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Abstract

In this paper, we conduct a study to utilize
LLMs as a solution for decision making that
requires complex data analysis. We define De-
cision QA as the task of answering the best
decision, dbest, for a decision-making question
Q, business rules R and a database D. Since
there is no benchmark that can examine Deci-
sion QA, we propose Decision QA benchmark,
DQA. It has two scenarios, Locating and Build-
ing, constructed from two video games (Europa
Universalis IV and Victoria 3) that have almost
the same goal as Decision QA. To address De-
cision QA effectively, we also propose a new
RAG technique called the iterative plan-then-
retrieval augmented generation (PlanRAG).
Our PlanRAG-based LM generates the plan
for decision making as the first step, and the
retriever generates the queries for data analy-
sis as the second step. The proposed method
outperforms the state-of-the-art iterative RAG
method by 15.8% in the Locating scenario and
by 7.4% in the Building scenario, respectively.
We release our code and benchmark at https:
//github.com/myeon9h/PlanRAG.

1 Introduction

In many business situations, decision making plays
a crucial role for the success of organizations
(Kasie et al., 2017; Gupta et al., 2002). Here, de-
cision making involves analyzing data, ultimately
leading to the selection of the most suitable al-
ternative to achieve a specific goal (Provost and
Fawcett, 2013; Diván, 2017). For example, we
assume that one of the goals of the pharmacy com-
pany “Pfizer” is to minimize the production cost
while maintaining on-time delivery from plants to
customers in the pharmaceutical distribution net-
work (Gupta et al., 2002), and the production cost
is proportional to the amount of operation time and

∗Equal contribution.
†Corresponding author.

number of employees of a plant. Then, Pfizer may
face the following decision-making problems: (P1)
which plant it should operate or stop, and (P2) how
many employees it should hire for each plant.

In general, the decision-making task requires
performing the following three steps: (1) making
a plan for which kind of analysis is needed for de-
cision; (2) retrieving necessary data using queries;
(3) making a decision (i.e., answering) based on the
data (Troisi et al., 2020; Sala et al., 2022). To make
the Steps (2) and (3) easier, a lot of decision support
systems have been developed and utilized during
the past few decades (Gupta et al., 2002; Eom and
Kim, 2006; Power, 2007; Hedgebeth, 2007; Power,
2008; Kasie et al., 2017). However, humans still
have been in charge of the most hard part, Step
(1). The goal of this study is to investigate the pos-
sibility of replacing the human role with a Large
Language Model(LLM) such that it performs not
only Steps (2) and (3) but also Step (1), that is, all
the Steps end-to-end.

To achieve the goal, we propose, Decision QA,
a new decision-making task for language models.
Decision QA is defined as a QA-style task that
takes a pair of database D, business rules R and
a decision-making question Q as input and gener-
ates the best decision as output. Figure 1 shows
a situation in Europa Universalis IV game where
countries compete in trade at the Age of Discovery,
as an example of Decision QA. Each country de-
cides which trading city (i.e., node) it should locate
a merchant on to maximize its profit on its main
(i.e., home) trading node. The example shows that
a decision-making LLM decides to locate a mer-
chant in Doab to maximize the profit of Deccan,
the home trading node of the country BAH, after
analyzing the database about international trade.

Next, we propose a benchmark for Decision QA
called DQA, which consists of the following two
scenarios: Locating and Building. The former sce-
nario consists of decision questions like “Which
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Where should I locate my merchant ? My goal is maximizing BAH’s profit on home node, Deccan.

You should locate your merchant to the Doab node to steer value, so that maximize profit of BAH.

Step 3: Answering based on the result of data analysis

Decision 1 (𝒅𝟏): Locate a merchant to Doab. Decision 2 (𝒅𝟐): Locate a merchant to Ganges.

Step 1: Making a plan for which kind of analysis is needed for decision

flowdestinationsource
0.78DeccanDoab
0.82DoabGanges .........

Ganges

Deccan
Profit +0.23 by flow 1

Doab

Coromandel

Ganges

Deccan
Profit +0.02 by flow 3

DoabGujarat

Coromandel

Hormuz
Gujarat

Hormuz

<The database about the international trade>

𝑻𝑷𝒕𝒐𝒕𝒂𝒍OVIVLVis inlandtrade node
11282.1710.828.91TrueDeccan
12431.5640.876.98TrueDoab
11721.6471.078.31FalseGanges ............…...

developmenthome nodecountry
186.5DeccanBAH
143.7DoabJNP
143.7GangesBNG .........

has merchant𝑻𝑷𝒄𝒐𝒖𝒏𝒕𝒓𝒚is homecountrytrade node
False160TrueBAHDeccan
False71FalseBAHDoab
False0FalseBAHGanges ...............

Step 2: Retrieving data and analyze it

Step 1: Determine available decisions by finding source nodes. Step 2: Ascertain flow increments by
decisions. Step 3: Calculate profit increments by decisions.

flow 1: +1.62 flow 3: +0.13
flow 2: +0.79 

TradingFlow tableTradingNode table

NodeCountry tableCountry table

Figure 1: Example of Decision QA. A red dot represents a trading node. A Profit in the Deccan box indicates a
potential profit change by each decision. Note that the potential profit changes are not in the database, which should
be calculated from the database. Each country has only a single main(home) trading node. The underlined column
names in a table indicate the key of the table.

trade node should I locate a merchant on" (similar
to P1 of Pfizer). The latter consists of questions
like “How many woods should I supply to a fac-
tory” (similar to P2 of Pfizer). Due to the difficulty
of building DQA using real-world business data,
we built the benchmark by extracting the game
data involving 301 specific situations from the two
video games Europa Universalis IV and Victoria 31,
which well imitate real business situations. To elim-
inate the randomness of the game and publish our
benchmark, we develop the game simulators that
record the decision results for 301 situations. We

1Grand strategy games published by Paradox Interactive

utilize the results as annotations for the questions
of DQA.

The recent breakthrough in LLMs is making it
possible to replace Steps (2) and (3) of the deci-
sion making task with LLMs, in particular, based
on Retrieval-Augmented Generation (RAG) tech-
nique. So far, a lot of RAG-based methods have
been proposed for various tasks(Lewis et al., 2020;
Khandelwal et al., 2020; Izacard and Grave, 2021;
Borgeaud et al., 2022; Izacard et al., 2023; Ya-
sunaga et al., 2023; Jiang et al., 2022a; Shi et al.,
2023). In these methods, a retriever finds external
data highly relevant to a question and conveys it to
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LMs, so that LMs can generate an answer based on
it (Lewis et al., 2020). Recently, the iterative RAG
technique has also been proposed to address more
complex problems that should utilize retrieved re-
sults to perform further retrievals (Trivedi et al.,
2023; Jiang et al., 2023b).

However, the existing RAG-based methods
mainly focus on the knowledge-based QA tasks
(Karpukhin et al., 2020; Trivedi et al., 2023), but
do not focus on the decision making QA task. As
a result, they are not very good at handling Step
(1), i.e., making a plan for decision, in our observa-
tion. For instance, in Figure 1, an LM for decision
making should reason which analysis is needed to
perform for maximize the profit of Deccan. How-
ever, the existing methods just try to identify, for
example, what Deccan is.

To address this limitation, we propose the itera-
tive plan-then-retrieval augmented generation tech-
nique, PlanRAG, which extends the iterative RAG
technique for Decision QA. A PlanRAG-based LM
first makes a plan for which kind of analysis it
needs by examining data schema and questions
(the planning step). Next, it retrieves the scattered
pieces of data for the analysis by generating and
posing queries (the retrieving step). Finally, it as-
sesses whether it needs to make a new plan for
further analysis, and then repeats both the plan-
ning and retrieval steps iteratively (the re-planning
step), or makes a decision based on the data (the
answering step).

