α
Result: Replay dataset Rα

j

1 Initialize Empty Rα
j and InsInfo List Sj ;

2 Extract task j instruction set Ij from Ii;
3 for Query Ij,k ∈ Ij do
4 sj,k ← calculate InsInfo for Ij,k ;
5 Sj ← Sj ∪ sj,k;
6 end
7 for k = 1 to |Ij | do
8 β ← sj,k

sum(Sj)
× α ;

9 Dj,k ← {data in Dj with Ij,k} ;
10 Rα

j ← sample β data from Dj,k ;
11 end
12 return Rα

j

proposed InsInfo as follows to quantify instruction
information:

InsInfo =

T∑

t=1

log
N

ft

where N denotes the total amount of previous in-
structions. When tasks come into a stream, we
store all previous instructions in memory. For each
instruction, T denotes the number of tags, and ft
denotes the frequency of the t-th tag among the
instruction pool. Hence, instruction gets a large In-
sInfo when the number of individual tags increases,
quantifying complexity and diversity interpretably.
As shown in Algorithm 1, we follow the InsInfo-
guided sampling strategy to obtain the replay data.
Moreover, the strategy can be combined with dy-
namic replay by modifying α to α∗

j , as claimed in
Section 3.1, which forms our InsCL finally.

4 Experimental Setup

Data Collection. To facilitate our research, we
mainly utilize the SuperNI dataset (Wang et al.,
2022b), a comprehensive benchmark focusing on
specific NLP tasks distilled from real-world de-
mands. SuperNI is annotated by NLP practition-
ers from GitHub and NLP courses, ensuring that
each instance is coupled with respective natural
language instructions. At the most comprehensive
level, we integrate 765 English tasks from SuperNI
into 16 categories, as shown in Figure 2. And
we demonstrate details of the data composition in
Appendix A.2. Following the setting of prior CL

666

Figure 2: We obtain 16 categories by integrating English
tasks in the SuperNI dataset. And we conduct further
experiments based on 16 reallocated tasks.

studies (Scialom et al., 2022; Yin et al., 2023), we
randomly hold out 20% instances on each task to
evaluate LLMs on different training stages.
Model and Training Details. Our work is most
related to the continual instruction tuning setting as
Continual-T0 (Scialom et al., 2022). We conduct
our task-incremental experiments with the popular
LLaMA-7B (Touvron et al., 2023), training each
task for 2 epochs with a batch size of 64. We
use the Adam optimizer (Kingma and Ba, 2014)
with a learning rate of 2e-5 and utilize the standard
language modeling objective:

L = − 1

|y|

|y|∑

i=1

log pθ (yi | x, y<i)

where x denotes the combination of instruction and
input, and y denotes the corresponding output.
Evaluate Forgetting. Following the evaluation
metric proposed by Scialom et al. (2022), we lever-
age Relative Gain to focus on the forgetting issue.
We train expert LLM on each single task only and
test with their respective holdout data, taking the
results as upper bounds (Jang et al., 2023). The
Relative Gain in stage i can be defined as:

Relative Gaini =
1

i− 1

i−1∑

j=1

Ri
j

upper boundj
× 100%.

Here we utilize Rouge-L (Lin, 2004) to calculate
Ri

j and the upper bound.

5 Experiments

We leverage LLaMA-7B to calculate sentence em-
beddings and compare our InsCL with the follow-

ing strategies:

• No Replay: Train LLMs incrementally with-
out any replay data.

• Random Replay: Sample α instances ran-
domly from each previous task as the replay
setting in Continual-T0.

• Prototype Data: To collect the most represen-
tative data, we cluster the training data embed-
ding space with k-means (Wang et al., 2021a).
For each previous task, we set the cluster num-
ber as the amount of instructions. We sort the
data in descending order according to cosine
distance from the corresponding center and
take the top-α as replay data.

• Prototype Instruction: We cluster instruc-
tions on previous tasks with the optimal sil-
houette coefficient (Dinh et al., 2019), taking
the closest instructions to their respective cen-
ters as the most representative. We randomly
select α data with prototypical instructions.

• Diverse Instruction: Following the optimal
replay strategy proposed by Yin et al. (2023),
we replay data with instructions diverging
most from the current task instructions. By
computing the cosine similarity matrix with
the current instruction embedding, we take the
most diverse instruction with the least column
sum and replay α corresponding data for each
previous task.

For fairness of comparison among different
methods, we note Mi = (i − 1) × α as the to-
tal amount of replay data when the task sequence
comes to stage i. Here we set α to 200.

5.1 Main Results
We train LLaMA-7B on 16 tasks continuously with
three different training orders. For each continual
instruction tuning stage, the average Relative Gain
results are shown in Figure 3. It can be observed
that our InsCL is effective in mitigating forgetting,
with a promising Relative Gain. When all tasks
have been trained, InsCL achieves performance
gains of 3.0 Relative Gain compared with Random
Replay, and 27.96 Relative Gain compared with
No Replay. InsCL sustainably maintains the perfor-
mance on previous tasks over 90%, exhibiting high
stability with a small fluctuation. Conversely, No
Replay’s Relative Gain shows a sharp decreasing
trend as the task increases, accompanied by signif-
icant performance fluctuations. After training the
8th task, No Replay’s performance remains at less

667

Figure 3: Progressive Relative Gain results for LLaMA-7B in continual instruction tuning. We set Relative Gain to
100 for training on the first task, denoting the initial performance without forgetting. When it comes to stage i, we
plot the average score of corresponding Relative Gain with three different training orders. The closer the Relative
Gain is to 100, the better to alleviate catastrophic forgetting and preserve knowledge.

