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Abstract

Effective conversation requires common
ground: a shared understanding between
the participants. Common ground, how-
ever, does not emerge spontaneously in
conversation. Speakers and listeners work
together to both identify and construct a
shared basis while avoiding misunderstanding.
To accomplish grounding, humans rely on
a range of dialogue acts, like clarification
(What do you mean?) and acknowledgment (I
understand.). However, it is unclear whether
large language models (LLMs) generate
text that reflects human grounding. To this
end, we curate a set of grounding acts and
propose corresponding metrics that quantify
attempted grounding. We study whether LLM
generations contain grounding acts, simulating
turn-taking from several dialogue datasets
and comparing results to humans. We find
that—compared to humans—LLMs generate
language with less conversational grounding,
instead generating text that appears to simply
presume common ground. To understand
the roots of the identified grounding gap,
we examine the role of instruction tuning
and preference optimization, finding that
training on contemporary preference data
leads to a reduction in generated grounding
acts. Altogether, we highlight the need for
more research investigating conversational
grounding in human-AI interaction.

1 Introduction

In dialogue, common ground refers to the mu-
tual knowledge, beliefs, and assumptions shared by
participants in a conversation. This shared under-
standing is essential for effective communication,
as it underpins the ability of individuals to inter-
pret, predict, and respond to each other’s statements
and actions accurately (Clark, 1996). Through each

⋆Equal contribution.

Figure 1: Mental health supporters carefully employ
clarification questions (one of the three grounding acts)
with a seeker, taking multiple turns to ground. In con-
trast, simulated supporters—with the same conversa-
tional context—generate presumptive answers.

conversational turn, individuals collaborate to build
common ground, preventing potential misunder-
standings (Clark and Schaefer, 1989). Humans
therefore rely on dialogue acts like clarifying mean-
ing or posing information-seeking followup ques-
tions. When individuals fail to ground, they often
proactively repair misunderstandings.

Failing to construct common ground in human-
human conversation can be at best misleading and
at worst harmful. Consider mental-health support:
if there’s any indication of risk to a client (e.g., sui-
cidal ideation or intentions of self-harm), a health-
care professional will ask clarifying questions to
assess risk. Failure to do so has harmful conse-
quences (unnecessary hospitalization) which can
traumatize a client and place an unjustified finan-
cial burden (Strumwasser et al., 1991). In domains
like education, ineffective grounding might result
in misunderstanding a student, resulting in irrele-
vant feedback (Graesser et al., 1995).

From an NLP perspective, establishing and lever-
aging common ground is a complex challenge: dia-
logue agents must recognize and utilize implicit as-
pects of human communication. Recent chat-based
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large language models (LLMs), however, are de-
signed explicitly for following instructions. While
humans carefully construct common ground, LLMs
are trained to directly act on commands specified
by end-users (Ouyang et al., 2022). We hypoth-
esize that the instruction-following paradigm—a
combination of supervised fine-tuning (SFT) and
preference optimization (PO through RLHF, for
example)—might result in discrepancies between
how humans actually ground in dialogue, and how
LLMs generate text similar to human grounding.
We call this discrepancy the grounding gap.

Despite the grounding gap, LLMs interact regu-
larly with humans across various applications. For
a subset of interactions, however, LLMs should
generate grounding language before completing a
user’s task, instead of executing literal instructions
or disregarding a user’s underlying goals. This
is particularly crucial in LLM-powered training
systems, where LLMs simulate practice scenar-
ios and allow individuals to rehearse and refine
domain-specific skills (Shaikh et al., 2023a). LLM-
based training already facilitates interaction in do-
mains like education (Kasneci et al., 2023; Dem-
szky et al., 2021; Wang and Demszky, 2023), con-
flict resolution (Shaikh et al., 2023a; Argyle et al.,
2023), and emotional support (Carlbring et al.,
2023; Hsu et al., 2023). In these settings, effective
dialog agents must coordinate to build common
ground when interacting with people.

Given the importance of generating language
for conversational grounding, we ask: Do current
LLMs generate dialogue acts that reflect grounding
patterns between humans? If not, what aspect of
LLM training exacerbates the grounding gap?

We address these questions by measuring
LLM generations through linguistically validated
grounding acts. For example, acts that clarify or
acknowledge a prior utterance offer a strong sig-
nal for measuring shared understanding (Clark and
Schaefer, 1989). Building on prior work in dia-
logue and conversational analysis, we curate a col-
lection of dialogue acts used to construct common
ground (§2). Then, we select datasets & domains
to study human-LM grounding. We focus on set-
tings where human-human grounding is critical,
and where LLMs have been applied: namely, emo-
tional support, persuasion, and teaching (§3).

After curating a set of grounding acts, we
build prompted few-shot classifiers to detect them
(§4). We then use LLMs to simulate turn-taking

in our human-human dialogue datasets and com-
pare agreement between human and GPT-generated
grounding strategies (§5).

Because we use the exact same conversational
context as in human conversations, we can quan-
tify the grounding gap: off-the-shelf LLM genera-
tions are, on average, 77.5% less likely to contain
grounding acts than humans (§6). Even in situa-
tions where LLM generations do contain a ground-
ing act, they differ from human generations—we
observe poor human-LM agreement across a range
of models.

To isolate potential causes of the grounding gap,
we explore a range of possible interventions, from
ablating training iterations on instruction following
data (SFT and PO) to designing a simple prompting
mitigation (§7). We find that SFT does not improve
conversational grounding, and PO erodes it. Across
our experiments, we generally observe significant
disagreement between grounding acts in human
utterances and LLM generations.

In summary, we contribute (1) a set of linguis-
tically informed grounding acts, tailored towards
understanding grounding in contemporary LLMs.
Using grounding acts, we (2) conduct a controlled
LLM simulation of conversational grounding and
a characterization of grounding agreement: a com-
parison between grounding acts in human utter-
ances and LLM generations. Finally, we (3) in-
vestigate reasons for the grounding gap, exploring
different models, ablating SFT and PO, and testing
prompting interventions.1

2 Grounding Acts

Grounding acts are a set of dialogue acts used
to characterize conversational grounding. While
grounding failures are qualitatively well-observed
in current pretrained models (Benotti and Black-
burn, 2021b; Fried et al., 2022; Chandu et al.,
2021), measuring where or how frequently these
failures occur in dialogue remains unexplored.
Here, we outline concrete acts to measure these
failures, discuss our curation process for selecting
grounding acts, and describe each act in detail.