To validate the effectiveness of our PlanRAG on
Decision QA, we compare both the state-of-the-art
iterative RAG-based LM and our PlanRAG-based
LM for the DQA benchmark. Our contributions
are summarized as follows:

• We define a new challenging task, Decision
QA, which requires both planning and data
analysis for decision making.

• We propose the benchmark for Decision QA
called DQA having two scenarios of Locating
and Building.

• We propose a new retrieval-augmented gen-
eration technique, PlanRAG, that can signifi-
cantly enhance the capability of decision mak-
ing of LLMs.

• We demonstrated that PlanRAG is far more
effective than the iterative RAG technique for
Decision QA.

2 Decision QA task

We define Decision QA as the task of answering the
best decision dbest given a decision-making ques-
tion Q, business rules R, and structured database
D that follows a schema S. Here, Q contains a tex-
tual goal that users want to be achieved through the
decision dbest, and R contains textual descriptions
of formulas that are referenced to reason dbest.

Without loss of generality, the database D is
too large to fit in the input of an LM all at once.
Therefore, we assume that an LM retrieves data
from D by posing a query for data analysis, which
we call as a data analysis query hereafter.

We assume that D is either a labeled property
graph (LPG) database or a relational database
(RDB). For example, the database in Figure 1 is a
relational database. Here, an LPG refers to a graph
with properties on edges and nodes, which is widely
used in the industry (Akoglu et al., 2015; Guo et al.,
2020). We call a labeled property graph database
as simply a graph database, or GDB hereafter.

3 DQA: Decision QA benchmark

3.1 Locating scenario

The database in this scenario is composed of the
following four tables when D is RDB. It also can be
easily represented as GDB by regarding the tuples
in TradingFlow and NodeCountry as edges and the
tuples in TradingNode and Country as vertices.

MeaningColumn nameTable name
country name (e.g. BAH)country

Country home node of a countryhome node
economical size of the countrydevelopment
trade node name (e.g. Doab)trade node

TradingNode

amount of value produced 
inside the nodeLV(local value)

the amount of value coming 
from neighbor source nodes 
(proportional to the flow 
between source and destination)

IV 
(incoming value)

sum of the trading powers of 
all countries on this trade node𝑻𝑷𝒕𝒐𝒕𝒂𝒍
trade node nametrade node

NodeCountry
country namecountry
trading power of the country 
on this trade node𝑻𝑷𝒄𝒐𝒖𝒏𝒕𝒓𝒚
True if a merchant existshas merchant
source trade node namesource

TradingFlow destination trade node namedestination
flow weight from source to 
destinationflow

Table 1: RDB schema for Locating. The bold indicate
the columns which values depend on other values and a
user decision. Some columns are omitted.
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There are some business rules for decision mak-
ing. The column values in bold are calculated from
some other values in the database and a user de-
cision (e.g., location of a merchant) according to
the rules. If a user locates a merchant on a trading
node for a country, the flow from the trading node
to the home node of the country increases. In the
below rules, c is a country, n a trading node, src
a source node, dest a destination node, and h the
home node of c. We also denote the set of countries
as C, and the set of TradingFlow tuples as F . TPR
means Trading Power Ratio.

TPR(n, c) = TPcountry(n, c)/TPtotal(n) (1)

IV (dest) = 1.05 · Σ(src,dest)∈Fflow(src, dest) (2)

profit(c) = (LV (h) + IV (h)) · TPR(h, c) (3)

In this scenario, the goal of decision making is to
choose trading node that can maximize ∆profit(c)
of the given target country c.

3.2 Building scenario
The database D in this scenario is composed of
the following four tables when D is RDB. It also
can be easily represented as GDB by regarding
the tuples in Demand and Supply as edges and the
tuples in Goods and Buildings as vertices.

MeaningColumn nameTable name
ID of a goodsgoods ID

Goods
Base Price of goodsBP
Current Price of goodsCP
minimum amount of demand for 
the goods

PD 
(pop demand)

ID of a buildingbuilding IDBuilding size of the buildinglevel
goods IDgoods ID

Supply

building IDbuilding ID
Maximum amount of the goods that 
could be produced by the buildingMS

Current amount of the goods 
produced by the buildingCO

size of the buildinglevel
goods IDgoods ID

Demand

building IDbuilding ID
Maximum amount of the goods that 
could be consumed by the buildingMD

Current amount of the goods 
consumed by the buildingCI

size of the buildinglevel

Table 2: RDB schema for Building. Some columns are
omitted.

The most basic business rule is that CO(g, b)
increases for any goods g, if a decision maker ex-
pands the factory building b. In the below rules, g

B1

B2

(a) Initial situation

<The simplified 𝑫 in Building scenario>

PDCPBPgoods IDgoods name
40152010wood
0404026hardwood

10032.53013furniture

COMSlevelbuilding IDgoods ID
40401113
50501213
12012010310
303010326

CIMDlevelbuilding IDgoods ID
40401110
25251226

Buildings tableDemand table

Supply table Goods table

levelbuilding IDname
11Building 1
12Building 2
103Building 3

wood

hardwood
B3

B1

B2

(b) Decision 1: expand B1

B3

B1

(c) Decision 2: expand B2

B3

CO=40

CO=50

CI=40

CI=25

CO=80

CO=50

CI=80

CI=25

CO=40

CO=60

CI=40

CI=30

B2

Figure 2: Example of the Building scenario. The red,
green, and blue circles indicate furniture, wood, and
hardwood, respectively. We assume that the goal is re-
ducing the price of furniture by deciding the factory
between B1 and B2 to expand and so increase its pro-
duction.

is goods, and b is a building. We also denote the set
of Supply as Sup, and the set of Demand as Dem.
TD means Total Demand, and TS Total Supply.
Other major business rules are as follow:

TD(g) = PD(g) + Σ(g,b)∈DemMD(g, b) (4)

TS(g) = Σ(g,b)∈SupCO(g, b) (5)

CP (g) = BP (g)·

(1 + 0.75 · TD(g)− TS(g)

max(TD(g), TS(g))
) (6)

In this scenario, the goal is to minimize CP (g)
for a given goods g.

3.3 Statistics of DQA
DQA consists of a total of 301 pairs of D and
Q: (1) 200 pairs for the Locating scenario and (2)
101 pairs for the Building scenario. Each database
again has two versions, RDB and GDB, for the
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same corresponding question, and so, a total of 602
databases are provided in the DQA benchmark. We
assume that SQL is used for RDB, while Cypher
Query Language (CQL) (Francis et al., 2018) used
for GDB. Table 3 shows some statistics of the
databases in DQA. Details for data collection are
in Appendix A.1.

Statistics Locating Building
# of ⟨Q,D⟩ pairs 200 101
Relational DB (RDB)
Avg. rows in tables of D 2038.8 579.0
Avg. cols in tables of D 4.5 4.5
Graph DB (GDB)
Avg. # of edges of D 1432.3 374.7
Avg. # of vertices of D 606.5 204.3

Table 3: Statistics about the databases in DQA.

4 Methodology: PlanRAG

For Decision QA, the existing RAG technique
(Jiang et al., 2023b; Trivedi et al., 2023) tries to
answer the best decision dbest for given ⟨Q,S,R⟩
through a single type of reasoning that utilizes
on the results retrieved from D by data analysis
queries. Figure 3 (a) shows its reasoning process.
If the retrieval from D is performed only once, the
process is called as single-turn RAG. Otherwise, if
the retrieval is performed multiple times, the pro-
cess is called as iterative RAG.