Reverse Random Curriculum
Method AVG STD AVG STD AVG STD
No Replay 73.83 182.87 81.07 121.9 87.63 51.30
Random Replay 87.96 18.85 92.90 10.84 95.18 4.80
Prototype Data 78.07 92.71 83.51 93.71 90.07 29.79
Prototype Instruction 88.29 15.73 93.01 18.75 93.91 7.44
Diverse Instruction 80.87 72.09 86.47 81.60 91.14 23.34
InsCL 90.50 9.32 94.43 7.62 96.20 2.81

Table 2: Results on different training orders. AVG indicates average Relative Gain on 16 tasks, and STD indicates
standard deviation (× e-4) on all the Relative Gain. Reverse denotes a converse training order with Curriculum. A
promising method is expected with a large AVG and a small STD, indicating good performance and high stability.
The best results are in bold, while the second-best are underlined.

than 80% and further drops to less than 65% upon
finishing final training. No Replay setting severely
suffers from catastrophic forgetting, demonstrating
the necessity of replaying previous data.

Moreover, we further analyze other replay-based
methods. Despite being the optimal method in
the previous work, Diverse Instruction underper-
forms when compared with Random Replay and
Prototype Instruction. For prototype-based meth-
ods, Prototype Instruction outperforms Prototype
Data. We find that clustering results of Prototype
Data are significantly affected by instances with
long instruction and short input, leading to prac-
tically identical embeddings for this subset. The
uneven distribution will cause a high semantic du-
plicate selection, which has been proven to lead
to a negative impact (Abbas et al., 2023). The
data composed of instruction and input has a dif-
ferent structure from traditional SFT, resulting in
several traditional replay-based methods not be-
ing directly applicable to instruction tuning. This

observation also demonstrates the rationality of de-
signing instruction-based replay methods, proving
the consistency of our InsCL.

5.2 Training Order Analysis

To explore the impact of training order and ob-
tain universe conclusions, we conduct a detailed
analysis of all settings based on different task se-
quences. Inspired by Curriculum Learning (Wang
et al., 2021c), we train the model from easy task
to hard task by sorting the upper bounds in de-
scending order, as Classification → Text Qual-
ity Evaluation→ Code→ Detection→ Sentiment
Analysis→ Comprehension→ Closed QA→ Ex-
traction → Dialogue → Program Execution →
Rewriting→ Open QA→ Misc. → Generation→
Summarization→ Mathematics.

As shown in Table 2, we report the average Rel-
ative Gain scores and the standard deviations on
16 tasks with different training orders. When we
utilize the "easy to hard" training strategy, Cur-

668

Figure 4: We analyze the forgetting rate based on Curriculum training order. The results of all previous tasks are
reported when training is finished on the last task.

Method AVG STD
No Replay 80.84 118.69
Random Replay 92.01 11.50

+ Dynamic (Uniform) 93.14 8.67
+ Dynamic (Real) 93.25 8.57
+ InsInfo 93.52 17.90

InsCL 93.71 6.58

Table 3: Average results on three training orders. AVG
indicates average Relative Gain, and STD indicates stan-
dard deviation (× e-4) on all the Relative Gain. The best
results are in bold, while the second-best are underlined.

riculum outperforms other orders in all CL meth-
ods. Under the No Replay setting, Curriculum
achieves performance gains of 13.80 average Rel-
ative Gain compared with Reverse and 6.56 com-
pared with Random. Training tasks in Curriculum
order demonstrates a more stable performance with
a small standard deviation. Moreover, with our
InsCL, Curriculum achieves performance gains of
5.70 average Relative Gain compared with Reverse
and 1.77 compared with Random. It can be ob-
served that InsCL alleviates the impact of different
training orders, outperforming all methods with a
high Relative Gain and stability.

5.3 Ablation Study

To investigate the effectiveness of each component
in InsCL, we further apply our dynamic replay and
InsInfo-guided sampling based on the Random Re-
play. Dynamic replay is determined by task similar-
ity, calculated via Wasserstein distance. If the real
distribution of instructions cannot be obtained, the
uniform distribution assumption is generally used
to obtain the Wasserstein distance. We evaluate the

performance with average Relative Gain scores and
standard deviations on all training stages.

The average results over three different training
orders are reported in Table 3. It can be inferred
that dynamic replay and InsInfo-guided sampling
are both beneficial to mitigating catastrophic for-
getting. InsInfo-guided sampling brings greater im-
provement in Relative Gain, effectively improving
Relative Gain but lacking in stability. Instead, dy-
namic replay greatly reduces the standard deviation
of Relative Gain thus improving stability. And dy-
namic replay with real distribution brings better per-
formance compared with the uniform distribution
assumption. When we utilize InsCL combined with
dynamic replay and InsInfo-guided sampling, it
achieves the best performance and strongest stabil-
ity. Compared with Random Replay, InsCL deliv-
ers an improved average Relative Gain of 1.71 and
a reduced standard deviation of 4.92. Furthermore,
when compared with No Replay, InsCL achieves
an improved average Relative Gain of 12.87 and a
dramatic reduction of the standard deviation. The
results prove the effectiveness of each component
and demonstrate that InsCL leverages the strengths
of each.

