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Abstract
Exploring the intersection of language and cul-
ture in Large Language Models (LLMs), this
study critically examines their capability to en-
capsulate cultural nuances across diverse lin-
guistic landscapes. Central to our investigation
are three research questions: the efficacy of
language-specific instruction tuning, the impact
of pretraining on dominant language data, and
the identification of optimal approaches to elicit
accurate cultural knowledge from LLMs. Uti-
lizing the GeoMLaMA benchmark for multilin-
gual commonsense knowledge and an adapted
CAMeL dataset (English-only) for evaluation
of nuanced cultural aspects, our experiments
span six different languages and cultural con-
texts, revealing the extent of LLMs’ cultural
awareness. Our findings highlight a nuanced
landscape: while language-specific tuning and
bilingual pretraining enhance cultural under-
standing in certain contexts, they also uncover
inconsistencies and biases, particularly in non-
Western cultures. This work expands our un-
derstanding of LLMs’ cultural competence and
emphasizes the importance of integrating di-
verse cultural perspectives in their development,
aiming for a more globally representative and
equitable approach in language modeling.1

1 Introduction

Large language models (LLMs) are capable of per-
forming well across a wide variety of tasks (Bom-
masani et al., 2022; Srivastava et al., 2023) owing to
their ability of generating coherent text that draws
from a large corpus of pre-training data. How-
ever, some tasks like performing open-ended social
reasoning involve questions (Parrish et al., 2022)
which due to being under-specified or requiring
a certain level of critical thinking elicit an opin-
ionated answer from the LLM that affects different
social groups, sometimes in undesirable ways (Ben-
der et al., 2021). The role of culture is undeniable

1Code and data are available: https://github.com/
iamshnoo/culture-llm.

Figure 1: We instruction-tune the English-based
LLaMA 2 in 5 languages (Hindi, Mandarin Chinese,
Persian, Swahili, Greek) and evaluate both general cul-
tural awareness as well as fine-grained cultural under-
standing in multilingual settings.

when looking at factors that determine people’s
beliefs and behavior in social settings. Cultural dif-
ferences exist across countries and they interplay
with the dominant language spoken, influencing
both individual traits and group behavior. However,
it is a well-known problem that multilingual LLMs
are trained on corpora that are not equally repre-
sentative of all parts of the world, but are rather
more “western aligned” (Weidinger et al., 2022).
This leads to potential issues of misrepresentation
of culture and a lack of understanding of cultural
knowledge in text generated by LLMs. Other work
which studies this question brings out the lack of
precision in cultural representations (Ramezani and
Xu, 2023), problems of skewing distributions or
amplifying biases existing in society (Jakesch et al.,
2023), erasing underrepresented nuances (Hutchin-
son et al., 2020) and also the impact of low re-
sourced languages and cultures they are spoken in
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(Wibowo et al., 2023). While these studies have
laid the groundwork, there remains a gap in under-
standing how language-specific instruction tuning
might correlate with cultural knowledge.

Our work aims to first test the hypothesis that
instruction tuning on data in a specific language
might improve the cultural awareness of the LLM
for the related culture. We also look at the impact
of continued pre-training in a bilingual setting and
how that has an influence on multilingual cultural
understanding. Specifically we design the follow-
ing research questions for this purpose:

RQ1 : Does instruction tuning on language-
specific data enhance cultural knowledge?
RQ2a : Does pretraining on language-specific
data enhance cultural knowledge?
RQ2b : What is the optimal approach for elicit-
ing cultural information from LLMs?

For this purpose, we translate the instructional data
used for training the Alpaca model (Taori et al.,
2023) to five languages (Hindi, Mandarin Chi-
nese, Persian, Swahili, Greek) other than English to
cover the six distinct cultures. We then use this data
to train low rank adapters (LoRA, Dettmers et al.
(2023)) followed by evaluation on a benchmark for
multilingual cultural knowledge in each language
to measure the impact of instruction tuning.

We also explore whether LLMs understand tangi-
ble cultural nuances like food, beverages, clothing,
etc by framing a dataset about different social sit-
uations with cultural targets based on a previous
study (Naous et al., 2023). We use this to ask:

RQ3 : Do LLMs understand the nuances of cul-
ture and what disparities exist across tangible
cultural aspects?

Overall, our findings show shortcomings in not
only how culture is understood by LLMs, but also
in current existing approaches at overcoming them.

2 Data and Methods

Our study explores the cultural understanding of
large language models (LLMs) through two pri-
mary strategies: enhancement of an existing bench-
mark and the creation of a new, culturally-focused
benchmark. Our methodology involves translating
instructional data from the Alpaca dataset (which
does not include culturally relevant information)
into five additional languages and conducting super-
vised fine-tuning on various LLaMA 2 model (Tou-
vron et al., 2023) sizes using these translations (a
sample of which is manually verified by speakers

Base Model LoRA Prompt

English {lang} Alpaca {lang}
English English Alpaca English
{lang} {lang} Alpaca {lang}
{lang} Non-Alpaca LoRA {lang}

Table 1: The four experimental combinations we test for
RQ1 and RQ2. lang refers to language-specific variants
of Alpaca or a language-specific prompt.

of the dominant language). With this approach we
aim to test whether SFT in itself might improve
cultural processing even though we are not explic-
itly training on culture specific data. This enables
a broad examination of how LLMs handle cultural
nuances across different linguistic contexts.

2.1 Data

We work with 2 different datasets to understand cul-
tural awareness at global and granular scales. We
use Data Portraits (Marone and Van Durme, 2023)
primarily to estimate whether these evaluation sets
may overlap with the pretraining corpus, and find
that they likely do not.

GeoMLaMA The GeoMLaMA benchmark (Yin
et al., 2022) is central to our study on the cultural
awareness of language models. Originally contain-
ing culturally diverse fill-in-the-blank sentences,
we have converted it into a question-answer (QA)
format. This adaptation makes it suitable for eval-
uating decoder-only models. Key features of this
benchmark include:
• Multilingual Scope: Covers five countries

(USA, China, India, Iran, Kenya), each with
its dominant language (English, Mandarin Chi-
nese, Hindi, Persian, Swahili). We further expand
our investigation by integrating a Greece/Greek
variant of the dataset. This addition provides
a broader spectrum for analysis, especially for
languages that are lower resourced.