In contrast, our iterative plan-then-retrieval aug-
mented generation (PlanRAG) technique tries to
answer dbest through two types of reasoning. The
first type of reasoning is making a plan, and the
second type of reasoning is similar to the reasoning
of the existing RAG, i.e., answering based on the
results retrieved from D by of data analysis queries.
In particular, we built a single LM that can perform
both types of reasoning because to reduce the side
effects of using separate LMs. We prompted the
LM by adding the ‘Plan’ and ‘Re-plan’ instructions
to ReAct (Yao et al., 2023), about which details are
in Appendix. A.6.2. Figure 3 (b) shows the rea-
soning process of PlanRAG, where we explain the
steps of (1) planning, (2) retrieving & answering,
and (3) re-planning, in detail as follows.

Planning: In this step, an LM takes ⟨Q, S, R⟩
as input, and then generates an initial plan for data
analysis. The initial plan describes a series of data
analyses that needs for decision making and so
need to be performed in the retrieving step. The
red box in Figure 4(b) shows its example.

Retrieving & Answering: Unlike the previous
RAG technique, an LM takes not only ⟨Q, S, R⟩
but also the initial plan as input. Then, it can gener-
ate data analysis queries for decision making much
more effectively than the previous RAG. Figure
4 shows how PlanRAG-based LM generates the
queries differently from the previous RAG. The
queries are actually executed by SQL or Cypher
to the database through RAG interfaces such as
LangChain2 and LlamaIndex3. The query results
are used iteratively for reasoning about whether
it needs re-planning or just a further retrieval for
better decision making. Through the backward link
to the planning process, the planning and retrieving
processes are iteratively performed until an LM
determines that there is no longer a need for further
analysis to make a decision.

Re-planning: Re-planning is done when the
initial plan is not good enough to solve the decision
question. In order to make the LM possible to
decide whether re-planning or not, we prompted
the LM with some instructions to assess the current
plan by referring to the result of each retrieval step
(see Appendix. A.6.2 for details). As a result, the
LM takes not only ⟨Q, S, R⟩ but also a current
plan and query results as input and generates a new
plan to do further analysis, or correct the direction
of previous analysis.

5 Experiments

5.1 Experimental Setup

To validate the effectiveness of the proposed Plan-
RAG for the Decision QA task, we implement
and compare four different decision-making LMs:
(1) SingleRAG-LM based on Single-turn RAG,
(2) IterRAG-LM based on Iterative RAG, (3)
PlanRAG-LM based on PlanRAG, (4) PlanRAG-
LM w/o RP, which means PlanRAG without re-
planning. Prompts based on ReAct (Yao et al.,
2023) are used to make these LMs as decision mak-
ers (see details in Appendix A.6). All these deci-
sion makers are implemented by GPT-4 (OpenAI,
2023) with a zero temperature and the LangChain
library. In terms of database, we use MySQL4 for
an RDBMS and Neo4j5 for a GDBMS.

All experiments are conducted in a zero-shot and
single run setting. This zero-shot setting is predi-

2https://langchain.readthedocs.io/en/latest
3https://docs.llamaindex.ai/en/stable/
4https://www.mysql.com
5https://neo4j.com
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Planning

D

data analysis query

+

query result

Retrieving & Answering

(a) previous RAG (Single-turn and Iterative RAG)

dbest<Q, S, R>

(b) PlanRAG

plan

Re-planning with <Q,S,R> and the previous plan and query results

Retrieving & Answering

reasoning reasoning

D

+ dbestreasoning+<Q, S, R>

data analysis queryquery result

Figure 3: Comparison of the reasoning processes of between previous RAG and our PlanRAG techniques.

Question: Where should I locate my merchant? My goal is maximizing BAH’s profit on home node, Deccan.

TradingNode TradingFlow

developmenthome nodecountry
Country NodeCountrySchema

Doab, Patagonia, Malacca DB

Retrieving

I need to find all the source nodes of “Deccan”.

Deccan: local_value = 8.906, ingoing = 0.821, …
Doab: local_value = 6.978, ingoing = 0.864, … DB

To calculate the profit, I need to know the local_value, 
ingoing, country's trading power, and total trading power 
of each node. I also need to know the development of the 
country "BAH" to calculate the added value if the node is 

inland.

Doab: local_value = 6.978, ingoing = 0.864, …
Patagonia: local_value = 0.082, ingoing = 0.0, …
Malacca: local_value = 10.652, ingoing = 4.107, 

DB

The observation seems to be incorrect. I was expecting to 
get the details of the source nodes of “Deccan", but I got 

the details of “Deccan" itself and “Doab". I need to 
correct my query to get the details of the source nodes.

You should allocate the merchant to the 
“Patagonia”

Planning

Step 1: Identify the trading nodes that are source of 
“Deccan”.

Step 2: Calculate the potential profit increase for each of 
these nodes if a merchant is placed there.

Step 3: Identify the node with the highest potential profit 
increase

Doab DB

Retrieving

(Step 1) I need to identify the trading nodes that are 
source of “Deccan".

8.288 DB

(Step 2) The observation shows that "doab" is the only 
trading node source of "deccan". Now, I need to calculate 

the potential profit increase for "doab" if a merchant is 
placed there.

Now that I have the details of the source nodes, I can 
calculate the potential profit increase for each node if a 

merchant is placed there.

Doab: 0.0011, Patagonia: 0.0728, Malacca: 0.0017 DB

Answering

You should allocate the merchant to the 
“Doab”

Doab DB

(Step 3) The potential profit increase for "doab" if a 
merchant is placed there is approximately 8.29. Now, I 

need to identify the node with the highest potential profit 
increase.

(a) Iterative RAG (b) PlanRAG

Answering

has merchant𝑻𝑷𝒄𝒐𝒖𝒏𝒕𝒓𝒚is homecountrytrade node

𝑻𝑷𝒕𝒐𝒕𝒂𝒍OVIVLVis inlandtrade node flowdestinationsource

Figure 4: Example of the reasoning processes of previous Iterative RAG and our PlanRAG in the Locating scenario.

cated on the following two reasons. First, in most
of real-world business situations, it is very hard to
know the strategies for making the best decisions
in advance. Second, in few-shot settings, we have
observed that an LM is overfitted to not only the

problem-solving strategy but also the content of a
database in the given shots.

An answer from a decision maker is consid-
ered correct only if it is semantically identical to a
ground-truth best decision on DQA. For example,
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in Figure 4 (b), we consider the answer is correct
since the ground-truth best decision is Doab.

5.2 Results and Analysis

Main results: Table 4 presents the experimental
results, where significantly improves the perfor-
mance of decision making for both scenarios, by
15.8% for Locating and 7.4% for Building, com-
pared to the existing SOTA technique, Iterative
RAG (Yao et al., 2023). It shows well the effective-
ness of PlanRAG for the decision making task. The
reason why PlanRAG is relatively more effective in
Locating than in Building is that Building requires
a longer traversal than Locating scenario and it
makes planning harder than Locating. The accu-
racy of SingleRAG-LM in Building is very low,
which is because the Building scenario requires
generating a very complex query that is hard to be
reasoned at once. SingleRAG-LM failed to retrieve
any results from the database in over 60% of Lo-
cating and 95% of Building questions. Table 4 also
present that no re-planning in PlanRAG leads to a
decrease in accuracy, in particular, by 10.8% in Lo-
cating and 0.9% in Building. This result shows that
the re-planning process is helpful and important to
the decision maker LM of the PlanRAG technique
for the decision making task.