Grounding as an Expert To benchmark con-
versational grounding in LLMs, we focus on dia-
logue acts from the perspective of an expert listener.
Users frequently come to LLMs with a direct but
potentially underspecified task (Tamkin et al., 2022;

1Code and prompts for evaluation can be found at https:
//github.com/oshaikh13/grounding-gaps
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Grounding Act Example

Clarification student: So I am the leader of my class. It is like the president or mayor.
TSCC teacher: Oh, like a head girl?

↪→ GPT: That’s great to hear! Being the leader of your class is a big responsibility [...]

Follow-up seeker: My friends, who I also work with, are upset with me because I am leaving for a
ESConv new position. I am sad that they are upset.

support: Ah, that can be awkward. Are you happy about the new position?
↪→ GPT: I can understand why that would make you feel down... Remember, it’s okay to [...].

Acknowledgment persuadee: I [donate] as much as I can, which is admittedly not as much as I would like to.
Persuasion persuader: I know what you mean! Sometimes it is hard to find the extra time or money to help

those that need it.
↪→ GPT: That’s wonderful to hear! [...] Would you be interested in supporting Save the [...]?

Table 1: Examples of grounding acts from our datasets, where the act is employed by the expert from each
dataset (teacher, supporter, or persuader). Additionally, we include Chat GPT-3.5, where the model does not
employ the same grounding act.

Zheng et al., 2023). In these settings, the user has
privileged knowledge of their task; therefore, the
onus of building common ground before providing
a response lies initially with a model. More con-
cretely, the perceived expert LLM should generate
text that verifies grounding before completing a
task. We therefore curate grounding acts from the
perspective of an expert listener.

Conversational Grounding Ontologies In cu-
rating grounding acts, we draw on prior dialogue
research. Several ontologies propose discrete di-
alogue acts for measuring conversational ground-
ing. For example, Clark and Schaefer (1989) pro-
pose a hierarchy of methods to achieve common
ground, including the use of explicit discourse acts.
They discuss relationships between acts like ac-
knowledgment (e.g. I understand), and evidence
of grounding in conversation. Traum and Hinkel-
man (1992) outline a range of concrete grounding
acts, from simply continuing a conversation to re-
pairing a misunderstanding or requesting repair.
Purver (2004) further contributes a theory of repair
through clarification requests—dialogue acts used
to verify if contributions should be added to the
common ground.

We curate a small but general subset from the
large pool of proposed acts, selecting acts that
are relevant to interaction with LLMs, or their
current applications (e.g. teaching or emotional
support). For example, Motivational Interviewing
for emotional support emphasizes asking followup
questions and signaling acknowledgment for empa-
thy (Miller and Rollnick, 2012). Similarly, a range
of pedagogical theories incentivize asking careful

clarification and followup questions (Wiske, 1998).
And effective conflict resolution requires a careful
construction of common ground (Deutsch, 1973).
We therefore select the following three grounding
acts that are especially relevant to these current
applications of LLMs but also generalize across a
range of domains where grounding is critical.

Clarification requests occur when a speaker
seeks clarification on an utterance instead of initiat-
ing repair. Clarification is used primarily to avoid
a misunderstanding, and concerns information pre-
sented in prior utterances u1..i. In other words, clar-
ifications serve to “clear up” a potential future mis-
understanding (e.g. did you mean...? or are you re-
ferring to?), avoiding repair from a listener (Purver,
2004; Ginzburg and Cooper, 2001; Purver et al.,
2003b,a; Healey et al., 2011, 2003; Madureira and
Schlangen, 2023a; Kuhn et al., 2022; Stoyanchev
et al., 2013; Rahmani et al., 2023).

Acknowledgement explicitly signals understand-
ing (e.g. "ok," "I understand," "I see," "Yes, and",
etc.). Unlike clarification/repair, acknowledgment
indicates that a speaker is ready for the next rele-
vant turn in a conversation. We only consider utter-
ances whose sole purpose is acknowledgment (i.e.
they exclusively contain ack. markers.) (Schegloff,
1982; Sacks et al., 1978; Schiffrin, 1987; Clark and
Schaefer, 1989; Cho and May, 2020)

Followup questions ask for elaboration on a
prior utterance u. Followups implicitly signal un-
derstanding of u. Unlike clarifications—which
are concerned wholly with misunderstandings—
followups signal understanding by seeking addi-
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tional information on a prior utterance u. Con-
cretely, follow-ups indicate understanding by at-
tempting to ground on related information. While
clarification is about understanding the existing
interaction more thoroughly, a follow-up is con-
cerned with continuing the current interaction2

(Davis, 1982; Graesser et al., 1995; Traum and
Hinkelman, 1992; Bunt et al., 2017).

3 Data

We choose to analyze conversations in three do-
mains where grounding is critical and where
LLMs are already used for social skill training—
education, emotional support, and persuasion. Our
datasets are task-oriented in nature, have multiple
turns, and consist of two participants. Since our
grounding acts are curated around an expert lis-
tener, each dataset also has one expert participant.
To identify grounding gaps, we can simulate utter-
ances from the expert using an LLM. We briefly
outline our datasets (in English).

For emotional support, we use Emotional Sup-
port Conversations (ESConv), a corpus of one-to-
one online conversations between a help-seeker and
a help-provider, collected via crowdsourcing (Liu
et al., 2021). To analyze grounding acts in educa-
tion, we use the Teacher Student Chatroom Cor-
pora (TSCC), a collection of written conversations
captured during one-to-one lessons between teach-
ers and learners of English (Caines et al., 2020,
2022). Finally, for persuasion, we use Persua-
sion for Good, a dataset consisting of one-to-one
online conversations between a persuader and a per-
suadee, where the persuader solicits donations from
payouts on a crowd working website (Wang et al.,
2019). Due to resource constraints, we sample 100
conversations from each dataset and truncate them
to the median length (TSCC = 92, ESConv = 22
Persuasion = 20). Details on our selected datasets,
sampling, and truncation are in Appendix C.