• QA Format: Consists of 900 multilingual ques-
tions (150 questions for each of six languages)
with one gold correct and multiple incorrect
answers, facilitating a clear assessment of the
model’s cultural understanding.

• Cultural Diversity: Questions cover a range
of 17 broad cultural topics (eg. broom usage,
climate, driver seat, measurement unit, etc) and
are presented in both the country’s dominant lan-
guage and other languages, allowing for a com-
prehensive cross-cultural evaluation.

For RQ1, this dataset allows us to examine whether
instruction tuning in a language specific to a given
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culture leads to better understanding and repre-
sentation of that culture in language models. For
RQ2a and RQ2b, the GeoMLaMA dataset’s multi-
lingual nature helps assess the impact of pretraining
language models on language-specific data. Note
that, the GeoMLaMA paper defines a metric for
the benchmark that is slightly different from raw
accuracy (as it accounts for country priors as well),
which is what we also use in our experiments.

CAMeL Our study also incorporates the CAMeL
dataset, initially introduced by Naous et al. (2023),
to conduct detailed cultural analysis. Originally
designed to compare Arabic and Western cultural
norms, we have adapted the dataset to align with
the countries featured in the GeoMLaMA bench-
mark. This adaptation involves collecting new data
from speakers of the dominant language and select-
ing sentence templates that are broadly applicable
across various cultures. Our modified version of
the CAMeL dataset is tailored to specifically ad-
dress RQ3, which focuses on the language models’
granular understanding of cultural elements.
Key aspects of our adapted CAMeL dataset are:
• Cultural Adaptation: We have enriched

CAMeL to reflect six cultures from the Ge-
oMLaMA benchmark, involving data collection
from speakers of the dominant language and cul-
turally diverse sentence templates.

• Cultural Categories and Prompts: The dataset
contains nine categories, such as gendered pairs,
each with ten unique prompts and around fifty
targets, covering a range of cultural elements like
food, names, clothing, and literature.

• QA Scenarios for Granular Analysis: We cre-
ate five types of multiple-choice QA scenarios
from CAMeL, designed to assess the models’
depth of cultural understanding and their ability
to distinguish between various cultural elements.

In our experiments, we deploy various multiple-
choice QA scenarios derived from both datasets,
ensuring that choice order is randomized to mit-
igate positional bias in large language models
(Pezeshkpour and Hruschka, 2023). This approach
allows us to comprehensively address each research
question, ensuring that our findings are robust and
well-supported by empirical evidence.

2.2 Language-specific finetuning data

To investigate the effect of language-specific in-
struction tuning on cultural awareness, we begin
with the 52k instruction-following demonstrations

Language Input Instruction Output Avg

Chinese (zh) 0.78 0.79 0.75 0.77
Greek (el) 0.82 0.83 0.78 0.81
Hindi (hi) 0.84 0.85 0.82 0.84
Persian (fa) 0.83 0.84 0.80 0.82
Swahili (sw) 0.80 0.80 0.77 0.79

Table 2: Reference-free quality estimation for transla-
tions from English using CometKiwi shows the high
quality of the translated data used for instruction tuning.
The metric is on a scale of 0-1, with 1 being perfect
translation.

used for training the Alpaca model (Taori et al.,
2023), referred to as the cleaned Alpaca dataset.
These instructions, originally in English, are trans-
lated into six languages (English, Chinese, Hindi,
Persian, Swahili, and Greek) using an automatic
translation system from the NLLB project (Team
et al., 2022). These translations correspond to the
dominant languages of six cultures (American, Chi-
nese, Indian, Iranian, Kenyan, and Greek) under
study, resulting in the Alpaca-X dataset, where ‘X’
denotes the respective language for eg., Alpaca-en
is the original English Alpaca data, and Alpaca-hi
is the translated Hindi version. It is important to
note that all these datasets are content-equivalent,
only differing in terms of language.

Reference-free Quality Estimation of Machine
Translation We use CometKiwi (Rei et al., 2022)
for estimating the quality of the the translated
Alpaca-X datasets. Each dataset has three columns
- input, instructions and output, corresponding to
the Alpaca data format. Only considering rows
where all the columns have some translatable data
(does not contain code, is not empty string), we
look at the Quality Estimation (QE) scores in Table
2 which lie between 0 and 1, with 1 representing
perfect translation. All the values are around 0.8
on average indicating a high quality of translated
data. Note that there are minor variations in the
quality between the columns which have longer
documents (eg. Output) vs the columns which have
shorter documents (eg. Input, Instruction). These
high scores for QE align with our initial feedback
from speakers of the dominant language who were
provided a small random sample (around 200 sen-
tences) of the translated data.

2.3 Supervised Instruction Finetuning

We use 4-bit QLoRA (Dettmers et al., 2023) to
train using supervised finetuning (SFT), low-rank
adapters (LoRA) for the base models using our
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Alpaca-X data, with hyperparameters detailed in
the Appendix Table 13. These adapters, specific
to each language, can be integrated into the base
model in a plug-and-play manner. The base model
combined with a language-specific adapter trained
on Alpaca-X data is also referred to as an Alpaca-X
model, for simplicity of notation. For eg., Alpaca-
hi data is used to train an adapter for the Alpaca-hi
model. Note that SFT, supervised finetuning, and
instruction tuning is used interchangeably through-
out the rest of the document.

3 Experimental Settings

We divide our experiments into two distinct cat-
egories – first looking at how instruction tuning
and pretraining play a role in cultural understand-
ing, and then going deeper into different aspects of
cultural nuances.

3.1 Studying the effects of language specific
instruction tuning

Our experiments are designed to isolate the impact
of different components (base model, LoRA, eval-
uation prompt) on the cultural awareness of LLMs.

Experimental Setups To address our research
questions, we have devised the following experi-
mental setups:
1. For RQ1 (Language-Specific Instruction Tun-

ing): We compare the LLaMA 2 model with
an English-specific adapter (Alpaca-en) against
Alpaca-X models, where ‘X’ denotes other lan-
guages. This comparison helps determine the
effectiveness of language-specific instruction
tuning in enhancing cultural understanding.

2. For RQ2a (Language-Specific Pretraining):
We explore bilingual base models for Chinese
(Yi)2 and Swahili (Uliza)3, each with its respec-
tive LoRA, to gauge the impact of language-
specific pretraining on cultural knowledge.