5.4 Forgetting Analysis

Forgetting Rate. For a further catastrophic for-
getting analysis, several methods (Kemker et al.,
2018; Luo et al., 2023) quantify the forgetting issue
by evaluating performance decrease as training in-
crementally. Consequently, we propose a forgetting
rate defined as:

FGi =
R∗

i −R−1
i

R∗
i

× 100%

669

Figure 5: The analysis of forgetting category. We divide forgetting instances into Instruction-Related and Instruction
Unrelated. After training on Curriculum order, the ratios of two categories in previous tasks are reported.

where R∗
i is the initial Rouge-L of task i after train-

ing on the corresponding task, and R−1
i is the final

Rouge-L of task i in the last training stage.
We evaluate the forgetting rate with Curriculum

training order and report the results of No Replay
and InsCL in Figure 4. It can be inferred that there
is no inevitable relationship between task order
and forgetting rate. For tasks that require complex
reasoning, Program Execution and Code severely
suffer from forgetting with the No Replay setting.
Additionally, a large training data scale does not
necessarily lead to a small forgetting rate. For ex-
ample, Classification and Generation are the top-2
tasks with large training data and exhibit smaller
forgetting rates, while Program Execution with the
third largest dataset suffers from the largest forget-
ting rate. With our InsCL, the forgetting rates of
almost all tasks are below 20%, which means that
most of the previous knowledge is preserved.
Forgetting Category. When all the tasks have
been trained under the No Replay setting, we col-
lect previous tasks’ instances with a decreased
Rouge-L, called forgetting instances. We randomly
sampled 200 forgetting instances from each previ-
ous task, manually analyzing the forgetting cate-
gory for a detailed conclusion. We divide forgetting
instances into two categories based on the instruc-
tion’s following ability: (1) Instruction-Related:
The output is relevant to the instruction, according
to the space defined by the instruction. This cate-
gory indicates LLMs do not forget the correspond-
ing instruction following ability. (2) Instruction-
Unrelated: The output is unrelated to the instruc-
tion. We demonstrate representative cases and re-
spective explanations in Appendix A.3.

Figure 5 reports category ratios in the curricu-
lum training order. The forgotten instances of most
tasks are mainly Instruction-Related, while the for-
getting instances in 5 tasks are mainly Instruction-
Unrelated. Additionally, more than 80% of forget-
ting instances in Program Execution, Code, and
Comprehension tasks are Instruction-Unrelated. It
can be inferred that failure to understand instruc-
tions mainly leads to the performance decline of
complex reasoning tasks.

6 Conclusions

In this paper, we mainly discuss the efficient adap-
tation of LLMs to continual downstream tasks with
instructions. Replay-based CL methods do not re-
quire additional modifications to LLMs and fully
utilize previous data, mitigating catastrophic forget-
ting effectively. We proposed InsCL, an effective
data-efficient method to mitigate catastrophic for-
getting for LLMs instruction tuning. InsCL is a
model-agnostic and training-free method, indicat-
ing strong transferability. Different from existing
replay-based methods, we fully utilize instructions
as representative task descriptions to design the
replay strategy. InsCL leverages instruction em-
beddings and distributions to calculate Wasserstein
distance for task similarity, adjusting the replay
ratio dynamically. Then, with our InsInfo-guided
sampling, InsCL selects more high-quality data
with complex and diverse instructions. We conduct
extensive experiments over 16 tasks with different
training orders, observing consistent performance
improvements of InsCL. Additionally, we further
analyze the forgetting rate and forgetting category,
aiming to provide a guideline for future work.

670

7 Limitations

The promising performance demonstrated by In-
sCL is dependent on high-quality instructions. In-
stead, fuzzy instructions can affect the calculation
of task similarity and the InsInfo-guided sampling,
which may mislead our InsCL. However, if the
instruction-based dataset is unsatisfied, the perfor-
mance of tuned LLMs will also be greatly affected.
Therefore, we tend to use our method after collect-
ing high-quality instruction-based data to further
mitigate catastrophic forgetting.

8 Acknowledgments

This work was supported by the Shenzhen Science
and Technology under Grant JSGG202208311102
03007.

References
Amro Abbas, Kushal Tirumala, Dániel Simig, Surya

Ganguli, and Ari S Morcos. 2023. Semdedup: Data-
efficient learning at web-scale through semantic dedu-
plication. arXiv preprint arXiv:2303.09540.

David Alvarez-Melis and Nicolo Fusi. 2020. Geometric
dataset distances via optimal transport. Advances in
Neural Information Processing Systems, 33:21428–
21439.

Steven Bird, Ewan Klein, and Edward Loper. 2009. Nat-
ural language processing with Python: analyzing text
with the natural language toolkit. " O’Reilly Media,
Inc.".