4 Classifying Grounding Acts

To analyze disparities in grounding acts between
human and LLM generations, we must first classify
grounding acts in our datasets. In this section, we
outline the construction of test/validation sets, and
our prompting setup to classify grounding acts.

2One nifty way to distinguish follow-ups and clarification
questions is the "O.K." test, introduced by Benotti and Black-
burn (2021a). In short, if prefixing a potential clarification (e.g.
"Do you mean X?") with an acknowledgment (e.g. "O.K.")
sounds awkward, then it’s likely a clarification.

4.1 Dataset Splits and Prompting
Method We turn to classifying the grounding
acts in our datasets. First, we withheld and an-
notated a validation (10%) and test (10%) set of
conversations from each dataset in §3. Messages
were annotated for a single primary act—if an
utterance contained multiple grounding acts, we
selected the most relevant one. Two authors partic-
ipated in the annotation process. After annotating,
the authors highlighted disagreements, discussed,
and broke ties, yielding a final Cohen Kappa agree-
ment of κ = 0.72. Following annotation, the first
author prompt-engineered a multi-class classifica-
tion prompt on the validation set, using both zero-
shot and few-shot prompting. We used the latest
GPT model during the time of writing (GPT-4) as
our classification model, with temperature = 0 but
default parameters otherwise.3 Queries were run
between July-November 2023.

Results GPT-4 can identify grounding acts in
conversations with reasonably high accuracy (avg.
Macro F-1 across datasets = 0.89 , Appdx. Table
2). In the 0-shot setting, however, we find that
GPT-4 frequently misclassifies follow-ups and clar-
ification questions (avg. F-1 clarification = 0.40 ;
follow-up = 0.70). Few-shot prompting substan-
tially increases model performance (clarification
F-1 = 0.85 ; follow-up F-1 = 0.91).

5 Analyzing Grounding Acts in LLMs

Given our three grounding acts, a reasonably per-
forming GPT-4 classifier for labeling them, and a
set of target datasets & metrics, we can now mea-
sure disparities between humans and LM simula-
tions. In this section, we outline our controlled
simulation process (§5.1) and metrics to measure
conversational grounding (§5.2).

5.1 Simulation Method
We start with a conversation C1..N consisting of N
ordered role utterance pairs (rt, ut). Each of our
selected datasets has two unique roles, expert and
listener. Since LLMs are generally leveraged for
the role of an expert listener, we focus on simu-
lating the expert. Given this setup, our simulation
process generates controlled counterfactual mes-
sages gt for each ut.

Concretely, to simulate an utterance at timestep
t, we extract all messages until t: C1...t−1.

3We use standard parameters provided in OpenAI’s API
(max_tokens = 256).
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Then, we input this context into a selected LM
(LM(C1...t−1)), along with a high-level instruction
(e.g. Roleplay a therapist). The LM then gener-
ates the next message, offering a counterfactual to
the human ground truth. Using this process, each
ground truth utterance ut from our selected datasets
has a controlled, LM-generated counterpart gt, con-
ditioned on the same conversational history. Figure
1 summarizes this process.

After generating LM counterfactuals gt, we can
similarly compute the rate of grounding acts across
our generated messages. While we use GPT-4 to
classify grounding acts, simulating conversation
for all our datasets is prohibitively expensive. In
this section, we use GPT-3.5 with default param-
eters for conversation simulation (later, in §7, we
experiment with a wider range of models).

5.2 Metrics to Measure Grounding Acts
How should we measure the use of our selected
grounding acts? We propose two metrics: base rate
and Cohen’s κ. The base rate provides a measure
of grounding frequency; specifically, how often
a human utterance or LM generation contains a
specific grounding act. In contrast, Cohen’s κ mea-
sures agreement in grounding acts between humans
and LMs. Just because an LM generation contains
an act does not mean it occurs in the same place
as in human dialogue. Our metrics apply to any
dialog dataset D consisting of conversations with
utterances-role pairs {(r1, u1), ..., (rn, un)}.

Base Rate We first compute the overall frequency
of grounding acts subset G as P (ui ∈ G). The
base rate provides a reference point for the overall
presence of specific conversational grounding acts.

Cohen Kappa κ While the base rate provides
a measure of frequency, it does not capture the
discrepancy between grounding acts used between
a candidate and reference conversation. For in-
stance, an LM-generated conversation M may use
more grounding strategies, but only in locations
that rarely match human H use. Consider a simu-
lated dialogue agent that always generates a ground-
ing act. While the language this agent generates
doesn’t have the problem of presuming common
ground, an agent that always generates ground-
ing acts can be understandably irritating (Horvitz,
1999).

To this end, we use Cohen κ (Cohen, 1960), a
measure of inter-rater agreement bounded between
-1 and 1. Cohen κ has several useful properties: it

Act ChatGPT 3.5 Human Cohen κ

Emotional Support Conv

Follow 10.78 ± 2.1 27.87 ± 4.4 12.47 ± 6.4
Ack. 1.05 ± 0.8 12.9 ± 3.7 3.14 ± 4.9
Clar. 0.0 ± 0.0 3.05 ± 1.2 0.0 ± 0.0

Teacher Student Chatroom

Follow 11.56 ± 1.9 12.04 ± 2.1 16.75 ± 4.6
Ack. 5.68 ± 1.4 16.59 ± 2.4 18.25 ± 5.4
Clar. 0.57 ± 0.3 3.77 ± 0.9 0.36 ± 2.5

Persuasion for Good

Follow 1.66 ± 0.9 8.18 ± 2.4 2.94 ± 7.6
Ack. 1.8 ± 1.0 6.11 ± 1.9 25.73 ± 16.7
Clar. 0.0 ± 0.0 0.28 ± 0.4 0.0 ± 0.0

Table 2: Grounding acts and associated metrics
across our datasets. ± represents 95% confidence
intervals (bootstrapped). Humans use grounding acts
more than LLMs; furthermore, LLMs show poor agree-
ment (Cohen κ) with humans.

is well-validated across social scientific studies—
agreement can be compared to pre-existing work
to determine strength. Furthermore, κ adjusts for
random chance: values of κ < 0 indicate that agree-
ment is worse than chance. In measuring grounding
acts, we treat M and H as individual raters.