3. For RQ2b (Quality of Fine-Tuning Data): An
ablation study contrasts a non-Alpaca-X adapter,
developed from high-quality bilingual data, with
our Swahili Alpaca adapter. This helps assess
the influence of fine-tuning data quality on cul-
tural understanding.

Distribution of token counts for pretraining and
instruction tuning In the context of our experi-
ments, the token counts for pre-training and instruc-

2Huggingface link for Yi
3Huggingface link for Uliza (pre-trained model)

tion tuning vary significantly. The Alpaca-X mod-
els are the only components developed in-house,
while the pretrained bilingual models and Swahili
LoRA are sourced from open-source repositories.

The LLaMA 2 model underwent pre-training
with a substantial 2 trillion tokens. For the Swahili
base model, a continued pre-training phase incor-
porated 0.32 billion Swahili tokens. In contrast, the
Chinese base model involved pre-training with a
combined total of 3 trillion Chinese and English
tokens. The Alpaca dataset used for instruction
tuning is relatively small, consisting of 52,000 in-
structions, which translates to approximately 5.817
million tokens for the English Alpaca, or 0.005 bil-
lion tokens. The token count for the non-Alpaca
LoRA, used in one of our ablation studies, remains
unknown because the open source repository it is
adapted from does not specify details. This dis-
parity in token counts highlights the differences
in data scale between pre-training and instruction
tuning phases which might have some effect on our
results that we cannot control.

Further, note that all these controlled experi-
ments are performed using the first dataset (Ge-
oMLaMA) without going into granular details, be-
cause our focus was to study the effects of instruc-
tion tuning instead of different cultural aspects.

3.2 Granular Analysis of Cultural Aspects

In this section, we outline a series of experiments
utilizing the CAMeL dataset to conduct an in-depth
analysis of cultural aspects. These experiments are
designed to evaluate the model’s nuanced under-
standing of cultural elements.
Setting 1: A multiple-choice question is framed
with one option representing the answer from the
corresponding culture and five options from the
other cultures (all other settings are restricted to
four options). This setting aims to assess the
model’s comprehension of individual cultural as-
pects rather than a general overview.
Setting 2: No options from the correct culture are
provided in the multiple-choice questions, options
are randomly sampled uniformly from incorrect
cultures. This approach is intended to determine
the model’s default cultural inclination when the
correct option is absent.
Setting 3: Three options from the correct culture
are provided alongside one option from a randomly
selected incorrect culture. A model with accurate
cultural understanding should consistently avoid

6401

https://huggingface.co/01-ai/Yi-34B
https://huggingface.co/Jacaranda/kiswallama-pretrained


choosing the incorrect option. This setting tests
the model’s alignment with the findings from the
previous settings.
Setting 4: Each question includes four options
from the correct culture, but three of these are
from a different category than what the question ad-
dresses to test for precision of understanding. For
instance, in a question about names, three options
might be food items, with only one being a name.
The model’s ability to discern between categories
within the same culture is evaluated here. If the
model understands culture minutely enough to be
able to differentiate between the categories we are
asking about, then it would never pick an option
from the incorrect category. But if it only has a
fuzzy understanding of culture, then it might end
up choosing any of the given options as all of them
are “culturally correct” in a global sense.
Setting 5: Questions regarding gendered categories
are used, where half of the options are correct for
the grammatical gender but incorrect for the cul-
ture, and the other half are correct for the culture
but incorrect for the grammatical gender. This set-
ting tests whether the model prioritizes cultural
accuracy over grammatical gender accuracy in its
responses. For instance, in a question about Amer-
ican female names with options as Liam, David,
Aisha and Divya, we expect the model to choose
one between Aisha and Divya over the two male
names. Ideally, the model response should stick to
the correct grammatical gender, because typically
female clothing is worn by females and male cloth-
ing by males, and similarly usually females have
female-associated names and vice versa. But if the
model responses stick to the correct culture and
ignore gender, then the model does not necessarily
understand the details of the gendered cultural as-
pect even if it is broadly culturally correct. Note
that we do not refer to gender identity in this analy-
sis, but only focus on grammatical gender.

3.3 Evaluation technique

Our evaluation method draws inspiration from
existing approaches that aggregate token log-
probabilities for prompt completion. Specifically,
the techniques used by Trinh and Le (2019) and
Wang et al. (2023b) utilize variations of this con-
cept of using aggregated token log-probabilities in
determining the most likely prompt completions.

CAPPr Further building on this approach, we
utilize CAPPr (K. Dubey, 2023), a tool that im-

plements the aforementioned idea by selecting
the completion most likely to follow a given
prompt. CAPPr achieves this by calculating the
log-probability of each token in a completion, con-
sidering both the prompt tokens and the preceding
tokens within that completion. This process in-
volves averaging the log-probabilities to derive the
inverse perplexity of the completion. Subsequently,
these averaged log-probabilities are exponentiated
to obtain a completion probability. This procedure
is repeated for each potential completion to form a
normalized probability distribution over the set of
completions, which for our use case represents the
different options in a QA setting.

Example Let’s take the prompt “This is a ” and
the possible completion as “cat”. (Note that the
prompt ends in a whitespace, which is the default
in the library and also what we follow when format-
ting our prompts.) These are concatenated to form
the text “This is a cat”. This sentence is passed
through the tokenizer to obtain encodings, which
are then passed through the model to obtain the
logits for the entire sequence. Then, log-softmax is
applied to these logits and input IDs are sliced out
to get log-probabilities for completion tokens.

Evaluating using log probabilities instead of gen-
erations In the evaluation method we are using,
the model is not generating text. We format our
prompts as “Answer in one word. Choose between
the given options. ###Question: Which side of the
car is the driver seat in the United States? ###Op-
tions: (a) left (b) right ###Answer: ” in the Alpaca
data format, and then concatenate each of the op-
tions (left/ right) one by one to this sequence. For
each complete sequence, we encode it and pass it
through the model to obtain logits and then take a
log softmax over the entire sequence, before splic-
ing the input to get log probabilities for the comple-
tion. The probability for the next token being left or
right in this case is not negligible, given the format-
ting, and it is noticeable from the log probabilities
that we obtain (as compared to log probabilities
for some other irrelevant option like “anywhere”
or “middle”). The probability for the answer with
the highest probability is usually always more than
random for the majority of questions in our data.