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Yao Chen, Qingyi Gao, and Xiao Wang. 2022. Infer-
ential wasserstein generative adversarial networks.
Journal of the Royal Statistical Society Series B: Sta-
tistical Methodology, 84(1):83–113.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2022. Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416.

Mike Conover, Matt Hayes, Ankit Mathur, Jianwei Xie,
Jun Wan, Sam Shah, Ali Ghodsi, Patrick Wendell,
Matei Zaharia, and Reynold Xin. 2023. Free dolly:
Introducing the world’s first truly open instruction-
tuned llm.

Marco Cuturi. 2013. Sinkhorn distances: Lightspeed
computation of optimal transport. Advances in neu-
ral information processing systems, 26.

Angel Daruna, Mehul Gupta, Mohan Sridharan, and
Sonia Chernova. 2021. Continual learning of knowl-
edge graph embeddings. IEEE Robotics and Automa-
tion Letters, 6(2):1128–1135.

Cyprien de Masson D’Autume, Sebastian Ruder, Ling-
peng Kong, and Dani Yogatama. 2019. Episodic
memory in lifelong language learning. Advances in
Neural Information Processing Systems, 32.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Zhi
Zheng, Shengding Hu, Zhiyuan Liu, Maosong Sun,
and Bowen Zhou. 2023. Enhancing chat language
models by scaling high-quality instructional conver-
sations. arXiv preprint arXiv:2305.14233.

Duy-Tai Dinh, Tsutomu Fujinami, and Van-Nam Huynh.
2019. Estimating the optimal number of clusters in
categorical data clustering by silhouette coefficient.
In Knowledge and Systems Sciences: 20th Interna-
tional Symposium, KSS 2019, Da Nang, Vietnam,
November 29–December 1, 2019, Proceedings 20,
pages 1–17. Springer.

Evangelia Gogoulou, Timothée Lesort, Magnus Bo-
man, and Joakim Nivre. 2023. A study of contin-
ual learning under language shift. arXiv preprint
arXiv:2311.01200.

Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron
Courville, and Yoshua Bengio. 2013. An em-
pirical investigation of catastrophic forgetting in
gradient-based neural networks. arXiv preprint
arXiv:1312.6211.

Xiaotao Gu, Liyuan Liu, Hongkun Yu, Jing Li, Chen
Chen, and Jiawei Han. 2020. On the transformer
growth for progressive bert training. arXiv preprint
arXiv:2010.12562.

Ishu Gupta, Sloni Mittal, Ankit Tiwari, Priya Agarwal,
and Ashutosh Kumar Singh. 2022. Tidf-dlpm: Term
and inverse document frequency based data leakage
prevention model. arXiv preprint arXiv:2203.05367.

Michael Hahsler, Matthew Piekenbrock, and Derek Do-
ran. 2019. dbscan: Fast density-based clustering with
r. Journal of Statistical Software, 91:1–30.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Joel Jang, Seungone Kim, Seonghyeon Ye, Doyoung
Kim, Lajanugen Logeswaran, Moontae Lee, Kyung-
jae Lee, and Minjoon Seo. 2023. Exploring the bene-
fits of training expert language models over instruc-
tion tuning. arXiv preprint arXiv:2302.03202.

671

https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm

Xisen Jin, Dejiao Zhang, Henghui Zhu, Wei Xiao,
Shang-Wen Li, Xiaokai Wei, Andrew Arnold, and
Xiang Ren. 2021. Lifelong pretraining: Continu-
ally adapting language models to emerging corpora.
arXiv preprint arXiv:2110.08534.

Zixuan Ke and Bing Liu. 2022. Continual learning of
natural language processing tasks: A survey. arXiv
preprint arXiv:2211.12701.

Zixuan Ke, Bing Liu, Nianzu Ma, Hu Xu, and Lei Shu.
2021. Achieving forgetting prevention and knowl-
edge transfer in continual learning. Advances in
Neural Information Processing Systems, 34:22443–
22456.

Ronald Kemker, Marc McClure, Angelina Abitino,
Tyler Hayes, and Christopher Kanan. 2018. Mea-
suring catastrophic forgetting in neural networks. In
Proceedings of the AAAI conference on artificial in-
telligence.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz,
Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, et al. 2017. Over-
coming catastrophic forgetting in neural networks.
Proceedings of the national academy of sciences,
114(13):3521–3526.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74–81.

Qingbin Liu, Xiaoyan Yu, Shizhu He, Kang Liu,
and Jun Zhao. 2021. Lifelong intent detection
via multi-strategy rebalancing. arXiv preprint
arXiv:2108.04445.

Xinran Liu, Yikun Bai, Yuzhe Lu, Andrea Soltoggio,
and Soheil Kolouri. 2022. Wasserstein task embed-
ding for measuring task similarities. arXiv preprint
arXiv:2208.11726.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Shayne Longpre, Le Hou, Tu Vu, Albert Webson,
Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V
Le, Barret Zoph, Jason Wei, et al. 2023. The flan
collection: Designing data and methods for effective
instruction tuning. arXiv preprint arXiv:2301.13688.

Keming Lu, Hongyi Yuan, Zheng Yuan, Runji Lin, Jun-
yang Lin, Chuanqi Tan, Chang Zhou, and Jingren
Zhou. 2023. # instag: Instruction tagging for analyz-
ing supervised fine-tuning of large language models.
arXiv e-prints, pages arXiv–2308.