6 Gaps in Generating Grounding Acts

Having introduced the controlled simulation pro-
cess, we now report metrics on grounding
acts (§6.1) and qualitatively analyze errors (§6.2).

6.1 Simulation Results

First, we find significant discrepancies between
humans and LLMs when using GPT-3.5 for con-
versation simulation (Table 2). Across all datasets,
LLMs generations contain fewer grounding acts,
like followups (avg. 64.3% decrease) and ack.
(83.4%) acts. Clarifications never occur when
using ChatGPT-3.5 for ESConv and Persuasion.
While ChatGPT-3.5 does initiate some clarifica-
tion on TSCC, we observe a 84.8% decrease.

Beyond rate discrepancies, we observe low
agreement between ChatGPT-3.5 and humans—
LLM generations rarely contain grounding acts
in same position as human utterances. Of the 3
grounding acts × 3 dataset pairs, only 3 / 9 have a
Cohen κ agreement significantly greater than zero,
with κ averaging 10.73 for followup, 11.13 for
acknowledgment, 0.23 for clarification. To con-
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Generator
ACT + Followup + Acknowledgement + Clarification

Base Rate Cohen κ Base Rate Cohen κ Base Rate Cohen κ

Human 27.87 ± 4.4 36.41 12.89 ± 3.7 30.12 3.05 ± 1.2 48.456

3.5-instruct-turbo 29.35 ± 3.3 22.16 ± 7.7 1.49 ± 1.1 5.5 ± 6.0 0.12 ± 0.2 -0.22 ± 0.4
3.5-turbo (ChatGPT 3.5) 10.76 ± 2.1 12.47 ± 6.4 1.05 ± 0.8 3.14 ± 4.9 0.0 ± 0.0 0.0 ± 0.0
4 12.26 ± 2.6 11.04 ± 7.4 1.17 ± 0.8 11.18 ± 7.7 0.35 ± 0.4 -0.61 ± 0.6

mistral-sft 20.03 ± 3.1 18.48 ± 7.7 12.08 ± 3.4 26.92 ± 9.6 0.47 ± 0.5 12.39 ± 16.1
mistral-dpo 15.99 ± 2.7 15.25 ± 8.0 19.11 ± 4.1 19.33 ± 7.7 0.93 ± 0.8 9.79 ± 12.7

3.5-turbo + mitigation 42.32 ± 4.7 26.41 ± 6.6 2.54 ± 1.3 5.02 ± 5.9 1.16 ± 0.8 -1.65 ± 0.9

Table 3: ESConv grounding acts and metrics across model variants. We find that more recent OpenAI
(3.5-turbo, 4) models use significantly fewer grounding acts than humans; and that agreement (Cohen κ) with
humans is poor to fair across all evaluated models.

firm that human-LM agreement is low, we run a
human-human study with ESConv (Appendix B),
and observe significantly higher κ across ground-
ing cts (avg. κ ≈ 37.5).

6.2 Error Analysis

We performed qualitative analyses to develop an
in-depth understanding of how LM generations fail
to incorporate grounding acts. First, we performed
inductive coding to produce a set of frequent errors.
An annotator (one of the authors) read a random
sample of 160 instances where a human uses a
grounding act, while the simulated supporter does
not. Relevant turns were examined together with
the previous turn for context (details in Appdx. D).

Simulated supporters fail to use (1) acknowledg-
ment to show empathy (43.94%) or ask (2) fol-
lowup questions for more information (26.52%) /
to continue a conversation (12.88%). Furthermore,
simulated supporters do not ask (3) clarification
questions to verify understanding (9.09%), or re-
solve a specific ambiguity (7.58%). Table 4 in
the Appendix contains more detail on each error
type and qualitative examples. Next, we inves-
tigate potential causes of the grounding gap and
use discovered error types to design an informed
prompting mitigation.

7 Why do Grounding Gaps Emerge?

Here, we explore potential mechanisms for how
grounding gaps emerge. We focus on analyzing
ESConv, a target domain where disagreement in
grounding acts is especially consequential.

First, we examine grounding acts across several
OpenAI GPT variants and observe a larger ground-
ing gap in newer models (§7.1). To understand the

roots of this trend, we evaluate open-source models.
We hypothesize that current supervised-finetuning
(SFT) and preference optimization (PO) datasets
drive human-LM disagreement. To test this, we rig-
orously isolate the effects of SFT and PO training
on grounding agreement (§7.2).

7.1 LLM Variants
Method To further investigate the grounding
gap, we test a wider range of GPT mod-
els, rerunning our simulation process for ES-
Conv on gpt-3.5-instruct (a replacement for
legacy OpenAI models, trained similarly to the
text-davinci-00X series) and gpt-4. We exam-
ine grounding acts across these models.

Results Generations from the OpenAI model
variants have lower grounding acts base rates and
poor agreement with humans (κ < 0.2). A surpris-
ing exception to this is 3.5-instruct-turbo for
followups, where instruct shows fair agreement
with humans and uses grounding acts at a simi-
lar rate (29.5 instruct vs. 27.9 Human). While
instruct is trained using an “older” procedure, it
produces a better κ / base-rate tradeoff compared
to most models.

7.2 SFT & Preference Optimization
OpenAI models, however, are closed source: to
isolate training procedures that impact grounding
agreement, we independently evaluate the role of
current SFT and PO datasets.

