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Abstract

Large language models (LLMs) have achieved
remarkable advancements in natural language
understanding and generation. However, one
major issue towards their widespread deploy-
ment in the real world is that they can gen-
erate "hallucinated" answers that are not fac-
tual. Towards this end, this paper focuses
on improving LLMs by grounding their re-
sponses in retrieved passages and by pro-
viding citations. We propose a new frame-
work, AGREE, Adaptation for GRounding
EnhancEment, that improves the grounding
from a holistic perspective. Our framework
tunes LLMs to self-ground the claims in their
responses and provide accurate citations to re-
trieved documents. This tuning on top of
the pre-trained LLMs requires well-grounded
responses (with citations) for paired queries,
for which we introduce a method that can
automatically construct such data from un-
labeled queries. The self-grounding capa-
bility of tuned LLMs further grants them
a test-time adaptation (TTA) capability that
can actively retrieve passages to support the
claims that have not been grounded, which
iteratively improves the responses of LLMs.
Across five datasets and two LLMSs, our results
show that the proposed tuning-based AGREE
framework generates superior grounded re-
sponses with more accurate citations com-
pared to prompting-based approaches and
post-hoc citing-based approaches.

1 Introduction

Recent advancements in large language models
(LLMs) have yielded demonstrably groundbreak-
ing capabilities in natural language processing
(NLP) (Brown et al., 2020; Chowdhery et al.,
2022). Their ability to understand, generate, and
manipulate text at unprecedented scales and depths
has established them as a transformative force

*Work done during an internship at Google Cloud Al

within the burgeoning field of artificial intelligence,
poised to significantly impact our increasingly data-
driven world. Despite their widely spread adoption,
one prominent issue of LLMs is that in certain
scenarios they hallucinate: they generate plausible-
sounding but nonfactual information (Maynez et al.,
2020; Ji et al., 2023; Menick et al., 2022), limiting
their the applicability in real-world settings. To
mitigate hallucinations, solutions generally rely
on grounding the claims in LLM-generated re-
sponses to supported passages by providing an at-
tribution report (Rashkin et al., 2023; Bohnet et al.,
2022; Gao et al., 2023a) or adding citations to the
claims (Liu et al., 2023; Gao et al., 2023b; Huang
and Chang, 2023).

There has been a growing amount of interest in
making LLM-generated responses more trustwor-
thy by grounding and adding citations. One line
of work uses instruction tuning (Kamalloo et al.,
2023) or in-context learning (Gao et al., 2023b)
to instruct LLMs to generate grounded responses
with citations to retrieved passages, following the
retrieval-augmented generation (Chen et al., 2017;
Guu et al., 2020; Lewis et al., 2020) framework.
As LLMs are required to perform this challenging
task from just instructions and few-shot demon-
strations, such directions often lead to mediocre
grounding quality (Gao et al., 2023b). Another line
of work is on post-hoc citing (Gao et al., 2023a;
Chen et al., 2023), which links support passages
to the claims in responses using a natural language
inference (NLI) model. This paradigm heavily re-
lies on LLMs’ parametric knowledge and might not
extend well to less-known knowledge (Sun et al.,
2023).

We propose a new learning-based framework,
AGREE, Adaptation of LLMs for GRounding
EnhancEment. As shown in Fig. 1, our frame-
work fine-tunes LLMs to generate citations, as op-
posed to prompting or relying on an external NLI
model used in a post-hoc way. At the training
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Figure 1: Our framework, AGREE, combines tuning (Section 4.1) and test time adaptation (Section 4.2) for better

attribution and citation generation.

phase, AGREE collects well-grounded responses
for unlabelled queries automatically from a base
LLM with the help of an NLI model. Next, the
collected data are used for supervising LLMs to
generate grounded responses based on the retrieved
passages as well as include citations in their re-
sponses. As a test-time approach, we propose an
iterative inference strategy that allows LLMs to
seek for additional information based on the self-
grounding evaluation so as to refine its response.
The tuning and test-time adaptation together enable
LLMs to effectively and efficiently ground their
responses in the corpus. We apply AGREE frame-
work to adapt an API-based LLM, text-bison, and
an open LLM, 1lama-2-13b, with training data col-
lected using unlabelled queries from three datasets.
We conduct evaluation on both in-domain and out-
of-distribution datasets, comparing the proposed
AGREE framework against competitive in-context
learning and post-hoc citing baselines. The exper-
imental results highlight that AGREE framework
successfully improves grounding, in citation recall
& precision, compared to the baselines by a sub-
stantial margin (generally more than 20%). We
find LLMs can learn to add accurate citations to
their responses with our carefully designed tuning
mechanisms. Furthermore, the improvements in
grounding quality achieved by tuning using certain
datasets can generalize well across domains. To
summarize, our main contributions include:

* A learning-based approach that adapts a base
LLM to include accurate citations in its re-
sponse, leveraging automatically created data;

* A test-time adaptation (TTA) method that iter-
atively improves responses of LLMs based on
the citation information;

* Extensive experiments on two LLMs over five
datasets demonstrating the effectiveness of the
proposed AGREE framework for improving
grounding and citation generation.

2 Related Work

Hallucination is a prevalent issue for generative
language models on many tasks (Maynez et al.,
2020; Raunak et al., 2021; Dziri et al., 2021; Ji
et al., 2023; Ye and Durrett, 2022; Tang et al., 2023;
Huang and Chang, 2023). It has been evaluated
in different ways, investigating the grounding in
generated responses (Bohnet et al., 2022; Rashkin
et al., 2023; Min et al., 2023; Yue et al., 2023).

Various approaches have been proposed to mit-
igate hallucination and improve the factuality of
LLM-generated responses. Among these, our work
particularly focuses on providing citations to at-
tributable information source (Liu et al., 2023; Gao
et al., 2023b). Unlike existing work that largely
relies on zero-shot prompting or few-shot prompt-
ing (Kamalloo et al., 2023; Gao et al., 2023b) or
use an additional NLI model (Gao et al., 2023a;
Chen et al., 2023) to add citations, we propose a
learning-based approach that tunes LLMs to gener-
ate better-grounded responses supported with cita-
tions.