Why we are not evaluating generations instead
We initially tried to find a reasonable solution to
the evaluation of generation problem. Our best
approach (the method that gave the highest “accu-
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  Beverage

Female Clothing

Female NamesFood

Literature

Location

Male Clothing

Male Names Religion

Overall

0.2 0.4 0.6 0.8

USA
China
India
Iran
Kenya
Greece

Figure 2: The 70B LLaMA 2 model shows strong per-
formances for China and Iran across cultural concepts
for different cultures.

racy” scores on our datasets) involved generating
answers with a beam search for a given combina-
tion of parameter values for top-p, top-k, temper-
ature, followed by extraction of the relevant part
of the answer using a QA system trained on dif-
ferent existing multilingual QA datasets (MNLI,
etc.) and then looking for similarities between the
extracted answer and the gold answer using a 2
level approach (first looking for exact matches and
then looking for similarities based on BERTScore
(Zhang et al., 2020)). But even though this ap-
proach would lead to “higher scores” on the tasks
we define, the numbers were found to be mislead-
ing because they do not correlate with human eval-
uations of the generations which is why we do not
report the results from that approach in our paper,
even though it would have made for an interesting
discussion about evaluation approaches for LLMs.

4 Results

Our findings show that LLMs do not understand
the specific details that define culture even when
we try different approaches like SFT, bilingual pre-
training, and prompting in the dominant language.

4.1 RQ1 : Does SFT on language specific data
enhance cultural knowledge? (No)

Our investigation into whether SFT on language-
specific data enhances cultural knowledge involves
a series of experiments, detailed in Appendix 6, Ta-
ble 7. This section focuses on key results pertinent
to our hypotheses for the RQ.
Better than BERT, but only in English Anal-
ysis of the GeoMLaMA performance (Table 3)

SFT lang China India Iran Kenya Greece

Results from GeoMLaMA benchmark

(mBERT) 0.30 0.41 0.21 0.30 -
(XLMR-L) 0.37 0.37 0.37 0.32 -

Prompt language: english

eng (7) 0.50 0.39 0.24 0.31 0.34
eng (13) 0.54 0.42 0.31 0.28 0.34
eng (70) 0.46 0.45 0.28 0.28 0.38

Prompt language: {lang}

{lang} (7) 0.25 0.39 0.31 0.31 0.28
{lang} (13) 0.32 0.36 0.28 0.34 0.28
{lang} (70) 0.39 0.33 0.14 0.34 0.34

Table 3: Instruction tuning on language specific data
does not consistently enhance cultural knowledge across
languages and cultures. The numbers 7, 13 and 70 corre-
spond to the model sizes in billions of parameters. The
metric is the GeoMLaMA benchmark metric (country
priors are subtracted from calculated accuracies) on a
scale of 0-1 with higher being better.

compares the English base model combined with
language-specific Alpaca and language-specific
prompts against the English base model with En-
glish Alpaca and English prompts across three dif-
ferent model sizes ranging from 7B to 70B. Larger
model sizes do not necessarily mean better cultural
knowledge. We restrict our analysis to non-USA
countries where English is not the dominant lan-
guage. Results indicate that instruction tuning in
English slightly outperforms encoder models like
BERT and XLMR, a trend not always observed
when SFT is applied in other languages. This dis-
crepancy may be attributed to the predominance of
English in LLaMA 2’s pretraining data, making it
the language that is most coherent for the model.
We note that while some amount of cultural data is
definitely present in the pretraining data, our SFT
instructional data does not include cultural content.
No clear enhancement due to SFT, with a lot of
variability across cultures The hypothesis that
SFT with language-specific data substantially im-
proves cultural knowledge is not conclusively sup-
ported by our findings. There is notable variability
across different cultures. For instance, in China and
Iran, English-based fine-tuning seems to be more
effective, while in India, Hindi fine-tuning com-
petes closely. English emerges as the most effective
language for eliciting cultural knowledge across
various cultures. However, the second-most effec-
tive language is not consistently the dominant one.
For example, prompting in Chinese yields better
results than Swahili for Kenyan cultural questions
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Figure 3: The distribution of countries chosen by the
70B LLaMA 2 model without the question explicitly
mentioning the chosen country shows a large percentage
favouring China and Iran.

(Table 7). This observation might be influenced by
the larger representation of Chinese compared to
Swahili in the pretraining data set.

4.2 RQ2a : Does pretraining on dominant
language data enhance cultural
knowledge? (Yes)

Our study also probes the influence of pretrain-
ing language distribution on cultural understanding.
Specifically, we contrast the LLaMA 2 model, pri-
marily pretrained on English data, with bilingual
base models for Chinese (Yi) and Swahili (Uliza).
The performance comparisons are in Table 4. Note
that pretraining data potentially contains more, non-
translated, culturally specific data which we do not
control for, so the effects observed in this section
should not be directly compared to the previous
section about instruction tuning.
Pretraining is useful in improving cultural un-
derstanding along with the instruction tuning
and language specific prompting In the con-
text of English language queries, both Yi and
Uliza models do not surpass the performance of
LLaMA 2. However, for queries related to China,
when prompted in Chinese, the Yi model demon-
strates superior performance compared to LLaMA
2 and also achieves parity with LLaMA 2’s En-
glish performance. Similarly, for Kenyan cul-
tural queries, the Uliza model, when prompted in
Swahili, matches LLaMA 2’s performance.
The quality of pretraining data matters for in-
creased awareness across cultures Notably, the
Yi model generally outperforms LLaMA 2 in En-
glish for cultures outside China (USA, Iran, Kenya,
Greece), as shown in Table 7. This suggests that
high-quality, filtered pretraining data, particularly

Model Size China Kenya

Prompt language : English

LLaMA 2 + eng Alpaca
7 0.50 0.31
13 0.54 0.28
70 0.46 0.28

Yi + eng Alpaca 6 0.43 -
34 0.39 -

Uliza + eng Alpaca 7 - 0.25
Uliza + {swa, eng} LoRA 7 - 0.31

Prompt language : Chinese/Swahili

LLaMA 2 + zh/swa Alpaca
7 0.25 0.31
13 0.32 0.34
70 0.39 0.34

Yi + zh Alpaca 6 0.39 -
34 0.54 -

Uliza + swa Alpaca 7 - 0.31
Uliza + {swa, eng} LoRA 7 - 0.41

Table 4: Pretraining on language specific data helps
to improve cultural awareness. Bilingual non-alpaca
finetuning along with bilingual continually pretrained
model gives the most culturally appropriate responses
when prompted in the respective dominant language.

when used for continued pre-training, play an im-
portant role in enhancing a model’s cultural aware-
ness across different cultures.