Method We investigate if the standard SFT + PO
training setup improves use of grounding acts; and
if the amount of SFT + PO matters. At a high level,
we replicate the training procedure for Zephyr, an
open-source instruction following LM (Tunstall
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Figure 2: The role of SFT and preference optimiza-
tion in grounding agreement. (a) We observe no cor-
relation between SFT training steps and Cohen κ agree-
ment on grounding acts, with a Pearson R correlation
test yielding insignificant results: p > 0.1 (b) We ob-
serve negative correlation between DPO train steps
and Cohen κ agreement on grounding acts, with Pearson
R averaging R = −0.79, and p < 0.05 for all acts.

et al., 2023). First, we SFT Mistral 7B (Jiang et al.,
2023) for three epochs on a filtered version of the
UltraChat dataset (Ding et al., 2023; Tunstall et al.,
2023).4 During the SFT process, we save a total of
10 evenly-spaced checkpoints across a training run.
Each checkpoint is used to re-simulate conversa-
tions and measure the use of grounding acts. Next,
we use preferences from the synthetic UltraFeed-
back (Cui et al., 2023) dataset for the PO stage.
We run direct policy optimization (DPO) (Rafailov
et al., 2023) for an additional three epochs, start-
ing with the highest κ checkpoint on grounding
acts from the prior SFT stage. Like with SFT, we
save 10 evenly spaced checkpoints and rerun our
simulations using each checkpoint.

Beyond synthetic datasets, we additionally evalu-
ate the Archangel models (Ethayarajh et al., 2024),
released to study the effect of various instruction
tuning and preference optimization (both DPO and
PPO (Schulman et al., 2017)) procedures. From the
Archaengel suite, we evaluated the final Llama 7B
models trained on a mixture of real human feedback
datasets: OpenAssistant (Köpf et al., 2024), Stan-
ford Human Preferences (Ethayarajh et al., 2022)
and Anthropic HH-RLHF (Bai et al., 2022).

Results Across open-source Mistral experiments,
we find no evidence that SFT impacts grounding
agreement: Pearson correlation across grounding
acts vs. SFT checkpoints is ≈ 0, with p > 0.1.
Still, while Cohen’s κ is poor throughout training
(κ < 0.3), we observe that SFT-only mistral has
the highest κ across acknowledgment and clarifica-

4For additional training details, see Appendix F.

tion for all evaluated models—even when including
closed-source OpenAI variants.

On the other hand, increased DPO training on
Mistral 7B degrades agreement across all ground-
ing acts: followup (R = −0.70, p < 0.05), ac-
knowledgment (R = −0.89, p < 0.05), and clarifi-
cation (R = −0.78, p < 0.05). Similar to how PO
induces longer responses (Singhal et al., 2023), we
observe bias towards assuming grounding instead
of employing grounding acts. Altogether, instruc-
tion following SFT does not improve grounding
agreement, and added PO erodes it.

We observe similar degradations with PPO /
DPO on the Archangel suite of models (Table 3
in Appendix). After PPO, the base-rate falls by
an average of 7.0% across grounding acts, and κ
decreases by 39.0%. Similarly, DPO results in an
average base-rate decrease of 12.1%, and an aver-
age κ decrease of 42.5%. Regardless of the base
model or preference optimization algorithm, we
observe decreases in generating grounding acts.

We further examined our SFT and preference
datasets to identify a potential source of the ground-
ing gap. As a heuristic, we simply searched for
questions in assistant responses, and found that as-
sistant responses containing questions are overall
relatively rare—11.83% of samples in UltraChat
and 18.35% of samples in UltraFeedback have an
utterance where the assistant’s answer contains any
question at all (followup questions and clarifica-
tion questions are a subset of these). Second, we
found that the UltraFeedback dataset explicitly sig-
nals that asking questions is dispreferred: ques-
tions are significantly less frequent in preferred
(13.77%) compared to dispreferred (18.35%) ex-
amples, χ2 = 484.08, p < 0.00001.

7.3 Prompting Mitigations

Lastly, we explore a potential prompt-based inter-
vention. We design a prompt around our qualitative
error analysis and re-evaluate grounding acts.

Method We add a mitigation prompt (full text in
Appendix E) to Chat GPT-3.5 Turbo, instructing
it to avoid errors from our analysis (§6.2); specif-
ically, to (1) ask clarification questions when nec-
essary, (2) use follow-up questions to continue a
conversation, and (3) use acknowledgment to show
empathy. Our prompting approach is similar to
related work on preference elicitation (Li et al.,
2023), where prompting a model to first clarify a
task improves human ratings for task performance.
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Results Our prompt mitigation on ChatGPT 3.5
initially looks promising, with base rates substan-
tially higher across the board: followup nearly
quadruples (10.76 → 42.32), acknowledgment
doubles (1.05 → 2.54), and clarification increases
from 0 → 1.16. However, we note that inter-
ventions result in overeager grounding: simulated
supporters overuse grounding acts for minimally
improved agreement (e.g. Cohen’s κ). For ex-
ample, while mitigation results in 50% more fol-
lowups than a human supporter, agreement is still
poor. Furthermore, for clarification, we find that κ
decreases after mitigation (0 → −1.65), with mit-
igated κ significantly worse than random chance.
Altogether, we find that while a prompting interven-
tion significantly increases base rates of grounding
acts, it yields minimal increases (and potentially
decreases) across Cohen κ agreement with humans,
indicating that the grounding gap is a fundamental
problem, difficult to address by prompting alone.

8 Related Work

Background In operationalizing the concept of
common ground (Clark, 1996; Clark and Schae-
fer, 1989), we build on prior work in linguistics,
cognitive psychology, and communication. This
includes literature on conversational structure (Jef-
ferson, 1972) and on subdialogues (Litman and
Allen, 1987; Litman, 1985).