Yun Luo, Zhen Yang, Fandong Meng, Yafu Li, Jie
Zhou, and Yue Zhang. 2023. An empirical study
of catastrophic forgetting in large language mod-
els during continual fine-tuning. arXiv preprint
arXiv:2308.08747.

Andrea Madotto, Zhaojiang Lin, Zhenpeng Zhou, Se-
ungwhan Moon, Paul Crook, Bing Liu, Zhou Yu,
Eunjoon Cho, and Zhiguang Wang. 2020. Continual
learning in task-oriented dialogue systems. arXiv
preprint arXiv:2012.15504.

Fei Mi, Liangwei Chen, Mengjie Zhao, Minlie Huang,
and Boi Faltings. 2020. Continual learning for natu-
ral language generation in task-oriented dialog sys-
tems. arXiv preprint arXiv:2010.00910.

Swaroop Mishra, Daniel Khashabi, Chitta Baral,
and Hannaneh Hajishirzi. 2021. Natural instruc-
tions: Benchmarking generalization to new tasks
from natural language instructions. arXiv preprint
arXiv:2104.08773, pages 839–849.

Natawut Monaikul, Giuseppe Castellucci, Simone Fil-
ice, and Oleg Rokhlenko. 2021. Continual learning
for named entity recognition. In Proceedings of the
AAAI Conference on Artificial Intelligence.

OpenAI. 2023. Gpt-4 technical report.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural
Information Processing Systems, 35:27730–27744.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Gal-
ley, and Jianfeng Gao. 2023. Instruction tuning with
gpt-4. arXiv preprint arXiv:2304.03277.

Chengwei Qin and Shafiq Joty. 2021. Lfpt5: A uni-
fied framework for lifelong few-shot language learn-
ing based on prompt tuning of t5. arXiv preprint
arXiv:2110.07298.

Yujia Qin, Jiajie Zhang, Yankai Lin, Zhiyuan Liu, Peng
Li, Maosong Sun, and Jie Zhou. 2022. Elle: Effi-
cient lifelong pre-training for emerging data. arXiv
preprint arXiv:2203.06311.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Des-
jardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell.
2016. Progressive neural networks. arXiv preprint
arXiv:1606.04671.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Teven Le Scao, Arun
Raja, et al. 2021. Multitask prompted training en-
ables zero-shot task generalization. arXiv preprint
arXiv:2110.08207.

672

http://arxiv.org/abs/2303.08774

Thomas Scialom, Tuhin Chakrabarty, and Smaranda
Muresan. 2022. Fine-tuned language models are
continual learners. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, pages 6107–6122.

Chufan Shi, Yixuan Su, Cheng Yang, Yujiu Yang, and
Deng Cai. 2023. Specialist or generalist? instruction
tuning for specific nlp tasks. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, pages 15336–15348.

Chufan Shi, Haoran Yang, Deng Cai, Zhisong Zhang,
Yifan Wang, Yujiu Yang, and Wai Lam. 2024. A
thorough examination of decoding methods in the era
of llms. arXiv preprint arXiv:2402.06925.

Chenyang Song, Xu Han, Zheni Zeng, Kuai Li, Chen
Chen, Zhiyuan Liu, Maosong Sun, and Tao Yang.
2023. Conpet: Continual parameter-efficient tun-
ing for large language models. arXiv preprint
arXiv:2309.14763.

Fan-Keng Sun, Cheng-Hao Ho, and Hung-Yi Lee. 2019.
Lamol: Language modeling for lifelong language
learning. arXiv preprint arXiv:1909.03329.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model.

Madhuri A Tayal, Vanshika Bajaj, Ankita Gore, Preeti
Yadav, and Vaishnavi Chouhan. 2023. Automatic
domain classification of text using machine learning.
In 2023 International Conference on Communication,
Circuits, and Systems (IC3S), pages 1–5. IEEE.

Kushal Tirumala, Daniel Simig, Armen Aghajanyan,
and Ari S Morcos. 2023. D4: Improving llm pretrain-
ing via document de-duplication and diversification.
arXiv preprint arXiv:2308.12284.

Mariya Toneva, Alessandro Sordoni, Remi Tachet des
Combes, Adam Trischler, Yoshua Bengio, and Geof-
frey J Gordon. 2018. An empirical study of exam-
ple forgetting during deep neural network learning.
arXiv preprint arXiv:1812.05159.

Luis Caicedo Torres, Luiz Manella Pereira, and M Hadi
Amini. 2021. A survey on optimal transport for
machine learning: Theory and applications. arXiv
preprint arXiv:2106.01963.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Chengyu Wang, Haojie Pan, Yuan Liu, Kehan Chen,
Minghui Qiu, Wei Zhou, Jun Huang, Haiqing Chen,
Wei Lin, and Deng Cai. 2021a. Mell: Large-scale
extensible user intent classification for dialogue sys-
tems with meta lifelong learning. In Proceedings of

the 27th ACM SIGKDD conference on knowledge
discovery & data mining, pages 3649–3659.