Regarding the “difference in quality of data” be-
tween the Yi and LlaMA 2 models, while we can’t
quantify this without access to the pretraining data,
our comment is based on direct feedback from a
lead developer of the Yi model. They indicated
that “higher quality pre training data” was a key
factor in Yi’s superior performance, particularly for
Mandarin Chinese, compared to LlaMA 2.

4.3 RQ2b: Optimal Approach for Eliciting
Cultural Knowledge

In an ablation study focusing on the quality of fine-
tuning data, we examine a non-Alpaca LoRA de-
rived from carefully curated Swahili data.4 The
results indicate a clear superiority of the curated
LoRA over our Swahili Alpaca, as it surpasses both
Alpaca and also LLaMA 2 for English prompts.

This finding underscores that the most effec-
tive approach for eliciting accurate cultural knowl-
edge involves a bilingual base model pre-trained
on high-quality, language-specific data. Addi-
tionally, supplementing this model with a LoRA,
instruction-tuned on curated instructional examples
and prompted in the respective language, further
enhances its cultural understanding. Such a com-

4Huggingface link for Uliza (finetuned model)

6404

https://huggingface.co/Jacaranda/UlizaLlama


bination of high-quality pretraining, targeted in-
struction tuning, and language-specific prompting
emerges as the optimal strategy for achieving deep
cultural insight. This also implies SFT with curated
instructional examples performs better than SFT
using generic machine-translated data.

4.4 RQ3 : Do LLMs understand granular
tangible cultural aspects? (somewhat)

This part of our study, centered on English, aims
to delve into the nuanced cultural understanding
of models, using the CAMeL dataset. We chose
English for several reasons: the complexity of trans-
lating proper nouns, the redundancy of translated
nouns representing the same concept, and previous
findings indicating superior English performance
unless using a language-specific pretrained model.
Prior distributions of cultural aspects of coun-
tries affect cultural understanding at the gran-
ular level Our analysis reveals that the model
displays a pronounced preference for certain cul-
tures, particularly China and Iran, when no correct
options are present (Setting 2, Figure 3). This in-
herent bias significantly affects performance for
other cultures when correct options are included.

As illustrated in Figure 2, LLaMA 2 generally
exhibits the highest performance across various
cultural aspects for China (Setting 1), with some
exceptions where Iran leads. However, despite
previous research (Weidinger et al., 2022; Durmus
et al., 2023) indicating alignment with American
values, the model shows a relatively superficial
understanding of American culture, as evidenced
by its lower performance. A possible explanation
could be that the other options provided for the
question have higher prior distributions, but there
are possibly multiple factors at play here.

In another test (Setting 3), we present a scenario
where three options are from the correct culture,
along with one option from a randomly selected,
incorrect culture. This setup is intended to eval-
uate the model’s ability to discern cultural appro-
priateness accurately. Our findings reveal a stark
contrast in performance based on the cultural con-
text. For questions pertaining to China, the model
demonstrates a high degree of accuracy, rarely se-
lecting the incorrect cultural option. In contrast,
when presented with questions about male names
in the US, the model’s performance significantly
declines, choosing the incorrect option nearly 70%
of the time. This disparity highlights the model’s

Category USA China India Iran Kenya Greece

Beverage 0.56 0.31 0.67 0.40 0.50 0.63

Female Clothing 0.60 0.69 0.58 0.81 0.79 0.69

Female Names 0.89 0.87 0.97 0.82 0.92 0.85

Food 0.32 0.40 0.76 0.32 0.69 0.28

Literature 0.21 0.33 0.45 0.20 0.34 0.65

Location 0.81 0.88 0.76 0.72 0.84 0.81

Male Clothing 0.58 0.54 0.85 0.86 0.75 0.74

Male Names 0.94 0.85 0.97 0.85 0.93 0.87

Religion 0.51 0.55 0.81 0.72 0.53 0.66

Overall 0.60 0.61 0.76 0.65 0.70 0.69

Table 5: We measure the percentage of times that
LLaMA 2 70B prefers an option from an incorrect cate-
gory when provided with a single choice from the cor-
rect category paired with 3 incorrect ones. Ideally, this
should be close to 0 if the model has true understanding.

uneven capability in distinguishing between cultur-
ally relevant and irrelevant options across different
cultural settings. An alternate plausible explanation
could be that model has learned that the US is a
largely multi-cultural society, which our evaluation
approach isn’t designed to consider. Such biases
could be attributed to the mixed cultural perspec-
tives inherent in the pretraining data, which might
emphasize certain cultures over others. Appendix,
Tables 8, 9, and 10 provide detailed results.

Complex cultural understanding is lacking even
for countries for which the model understands
culture broadly Our investigation further ex-
plores the model’s depth of cultural understand-
ing through a specific testing approach. In this
setup, each question offers four culturally appropri-
ate options, but only one option is relevant to the
question’s category, while the other three belong
to different categories. The assessment focuses
on the frequency with which the model selects an
option from an incorrect category. Notably, even
for countries like China and Iran, where the model
generally shows a good grasp of broader cultural
aspects, the selection of incorrect category options
is alarmingly high, as detailed in Table 5. Ideally,
the model should have a near-zero selection rate
of incorrect categories for countries with strong
cultural representation. However, this nuanced un-
derstanding appears to be lacking.

A striking example involves the 13B model’s in-
terpretation of Chinese female names. In an array
of approximately 3K questions, the model consis-
tently showed a preference for beverage names over
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Category USA China India Iran Kenya Greece

Female Clothing 0.40 0.83 0.59 0.31 0.44 0.54
Male Clothing 0.51 0.66 0.77 0.42 0.48 0.68

Female Names 0.14 0.90 0.58 0.61 0.66 0.58
Male Names 0.23 0.93 0.57 0.65 0.68 0.65

Overall 0.32 0.89 0.63 0.51 0.56 0.61

Table 6: LLaMA 2 70B prefers being culturally correct
than being grammatically gender correct across cultures.

actual female names. For instance, it judged ‘Goji
Berry tea’ as a more probable name than ‘Chen’
in the given context of ‘I met a girl named [fill
in] at the park’. While it’s conceivable that the
model might not always err when presented with
non-beverage incorrect options, the fundamental
issue remains that it should not select such incon-
gruent options at all. Comprehensive results of this
testing are available in the Appendix, Table 11, un-
derscoring the model’s limitations in distinguishing
between specific cultural categories.
Being culturally accurate is preferred by
LLaMA 2 over being grammatically gender ac-
curate, even though it should be the opposite
In a nuanced test, we presented options that juxta-
pose cultural accuracy against grammatical gender
accuracy: two options correct in culture but incor-
rect in gender, and two others correct in gender but
incorrect in culture. The results reveal a marked
preference for cultural accuracy over gender ac-
curacy, particularly in contexts where the cultural
representation in the model’s training data is more
pronounced (Table 6 and Appendix, Table 12).