More broadly, recent work also investigates
methods for improving factuality of LLMs with-
out using external knowledge, including inference-
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time intervention (Li et al., 2023b; Chuang et al.,
2023), cross-exam (Cohen et al., 2023; Du et al.,
2023), self-verify (Dhuliawala et al., 2023), or re-
inforcement learning (Tian et al., 2024; Wu et al.,
2023). Our work differs from them in providing
citations to external knowledge in the responses.
Additionally, there is past work that also uses ex-
ternal knowledge (e.g., knowledge base) to re-
duce hallucination by injecting knowledge into
prompts (Elaraby et al., 2023; Peng et al., 2023).
While the external knowledge used for generating
a response can possibly serve as a coarse and gen-
eral reference, these approaches also do not offer
granular, sentence-level citations as in our work.

Lastly, the proposed framework is a form of a
retrieval augmented generation approach. While
past work has explored using retrieval to improve
LLM generation quality (Chen et al., 2017; Lewis
et al., 2020; Guu et al., 2020; Izacard and Grave,
2020; Shi et al., 2023) or factuality (Shuster et al.,
2021; Jiang et al., 2023; Pan et al., 2023), our ap-
proach further enables LLMs to generate citations
and self-generated citations to guide retrieval.

3 Problem & Background

Our proposed framework aims to adapt a pre-
trained LLM M?5 to M+ that is able to provide
grounded responses with citations. Given a text
query @ and a corpus D = {d;} consisting of text
passages, the adapted LLM M+ is required to gen-
erate a response A to the query that is factually
grounded in the corpus D as well as providing cita-
tions C together with its response.

Following past work (Liu et al., 2023; Gao et al.,
2023b), we segment LLMs’ output into statements
by sentences and require each of the sentences to
cite a set of passages from the corpus. Specifically,
let s1,..., s, be the statements in the answer A =
S1,...,Sn. The citations C = {E1, ..., E,} links
each statement s; to a set of evidence passages
E; CD.

Recall that our adaptation aims to provide bet-
ter grounded responses. With citations C, we can
quantify the grounding quality of a response A by
a grounding score G:

G(A,C) = % Z ¢(concat(E;), s;),

where ¢ is an NLI model that assesses whether the
concatenated passage concat(E;) supports s;. The
grounding score G essentially averages how well
each sentence is supported by its citations.

4 AGREE Framework

The proposed AGREE framework takes a holistic
perspective for grounding, proposing a model tun-
ing approach that adapts the base LLM to include
citations in its responses, and introducing a test-
time adaptation (TTA) mechanism that leverages
the citation information for actively retrieving from
the corpus and iteratively refining the responses.

4.1 Tuning LLMs

We tune the LLM to self-ground the claims in their
responses by providing citations to retrieved docu-
ments. Our method is able to grant LLMs such an
ability using only a collection of unlabeled queries
{Q} and an NLI model ¢. As we are using un-
labeled queries without reference responses, we
formulate the adaptation task as tuning LLMs to
achieve better grounding without heavily deviating
from the original generations (such an approach
of preservation has also been adopted in recent
work (Gao et al., 2023a)). Conceptually, we adapt
MB to M so that the answers generated by the
adapted LLM M+ should satisfy the grounding
constraints (with grounding score > 7g) while max-
imizing the scores with respect to the base LLM

MBE:

maXE(A,c)NMA(-|Q,D)MB(A | Q,D)1{G(A,C) > Tg(}l.)

In practice, we adopt a data-centric approach for
optimizing M. For a given question, we opt to
use the maximally-grounded response sampled
from the base LLM to construct the tuning data.
We will detail the process in the following of this
section.

Data generation As shown in Fig 2, given the
query, we first sample responses {A} from the
base LLM M5B(. | Q, D) using instruction fol-
lowing (see Appendix A for details). For each A =
S1,. .., 8y We create citations C = {E;} using the
NLI model, ¢, to link a sentence s; to the maxi-
mally supported passage e; = maxg_p ¢(d, s;) if
the passage e; actually support s; (i.e., ¢(e;, ;) >
7).1' Otherwise, we do not add a citation to
83, and s; is an unsupported statement. That is:
E; = {ei}if ¢(ei,si) > Telse{}. We use U to

'In practice, we only present 5 passages retrieved from D
to the LLM for generating initial responses, and only generate
citations to this set of retrieved passages. We use TRUE (Hon-
ovich et al., 2022), a T5-11B NLI model. Please refer to
Appendix A for more details.
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Overview of Tuning Process
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Concrete Example of Tuning Data

Query: why did the panic of 1837 in the united states have an
effect on texas

Passages:

[1] (Panic of 1837): The Panic of 1837 was a financial crisis in the
United States ... Speculative lending practices in the West, a sharp

decline in cotton prices.
Adapted
LLM

[..1

Response: The Panic of 1837 in the United States had an effect on
Texas. Texas was a major exporter of cotton. And the panic caused a
sharp decline in cotton prices [1]......

Claims Not Supported: Texas was a major exporter of cotton.

Figure 2: Illustration of the tuning process. We sample responses from the base model, use an NLI model to add
citations to the sampled responses, and tune the base model with the best-grounded response. We also show a

concrete example of tuning data on the right.

denote the set of unsupported statements that can-
not find citations. This allows us to evaluate the
grounding of A as in Section 3. Now, we can
choose the best response A* from {A} based on
the grounding scores to form a grounded response,
ie., A* = argmax, G(A,C).

We then use {Q, A*, C*} (C* as the citations as-
sociated with A*) to teach the base LLM to gener-
ate grounded responses with citations. In addition
to citations, we also instruct the LLM to clearly
state the unsupported statements U™, as shown
in Fig. 2. We note that the tuning of framework
does not force all training responses to be perfectly
grounded. Instead, we supervise the LLM itself
to identify unsupported statements. This allows
the LLM to generate more flexibly and guide the
retrieval process with its knowledge.”