Decision makers Locating Building
Single-turn RAG
SingleRAG-LM 30.5 2.5
Iterative RAG
IterRAG-LM 48.5 37.6
PlanRAG (ours)
PlanRAG-LM 64.3 45.0
PlanRAG-LM w/o RP 53.5 44.1

Table 4: Accuracy(%) of the techniques for DQA (Each
accuracy is an average of the accuracies in RDB and
GDB).

Analysis for SR and MR: There are relatively sim-
ple questions and relatively hard questions in DQA.
To check the effectiveness of PlanRAG according
to the degree of difficulty of questions, we divide
DQA questions into two different types: (1) Single
retrieval (SR) questions, and (2) Multiple Retrieval
(MR) questions. Here, SR refers to the case where
IterRAG-LM performs a single retrieval from D for
solving the question, while MR refers to the ques-
tions that it performs multiple retrievals for solving
the question. There are a total of 84 ⟨Q, D⟩ pairs
of SR and 518 ⟨Q, D⟩ pairs of MR. We compare

the accuracy of IterRAG-LM and PlanRAG-LM for
SR and MR, which results are presented in Figure
5.

43.9 49.4

12.5

40.3

65.6 61.9

20.2

47.9

10

30

50

70

SR (20.1%) MR (79.9%) SR (14.5%) MR (85.5%)

Locating Building

A
cc

ur
ac

y 
(%

)

IterRAG-LM PlanRAG-LM

Figure 5: Accuracy(%) of IterRAG-LM and PlanRAG-
LM for SR and MR questions.

In the result, PlanRAG-LM outperforms much
more IterRAG-LM for the SR questions than for
the MR questions. It is because the SR questions
actually are not so easy in many cases. They are
the ones that IterRAG-LM tried to solve only by
using a single retrieval. That is, some of them are
the questions that IterRAG-LM underestimated its
degree of difficulty, but actually are relatively hard
ones that require multiple retrievals. In contrast,
PlanRAG-LM reduces the likelihood that it under-
stands the degree of difficulty of given questions
through the planning step and performs multiple re-
trievals according to the plan. As a result, it could
significantly improve the accuracy. For the MR
cases, PlanRAG-LM is still more effective than
IterRAG-LM because the former performs data re-
trievals relatively systematically according to the
plan, whereas the latter performs retrievals rela-
tively in a disorganized manner like in Figure 4
(a).
Analysis for RDB and GDB: Table 5 presents the
accuracy of LMs for two different databases, RDB
and GDB, in DQA. In the results, PlanRAG-LM
is more effective than other LMs in both scenarios
regardless of the database types, i.e., RDB and
GDB. We note that PlanRAG-LM is more effective
for GDB than for RDB in the Building scenario.
It is because Building is a harder scenario than
Locating that requires a longer traversal in GDB
(or a more number of joins in RDB) for answering
a question. For example, the questions in Locating
need just a single-hop traversal from source nodes
to the home node, but the ones in Building need
a multi-hop traversal to find high supply goods in
Figure 2.
Rate of missed data analysis: In each scenario,
there are some critical values that need to be queries
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Locating Building
Decision makers RDB GDB RDB GDB
SingleRAG-LM 25.5 35.5 2.0 3.0
IterRAG-LM 37.5 59.5 34.7 40.6
PlanRAG-LM 64.5 64.0 40.6 49.5

Table 5: Accuracy(%) of LMs for RDB and GDB.

or calculated in order to answer the questions. For
example, Locating has such values including IV
and TPtotal, and Building has such values including
CO and PD. In order to analyze why PlanRAG
is more effective than IterRAG-LM, we measure
the rate of missed data analysis for querying or
calculating such values. We use IV and TPtotal

for Locating, and CO and PD for Building, as
a criteria. Table 6 shows that PlanRAG-LM has
low rates, 1.3% and 21.8%, while IterRAG-LM
has higher rates, 3.3% and 33.2%. It means that
IterRAG-LM would achieve lower accuracy than
PlanRAG-LM even though it could do reasoning
perfectly. According to Table 6, PlanRAG-LM
might be able to achieve the accuracy of 98.7%
in Locating, but the actual accuracy in Table 4 is
lower than that. It is because reasoning (including
planning) itself is very challenging besides missed
data analysis.

Decision makers Locating Building
IterRAG-LM 3.3% 33.2%
PlanRAG-LM 1.3% 21.8%

Table 6: Rate of missed data analysis.

Analysis for failure cases: We classify each failure
case into five error categories as follows: (1) CAN,
which means an LM fails to solve a question by
considering improper candidates (e.g. dest of Dec-
can in Figure 1) and answer them; (2) MIS, missed
data analysis; (3) DEEP, using retrieved data or
equations unproperly; (4) QUR, query generation
error; and (5) OTH, other errors (e.g. exceeding to-
ken length limits). For example, we classify 4(a) as
DEEP, because an LM misused some equations and
so underestimated the profit of Doab. We compare
failure cases done by IterRAG-LM and PlanRAG-
LM based on these categories, in Figure 6.

In the result, PlanRAG-LM significantly reduces
CAN and MIS errors for both scenarios. It means
that PlanRAG-LM can understand a question of
Decision QA better and query critical data for the
question better than IterRAG-LM. We also note
that PlanRAG-LM has slightly more DEEP cases
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IterRAG

PlanRAG

IterRAG
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g

Failure rate

CAN MIS DEEP QUR OTH

Figure 6: A result of failure case analysis. Failure rate
means the number of failure questions divided by the
number of all questions.

than IterRAG-LM for both scenarios. In our ob-
servation, DEEP error appears only if there are no
CAN or MIS errors. For example, in Figure 4(a),
there is no chance for an LM to underestimate the
profit of Doab (i.e. making DEEP error) when it
fails to take Doab as one of the candidates (i.e. mak-
ing CAN error). Thus, we can say that the increase
of DEEP cases in PlanRAG-LM comes from side
effects of reducing both CAN and MIS cases.
Analysis for re-planning: PlanRAG-LM performs
re-planning for some DQA questions. Table 7
presents the distribution of questions based on the
number of re-plannings conducted by PlanRAG-
LM and the accuracy improved by re-planning. De-
tailed cases and statistics for re-planning are in
Appendix A.8.

No. of re-plannings Locating Building
0 376 (66.8%) 125 (57.6%)
1 0 (-) 0 (-)
2 12 (41.7%) 24 (41.7%)
3 5 (20.0%) 23 (21.7%)
more than 4 7 (0.0%) 30 (13.3%)
Total 400 (64.3%) 202 (45.0%)

Table 7: Statistics of DQA questions according to the
number of re-plannings conducted by PlanRAG-LM.
The percentage in parentheses indicates the accuracy(%)
on a set of corresponding questions.

In the result, PlanRAG-LM re-plans more fre-
quently in the Building scenario than the Locating
scenario. PlanRAG-LM re-plans 24 out of 400
questions (6% of questions) in Locating, but re-
plan 77 out of 202 questions (38% of questions)
in Building. In addition, the rate of questions that
are re-planned more than four times is much larger
in Building (30 questions, 14.85%) than Locating
(7 ones, 1.75%). We note that an LM re-plans if
its original plan is insufficient, as we explained in
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Section 4. Thus, the result indicates that an LM
struggles to make a plan (for both initial planning
and re-planning) in Building and explains relatively
small gap between PlanRAG-LM and other tech-
niques in Building, in Table 4. It is also consistent
with the result in Table 7 where the accuracy im-
proved by re-planning decreases as the number of
re-plannings increases.