This tendency is more evident in countries with a
higher cultural prominence in the model’s training
data. For instance, in questions related to China,
the model predominantly selects culturally accurate
responses, regardless of grammatical gender cor-
rectness. Conversely, for countries like the USA,
the model shows a greater propensity to choose
options that are correct in terms of gender. This pat-
tern suggests that the prominence of certain cultural
or gender concepts in the pretraining corpus along
with grammatical gender signals in language sig-
nificantly influences the model’s decision-making
process, underscoring the impact of training data
composition on the model’s understanding of nu-
anced cultural and gender-related aspects.

5 Related Work

In the context of understanding cultural biases in
Large Language Models (LLMs), several studies

have made significant contributions, each address-
ing different aspects of this multifaceted issue. Tao
et al. (2023) use the World Values Survey to map
GPT models on the Inglehart-Welzel Cultural Map,
highlighting the effectiveness of cultural prompting
as a mitigation strategy. Durmus et al. (2023) com-
bine datasets from the World Values Survey and the
Pew Research Center’s Global Attitudes surveys
to explore models’ alignment with Western values,
using various prompting techniques. The SeaE-
val benchmark (Wang et al., 2023a) demonstrates
the challenges multilingual LLMs face in multicul-
tural reasoning, affected by factors like positional
bias and language nuances. COPAL-ID (Wibowo
et al., 2023) finds that LLMs have a lower under-
standing of culture-related questions compared to
non-culture related ones, especially in multilingual
settings. Additionally, Cao et al. (2023) pioneered
examining cultural alignment for chatbots, reveal-
ing ChatGPT’s American-centric alignment.

However, these studies collectively highlight
some gaps: a predominant focus on Western-
centric perspectives, limited exploration of non-
Western cultures, and the need for more compre-
hensive strategies to incorporate a global spectrum
of cultural nuances in LLMs. Our work aims to
build upon these findings, addressing these short-
comings by examining LLMs’ cultural awareness
more holistically and inclusively.

6 Conclusion

This study on the cultural understanding of Large
Language Models (LLMs) reveals significant vari-
ations in their ability to encapsulate diverse cul-
tural nuances. Our investigations, leveraging the
GeoMLaMA benchmark and the adapted CAMeL
dataset, demonstrate that while language-specific
instruction tuning and bilingual pretraining offer
some improvements, they fall short of ensuring
comprehensive cultural competence, particularly in
non-Western contexts. The findings underscore the
need for incorporating a wider range of cultural per-
spectives in LLM training and development, high-
lighting the importance of creating models that are
not only linguistically adept but also culturally sen-
sitive and globally inclusive.
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Limitations

This study, while extensive, is subject to certain
limitations which are important to acknowledge:

1. The current methodology conceptualizes culture
as a singular entity within a nation-state. This
perspective, while useful for structured analy-
sis, might not fully capture the rich diversity
and complexity of modern societies, where mul-
tiple cultures and languages coexist within a
single country. We try to overcome this issue of
“culturally stereotyping” our datasets by look-
ing at aggregated statistics of discrepancies in
model responses, instead of focusing on individ-
ual responses to each prompt. Future research
could benefit from exploring more granular ap-
proaches that can effectively address this multi-
faceted nature of cultural identity.

2. We don’t control the token distribution for the
pretraining process lacks contrasting with the
controlled instructional data used in fine-tuning
experiments. This could affect result interpreta-
tion. Future work should investigate the effects
of smaller, high-quality datasets for controlled
pre-training across languages.

3. Our experiments use 4-bit QLoRA for instruc-
tion tuning, and it’s uncertain if results would
differ with higher-bit configurations. Further
research is needed to explore the impact of vary-
ing bit settings.

4. Evaluating large language models is an ongoing
challenge within the field, and the methodology
chosen for this study, while grounded in estab-
lished research, has its strengths and limitations.
This approach needs to be considered alongside
alternative evaluation methods, each with their
respective advantages and drawbacks, to suit
specific use cases and research objectives.

5. Some of the languages tested (Greek, Persian,
Hindi) may not be supported by the tokenizer
of LlaMA 2, which is also why we recommend
continued pretraining and/or developing custom
extended LLaMA tokenizers, for improving lan-
guage specific cultural awareness.

6. An angle that we do not explore in the paper is
finetuning on culturally relevant data, because
the definition of what is culturally relevant is
nuanced and lacks a clear definition across com-
munities. However, we believe that there are
many exciting new works in this area of research
which will enable us to soon be able to do so.
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Appendix

Prompt Model Size US China India Iran Kenya Greece Overall

English

LLaMA 2 + English Alpaca
7B 0.28 0.50 0.39 0.24 0.31 0.34 0.34
13B 0.31 0.54 0.42 0.31 0.28 0.34 0.37
70B 0.31 0.46 0.45 0.28 0.28 0.38 0.36

Yi + English Alpaca 6B 0.52 0.43 0.33 0.48 0.50 0.34 0.43
34B 0.62 0.39 0.42 0.45 0.50 0.44 0.47

Uliza + English Alpaca 7B 0.21 0.50 0.39 0.17 0.25 0.31 0.31

Uliza + {Swahili, English} LoRA 7B 0.45 0.39 0.39 0.34 0.31 0.25 0.36

Hindi LLaMA 2 + Hindi Alpaca
7B 0.28 0.46 0.39 0.34 0.25 0.41 0.36
13B 0.24 0.36 0.36 0.28 0.31 0.38 0.32
70B 0.24 0.46 0.33 0.28 0.34 0.38 0.34

Chinese
LLaMA 2 + Chinese Alpaca

7B 0.34 0.25 0.39 0.41 0.41 0.34 0.36
13B 0.38 0.32 0.39 0.48 0.47 0.38 0.40
70B 0.38 0.39 0.42 0.48 0.53 0.34 0.43

Yi + Chinese alpaca 6B 0.38 0.39 0.45 0.34 0.25 0.31 0.36
34B 0.55 0.54 0.55 0.45 0.44 0.53 0.51