Supervised fine-tuning We have introduced
how we construct supervision to instruct the LLM
to add citations and state unsupported statements
in its response. To effectively tune the LLM, we
verbalize the entire process in natural language. We
denote the verbalized natural language description
as VERB(A*,C*, U™) (see Fig. 2 for a concrete ex-
ample).® The natural language formalization also
allows us to conveniently tune the LLLM with stan-
dard language modeling objectives:

MA = argmaxZM(VERB(A*’C*aU*) | Q,D).
M

Q
@)
We note that this actual objective, Eq (2), max-
imizes the log probability of generating the best-
%Please refer to Appendix A for more details on the tuning
method.

3Please refer to Appendix E for more examples of tuning
data.

query related
passages

supplementing
passages

working t

passages
unsupported
> statements

Adapted response

query Y [citation]

Figure 3: Illustration of the test-time adaptation mech-
anism. The adapted LLM retrieves from the corpus
based on self-generated citation information to refine
its response in an iterative way.

grounded answer A* that is selected from the gener-
ation of the base model. As A* is sampled from the
base model, such an objective avoids significant de-
viations from the original generations, which aligns
with the goal of the conceptual objective (Eq (1)).

Multi-dataset training We use multiple exist-
ing datasets to construct the adaptation data
used to tune the pre-trained LLM, including
Natural Questions (NQ) (Kwiatkowski et al.,
2019), FEVER (Thorne et al., 2018), and Strat-
egyQA (Geva et al., 2021). We choose these as
they contain diverse text, and the answers to the
corresponding queries require different types of rea-
soning processes: NQ provides diverse queries nat-
urally asked by real human users; FEVER places a
particular emphasis on fact verification; and Strate-
gyQA requires multi-hop reasoning with implicit
strategy. It is worthwhile to note that AGREE only
uses queries, leaving out ground-truth answers, to
improve LLMs.
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Algorithm 1 Iterative TTA

1: procedure ITERATIVEINFERENCE(Q, D, MA K, B)

input: A query @, text corpus D, the adapted LLM M, the number of passages k that M can take as input, the budget for LLM calls B

relevant_psgs = ]
> retrieve passages using the query
working_psgs := RETRIEVE(Q, D)[: k|

seen_psgs := ]
while iter = 1: B do

sentences.
A, cited_psgs, unsup_sents := MA( Q,working_psgs)

seen_psgs 1= seen_psgs + working_psgs
if unsup_sents is not None then

else

supplementing_psgs := RETRIEVE(Q, D)

DO DD b bt ot ot b et ot ok et et
=S ORIV TERHEST FHRMELR

22: return A, cited_psgs

> keep track of seen passages to avoid presenting duplicate passages to the LLM

> Use the LLM to generate an answer A for the query @ based on the working psgs D. Additionally obtain the cited passages and unsupported the

> add cited passages to the list of relevant passages and de-duplicate the list
relevant_psgs := DEDUPLICATE(relevantfpsgs + citedfpsgs)
> update the seen passages to include the working passages of this iteration

> retrieve additional information related to the unsupported statements
supplementing_psgs := RETRIEVE(unsup_sents, D)

> include more query-related passages to acquire more complete information

> update the working passage to include supplementing passages that have not been presented to the LLM before
working_psgs := DEDUPLICATE(relevant_psgs + SETDIFF(supplementing_psgs, seen_psgs))[: k]

4.2 Test-time adaptation

We introduce a novel test-time adaptation (TTA)
method for the inference procedure, overviewed
in Fig. 3. Our framework is a form of retrieval
augmented generation framework — at the core of
our approach lies the adapted LLM that is able to
answer a query based on a set of given passages
retrieved from the corpus, and, more importantly,
self-ground its response to add citations to the pas-
sages as well as to find unsupported statements
needing further investigation. With these capabil-
ities, the adapted LLM can iteratively construct a
set of relevant passages from the large corpus D
and refine its response to the query.

The detailed procedure of TTA is shown in Al-
gorithm (1). Given a query () and the corpus D,
we first retrieve based on the query to obtain an
initial set of working passages. Next, we employ
the following procedure iteratively until we con-
sume all the budget B of invoking LLLM calls. At
each iteration, the LLM generates a response to the
query based on the working passages, adds cita-
tions to its response, and finds out any unsupported
statements that do not have citations (In 9). Then,
we add the cited passages to the list of relevant
passages. Lastly, at each iteration, we update the
working passages — if there are unsupported state-
ments, we include additional information retrieved
based on the unsupported statements (In 15), other-
wise, we include more passages that are retrieved
based on the query to acquire more complete in-
formation (In 17). We only include passages that
are new and haven’t been presented to the LLM

Dataset Type Corpus #
Train
NQ Factoid QA Wiki 2500
StrategyQA Multi-htop QA Wiki 1000
Fever Fact Checking Wiki 1000
In-Distribution Test
NQ Factoid QA Wiki 700
StrategyQA Factoid QA Wiki 460
Out-of-Distribution Test
ASQA Ambiguous QA Wiki 948
QAMPARI Multi-answer QA Wiki 1000
Enterprise Customer Support QA Enterprise 580

Table 1: Statistics used for adaptation and test datasets.
In addition to in-domain test datasets, we also inves-
tigate the generalization to out-of-distribution datasets
that exhibit different reasoning processes or different
corpus types.

yet (In 19). Note that at each iteration, we let the
LLM to re-generate a response based on the current
working passages instead of editing from previous
one, which we observed lead to better fluency.

The design of our proposed TTA enables effi-
cient and flexible inference. We rely on the LLM
to generate citations itself, which has the advantage
of reduced overhead of invoking an additional NLI
model in a post-hoc way. Also, as we iteratively
refine the answer, such a process can be streamed
and flexibly controlled by setting a budget in de-
ployment.