6 Related Work

NLP tasks using structured data A number of
benchmarks for reasoning over structured data have
been proposed, such as Table NLI benchmarks
(Chen et al., 2020a; Gupta et al., 2020; Jena et al.,
2022) and Tabular QA (Iyyer et al., 2017; Chen
et al., 2020b; Zhu et al., 2021; Chen et al., 2021;
Wenhu Chen, 2021; Li et al., 2022; Nan et al.,
2022). Tabular QA is a task answering questions
based on given tabular data, and Tabular NLI is a
task determining hypotheses are entailment, con-
tradiction, or neutral based on given tabular data.
However, such benchmarks did not consider the
business rules, and also, not consider LMs’ query-
ing over a large structured database. Table 8 shows
that the number of rows per table in the above
benchmarks is much smaller than that in our DQA
benchmark.

Benchmarks Avg. rows
Tabular QA
HybridQA (Chen et al., 2020b) 15.7
TAT-QA (Zhu et al., 2021) 9.5
FinQA (Chen et al., 2021) 6.26
WikiTableQA (Zhu et al., 2021) 30
Table NLI
TabFact (Chen et al., 2020a) 14.5
ToTTo-TNLI (Jena et al., 2022) 35.8
Decision QA (ours)
Building with RDB 579.0
Locating with RDB 2038.8

Table 8: Average number of rows per table in Tabular
QA, Table NLI and Decision QA benchmarks. For
Tabular QA and Table NLI, and DQA benchmarks. For
DQA, the number of rows of D are presented since
every question needs to access to all tables.

RAG technique RAG is the most common ap-
proach to augment the generation of LMs with
external data. LMs retrieve the data related to
an input (e.g., question) and then, generate a re-
sponse (e.g., answer) based on the retrieved ob-
servations. Most of them operate in a single-turn
(i.e., non-iterative) manner (Guu et al., 2020; Izac-

ard et al., 2023; Izacard and Grave, 2021; Jiang
et al., 2022b; Shi et al., 2023; Borgeaud et al., 2022;
Lewis et al., 2020) and so have clear limitations in
complex tasks that require multi-hop reasoning. To
address this, several methods have been proposed
to augment generation by performing a process of
retrieval-then-generation iteratively (Jiang et al.,
2023b; Shao et al., 2023; Trivedi et al., 2023; Jiang
et al., 2023a). It has shown successful performance
on various tasks that require multiple data accesses
to generate responses (Yang et al., 2018; Thorne
et al., 2018; Ho et al., 2020; Aly et al., 2021), but is
not powerful enough to solve the decision making
task well in our experiments.

7 Conclusions

In this paper, we explored the capability of LLMs
as a solution for decision making. We proposed the
new decision-making task, Decision QA, which
answers the best decision for a given complex
decision-making question that requires consider-
ing both the business rules and business situation
represented in a large database (in either RDB or
GDB). We built the benchmark for Decision QA,
called DQA, by extracting 301 sets of a database
(in both RDB and GDB), a question, and an an-
swers(ground truth) from two popular video games
imitating real business situations that require de-
cision making. We also proposed the new RAG
technique called PlanRAG, which performs plan-
ning before retrieving and re-planning if the initial
plan is not good enough. Through extensive ex-
periments, we demonstrated that PlanRAG signifi-
cantly outperforms the SOTA iterative RAG for the
Decision QA task.

8 Limitations

In this paper, we explored the capability of LLM
as a solution for decision making. However, our
study still has several limitations.

First, in this study, we focused on Decision QA
using graph database or relational database. Deci-
sion making based on other databases, such as a
hybrid form of database and vector database, could
be explored in future research.

Next, we proposed techniques from a high-level
RAG technique perspective that should be consid-
ered when solving Decision QA. Therefore, we do
not focus on the low-level methods for solving De-
cision QA in this paper. For example, creating a
fine-tuned model that efficiently generates Cypher
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queries could be beneficial for solving Decision QA
using GDB. These areas should also be addressed
in future works.

Lastly, we designed our PlanRAG methodology
and implemented our PlanRAG-LM using single
LM, while some researches have suggest language
model frameworks using multiple LMs. The effec-
tiveness of the PlanRAG in multiple LMs frame-
work is not a focus of this paper and is left as a
further study.

9 Ethical Considerations

Language models have a hallucination issue and
can potentially generate biased answers. RAG
methods we have discussed are known to mitigate
these issues to some extent, but it does not imply
that these issues do not occur. Therefore, when
applying our research to real-world applications, it
is essential to closely examine whether the gener-
ated decisions are inferred based on hallucinated
or biased knowledge.

Before constructing our benchmark and simu-
lator from Europa Universalis IV and Victoria 3
games, we have considered end user license agree-
ment (EULA)6 of their game publisher, Paradox
Interactive. Our benchmark and simulator corre-
spond to gameplay and scripts of user generated
content (UGC) in section 5 of EULA, and thus our
content should be open-sourced. Therefore, we
open our benchmark and simulator under the MIT
license. Also, utilizing all icons that came from
these games in our paper is classified as streaming
Paradox Games in section 6 of EULA. According
to EULA, we can freely use icons if our paper is
not behind a paywall.

Video games that we have used to construct
DQA describe historical situations. Therefore, our
datasets, based on these games, include knowledge
that contradicts contemporary common sense and
might be aggressive towards certain groups. For
example, the correct answer that a specific nation
should influence a particular region in the Locating
scenario of our benchmark might be aggressive to
specific nations or regions. To avoid these issues,
we anonymized the names of nations into three-
letter codes rather than mentioning their names
directly. For example, instead of using the term
Bahmanis Sultanate7, we employed the term BAH,

6https://legal.paradoxplaza.com/eula?locale=en
7https://en.wikipedia.org/wiki/Bahmani_Sultanate

and instead of The Papel States8, we used PAP as
terminology.
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A Appendix

A.1 Data collection

To collect D, we first select the provided savefile
from each game and extract related data by game
savefile parser. The extracted data was stored in D
according to the DB schema of each scenario. Next,
we generate Q by applying components of D into
pre-defined question format for each scenario. To
control the quality of our benchmark, we consider
the following points:

• For the Locating scenario, we create one
problem for each country. As profit is de-
termined by TPcountry, we omit countries with
low TPcountry due to their minimal impact on
decisions.

• For the Building scenario, we filtered prob-
lems which have multiple answers.

A.2 Data instances

For both scenarios, the instances share the same
business rules R. Some instances share the same
database D, but not all use the same one. Here,
each database D has a different number of rows
and different column values (e.g., LV, size of the
building, current price of goods).

In the Locating scenario, every instance has a
different goal with a different pair of {COUN-
TRY_NODE} and {HOME_NODE} in the tem-
plate of questions of “Where should I lo-
cate my merchant? My goal is maximizing
{COUNTRY_NODE}’s profit on home node,
{HOME_NODE}”.

In the Building scenario, every instance has a
different {GOODS} in the template of questions
of “Which building ID should we increase a level
by 5 to maximally decrease the market price of
{GOODS}?”.

The instances in both scenarios are designed that
LMs should retrieve different intermediate nodes
and edges to calculate the values, such as TPR for
Locating and TS for Building, required to make a
best decision.

A.3 Simulators for annotation

Although applying every decision to real games and
comparing the results is the most credible approach
to annotate the best decision, it is impossible due
to the following characteristics of games: (1) ran-
domness and (2) not being open-sourced. Thus, we
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develop simulators for each scenario on DQA to
calculate decision results deterministically.

Our simulator takes D with decision as input,
calculate effects of decision, and returns updated
D by simulating based on business rules. To an-
notate answers for a question, we simulates all
decision candidates. For example, in Figure 1, we
locates a merchant on Doab and Ganges, our sim-
ulator calculates profit increments, 0.23 and 0.03
for each decisions, respectively. From these calcu-
lated results, we can annotate that Doab is the best
decision for the question. Detailed algorithms are
in Appendix A.4

A.4 Algorithm of simulators

We provide an algorithm of simulator for each sce-
nario for future research. Before explaining each
simulator, we introduce some additional symbols
in Table 9, while other symbols are described in
Section 3.