Swahili
LLaMA 2 + Swahili Alpaca

7B 0.34 0.32 0.39 0.17 0.31 0.34 0.31
13B 0.34 0.29 0.39 0.24 0.34 0.34 0.33
70B 0.31 0.36 0.39 0.21 0.34 0.38 0.33

Uliza + Swahili Alpaca 7B 0.31 0.46 0.45 0.28 0.31 0.38 0.37

Uliza + {Swahili, English} LoRA 7B 0.38 0.32 0.36 0.48 0.41 0.34 0.38

Persian LLaMA 2 + Persian Alpaca
7B 0.31 0.25 0.27 0.31 0.38 0.38 0.32
13B 0.31 0.25 0.33 0.28 0.34 0.34 0.31
70B 0.28 0.36 0.33 0.14 0.25 0.38 0.29

Greek LLaMA 2 + Greek Alpaca
7B 0.17 0.21 0.27 0.10 0.25 0.28 0.22
13B 0.21 0.21 0.30 0.17 0.28 0.28 0.24
70B 0.28 0.21 0.33 0.14 0.22 0.34 0.25

Table 7: RQ1, RQ2: Cultural performance scores of various models on the GeoMLaMA benchmark. Values are
between 0 and 1, higher is better.

Data collection from dominant speakers for adapted CAMeL dataset We provided native speakers
with a list of words that we procured from different sources on the internet and from large language
models as a base collection for each category that they are then asked to verify and correct with more
appropriate targets for each category based on their lived experiences.
For the prompts, we follow a similar process, but this time we don’t require country specific prompts,
only category specific. The final set of prompts is decided by agreement between the authors.
We note that this process has inherent biases for the group of people who perform the tasks, which might
implicitly show up in the data in unobserved ways. Also, because two of the categories are about names
of people, this may include information about someone’s real name, but that would only be so, because it
is a common name in some part of their country.
All annotators are demographically located in the USA and are between 25-40 years old. Other than the
Hindi annotator who is female, all others identify as male. Also, we note that all annotators are either
authors or close friends of authors who did not require any form of compensation.
Note that, the phrase “native” has historical (and sometimes perjorative) connotations with “indigenous”,
which is not the intended meaning here, so we use “dominant language” throughout the paper.
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Category Size USA China India Iran Kenya Greece

Beverage
7 0.03 0.44 0.16 0.34 0.10 0.09
13 0.04 0.49 0.16 0.35 0.11 0.09
70 0.04 0.57 0.23 0.38 0.15 0.15

Female Clothing
7 0.09 0.24 0.42 0.08 0.12 0.13
13 0.11 0.30 0.46 0.09 0.15 0.14
70 0.10 0.39 0.47 0.11 0.12 0.26

Female Names
7 0.05 0.50 0.21 0.28 0.19 0.18
13 0.05 0.52 0.32 0.38 0.24 0.33
70 0.07 0.71 0.33 0.39 0.30 0.37

Food
7 0.06 0.28 0.06 0.47 0.04 0.23
13 0.07 0.33 0.08 0.49 0.06 0.21
70 0.18 0.43 0.12 0.53 0.08 0.35

Literature
7 0.10 0.29 0.10 0.34 0.17 0.07
13 0.12 0.27 0.12 0.39 0.19 0.06
70 0.16 0.28 0.14 0.65 0.27 0.08

Location
7 0.09 0.28 0.27 0.39 0.13 0.17
13 0.07 0.35 0.36 0.43 0.18 0.23
70 0.13 0.39 0.43 0.49 0.19 0.26

Male Clothing
7 0.08 0.62 0.11 0.06 0.17 0.11
13 0.09 0.68 0.18 0.10 0.19 0.12
70 0.15 0.73 0.20 0.06 0.16 0.19

Male Names
7 0.02 0.53 0.22 0.26 0.30 0.20
13 0.04 0.58 0.30 0.33 0.38 0.30
70 0.04 0.76 0.30 0.35 0.42 0.34

Religion
7 0.16 0.41 0.09 0.11 0.24 0.11
13 0.15 0.51 0.14 0.14 0.23 0.14
70 0.17 0.50 0.18 0.16 0.22 0.19

Overall
7 0.08 0.39 0.18 0.26 0.16 0.14
13 0.08 0.39 0.18 0.26 0.16 0.14
70 0.08 0.39 0.18 0.26 0.16 0.14

Table 8: RQ3: Setting1 Results (Default MCQ setting, single correct country choice provided) from the CAMeL
benchmark.

Prompt Size USA China India Iran Kenya Greece

USA
7 0.0 0.36 0.17 0.22 0.14 0.12
13 0.0 0.33 0.18 0.22 0.15 0.12
70 0.0 0.36 0.16 0.23 0.13 0.12

China
7 0.1 0.0 0.24 0.27 0.22 0.17
13 0.09 0.0 0.25 0.29 0.21 0.16
70 0.08 0.0 0.23 0.32 0.18 0.18

India
7 0.07 0.37 0.0 0.24 0.18 0.14
13 0.07 0.33 0.0 0.27 0.19 0.13
70 0.06 0.35 0.0 0.29 0.17 0.13

Iran
7 0.09 0.40 0.21 0.0 0.16 0.14
13 0.08 0.37 0.24 0.0 0.17 0.14
70 0.07 0.40 0.22 0.0 0.15 0.16

Kenya
7 0.08 0.37 0.19 0.23 0.0 0.13
13 0.08 0.34 0.21 0.25 0.0 0.13
70 0.07 0.34 0.20 0.27 0.0 0.13

Greece
7 0.08 0.37 0.18 0.22 0.15 0.0
13 0.07 0.33 0.20 0.23 0.16 0.0
70 0.06 0.36 0.18 0.26 0.14 0.0

Table 9: RQ3: Setting2 Results (Distribution of Countries chosen when correct country is not provided) from the
CAMeL benchmark
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Category Size USA China India Iran Kenya Greece

Beverage
7 0.48 0.05 0.22 0.09 0.34 0.37
13 0.47 0.06 0.24 0.1 0.29 0.32
70 0.5 0.05 0.19 0.08 0.25 0.27