S Experiments

5.1 Setup

Evaluation datasets We conduct comprehensive
evaluation on 5 datasets. Recall that we train
AGREE on multiple datasets including NQ, Strate-
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NQ StrategyQA ASQA QAMPARI Enterprise
em-rec rec pre acc rec pre em-rec rec pre rec-5 rec pre rec pre
Base model: text-bison-001
ICLCITE 47.6 52.1 563 745 13.6 27.8 39.5 473 49.8 203 227 245 30.2 40.5
POSTSEARCH 45.1 29.7 28.7 75.5 20.1 20.1 384 192 192 225 162 162 159 159
POSTATTR 45.1 31.5 31.5 755 184 184 351 38.0 38.0 225 18,5 185 20.1 20.1
AGREEw/o TTA 50.0 679 73.1 74.1 33.4 50.5 39.5 659 705 20.1 60.1 645 558 67.1
AGREEw, TTA 531 701 75.0 749 39.2 57.9 409 732 77.0 209 629 67.1 57.2 68.6
Base model: 11ama-2-13b
ICLCITE 458 42.8 41.6 65.5 20.6 33.1 352 382 394 21.0 102 104 30.6 38.8
POSTSEARCH 359 175 17,5 643 8.7 8.7 250 23.6 23.6 12.0 27.5 275 134 134
POSTATTR 359 260 260 643 125 12.5 250 33.6 336 120 28.9 289 18.7 18.7
AGREEw/0 TTA 479 50.5 56.6 650 255 350 357 502 553 17.1 404 436 50.6 53.8
AGREEw, TTA 51.0 62.0 66.0 64.6 30.2 37.2 394 64.0 668 179 514 534 504 554

Table 2: Answer accuracy and grounding (measured by citation quality) of AGREE and baselines across 5 datasets.
Our approach achieves substantially better citation grounding (measured by citation recall) and citation precision

compared to the baselines.

gyQA, and Fever. In addition to the two in-domain
test sets, NQ and StrategyQA (we leave out the
non-QA dataset, FEVER), we further test the gen-
eralization of adapted LLMs on 3 out-of-domain
datasets, including ASQA (Stelmakh et al., 2022),
QAMPARI (Amouyal et al., 2022), and an Enter-
prise dataset.* In particular, ASQA and QAMPARI
contain questions of ambiguous answers and multi-
ple answers. The Enterprise dataset is a proprietary
dataset which requires provided answers that are
grounded in customer service passages. Such an
evaluation suite allows assessing the generalization
capability of the adapted LLMs for OOD question
types (ASQA and QAMPARI) as well as to an en-
tirely different corpus (Enterprise).

Models We demonstrate AGREE framework with
two LLMs, text-bison and LlaMA-2-13B (Touvron
et al., 2023). We use GTR-large (Ni et al., 2021)
as our retriever, and use TRUE (Honovich et al.,
2022) as the NLI model.

Baselines We evaluate the effectiveness AGREE
in two settings, invoking LL.Ms once, without TTA;
and invoking LLMs multiple times, with the pro-
posed TTA.> We compare with three baselines from
recent work, including one prompting-based ap-
proach and two post-hoc citing approaches, de-
scribed below.

“We use FEVER to create tuning data, but do not use it
for evaluations. As we use LLMs in a zero-shot setting, the
LLMs do not always answer with the specific labels defined in
FEVER, which might introduce inaccuracies in the evaluation
of answer correctness.

>We set the budget B for LLM calls used in TTA to be 4.

Few-shot In-Context Learning (ICLCITE):
Following Gao et al. (2023b), we prompt LLMs
with few-shot examples (Gao et al., 2023b), each
consisting of a query, a set of retrieved passages,
and an answer with inline citations. The LLMs can
therefore learn from the in-context examples and
generated citations in the responses. It is worth-
while to note that ICLCITE is a RAG baseline that
also uses retrieved passages.

Post-hoc search (POSTSEARCH): Follow-
ing Gao et al. (2023b), given a query, we first
instruct LLMs to answer the query without pas-
sages, and then add citations in a post-hoc way via
searching. We link each claim in the response to
the most relevant passage retrieved from a set of
query-related passages. This baseline only uses the
retriever but not the NLI model.

Post-hoc Attribution (POSTATTR): Follow-
ing Gao et al. (2023a), instead of citing the most
relevant passage, for each claim, we retrieve a set
of k passages from the corpus, and then use the
NLI model, ¢, to link to the passage that maxi-
mally supports the claim. We note both baselines
in the post-hoc citing paradigm only rely on LLMs’
parametric knowledge.®

Metrics We mainly focus on improving the
grounding quality of generated responses, re-
flected by the quality of citations. Following past
work (Gao et al., 2023b), we report the citation
recall (rec) and citation precision (pre) on all the
evaluation datasets. We note that citation recall

®Please refer to Appendix B for more details on experi-
mental setup.
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aggregates how well each sentence is supported
by the citation to the corpus, which is essen-
tially the grounding score . Therefore, we pri-
oritize on the evaluation of citation recall.

We also report the correctness of the generated
outputs. For NQ, we report exact match recall (em-
rec; whether the short answers are substrings in the
response). For StrategyQA, we report the accuracy
(acc). For ASQA and QAMPARI, we use subsets
from Gao et al. (2023b), and report the exact match
recall (em-rec) for ASQA and recall-5 (rec-5, con-
sidering recall to be 100% if the prediction includes
at least 5 correct answers) for QAMPARI. For the
Enterprise dataset, we only report the citation qual-
ity as there are no ground truth answers for this
dataset, and citation quality reflects whether the
model can provide accurate information.