Conversational grounding in NLP To bench-
mark grounding abilities, existing works have oper-
ationalized tasks relevant to conversational ground-
ing, including question answering (Testoni et al.,
2020), producing human-like acknowledgments
(Paranjape and Manning, 2021), addressing am-
biguities (Paek and Horvitz, 1999), providing con-
versational feedback (Pilán et al., 2023; Eshghi
et al., 2015), addressing repair (Balaraman et al.,
2023), asking follow-up (Li et al., 2023) and clarifi-
cation questions (Purver, 2004). Correctly leverag-
ing grounding strategies is particularly consequen-
tial in tasks that require coordination in order to
achieve a goal (Bara et al., 2021; Mohanty et al.,
2023; Fried et al., 2022; Li and Boyer, 2015), play
games (Madureira and Schlangen, 2023b; Shaikh
et al., 2023b), plan ahead (Chu-Carroll and Car-
berry, 1998; Lochbaum, 1998), retrieve data (Lu
et al., 2023), or improvise (Cho and May, 2020).
In such tasks, the use of grounding acts has been
shown to increase success and conversation qual-
ity (Zhou et al., 2022). Furthermore, the ability to

establish a common ground is a key component in
efforts to design believable conversational agents
(Park et al., 2022, 2023; Aher et al., 2022; Argyle
et al., 2022) and facilitate human-AI collaboration
in dialogue (Lin et al., 2023) Our work synthesizes
existing literature by formalizing a framework to
study grounding in human-AI dialogue.

LLMs and conversational grounding Despite
the ubiquity and importance of conversational
grounding, previous work has identified funda-
mental limitations in the ways dialogue agents
powered by large language models establish com-
mon ground, noting that current systems usually
guess what the user intended, instead of leveraging
grounding acts.5 Related to this limitation, vari-
ous undesirable conversational patterns have been
identified, including over-informative question an-
swering (Tsvilodub et al., 2023), refusal to answer
ambiguous questions (Abercrombie et al., 2023;
Min et al., 2020; Gao et al., 2021), miscalibration
issues (Nori et al., 2023; Zhou et al., 2023), and
overconfidence (Mielke et al., 2022). Similarly,
LLM sycophancy (Perez et al., 2022)—mirroring
the views of a user—may be related to presumptive
grounding. Large language models’ generations
have thus been criticized as not being grounded in
any communicative intent, any model of the world,
or any model of the reader’s state of mind (Bender
et al., 2021). In our work, we carefully examine
the role of contemporary instruction following and
preference optimization, analyzing their effect on
conversational grounding.

9 Discussion

(CAN YOU ELABORATE ON THAT)
— ELIZA Rule (Weizenbaum, 1966)

Across evaluated models, we observed reduced
rates of grounding acts and poor grounding agree-
ment with humans (§6). We also isolated sources
of reduced grounding act use (§7). Here, we reflect
on findings and outline avenues for future work.

On the risks of not generating grounding acts.
Most of our evaluated LLMs generate grounding
acts at a significantly lower rate than humans. In-
stead of initiating a grounding act, instruction fol-
lowing LLMs simply “provide the answer.” In
low-stakes situations like informal conversation or
chit-chat, assuming grounding may be acceptable.

5https://openai.com/blog/chatgpt
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However, LLM simulations are used extensively
across a range of critical tasks, like social skill train-
ing, where appropriate grounding is necessary. We
find substantial disparities in these domains: specif-
ically, teaching, persuasion, and therapy. Further-
more, we suspect that these disparities extend far
beyond our evaluated domains, e.g. cross-cultural
interaction, medical or legal advice, customer sup-
port, and beyond.

On contemporary SFT and PO. We find that
current preference datasets explicitly signal that
asking questions is dispreferred (§7.2). Non-
expert humans have different preferences and opin-
ions (Casper et al., 2023), but, in single-step in-
teraction, might agree on salient characteristics of
answers including accuracy, relevance and clarity.
This results in narrowly scoped preference datasets,
where responses that are immediately relevant to
a prompt are preferred. However, grounding by
asking questions is integral in contexts such as tu-
toring and emotional support; failing to ground can
place a burden on support-seekers. Contextualizing
preferences across domains may provide a poten-
tial solution. In settings where grounding is critical,
dialogue agents should prefer to use grounding acts.
Still, while grounding acts provides an umbrella
for grounding strategies, a closer examination of
strategies routinely used by domain experts can
inform preferred interaction.

On alignment beyond single-step interaction.
Current RLHF-trained language models are trained
to optimize single-step interaction. Humans,
however, strategically use grounding acts across
multiple turns. While older NLP systems like
ELIZA (Weizenbaum, 1966)—a psychotherapy
chatbot—do not explicitly model human ground-
ing patterns, these systems still incorporate a large
number of clarification and follow-up transforms.
Similarly, we can augment SFT and preference
datasets with grounding acts, or train reward mod-
els across multi-step interactions (Hong et al.,
2023). However, simply using grounding acts to
augment training does not guarantee that LLMs
are well-aligned with humans. For example, while
prompting LLMs to use grounding acts increases
the use of underlying dialogue acts, it does not im-
prove κ agreement with humans (§7.3). When
designing training curricula, grounding acts of-
fer a promising direction toward measurable and
grounded human-AI interaction.

10 Conclusion

Instruction-following language models are trained
to "follow" instructions. Thus, datasets and algo-
rithms for finetuning LLMs are designed around
single-step interaction. In this work, we outline
a set of discourse acts—grounding acts—to mea-
sure interaction with language models beyond in-
struction following. We apply theory from con-
versational grounding to interactions with LLMs,
finding significant differences between how hu-
mans ground in dialogue and how LLMs generate
grounding acts. Designing new datasets, models,
and methods, motivated by prior work on conversa-
tional grounding, will likely be necessary to mini-
mize the grounding gap.

Limitations

Our characterization of simulated supporters con-
tains some anthropomorphic metaphors, which are
known to be harmful as anthropomorphism in dis-
cussing technology has long been connected to
dehumanization (Bender, 2022; Abercrombie et al.,
2023; Cheng et al., 2024). For brevity, we discuss
simulated supporters leveraging grounding acts as
a way to refer to whether LLM generations contain
grounding acts.