Female Clothing
7 0.35 0.12 0.04 0.4 0.27 0.29
13 0.37 0.12 0.04 0.35 0.25 0.28
70 0.36 0.1 0.06 0.36 0.3 0.19

Female Names
7 0.48 0.07 0.19 0.16 0.21 0.2
13 0.46 0.11 0.14 0.15 0.21 0.19
70 0.44 0.04 0.2 0.17 0.19 0.17

Food
7 0.38 0.13 0.37 0.04 0.47 0.13
13 0.37 0.12 0.34 0.04 0.45 0.17
70 0.31 0.11 0.32 0.05 0.43 0.14

Literature
7 0.3 0.14 0.34 0.1 0.22 0.44
13 0.28 0.14 0.29 0.07 0.22 0.45
70 0.32 0.14 0.32 0.05 0.19 0.43

Location
7 0.42 0.13 0.14 0.11 0.28 0.26
13 0.48 0.11 0.12 0.12 0.25 0.24
70 0.45 0.13 0.13 0.08 0.29 0.24

Male Clothing
7 0.3 0.02 0.3 0.39 0.28 0.32
13 0.32 0.02 0.24 0.31 0.25 0.25
70 0.28 0.02 0.23 0.35 0.29 0.22

Male Names
7 0.65 0.06 0.19 0.21 0.16 0.18
13 0.67 0.09 0.15 0.2 0.14 0.2
70 0.67 0.02 0.17 0.2 0.17 0.17

Religion
7 0.27 0.08 0.32 0.36 0.2 0.28
13 0.27 0.04 0.28 0.3 0.18 0.29
70 0.27 0.06 0.28 0.28 0.17 0.23

Overall
7 0.4 0.09 0.23 0.21 0.27 0.28
13 0.41 0.09 0.2 0.18 0.25 0.27
70 0.4 0.08 0.21 0.18 0.25 0.23

Table 10: RQ3: Setting3 Results from the CAMeL benchmark (How many times did Llama choose the single
incorrect option ignoring the other correct options. This number should ideally be 0 for everything.)
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Category Llama_Size USA China India Iran Kenya Greece

Overall
7 0.68 0.72 0.52 0.67 0.79 0.75
13 0.73 0.71 0.72 0.72 0.78 0.62
70 0.6 0.61 0.76 0.65 0.7 0.69

beverage
7 0.61 0.47 0.34 0.44 0.76 0.74
13 0.66 0.43 0.53 0.64 0.68 0.58
70 0.56 0.31 0.67 0.4 0.5 0.63

female_clothing
7 0.65 0.83 0.37 0.83 0.85 0.77
13 0.68 0.81 0.62 0.83 0.78 0.57
70 0.6 0.69 0.58 0.81 0.79 0.69

female_names
7 0.92 0.98 0.8 0.78 0.96 0.93
13 0.98 0.99 0.93 0.94 0.97 0.77
70 0.89 0.87 0.97 0.82 0.92 0.85

food
7 0.52 0.58 0.3 0.34 0.8 0.35
13 0.47 0.46 0.63 0.33 0.8 0.22
70 0.32 0.4 0.76 0.32 0.69 0.28

literature
7 0.26 0.37 0.23 0.52 0.41 0.6
13 0.4 0.49 0.38 0.39 0.42 0.56
70 0.21 0.33 0.45 0.2 0.34 0.65

location
7 0.8 0.94 0.6 0.66 0.94 0.93
13 0.94 0.93 0.83 0.75 0.97 0.74
70 0.81 0.88 0.76 0.72 0.84 0.81

male_clothing
7 0.74 0.65 0.59 0.81 0.8 0.81
13 0.78 0.55 0.82 0.83 0.78 0.6
70 0.58 0.54 0.85 0.86 0.75 0.74

male_names
7 0.95 0.94 0.78 0.85 0.93 0.91
13 0.99 0.99 0.93 0.88 0.93 0.87
70 0.94 0.85 0.97 0.85 0.93 0.87

religion
7 0.69 0.71 0.63 0.76 0.63 0.71
13 0.63 0.65 0.78 0.78 0.67 0.62
70 0.51 0.55 0.81 0.72 0.53 0.66

Table 11: RQ3: Setting4 Results from the CAMeL benchmark (How many times did Llama choose an option
from the incorrect category) (it was given 3 incorrect categories, 1 correct category) - Ideally this should be 0 for
everything if llama understands what category we are asking about.
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Category Size USA China India Iran Kenya Greece

Female Clothing
7 0.37 0.73 0.53 0.26 0.44 0.43
13 0.38 0.85 0.59 0.34 0.49 0.41
70 0.4 0.83 0.59 0.31 0.44 0.54

Female Names
7 0.12 0.85 0.53 0.52 0.65 0.46
13 0.14 0.8 0.64 0.59 0.69 0.51
70 0.14 0.9 0.58 0.61 0.66 0.58

Male Clothing
7 0.51 0.64 0.79 0.36 0.54 0.59
13 0.48 0.68 0.8 0.45 0.52 0.56
70 0.51 0.66 0.77 0.42 0.48 0.68

Male Names
7 0.21 0.85 0.59 0.55 0.6 0.56
13 0.22 0.82 0.61 0.62 0.57 0.56
70 0.23 0.93 0.57 0.65 0.68 0.65

Overall
7 0.3 0.82 0.61 0.44 0.55 0.51
13 0.3 0.8 0.66 0.52 0.57 0.51
70 0.32 0.89 0.63 0.51 0.56 0.61

Table 12: RQ3: Setting5 Results for the CAMeL benchmark(How many times did Llama choose correct culture but
incorrect grammatical gender?) (2 options were from correct culture but opposite gender, and 2 options were from
incorrect culture but correct gender)

Parameter Value

Random Seed 42
Number of Epochs 1 (for 34B or 70B models),

3 (for 6B, 7B, 13B models)

Bits and Bytes Config

Load 4 bit
Quantization Type nf4
DataType bfloat16

Lora Config

Lora Alpha 16
Lora Dropout 0.1
R 64
Bias none

Training Arguments

Per Device Train Batch Size 6 (1 A100 80GB GPU)
Gradient Accumulation Steps 2
Learning Rate 3e-4
Max Gradient Norm 0.3
Warmup Ratio 0.03
Learning Rate Scheduler constant
Optimizer 32bit paged AdamW
Max Sequence Length 2048

Table 13: Hyperparameters used for Instruction tuning of the LLaMA 2 models
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