5.2 Results and analyses

Tuning is effective for superior grounding: Ta-
ble 2 summarizes the results obtained using our
AGREE framework and compares with the base-
lines. As suggested by the results, across 5 datasets,
AGREE can generate responses that are better
grounded in the text corpus and provide accurate
citations to its response, substantially outperform-
ing all the baselines. When tuned with high-quality
data, LLMs can effectively learn to self-ground
their response without needing an additional NLI
model. On the other hand, ICLCITE, which solely
relies on in-context learning, cannot generate cita-
tions as accurately as a tuned LLM, as suggested
by the large gap on citation precision between
ICLCITE and AGREE. We also observe simi-
lar findings as suggested by Gao et al. (2023b):
POSTCITE often leads to poor citation quality —
without being conditioned on passages, the re-
sponse from POSTCITE often cannot be paired with
passages that lead to high citation recall for the gen-
erated claims.

The performance improvements can generalize:
Recall that we adapt the base LLM only using
in-domain training sets (NQ, StrategyQA, and
FEVER), and directly test the model on out-of-
distribution (OOD) test set (ASQA, QAMPARI,
Enterprise). The results suggest that the improve-
ments obtained from training on in-domain datasets
can effectively generalize to OOD datasets that con-
tain different question types or use different types
of corpus. This is a fundamental advantage of the
proposed approach — AGREE can generalize to a

target domain in the zero-shot setting without need-
ing any samples from the target domain, which is
needed for ICLCITE.

TTA improves both grounding and answer cor-
rectness: The comparison between AGREE with-
out and with TTA highlights the effectiveness of the
proposed iterative TTA strategy. We observe im-
provements in terms of both better grounding and
accuracy. For instance, TTA improves 11ama-2 an-
swer correctness by 3.1 and 3.7 on NQ and ASQA,
respectively. Such improvements can be attributed
to the fact that our TTA allows the LLMs to ac-
tively collect relevant passages to construct better
answers following the self-grounding guidance.

Discussions on answer correctness: In general,
AGREEy, TTA can achieve better correctness com-
pared to ICLCITE. AGREEy/, TTA achieves similar
answer correctness with ICLCITE, as both meth-
ods are conditioned on the same set of passages.
As a result, the quality of passages heavily inter-
venes on the correctness of the answers. Unlike
AGREE and ICLCITE, POSTATTR purely relies
on the parametric knowledge of the LLMs to an-
swer the query. As a result, POSTATTR generally
achieves inferior answer correctness compared to
AGREE and ICLCITE on these two LLMs, espe-
cially on the less capable LLM, 1lama-2-13b, that
has less accurate knowledge compared to bison.
Moreover, on the Enterprise dataset which contains
more domain-specific information, POSTATTR ut-
terly fails to recall attributable information from
LLMs’ parametric knowledge.

Results with different LLMs: Our approach
successfully adapts both text-bison-001 and
1lama-2-13b. 1llama is generally less capable com-
pared to bison, underperforming bison in terms
of answer correctness and citation quality. Still,
AGREE also consistently outperforms the baseline,
generating more grounded answers as well as pro-
viding more precise citations. This highlights that
the proposed tuning-based adaptation approach is
model-agnostic and is effective across LLMs of
varying capabilities.

Computational efficiency: AGREE framework
fine-tunes the base LLM to enable self-grounding
without needing for additional in-context examples
or NLI models. As a result, our framework is able
to achieve strong citation performance without ex-
pensive inference cost. Table 4 shows the compari-
son between the computation cost, measured by the
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NQ StrategyQA
em-rec rec pre acc rec pre

ASQA QAMPARI Enterprise
€m-rec rec pre rec-5 rec pre rec pre

Base model: text-bison-001

ICLCITE 476 521 563 745 13.6 278 395 473 498 203 227 245 302 405
AGREEMt-dataset 500 679 731 741 334 505 395 659 705 20.1 60.1 645 558 67.1
AGREEN®MY, 494 623 69.1 741 330 455 384 560 645 19.1 437 495 405 592
Base model: 11ama-2-13b
ICLCITE 458 428 416 655 206 33.1 352 382 394 210 102 104 306 388
AGREEMt-dataset 479 505 566 650 255 350 357 502 553 17.1 404 436 506 528
AGREENGY, 48.1 474 536 621 250 302 350 440 512 157 33.1 380 447 492
AGREElL 479 591 651 644 305 41.1 352 585 652 179 525 527 481 559

Table 3: Analysis on the impact of training data. Training with multiple datasets (AGREEMU!i-dataset) Jeads to better
grounding (citation recall) and better citation precision across datasets, compared to training using the NQ dataset
(AGREENQ®OW)  The citation quality of a less capable model 11ama-2-13b can also benefit from tuning using

outputs from a more capable model (text-bison-001).

# Tok: LLM  # Tok: NLI (T5-11B)
ICLCITE 2800 -
POSTATTR 360 3520
AGREEy/, TTA 1210 —
AGREEy, TTA 4840 —

Table 4: The average computation cost (for one query)
of different methods measured by the number of to-
kens processed by the LLM and the NLI model (based
on a T5-11B architecture). AGREEy,, r1a 1S able to
achieve better citation quality compared to ICLCITE,
despite consuming less than half of the tokens needed
for ICLCITE.

number of tokens processed by the LLM and the
NLI model, needed for one query of our methods
and that of the baselines. Compared to ICLCITE,
AGREEy/, TTA Uses much fewer tokens due to not
using additional in-context examples, but achieves
significantly better citation quality (see Table 2).
POSTATTR does not use retrieved passages in the
prompts and hence requires less computation on the
LLM compared to our framework, but it requires
additional overhead of extensively invoking the
NLI model (which has 11B parameters — see Ap-
pendix A for details) to verify the each of the claims
based on each of the retrieved passages. The cita-
tion performance of POSTATTR also substantially
lags ICLCITE and AGREE. AGREEy, TTA requires
more computation compared to AGREEy/, TTA, but
is able to achieve both better citation quality and
improvements in answer correctness.