Shufan Wang, Laure Thompson, and Mohit Iyyer.
2021b. Phrase-bert: Improved phrase embeddings
from bert with an application to corpus exploration.
arXiv preprint arXiv:2109.06304.

Xiao Wang, Tianze Chen, Qiming Ge, Han Xia, Rong
Bao, Rui Zheng, Qi Zhang, Tao Gui, and Xuan-
jing Huang. 2023. Orthogonal subspace learning for
language model continual learning. arXiv preprint
arXiv:2310.14152.

Xin Wang, Yudong Chen, and Wenwu Zhu. 2021c.
A survey on curriculum learning. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
44(9):4555–4576.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Al-
isa Liu, Noah A Smith, Daniel Khashabi, and Han-
naneh Hajishirzi. 2022a. Self-instruct: Aligning lan-
guage model with self generated instructions. arXiv
preprint arXiv:2212.10560.

Yizhong Wang, Swaroop Mishra, Pegah Alipoor-
molabashi, Yeganeh Kordi, Amirreza Mirzaei,
Anjana Arunkumar, Arjun Ashok, Arut Selvan
Dhanasekaran, Atharva Naik, David Stap, et al.
2022b. Super-naturalinstructions: Generalization via
declarative instructions on 1600+ nlp tasks. arXiv
preprint arXiv:2204.07705.

Zirui Wang, Sanket Vaibhav Mehta, Barnabás Póczos,
and Jaime Carbonell. 2020. Efficient meta lifelong-
learning with limited memory. arXiv preprint
arXiv:2010.02500.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V Le. 2021. Finetuned lan-
guage models are zero-shot learners. arXiv preprint
arXiv:2109.01652.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. 2023a. Wizardlm: Empowering large lan-
guage models to follow complex instructions. arXiv
preprint arXiv:2304.12244.

Zihao Xu, Xuan Tang, Yufei Shi, Jianfeng Zhang, Jian
Yang, Mingsong Chen, and Xian Wei. 2023b. Con-
tinual learning via manifold expansion replay. arXiv
preprint arXiv:2310.08038.

Da Yin, Xiao Liu, Fan Yin, Ming Zhong, Hritik Bansal,
Jiawei Han, and Kai-Wei Chang. 2023. Dynosaur: A
dynamic growth paradigm for instruction-tuning data
curation. arXiv preprint arXiv:2305.14327.

Junting Zhang, Jie Zhang, Shalini Ghosh, Dawei Li,
Serafettin Tasci, Larry Heck, Heming Zhang, and
C-C Jay Kuo. 2020. Class-incremental learning via
deep model consolidation. In Proceedings of the
IEEE/CVF Winter Conference on Applications of
Computer Vision, pages 1131–1140.

673

Yanzhe Zhang, Xuezhi Wang, and Diyi Yang. 2022.
Continual sequence generation with adaptive compo-
sitional modules. arXiv preprint arXiv:2203.10652.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao
Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu,
Lili Yu, et al. 2023. Lima: Less is more for alignment.
arXiv preprint arXiv:2305.11206.

A Appendix

A.1 InsTag Process
Follow Lu et al. (2023), we use the prompt shown
in Table 4 to employ GPT-4, providing fine-grained
intention tags for given queries. To make the word
format and granularity consistent, we filter the
noise in raw tags as the following steps:

• Rule Aggregation: We replace all special
characters with spaces and transform words
into lowercase. Then, we apply lemmatiza-
tion via NLTK (Bird et al., 2009) to unify tag
formats.

• Semantic Aggregation: We obtain seman-
tic embeddings of tags through PHRASE-
BERT (Wang et al., 2021b), a BERT-based
model designed for embedding phrases. Then,
we cluster tags with semantic similarity via
the DBSCAN algorithm (Hahsler et al., 2019).
Here, we calculate the cosine similarity and
set the cluster threshold to 0.1.

You are a tagging system that provides useful
tags for instruction intentions to distinguish
instructions for a helpful AI assistant. Below
is an instruction:
[begin]
{instruction}
[end]
Please provide coarse-grained tags, such as
"Spelling and Grammar Check" and "Cos-
play", to identify main intentions of the above
instruction. Your answer should be a list in-
cluding titles of tags and a brief explanation of
each tag. Your response has to strictly follow
this JSON format: [{"tag": str, "explanation":
str}]. Please respond in English.

Table 4: Prompt template for annotating intention tags
of the given instruction.

A.2 Data Composition
SuperNI (Wang et al., 2022b) collects diverse NLP
tasks with instructions using the Apache-2.0 li-

cense. The dataset curates task data in indepen-
dent files, starting with a unique task ID (e.g.,
task001_quoref_question_generation.json). We in-
tegrate 765 English tasks from SuperNI into 16
categories, representing corresponding task IDs for
each category in Table 5. Noting that, following the
same evaluation protocol as in Wang et al. (2022b);
Shi et al. (2023, 2024), we adopt greedy search
with a maximum generation length of 512.

A.3 Forgetting Category Annotation
We invite 5 Chinese graduate students whose re-
search field is related to NLP as annotation volun-
teers, manually labeling forgetting instances with
Instruction-Related or Instruction-Unrelated. Addi-
tionally, we have procured approval from the anno-
tator for utilizing the data in scientific research. We
randomly sampled 3000 forgetting instances from
15 previous tasks for annotation (200 instances per
task). To better understand the forgetting category,
we demonstrate detailed cases and relevant expla-
nations in Table 6.