The set of grounding acts we consider, while
simple, is also not a comprehensive collection of
all grounding dialogue acts used in conversation.
For example, our grounding acts focus on strategies
where an expert listener uses positive grounding—
negative grounding acts like model-initiated repair
are out of scope. Still, we should expect that well-
aligned use of grounding acts from a speaker will
be correlated with a decrease in negative ground-
ing. For example, if a speaker clarifies appropri-
ately, then a listener should repair less. Finally, a
range of grounding acts are likely subsets of our
synthesized selection: paraphrasing and restating is
a subset of clarification, repeating a prior utterance
is an acknowledgment, etc. A finer-grained break-
down on our selected grounding acts may yield
further insights—though we observe limited use
even for our more general categorization. Finally,
all our datasets are in English, and our collection
of grounding acts is English-centered.

There also exist interaction effects between
grounding acts in conversation. Our current metrics
do not explicitly analyze the interaction between in-
dividual acts (e.g. does listener’s acknowledgment
follow a simulated speaker’s clarification?). Suc-
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cessful goal-oriented dialogue requires an under-
standing of the interaction effects between ground-
ing acts—we leave this analysis to future work.

Furthermore, our GPT-4 based grounding acts
classifier may not generalize to domains beyond
our selected datasets. Analyses on other datasets
may require building a new classifier or reprompt-
ing an LLM like GPT. Our selected datasets are
also synthetic in nature, consisting of interactions
between crowd workers. Validating grounding acts
agreement between humans and LLMs on in-the-
wild interaction is an avenue for future work.

Ethics Statement

Measurable grounding acts introduce new direc-
tions toward improved simulations of human con-
versational behavior, which can be useful for train-
ing (Shaikh et al., 2023a; Wang and Demszky,
2023). However, we strongly caution against using
grounding acts to help replace a human support-
provider—especially in high-risk scenarios such as
therapy and education.

Furthermore, enabling LLMs to ask numer-
ous clarification and followup questions can be
privacy-intrusive, leading support-seekers to dis-
close privacy-sensitive information. Using ground-
ing acts while collecting relevant information only
is an open challenge and an avenue for future work.

Finally, we note that efficiently grounding can
be harmful when the underlying goals are harmful.
While we explore Persuasion for Social Good as a
dataset, one can imagine settings where grounding
acts are applied to persuade for more nefarious
topics (e.g. political microtargeting).
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A Dataset Details

We discuss additional details regarding our datasets.
All our selected datasets are in English, and
are under an open-source license (MIT, Apache,
etc.) Datasets were already all appropriately
anonymized.

Teacher Student Chatroom Corpora (TSCC)
is a collection of written conversations captured
during one-to-one lessons between teachers and
learners of English (Caines et al., 2020, 2022). The
lessons took place in a synchronous chatroom. The
dataset contains a total of 260 conversations, spread
across two dataset releases. The one-to-one chat-
room lessons allowed interactive, immediate, and
personalized conversations. We selected the tutor-
ing domain since numerous opportunities of current
LLMs for education have been proposed in the lit-
erature, for instance, to create educational content,
facilitate instruction, student engagement and inter-
action, provide feedback, and personalize learning
experiences (Kasneci et al., 2023; Demszky et al.,
2021; Wang and Demszky, 2023). In line with prior
applications of LLMs, we use the teacher as the
expert from this corpus.

Persuasion for Good consists of one-to-one on-
line conversations between a persuader and a per-
suadee (Wang et al., 2019). In the data collection,
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one participant was asked to persuade the other
to donate to a specific charity by presenting per-
sonally relevant and appealing arguments. The
dataset contains 1017 conversations and was col-
lected on a crowdsourcing platform. Participants
were encouraged to continue the conversation un-
til an agreement was reached on donating and, if
so, how much. We selected the persuasion domain
since the use of current LLMs for persuasion has
been proposed, for instance, to facilitate conversa-
tions about politically divisive topics (Argyle et al.,
2023; Tappin et al., 2023), or to generate persuasive
pro-vaccination messages (Karinshak et al., 2023).
In this corpus, the persuader is the expert.

Emotional Support Conversations (ESConv) is
a corpus of one-to-one online conversations be-
tween a help-seeker and a help-provider, collected
via crowdsourcing (Liu et al., 2021). The dataset
contains 1053 conversations. Before participation,
help providers were trained to provide effective
support through an emotional support tutorial cov-
ering support stages and concrete strategies. We
selected the emotional support domain since peo-
ple turn to the web and widely accessible LLMs
to seek information and receive support related to
their wellbeing (Carlbring et al., 2023; White and
Horvitz, 2009). In this corpus, the health provider
is the expert.

B A Human Reference Point for κ

We observed low agreement between ChatGPT-3.5
and the original human dialogue participants in
using grounding acts. But the original dialogue
participants presumably had lots of information
that the LLM might not have had. To confirm that
the LLM agreement with humans is low, we would
need a fairer comparison: comparing the agreement
in grounding between two human crowdworkers
who are both generating a next turn given the same
conversational background as the language model.
We set up this small parallel task with humans,
using ESConv as our evaluation task.

Similar to our LM setup, we provide our annota-
tors with a random sample of 50 contexts D1...t−1,
and ask two different annotators to independently
complete the next message, using the same prompt
as with the LM. Through the study description, we
informed participants that their evaluations would
be used to benchmark current LLMs like ChatGPT.
Given the domain, we recruited individuals on Pro-
lific who self-reported as (1) fluent English speak-

ers, (2) recorded their workplace function as a
Healthcare Professionals and (3) listed their em-
ployment role as a Therapist / Well-being coun-
selor. Annotators were paid at a rate of $12 / hour.
Despite limited instruction, human-human agree-
ment across using any grounding act is fair, with
Followup κ = 35.66, Clarification = 48.45, and
Acknowledgement = 29.15. All human-human
κ scores are substantially higher than Human-LM
counterparts. Note that this is still effectively a
lower bound on κ between two independently re-
cruited individuals—with additional discussion be-
tween two mental health supporters, we would ex-
pect this score to be much higher.6

C Sampling Conversations

Because we aim to study grounding in language
models, we must control for context length within
datasets. With in-context learning (ICL), models
may unfairly adapt to longer conversation history,
learning to employ grounding acts only on longer
conversations. We preprocess our dataset to control
for ICL. First, we merge successive turns between
the same participant into a single message.7 Then,
within each dataset, we sample 100 random conver-
sations greater than or equal to the median number
of messages in a dataset (TSCC = 92, ESConv = 22,
Persuasion = 20). Finally, we truncate the sampled
conversations to the median length.