The impact of training with multiple datasets:
AGREE uses multiple datasets spanning factoid QA,
multi-hop reasoning, and fact-checking to construct
data for adapting the base model. We expect such
a combination can grant the adapted model better

generalization to different types of questions and
different text distributions. We conduct an analysis
to investigate the benefits of using multiple datasets
for tuning. Table 3 shows the performance of our
approach trained using multi-datasets and a counter-
part that is trained only on NQ data (AGREENQ-01Y),
The results suggest that training using NQ leads to
inferior citation quality compared to training on the
combination of three datasets across all the datasets.
The performance gap is especially significant on
datasets other than NQ. Moreover, training only on
NQ also leads to inferior answer correctness across
all the datasets. Nevertheless, training only on NQ
can still improve performance compared to solely
relying on in-context learning (ICLCITE).

AGREE as a distillation approach: Our work
mainly focuses on improving the base LLM'’s
grounding capability in a self-improving way. That
is, we use the samples generated by the base LLM
itself to adapt the base LLM, as opposed to distill-
ing from proprietary models which may impose
constraints on the deployment of adapted model.
Nevertheless, we conduct an analysis to investigate
the effectiveness as a distillation approach in a data-
centric way by using data generated from a more
capable model to enhance the grounding data for
a less capable model. We use the data generated
by text-bison-001 to tune 1lama-2-13b.” As shown
in the last row of Table 3, AGREEPSU!! achieves
better citation quality compared to AGREE on
1lama-2-13b, as it is trained on better grounded re-
sponses produced by a more capable model. How-
ever, 11lama-2 fine-tuned on data generated by bison
still can’t level the performance on bison as con-

strained by the gap between the capabilities of these

"Please refer to Appendix B for details.
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Example from NQ |

Query: where did the world*s largest recorded wave occur? \
Without TTA

Passage [1]: (retrieved using the query)
(Title: 1958 Lituya Bay earthquake and megatsunami) Lituya Bay has a
history of megatsunami events, but the 1958 event was the first for which
sufficient data was captured...
AGREEyy, 11a: The world’s largest recorded wave occurred in Lituya
Bay,Alaska. The data was captured in a 1958 megatsunami event [1].

With TTA
Passage [2]: (retrieved using prior unsupported statement)
(Title: Megatsunami) In 1958, a 7.8 strike-slip earthquake in southeast
Alaska caused 90 million tonnes of rock and ice to drop into the deep
water at the head of Lituya Bay. The block fell almost vertically and hit
the water with sufficient force to ...
Passage [3]: (retrieved using prior unsupported statement)
(Title: Tsunami) ... Their existence was confirmed in 1958, when a giant
land slide in Lituya Bay, Alaska, caused the highest wave ever recorded,
which had a height of 524 metres....
AGREEy, t1a: The world’s largest recorded wave occurred in Lituya
Bay, Alaska [3]. The wave was caused by a giant landslide that occurred
in 1958 [2]. The landslide displaced 90 million...[2].

Example from ASQA |

Query: Who played the weasley brothers in harry potter? \
Without TTA
Passage [1]: (retrieved using the query)
(Title: James and Oliver Phelps) James Andrew Eric and Oliver Martyn
John Phelps are identical twin British actors, best known for playing
Fred and George Weasley in the "Harry Potter" film series.
AGREEy, t1a: The Weasley brothers in Harry Potter were played by
identical twin actors James and Oliver Phelps [1].
With TTA

Passage [2]: (additional passages retrieved using the query)
(Title: Chris Rankin) ... Chris Rankin Christopher William "Chris"
Rankin is a New Zealand-born British actor who is best known for playing
Percy Weasley in the "Harry Potter" film franchise.
AGREEy, 1At James and Oliver Phelps played Fred and George Weasley
in the Harry Potter film series [1]. Chris Rankin played Percy Weasley in
the Harry Potter film franchise [2].

Figure 4: Output examples of the proposed AGREE
framework with text-bison-001 as the base model.
TTA is able to improve the response by retrieving more
relevant information to precisely support a statement
(see top) or finding more passages to generate a more
complete response (see bottom).

two LLMs.

Qualitative analyses: We qualitatively analyze
the advantages of the proposed AGREE framework
compared to ICLCITE, the strongest among the
baselines. We observe that on both text-bison-001
and 1lama-2-13b, ICLCITE achieves inferior cita-
tion quality due to failure in following the cita-
tion format (e.g., adding citations after the peri-
ods, violating the instructions), linking a statement
to a relevant but un-attributable passage (as indi-
cated by poor citation precision), and introducing
more auxiliary information not mentioned in the
retrieved passages (as indicated by citation recall).
Our AGREE framework mitigates these issues by
tuning on well-grounded responses certified by the
NLI model. We also provide example outputs in
Fig. 4 comparing the outputs of AGREE with and
without proposed TTA and observe that TTA can
help find more supporting passages by active re-

trieving using unsupported statements (top) or it-
eratively find more passages to construct a more
complete response (bottom).

6 Conclusion

We introduce a novel framework, AGREE, that
adapts LLM for improved grounding. The pro-
posed framework tunes a pre-trained LLM to self-
ground its response in retrieved passages using au-
tomatically collected data. The integrated capabil-
ity for grounding their responses further enables
the LLM to improve the responses at test time. Our
evaluations across five datasets demonstrate the
benefits of the proposed learning-based approach
compared to approaches that solely rely on prompt-
ing or the parametric knowledge of LLMs.

7 Limitations and future work

AGREE employs an automated data creation that
relies on an NLI model, instead of humans. Thus,
the citation quality is dependent on the NLI model.
As suggested in Gao et al. (2023b); Honovich et al.
(2022), one issue might be favoring “fully support”
and cannot effectively detect “partially support".
Thus, the adapted LLMs may favor adding “fully
support" citations. One solution is to curate a set of
human-annotated citations for “partially support"”,
which we defer to future work. Also, our evalua-
tion follows prior work (Rashkin et al., 2023; Gao
et al., 2023a) and uses the NLI model to quantify
the grounding and citation quality. Therefore, our
work can encounter the same issue as past work:
grounding and citation quality evaluation is limited
by the capabilities of the NLI model.