Symbol Description
Locating
obj_n The node we should calculate its flow
Nodes The set of nodes
Countries The set of countries
NodeCountry The set of NodeCountry relationships
Simulated_n The set of nodes which are simulated
Building
Goods The set of goods
Buildings The set of buildings
cycle_cnt # of hops that a building affects
MIN(x, y) Minimum value between x and y

AV GY (X) For y ∈ Y , An average of the set X(y)

Table 9: Summary of additional symbols.

A.4.1 Locating simulator algorithm
Algorithm 1 describes the mechanism of Locating
simulator. There are three different functions in
the Locating simulator: ‘trading_power_estimate’,
‘flow_estimation’, and ‘find_top_n’.

• trading_power_estimate takes the database
D as an input, calculates and updates
TPcountry(n, c) and TPtotal(n) for all n, c ∈
NodeCountry, and returns updated D.

• flow_estimation takes the database D and an
objective node obj_n as inputs, calculates and
updates flow(obj_n, dest) and IV(dest) for all
dest such that (obj_n, dest) ∈ F by using Eq.
(2), and returns updated D.

• find_top_n takes the database D and Sim-
ulated_n as inputs and returns a node
n ∈ Nodes − Simulated_n such that
∀n’∈Nodes-Simulated_n(n, n’) /∈ F . If Nodes −
Simulated_n = ∅, it returns NULL.

Algorithm 1: Locating simulator
Input: D /* Database for Locating */
Output: D /* Database after calculating a profit

for every country in D. */
1 D← trading_power_estimate(D) /* Initialize

TPcountry(n, c) and TPtotal(n) */
2 Simulated_n←{} /* empty set. */
3 do
4 obj_n← find_top_n(D, Simulated_n)
5 D← flow_estimation(D, obj_n)
6 Simulated_n.add(obj_n)
7 while Nodes− Simulated_n ̸= ∅;
8 for c, h ∈ Countries do
9 profit(c)← (LV (h, c)+IV (h, c))· TPcountry(h,c)

TPtotal(h)

/* Eq. (1, 3) */
10 return D

A.4.2 Building simulator algorithm
We provide the mechanism of Locating simulator
in Algorithm 2. We initialize TS(g) as the sum of
MS(g, b) to avoid the situation where the price of
the goods falls to the local minimum. We also limit
maximum cycle_cnt as 10 to make our simulator
more efficient.

A.5 Business rules in DQA

Figure 7 shows the business rules R used as LM’s
input in Locating and Building. These are textual
descriptions of the contents in Section 3.

A.6 Prompts for DQA

A.6.1 Previous RAG-based LMs
Figure 8 and 9 show an example of the prompts
used for the single-turn RAG-based decision maker,
SingleRAG-LM, in the Locating scenario with
GDB setting. Figure 10 shows an example of the
prompt used for the iterative RAG-based decision
maker, IterRAG-LM, in the Locating scenario with
GDB setting. Those prompts are based on the struc-
ture of ReAct, ‘Thought’-‘Action’-‘Observation’.

A.6.2 PlanRAG-based LM
The prompt used to implement our PlanRAG-
based decision maker, PlanRAG-LM, has a struc-
ture of ‘Plan’-‘Thought’-‘Action’-‘Observation’-
‘Re-plan’. Figure 11 shows an example of the
prompt for Locating scenario with GDB setting.
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Algorithm 2: Building simulator
Input: D /* Database for Building */
Output: D /* Database after calculating prices*/

1 for g ∈ Goods do
2 TD(g)← PD(g) /* Eq. (4)*/
3 TS(g)← 0 /* Eq. (5)*/

4 for g, b ∈ Dem do
5 TD(g)← TD(g) +MD(g, b) /* Eq. (4)*/

6 for g, b ∈ Sup do
7 TS(g)← TS(g) +MS(g, b) /*TS initialize*/

8 cycle_cnt← 0
9 while cycle_cnt < 10 do

10 for g, b ∈ Dem do
11 CI(g, b)←MD(g, b) ∗ TS(g)

TD(g)

/* From business rules in Figure 7 (b). */
12 for g ∈ Goods do
13 TS(g)← 0 /* Eq. (5)*/

14 for g, b ∈ Sup do
15 CO(g, b)←MS(g, b) ·

AV G{b′|(g,b′)∈Dem}(MIN(1, CI(g,b′)
MD(g,b′) ))

/* From business rules in Figure 7 (b). */
16 for g, b ∈ Sup do
17 TS(g)← TS(g) + CO(g, b) /* Eq. (5)*/

18 cycle_cnt← cycle_cnt + 1

19 for g ∈ Goods do
20 CP (g)← BP (g) · (1 + 0.75 · TD(g)−TS(g)

max(TD(g),TS(g)) )

/* Eq. (6)*/
21 return D

The prompt structure was designed empirically
through experiments conducted on both DQA sce-
narios.

In the experiments, we also considered the
following two variations of the prompt struc-
ture: (1) Act without additional reasoning about
a current step after planning (i.e., ‘Plan’-‘Action’-
‘Observation’-‘Re-plan’), (2) Reason about plan-
ning in advance (i.e., ‘Thought’-‘Plan’-‘Action’-
‘Observation’-‘Re-plan’). The experiments were
conducted by the same setup as in Section 5.1, us-
ing GPT-4 with zero temperature as base LMs in a
zero-shot setting.

Table 10 shows the experimental results of the
prompt structure of PlanRAG-LM, two aforemen-
tioned variations of that, and the ReAct prompt
structure of IterRAG for 10% of questions in each
DQA scenario. Here, in each scenario, we sam-
pled the questions randomly at 10% from each
DB setting. In the results, the prompt struc-
ture of PlanRAG-LM outperforms other base-
lines in both DQA scenarios. Meanwhile, one
PlanRAG-LM variation using the prompt struc-
ture of ‘Thought’-‘Plan’-‘Action’-‘Observation’-
‘Re-plan’ fails to demonstrate its effectiveness. An-

(a) A "Trading node" has a "local_value", "total_power", "out-
going", "ingoing" and **whether it’s inland**. A "Country"
has a "name", "development" and a "home_node" (home
node). Between "Trading nodes“, there can be a direc-
tional edge [source]. It connects from a higher node to a
lower node. A "Country" can have a non-directional con-
nection to a trading node. Each connection has a unique
"base_trading_power" for each node. If a specific node
is the home node of a country, that country earns profit
from that node. The profit is proportional to the "lo-
cal_value" plus "ingoing" and the ratio of the country’s
trading power and the total trading power of that node.
i.e. (local_value+ingoing)*(country_trading_power / to-
tal_trading_power)
If a specific node is source of a country’s home node, the coun-
try moves a value to dest node, proportional to the ratio of
the country’s trading power to the node’s total trading power
and (local_value + ingoing). In the dest node, the moved
value is increased by 1.05 times and added to the ingoing. A
"Merchant" belongs to a country and can be assigned to a
specific trading node. A "Merchant" belonging to a trading
node adds 2 to the trading power of the country’s trading node
and amplifies it by 1.05 times. *If one of the edges has an in-
land node, the added value changes to 2+max(development/3,
50). (optional)* If a specific trading node has more than one
dest node, and a country that doesn’t have that node as its
home node places a "Merchant" on the Trading node, it can
decide which dest node to move the "current_value" to. That
is, the country can move a "current_value" proportional to
its trading power to a specific dest node. If no merchant is
placed, when there’s more than one dest node, they lose the
right to decide the direction. In other words, the country’s
"current_value" proportional to its trading power flows out in
proportion to other outflows to the dest nodes. If there’s only
one dest node, it doesn’t matter.