D Details on Error Taxonomy

We developed a taxonomy of five error types based
on the notes about emerging reasons why human
used grounding acts, with each error type corre-
sponding to a specific use of a grounding act (de-
scribed in Appendix, Table 4). Two authors then
independently annotated the sentences, indicating
whether any of the five error categories is present.
We found a substantial inter-rater agreement be-
tween the two annotators (Cohen’s κ = 0.77). The
labels from the two annotators were then aggre-
gated such that an error category label is assigned
if both of the annotators assigned it. Overall, 82.5%
of examples from the sampled set were assigned to
one of the categories.

6We note that clarification κ might be inflated, since sup-
port is low. See Table 1 in Appendix for details.

7Our selected datasets also contain successive messages
from the same participant (average 23%).
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E Prompt Mitigation

We use the following prompt mitigation, designed
from our qualitative analysis (§6.2). We include
this in OpenAI’s system prompt field.

Make sure you ask clarification questions
to verify that you understand what a per-
son is saying or to resolve an ambiguity.
Also, use follow-up questions to inquire
about related topics, or to continue a
conversation naturally. Finally, acknowl-
edge what a person is saying to show
empathy (e.g. “o.k.“, “I understand,”
etc.) when necessary. Make sure you
use these strategies carefully and like a
trained therapist; do not overuse them.

F Training Details

During the SFT stage, we use an effective batch
size of 128 (gradient accumulation) with a learn-
ing rate of 3e-4. In the preference optimization
stage, we train with a learning rate of 5e-6, with a
batch size of 32. To reduce memory usage, we use
LoRA (Hu et al., 2021) and train on 1 A100 GPUs.
Modeling took a total of 1 day. For all experiments,
we modified the HuggingFace transformers pack-
age (Wolf et al., 2020).
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Grounding Act Cohen κ Support

Followup 35.66 32
Ack. 29.15 11
Clarification 48.45 4

Table 1: Human-Human κ and support for grounding acts across 100 annotations

Dataset Grounding Act Zero-shot Few-shot Support

TSCC Follow-up 0.55 0.91 47
Ack 0.67 0.89 65
Clarification 0.38 0.81 25

ESConv Follow-up 0.90 0.93 26
Ack 0.59 0.90 14
Clarification 0.83 0.75 5

Persuasion Follow-up 0.64 0.89 9
Ack 0.14 0.91 16
Clarification 0.00 1.00 2

Table 2: F-1 for grounding acts classification on a withheld test set of 10 conversations from our selected dialogue
datasets. In the few-shot setting, GPT-4 has fairly high F-1 across grounding acts.

Grounding Act Source Base Rate (%) Cohen Kappa (κ)

Followup

Human 27.87 36.41
Llama 7B 15.59 18.23
+ SFT 15.21 19.12
+ SFT + DPO 11.21 12.13
+ SFT + PPO 12.12 13.24

Acknowledgement

Human 12.89 30.12
Llama 7B 15.28 22.77
+ SFT 16.73 28.56
+ SFT + DPO 16.11 18.23
+ SFT + PPO 14.05 19.54

Clarification

Human 3.05 48.45
Llama 7B 3.01 14.47
+ SFT 2.24 14.44
+ SFT + DPO 2.11 5.19
+ SFT + PPO 2.58 6.52

Table 3: Grounding act metrics across the Archangel (Ethayarajh et al., 2024) suite of models. We find that PPO /
DPO results in decreases for both base-rate and κ compared to the SFT-only model.
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Error type and frequency Description

+ Acknowledgement to show
empathy (43.94%)

Human acknowledges to show empathy, or display understanding, as opposed to going straight
to suggestions and solutions.

Example: seeker: honestly im not sure. there is always that risk when doing that with guys. i better
think long and hard before doing that!
supporter: It sounds like you put a lot of thought into things which can be helpful in decision
making.
↪→ GPT: It’s important to consider the potential consequences before taking any action. It

may be helpful to evaluate what you truly want and need in a relationship before making any
decisions.

+ Followup to continue the
conversation (12.88%)

Human asks a related question to keep the conversation going, typically not aiming to finish the
exchange.

Example: seeker: My friends, who I also work with, are upset with me because I am leaving for a new
position. I am sad that they are upset.
supporter: Ah, that can be awkward. Are you happy about the new position?
↪→ GPT: I can understand [...]. Communication is key in maintaining healthy relationships.

+ Followup to inquire further
(26.52%)

Human asks a closely related followup question to collect more information relevant to the
topic, typically not aiming to finish the exchange.

Example: seeker: I don’t have close friends because I don’t trust people
supporter: You said you generally don’t trust family or people in general?
↪→ GPT: I understand that feeling. [...] Take your time, and remember that trust is a two-way

street. It requires both vulnerability and the willingness to give others a chance to earn your
trust.

+ Clarification to verify under-
standing (9.09%)

Before providing specific suggestions, the human restates their understanding in the form
of a clarification question, as opposed to assuming correctness and providing suggestions
(presumptive grounding).

Example: seeker: i was cheated on severally, and it resulted me to end the relationship
supporter: It sounds like you had to deal with a partner recently cheating and a breakup, is
this right?
↪→ GPT: I’m sorry to hear that you’ve been through such a difficult experience [...]

+ Clarification to resolve an
ambiguity (7.58%)

Human resolves any ambiguities related to a specific entity, as opposed to assuming correctness
and providing suggestions (presumptive grounding).

Example: seeker: Sometimes abbreviated as 121
supporter: Hmm, it’s fine, to be honest. At [anonymized] they were always called one-to-one
classes. Or do you mean 121 is not formal?
↪→ GPT: "121" is more commonly used in informal settings or casual conversations. In

official or formal contexts, it’s better to use the full term "one-to-one."

Table 4: Qualitative analyses. Detailed descriptions of error types, their frequency, and example conversations.
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