AGREE uses created grounded responses to
LLMs via supervised fine-tuning, as we demon-
strate it leads to strong empirical results. It is
also possible to treat grounding as a preference
and RLHF (Ouyang et al., 2022) to tune LLMs,
which we leave to future work. AGREE tuning
incurs additional cost that is a one-time require-
ment for adapting the LLM. Considering the sub-
stantial grounding improvements, we believe this
would be acceptable for most applications, espe-
cially for those with high-reliability requirements.
Future work can possibly explore training a sepa-
rate universal improved grounding model beyond
task-specific adaptation.

We have mainly considered open domain ques-
tion answering datasets focusing on information
seeking tasks in English. Generalization to other
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long form generation tasks and other languages can
be important future work directions.

Lastly, adding citations to LLM-generated re-
sponses in AGREE might carry a shared risk with
related research — a seemingly plausible but incor-
rect citation could potentially make an unsupported
statement more convincing to users.
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A Details of Data Generation

Recall that we create the tuning data by first sam-
pling responses from the base LLM and then using
the NLI model to create citations and identify un-
supported statements. We provide the details on
the process in the following of this section.

NLI model We use TRUE NLI (Honovich et al.,
2022) as, to the best of our knowledge, it is the
state-of-the-art NLI model for evaluating whether
a passage supports a claim, and it is commonly
used in the recent line of work on attributed QA
and evaluating grounding (Bohnet et al., 2022; He
et al., 2022; Li et al., 2023:21).8 TRUE is trained
on data collected from 6 datasets of diverse tasks
covering NLI, paraphrase detection, and fact verifi-
cation, which leads to its strong performance across
diverse types of text. Furthermore, the citation per-
formance evaluated by TRUE highly aligns with
human evaluation (Gao et al., 2023b).

Corpus & retriever As mentioned before,
our framework is an instantiation of retrieval-
augmented framework. For the datasets using
Wikipedia as the corpus (NQ, StrategyQA, ASQA,
and Qampari), we use the 2018-12-20 Wikipedia
snapshot as the corpus and set up the retriever using
GTR-large (Ni et al., 2021).

Task: You will be given a question and some search results.
Please answer the question in 3-5 sentences, and make sure
you mention relevant details in the search results. You may
use the same words as the search results when appropriate.
Note that some of the search results may not be relevant,
so you are not required to use all the search results, but
only relevant ones.

<Question>
Search Results:
[<Index>] <Title>

<Text>

[...]

Answer:

Figure 5: Zero-shot prompt template for sampling ini-
tial responses from the base LLM.

Sampling initial responses We sample initial re-
sponses from the base LLM using instruction fol-
lowing in a zero-shot fashion. Given a query, we
present the base LLM with query and 5 retrieved

8https://huggingface.co/google/tS_xxl_true_
nli_mixture

passages appended after an instruction that requires
the base LLM to answer the query based on the
passages; see Fig. 5 for the template of the zero-
shot prompt. We note that we opt to use a zero-
shot prompt as opposed to a task-specific few-shot
prompt since 1) this can avoid biasing the gener-
ation with the few-shot in-context examples, and
2) this matches the expected scenario for deploy-
ing the adapted LLM to handle new queries in a
zero-shot fashion.

For text-bison-001, we sample 4 responses using
a temperature of 0.5. For 11ama-2-13b, we sample 4
responses using nuclear sampling (Holtzman et al.,
2019) with p=0.95.

Adding citations and identifying unsupported
statements After obtaining the initial response
{A} from the base LLM. We break each response
A into sentences into si,...,s;. For each s;, we
find the maximally supported passage e; (scored
by ¢(e;, s;)) that the base LLM has seen during
generating the initial responses. We link ¢; to s; if
®(ei, s;) > 0.7 to encourage more precise citations.
For a sentence s; if there does not exist an e¢; such
that ¢(e;, s;) > 0.5 (the decision boundary for
entailment), we add s; to the unsupported statement
setU.

Verbalizing We show the template for verbaliz-
ing the data used to tune the LLM in Fig. 6. As
shown in the figure, we verbalize the citations in
enclosed box brackets that are added at the end of
sentences (before periods) like [n], and verbalize
unsupported statements after the responses.

B Details of Experimental Setup

Details of Finetuning For tuning, we use LORA
tuning (Hu et al., 2022) in experiments on both
text-bison-001 and 1lama-2-13b. For bison, we use
API to perform tuning.’ and follow all the default
hyper-parameters except for training steps. We set
10% data created as development data and choose
to use a training step of 1000 (chosen from 500,
1000, and 2000). For 11ama-2, we use the hugging-
face transformers (Wolf et al., 2019) chat-version
checkpoint.'® We find the chat-version achieves
better performance than the base checkpoint in our
preliminary investigation. We set lora_r to be 32,
and only choose to use a learning rate of 1e-5 (cho-
sen from le-4 and 1e-5) using the development set.
*https://cloud.google.com/vertex-ai/docs/generative-

ai/models/tune-text-models-supervised
https://huggingface.co/meta-llama/Llama-2-13b-chat-hf
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| Input |

Task: You will be given a question and some search results.
You are required to perform the following steps.

First, please answer the question in 3-5 sentences, and
make sure you mention relevant details in the search results.
You may use the same words as the search results when
appropriate. Note that some of the search results may not
be relevant, so you are not required to use all the search
results, but only relevant ones. If you use the provided
search results in your answer, add [n]-style citations.

Next, review your response and find the unsupported sen-
tences that do not have citations.

<Question>
Search Results:

[<Index>] <Title>
<Text>

[...]
| Output |

Answer: <Response with citations>

Sentences Not Supported by Citations: <Unsupported
statements>

Figure 6: Verbalization template for creating the train-
ing data for adapting the base LLM.

We fine-tune 1lama-2 on two A100 (40GB) GPU
for 4 epochs.