674

Category Size Task ID
Classification 633k 20, 50, 65, 66, 69, 70, 109, 112, 114, 115, 116, 141, 142, 143,

145, 146, 147, 148, 149, 150, 155, 190, 199, 200, 201, 202,
226, 232, 233, 242, 274, 276, 280, 290, 291, 298, 340, 341,
342, 343, 345, 346, 347, 349, 350, 351, 364, 375, 379, 382,
391, 392, 393, 400, 428, 429, 430, 431, 457, 458, 459, 472,
495, 496, 514, 515, 516, 520, 521, 564, 566, 573, 575, 577,
583, 584, 590, 614, 617, 623, 625, 629, 630, 632, 633, 638,
640, 641, 642, 679, 681, 682, 738, 767, 827, 828, 848, 854,
855, 856, 890, 907, 908, 925, 935, 936, 937, 970, 1167, 1168,
1196, 1197, 1198, 1199, 1200, 1201, 1202, 1203, 1204, 1205,
1206, 1207, 1208, 1209, 1210, 1211, 1212, 1213, 1214, 1215,
1216, 1285, 1288, 1308, 1336, 1344, 1347, 1354, 1385, 1386,
1387, 1388, 1393, 1418, 1429, 1434, 1439, 1442, 1488, 1489,
1495, 1505, 1516, 1529, 1541, 1548, 1549, 1554, 1559, 1560,
1573, 1583, 1584, 1592, 1593, 1599, 1612, 1615, 1624, 1640,
1645, 1705, 1712

Generation 506k 1, 23, 25, 26, 59, 60, 67, 68, 71, 72, 74, 81, 82, 102, 103, 105,
166, 167, 182, 184, 191, 193, 219, 220, 246, 269, 270, 277,
278, 283, 287, 288, 294, 299, 300, 301, 303, 311, 381, 389,
405, 418, 453, 454, 455, 461, 470, 471, 489, 492, 500, 510,
547, 560, 563, 565, 568, 569, 574, 576, 581, 585, 592, 594,
599, 602, 610, 611, 619, 631, 639, 649, 672, 677, 739, 743,
760, 769, 821, 845, 847, 853, 857, 859, 860, 861, 871, 886,
897, 901, 917, 919, 927, 928, 957, 963, 964, 965, 967, 1152,
1153, 1154, 1155, 1156, 1157, 1158, 1159, 1161, 1217, 1325,
1326, 1339, 1342, 1356, 1358, 1359, 1360, 1379, 1381, 1383,
1398, 1400, 1407, 1409, 1508, 1509, 1519, 1540, 1566, 1567,
1580, 1582, 1585, 1586, 1590, 1594, 1598, 1600, 1602, 1603,
1609, 1631, 1657, 1659, 1660, 1665, 1703, 1704, 1711, 1713,
1714, 1728, 1729, 1730

Program Execution 433k 62, 63, 64, 78, 79, 91, 93, 94, 95, 96, 97, 98, 99, 100, 101, 113,
122, 123, 124, 125, 157, 158, 159, 160, 161, 162, 163, 205,
206, 207, 208, 243, 244, 245, 267, 365, 366, 367, 368, 369,
370, 371, 372, 373, 374, 376, 377, 378, 488, 497, 499, 504,
505, 506, 507, 509, 523, 600, 605, 606, 622, 636, 637, 755,
756, 850, 851, 852, 1087, 1088, 1089, 1148, 1150, 1151, 1188,
1189, 1190, 1194, 1315, 1316, 1331, 1404, 1405, 1406, 1443,
1444, 1445, 1446, 1542, 1551

Open QA 302k 2, 24, 28, 61, 75, 80, 83, 84, 144, 151, 152, 153, 154, 170, 194,
247, 302, 309, 310, 339, 344, 380, 390, 460, 469, 490, 491,
580, 582, 591, 595, 596, 597, 598, 615, 740, 741, 742, 745,
750, 751, 752, 753, 754, 820, 835, 849, 858, 861, 862, 863,
864, 865, 866, 867, 868, 870, 887, 898, 918, 1135, 1286, 1293,
1296, 1327, 1382, 1399, 1412, 1419, 1420, 1421, 1422, 1423,
1424, 1431, 1520, 1564, 1565, 1581, 1601, 1608, 1656, 1661,
1678, 1726, 1727, 1731

675

Category Size Task ID
Sentiment Analysis 173k 195, 196, 284, 285, 293, 363, 397, 398, 399, 475, 476, 477,

478, 493, 494, 512, 517, 518, 586, 587, 588, 746, 761, 819,
823, 833, 843, 844, 875, 888, 889, 902, 903, 923, 929, 1292,
1310, 1311, 1312, 1313, 1338, 1361

Comprehension 149k 27, 33, 44, 46, 133, 168, 176, 192, 223, 227, 248, 249, 295,
304, 329, 330, 384, 401, 403, 462, 579, 593, 648, 673, 834,
846, 891, 892, 893, 899, 900, 966, 1289, 1294, 1328, 1366,
1369, 1390, 1391, 1664