(b) Goods have a "name", corresponding "code",
"base_price", "current_price", and "pop_demand". Buildings
have a unique "id" and a "name" and "level" correspond-
ing to their type. There exists a relation called Supply
from Buildings to Goods. Supply has "max_supply",
"current_output", and "level". The level here is the same
as the level of the Building. Furthermore, max_supply
and level have a proportional relationship. There exists a
relation called Demand from Goods to Buildings. Demand
has "max_demand", "current_input", and "level". Also,
max_demand and level have a proportional relationship. The
demand of Goods is defined as the Goods’ "pop_demand"
plus sum of the "max_demand" of all Demands connected
to the Goods. The supply of Goods is defined by the sum
of "current_output" of all Supplies connected to Goods.
The "current_input" of Demand is determined by the ratio
of connected Building’s "max_demand" to connected
Goods’ demand, and multiplied by the supply of Goods.
The "current_output" of Supply is determined by the
average ratio of the connected Building’s "current_input"
to connected Goods’ "max_demand", and multiplied by
the "max_supply" of Supply. The "current_price" of
Goods is determined by base_price*(1+0.75(demand-
supply)/max(demand,supply)).

Figure 7: Business rules for (a) Locating and (b) Build-
ing.

other variation of PlanRAG-LM shows slightly bet-
ter performance than the ReAct structure. The
difference between these two results comes from
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# Prefix
You are a decision-making agent answering a given question. 
You should collect the data to answer the question: 
# Tool descriptions 
Graph DB: Useful for when you need to collect the data that 
follows the following schema (You MUST generate a Cypher query 
statement to interact with this tool):
(n:Trade_node {{name, local_value, is_inland, total_power, 
outgoing, ingoing}});
(m:Country {{name, home_node, development}});

(Trade_node)-[r:source {{flow}}]->[Trade_node]
(Country)-[NodeCountry{{is_home, 
has_merchant,base_trading_power,calculated_trading_power}}]-
>(Trade_node), args: {{{{'tool_input': {{{{'type': 'string'}}}}}}}}
Self thinking: Useful for when there is no available tool., args: 
{{{{'tool_input': {{{{'type': 'string'}}}}}}}}
# Format instructions
Use the following Strict format:
Question: the input question you must answer.
Thought: you should always think about what to do.
Action: a suitable database name, MUST be one of [‘Graph DB’, 
‘Self-thinking’].
Action input: a syntactically correct query statement only, MUST 
be written by Cypher query language.
Observation: the result of the action. 
Thought: I now know the answer.
Final answer: the final answer to the question based on the 
observed data.
# Suffix
Begin! Keep in mind that Your response MUST follow the valid 
format above.

Figure 8: Retrieval prompt for a single-turn RAG tech-
nique on GDB case in Locating scenario.

# Prefix
You are a decision-making agent answering a given question. 
You have already collected the data to answer the question.
Indeed, you should make your Final answer immediately.:
# Tool descriptions 
Graph DB: Useful for when you need to collect the data that 
follows the following schema (You MUST generate a Cypher query 
statement to interact with this tool):
(n:Trade_node {{name, local_value, is_inland, total_power, 
outgoing, ingoing}});
(m:Country {{name, home_node, development}});

(Trade_node)-[r:source {{flow}}]->[Trade_node]
(Country)-[NodeCountry{{is_home, 
has_merchant,base_trading_power,calculated_trading_power}}]-
>(Trade_node), args: {{{{'tool_input': {{{{'type': 'string'}}}}}}}}
Self thinking: Useful for when there is no available tool., args: 
{{{{'tool_input': {{{{'type': 'string'}}}}}}}}
# Format instructions
Use the following Strict format:

Final answer: the final answer to the question based on the 
observed data.
# Suffix
Begin!

Figure 9: Answer generation prompt for a single-turn
RAG technique on GDB case in Locating scenario.

whether to reason about the next action to take
at each iteration, ‘Thought’, or to act based on
the plan established through the planning process,
‘Plan’. The importance and effectiveness of the pro-

# Prefix
You are a decision-making agent answering a given question. 
You should collect the data to answer the question.
Keep in mind that the question can require to access following 
databases multiple times:
# Tool descriptions 
Graph DB: Useful for when you need to collect the data that 
follows the following schema (You MUST generate a Cypher query 
statement to interact with this tool):
(n:Trade_node {{name, local_value, is_inland, total_power, 
outgoing, ingoing}});
(m:Country {{name, home_node, development}});

(Trade_node)-[r:source {{flow}}]->[Trade_node]
(Country)-[NodeCountry{{is_home, 
has_merchant,base_trading_power,calculated_trading_power}}]-
>(Trade_node), args: {{{{'tool_input': {{{{'type': 'string'}}}}}}}}
Self thinking: Useful for when there is no available tool., args: 
{{{{'tool_input': {{{{'type': 'string'}}}}}}}}
# Format instructions
Use the following Strict format:
Question: the input question you must answer.
Thought: you should always think about what to do.
Action: a suitable database name, MUST be one of [‘Graph DB’, 
‘Self-thinking’].
Action input: a syntactically correct query statement only, MUST 
be written by Cypher query language.
Observation: the result of the action.
... (a process of Thought, Action, Action input, and Observation can 
repeat together N times)
Thought: I now know the answer.
Final answer: the final answer to the question based on the 
observed data.
# Suffix
Begin! Keep in mind that Your response MUST follow the valid 
format above.

Figure 10: Prompt for an iterative RAG technique on
GDB case in Locating scenario.

cess ‘Thought’ have been well discussed in several
studies (Yao et al., 2023; Wei et al., 2022). There-
fore, these results can show the significance of the
planning process in decision-making tasks such as
Decision QA.

Prompt structure Locating Building
IterRAG-LM
Thou-Act-Obs 37.5 30
PlanRAG-LM
Plan-Thou-Act-Obs-Replan 57.5 50
PlanRAG-LM variations
Plan-Act-Obs-Replan 40 40
Thou-Plan-Act-Obs-Replan 27.5 30

Table 10: Accuracy(%) of LMs for DQA by prompt
structure. ‘Thou’, ‘Act’, and ‘Obs’ means ‘Thought’,
‘Action’, and ‘Observation’, respectively.

A.7 Experimenting with other models

In this section, we implement IterRAG-LM and
PlanRAG-LM by four different models: (1) GPT-
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# Prefix
You are a decision-making agent answering a given question.
You should collect the data to answer the question.
To this end, firstly, you need to plan which data would be needed 
in what order.
Keep in mind that the question can require to access following 
databases multiple times: 
# Tool descriptions 
Graph DB: Useful for when you need to collect the data that 
follows the following schema (You MUST generate a Cypher 
query statement to interact with this tool):
(n:Trade_node {{name, local_value, is_inland, total_power, 
outgoing, ingoing}});
(m:Country {{name, home_node, development}});

(Trade_node)-[r:source {{flow}}]->[Trade_node]
(Country)-[NodeCountry{{is_home, 
has_merchant,base_trading_power,calculated_trading_power}}]-
>(Trade_node), args: {{{{'tool_input': {{{{'type': 'string'}}}}}}}}
Self thinking: Useful for when there is no available tool., args: 
{{{{'tool_input': {{{{'type': 'string'}}}}}}}}
# Format instructions
Use the following Strict format:
Question: the input question you must answer.
Plan: [Step 1: requirement 1, Step 2: requirement 2, ..., Step N: 
requirement N].
Current step: the current Step in the Plan.
Thought: you should always think about the Current step.
Action: a suitable database name, MUST be one of [‘Graph DB’, 
‘Self-thinking’].
Action input: a syntactically correct query statement only, MUST 
be written by Cypher query language.
Observation: the data from the database.
Re-plan: respond with 'Y' and change your Plan if you think a 
current Plan is not helpful, otherwise respond with 'N' and 
continue a process based on the current Plan.
... (a process of Plan, Current step, Thought, Action, Action input, 
Observation, and Re-plan can repeat N times)
Thought: I now know the answer.
Final answer: the final answer to the question based on the 
observed data.
# Suffix
Begin! Keep in mind that Your response MUST follow the valid 
format above.