Detection 147k 22, 88, 89, 108, 137, 209, 279, 286, 316, 317, 318, 319, 320,
321, 322, 323, 324, 325, 326, 327, 328, 333, 335, 337, 353,
354, 355, 356, 357, 358, 359, 386, 387, 513, 607, 608, 609,
904, 905, 1346, 1502, 1503, 1504, 1604, 1605, 1606, 1607,
1706, 1720, 1721, 1722, 1723, 1724, 1725

Rewriting 87k 34, 35, 45, 111, 121, 132, 177, 275, 402, 413, 442, 550, 626,
627, 628, 670, 671, 770, 933, 934, 955, 1195, 1340, 1345,
1364, 1368, 1401, 1557, 1562, 1622, 1669, 1670

Code 71k 76, 77, 107, 110, 126, 127, 128, 129, 130, 131, 210, 211, 212,
868, 869, 956

Closed QA 66k 47, 73, 104, 118, 119, 138, 139, 140, 156, 164, 165, 178, 228,
229, 268, 296, 297, 385, 664, 665, 666, 667, 685, 686, 687,
688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699,
700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711,
712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723,
724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735,
736, 737, 906, 909, 1378, 1380, 1389

Misc. 66k 43, 169, 183, 305, 306, 307, 308, 383, 567, 921, 922, 924,
1146, 1147, 1149, 1191, 1192, 1193, 1314, 1317, 1318, 1319,
1320, 1321, 1322, 1332, 1333, 1403, 1425, 1426, 1427, 1428,
1498, 1507, 1595, 1596

Extraction 59k 36, 39, 179, 180, 181, 281, 292, 388, 456, 578, 613, 620, 645,
683, 684, 874, 926, 1447, 1448, 1449, 1451, 1452, 1453, 1479,
1480, 1481, 1482, 1483, 1484, 1485, 1486, 1487, 1506, 1510,
1517, 1518, 1568

Summarization 40k 522, 589, 618, 668, 672, 1290, 1291, 1309, 1355, 1499, 1553,
1572

Dialogue 30k 362, 766, 879, 880, 1384, 1394, 1500, 1501, 1531, 1533, 1534

Mathematics 24k 85, 87, 90, 92

Text Quality Evaluation 20k 616, 674, 675, 1186, 1283, 1284, 1341

Table 5: We analyze the intention of instructions, reclassifying the task types into 16 categories. The task IDs
contained in each category are reported.

676

Case Explanation
In this task, you are given a context tweet, a question and corre-
sponding answer of given question. Your task is to classify given
passage into two categories: (1) "Yes" if the given context is useful
in answering the question, and (2) "No" if the given context is not
useful. Context: . . .
Ground Truth: No
Instruction-Related Output: Yes
Instruction-Unrelated Output: None

For close-domain instruc-
tion, we consider output
within the specified range
as instruction-related and
vice versa as instruction-
unrelated.

Craft one correct answer to the question given in input. In your
answer, use as few words as possible from the given context. Use
a response that is uncommon/non-stereotypical so that it is less
predictable. Context: . . . , Question: . . .
Ground Truth: He is my boyfriend.

Instruction Related Output: We have a close relationship.

Instruction Unrelated Output: 10

For open-domain instruc-
tion, we consider output
that is relevant to the input
as instruction-related, and
vice versa as instruction-
unrelated.

Given a command in a limited form of natural language, provide
the correct sequence of actions that executes the command to thus
navigate an agent in its environment. A command can be broken
down into many different actions. . . . There are only six actions:
’I_LOOK’, ’I_WALK’, ’I_RUN’, ’I_JUMP’, ’I_TURN_LEFT’,
and ’I_TURN_RIGHT’.
jump opposite left and run opposite left.
Ground Truth: I_TURN_LEFT I_TURN_LEFT I_JUMP I_TU-
RN_LEFT I_TURN_LEFT I_RUN

Instruction Related Output: I_JUMP I_TURN_LEFT
Instruction Unrelated Output: turn left twice

For the instruction that
imposes restrictions on
the format (e.g., within
20 words / return in the
form of / should be sep-
arated with a new line /
. . .), we consider output
with the specified format
as instruction-related, and
vice versa as instruction-
unrelated.

Given a factoid/trivia type question, generate the topic of the
question. The topic is the entity the question talks about.
For which paper was reporter Clark Kent/Superman employed?
Ground Truth: superman, clark kent
Instruction Related Output: paper

Instruction Unrelated Output: planet

For Comprehension and
Summarization tasks, we
consider output containing
the phrases extracted from
the context as instruction-
related, and vice versa as
instruction-unrelated.

In this task, you will be given a list of integers. You should find the
maximum absolute difference between 2 integers in the list. The
absolute difference is the absolute value of one integer subtracted
by another. The output should be a single integer which is the
largest possible absolute distance.
[-73, -93, -11, 79, -11, -17, -16, -52, -42, -28]
Ground Truth: 172
Instruction Related Output: 170
Instruction Unrelated Output: [-11, -17, -16] or 999999

For tasks involving math-
ematical operations, we
consider reasonable out-
put in the same format
as instruction-related, and
vice versa as instruction-
unrelated.

Table 6: We demonstrate representative cases of two categories for a better understanding.

677