Figure 11: Prompt for PlanRAG technique on GDB case
in Locating scenario.

3.59 (2) Llama 2 (70B), (3) Llama 2 (13B) (Tou-
vron et al., 2023), and (4) Phi-2 (Javaheripi et al.,
2023). All experiments are conducted on a single
machine equipped with eight Nvidia A100 (80GB)
GPUs. To accelerate inference speed, we utilize
vLLM (Kwon et al., 2023) library for open models
inference. We set temperature to zero and 0.1 for
GPT-3.5-turbo and other open models, respectively.
Other settings are consistent with those described in
Section 5. We provide results of PlanRAG-LM and
IterRAG-LM by four models in Table 11. In the
result, PlanRAG-LM and IterRAG-LM by Llama-2
and Phi-2 models cannot solve any problems in
DQA. By GPT-3.5, IterRAG-LM shows batter per-
formance rather than PlanRAG-LM. It is because
the prompt of PlanRAG is too complex for GPT-

9gpt-3.5-turbo-0125, which is the latest gpt-3.5 model.

3.5 to understand instructions and generate proper
answers.

Locating Building
Models RDB GDB RDB GDB
GPT-3.5
IterRAG-LM 8.0 2.5 22.8 3.96
PlanRAG-LM 0 4.0 1.0 1.0
Llama 2 (70B)
IterRAG 0 0 0 0
PlanRAG 0 0 0 0
Llama 2 (13B)
IterRAG 0 0 0 0
PlanRAG 0 0 0 0
Phi-2
IterRAG 0 0 0 0
PlanRAG 0 0 0 0

Table 11: Accuracy(%) of IterRAG-LM and PlanRAG-
LM using several models.

A.8 Re-planning cases

Table 12 presents statistics and examples of re-
plannings conducted by PlanRAG-LM. We cat-
egorized all re-planning cases into three groups:
(1) Increase, (2) Same, and (3) Decrease, where
“Increase” means the number of steps increases
after re-planning compared to the original plan,
“Same” means the number of steps is the same with
the number of steps of the original plan, and “De-
crease” means the number of steps decreases after
re-planning.

Each category is further divided into the follow-
ing sub-categories:

• Re-order includes cases where a sequence of
steps is arranged.

• Replace includes cases where some steps are
substituted with new steps.

• Change target includes cases where targets
of actions, such as lookup or calculation, are
changed.

• Add look-up includes cases where new
lookup actions are added to an original plan.

• Add calculation includes cases where new
calculation actions are added to an original
plan.

• Add both actions includes cases where both
the lookup and the calculation actions are
added to an original plan by a single re-
planning process.

• Divide to sub-steps includes cases where a
single step of an original plan is divided into
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sub-steps by breaking it down into detailed
actions.

• Delete includes cases where some steps are
removed from an original plan.

• Merge includes cases where some steps are
summarized or merged into a single step.

As shown in Table 7, since re-planning is done
more than twice for some questions, they can be-
long to several categories. In the Locating scenario,
PlanRAG-LM primarily performs re-planning of
"Add look-up". In the case of Building, it is ob-
served that "Divide to sub-steps" is the predominant
strategy for re-planning across most cases.
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Occurrence rateExample

BuildingLocatingNew planOriginal planCategory

0.00%16.67%

…, Step 2: Identify the node with the
development of the country "MJZ",
Step 3: Calculate the potential profit
increase for each of these nodes if a
merchant is placed there, …

…, Step 2: Calculate the potential profit
increase for each of these nodes if a
merchant is placed there,
Step 3: Identify the node with the
development of the country "MJZ", …

Re-order

Same

44.44%16.67%
…, Step 6: If there is no max_demand for
'oil' in the demand table, set max_demand
to 0, …

…, Step 6: Calculate the sum of
max_demand from demand table where
goods_id is 'oil’, …

Replace

34.92%25.00%
…, Step 3: Calculate the pop_demand for
groceries from the goods table, …

…, Step 3: Calculate the current demand for
groceries from the demand table, …

Change
target

41.27%66.67%

Step 1: Identify the trading nodes that are
upstream of "yumen",
Step 2: Check if the source nodes are inland
or not,
Step 3: Calculate the potential profit increase
for each of these nodes if a merchant is placed
there, …

Step 1: Identify the trading nodes that are
upstream of "yumen",
Step 2: Calculate the potential profit increase
for each of these nodes if a merchant is placed
there, …

Add 
look-up

Increase

38.10%16.67%

…, Step 4: Check if the nodes are inland or not,
as this will affect the added value of the
merchant.
Step 5: If the nodes are inland, calculate the
potential profit considering the
development of the country.

…, Step 4: Check if the nodes are inland or not,
as this will affect the added value of the
merchant.

Add 
calculation

4.76%8.33%

Step 2: Calculate the potential profit increase
for each of these nodes if a merchant is placed
there,
Step 3: Check if the nodes are inland,
Step 4: Calculate the merchant power
based on whether the node is inland,
Step 5: Compare the potential profit increases
and identify the node with the highest potential
profit increase.

Step 2: Calculate the potential profit increase
for each of these nodes if a merchant is placed
there,
Step 3: Compare the potential profit increases
and identify the node with the highest potential
profit increase.

Add 
both
actions

77.78%8.33%

…, Step 2: Retrieve all building ids that
supply groceries from the supply table,
Step 3: Calculate the current demand for
groceries from the demand table,
Step 4: Calculate the current supply for
groceries from the supply table,…

…, Step 2: Retrieve all building ids that
supply groceries from the supply table,
Step 3: Calculate the current demand and
supply for groceries, …

Divide to 
sub-steps

6.35%4.17%

…, Step 4: Retrieve the relationship between
building level and supply of goods,
Step 5: Assume a linear relationship
between building level and supply of goods,
Step 6: Calculate the new price of "tools" if
the level of each building is increased, ...

…, Step 4: Retrieve the relationship between
building level and supply of goods,
Step 5: Calculate the new price of "tools" if
the level of each building is increased, ...

Others

12.70%4.17%

…, Step 2: Retrieve all buildings that supply
steel,
Step 3: Calculate the potential decrease in the
market price of steel for each building if the
level is increased by 5, …

…, Step 2: Retrieve all buildings that supply
steel,
Step 3: Retrieve all buildings that demand
steel,
Step 4: Calculate the potential decrease in the
market price of steel for each building if the
level is increased by 5, …

Delete

Decrease

0.00%4.17%

…, Step 2: Identify the trading nodes where
"MCH" has a presence,
Step 3: Since "MCH" only has a presence in
"girin", the merchant can only be placed
there.

…, Step 2: Identify the trading nodes where
"MCH" has a presence,
Step 3: Calculate the potential profit
increase for each of these nodes if a
merchant is placed there,
Step 4: Identify the node with the highest
potential profit increase.

Merge

Table 12: Category-wise statistics and examples of re-planning cases. The occurrence rate indicates the proportion of
re-planning cases within a specific category relative to the total number of questions that re-plannings are conducted.
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