Details of Decoding Our evaluation uses the
official implementation from ALCE (Gao et al.,
2023b), we use the same data split and prompt
template from ALCE. We use temperature 0.25 for
evaluation on both bison and 1lama. We use one
sample for evaluation since adapted LLMs tend to
generate better-grounded response exhibiting less
variation.

Details of Distillation For distillation, we di-
rectly tune 11lama-2-13b using the data created with
text-bison-001. We also set lora_r to be 32, use a
learning rate of 1e-5, and fine-tune for 4 epochs.

C Comparison to ICLCITE on More
Capable LLMs

Table 5 compares AGREE using 11ama-2-138B as the
base model against ICLCITE on more capable mod-
els. We directly use the results from ALCE (Gao
et al., 2023b). Our framework is able to substan-
tially shorten the gap between a small llama-2
model and much more capable LLMs.

ASQA

em-rec rec pre rec-5 rec pre
Base model: 11ama-2-13b

QAMPARI

AGREEwoTrA 357 502 553 17.1 404 43.6
AGREEy/ TTA 394 640 668 179 514 534
Base model: 11ama-2-70b
ICLCITE 415 629 613 21.8 15.1 156
Base model: ChatGPT-0301
ICLCITE 404 73.6 72,5 20.8 20.5 20.9

Table 5: Comparing AGREE on llama-2-13B against
ICLCITE on llama-2-70B and ChatGPT-0301. We di-
rectly quote results from ALCE.

D License of Datasets

The licenses datasets used in our work include:

* NQ (Kwiatkowski et al., 2019) under Creative
Commons Share-Alike 3.0 license.

 StrategyQA (Geva et al., 2021) under MIT
License.

e Fever (Thorne et al., 2018) under Creative
Commons Share-Alike license.

* Ambiguous QA (Stelmakh et al., 2022) under
Creative Commons Share-Alike 3.0 license.

* Qampari (Amouyal et al., 2022) under Cre-
ative Commons Zero v1.0 Universal license.

E Additional Examples of Tuning Data

Please see Fig. 7 and Fig. 8 for concrete examples
of tuning data.
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Task: You will be given a question and some search results.
You are required to perform the following steps.

First, please answer the question in 3-5 sentences, and
make sure you mention relevant details in the search results.
You may use the same words as the search results when
appropriate. Note that some of the search results may not
be relevant, so you are not required to use all the search
results, but only relevant ones. If you use the provided
search results in your answer, add [n]-style citations.

Next, review your response and find the unsupported sen-
tences that do not have citations.

Question:
what kind of sentence contains an independent clause and
a dependent clause?

Search Results:

[1] Dependent clause

... A "complex sentence" contains an independent clause
and at least one dependent clause. A sentence with two or
more independent clauses plus (one or more) dependent
clauses is referred to as a "compound-complex sentence".
(Every clause contains a subject and predicate.)...

[2] Sentence clause structure

... A complex sentence has one or more dependent clauses
(also called subordinate clauses). Since a dependent clause
cannot stand on its own as a sentence, complex sentences
must also have at least one independent clause...

[3] Sentence clause structure

A set of words with no independent clause may be an
"incomplete sentence", also called a "sentence fragment".
A sentence consisting of at least one dependent clause and
at least two independent clauses may be called a "complex-
compound sentence" or "compound-complex sentence".
Sentence 1 is an example of a simple sentence...

[4] Topic sentence

Using a complex sentence is a great way to refer to the con-
tent of the paragraph above (dependent clause) and then
bring in the content of the new paragraph (the independent
clause). Here is a typical example: The beginning, depen-
dent, clause probably refers to the content of a preceding
paragraph that presented the ant as a community-focused
worker...

[5] Sentence clause structure

This simple sentence has one independent clause which
contains one subject, "I", and one verb, "run". This simple
sentence has one independent clause which contains one
subject, "girl", and one predicate, "ran into her bedroom"...

Task: You will be given a question and some search results.
You are required to perform the following steps.

First, please answer the question in 3-5 sentences, and
make sure you mention relevant details in the search results.
You may use the same words as the search results when
appropriate. Note that some of the search results may not
be relevant, so you are not required to use all the search
results, but only relevant ones. If you use the provided
search results in your answer, add [n]-style citations.

Next, review your response and find the unsupported sen-
tences that do not have citations.

Question:
Could Robert Wadlow hypothetically see Frankenstein’s
monster’s bald spot from above?

Search Results:

[1] Frankenstein’s monster

In this version, Frankenstein gives the monster the brain
of his mentor, Doctor Waldman, while his body is made
from a man who killed Waldman while resisting a vacci-
nation...In the 2004 film "Van Helsing ," the monster is
shown in a modernized version of the Karloff design. He
is tall, has a square bald head, gruesome scars, and pale
green skin...

[2] Rorschach (character)

Rorschach is 5°6"tall and weighs 140 pounds, and, as
Walter Kovacs (his"disguise"), he appears as a red-haired,
expressionless, man who always carries with him a sign
that reads "THE END IS NIGH"...

[3] Glenn Strange

During the wave of monster-related merchandising in the
late 1950s and 1960s, Glenn Strange’s iconic image often
was used for the monster on toys, games, and parapher-
nalia, most often from his appearance in the Abbott and
Costello film...

[4] John Bloom (actor)

John Bloom was an American actor. Career. Standing
at 7> 4"(224 cm) tall, he is most famous for his roles as
the Frankenstein Monster in the low-budget horror movie"
Dracula vs. Frankenstein "(he remains the tallest actor to
ever portray the character)"s...

[5] Model figure

There were also cheap plastic models for the popular mar-
ket of movie monsters, comic book heroes, and movie and
television characters in 1:8 size (about 9 inches or 23 cm
in height)...

Output

Output

Answer:

A complex sentence contains an independent clause and at
least one dependent clause [1]. A dependent clause cannot
stand on its own as a sentence, so complex sentences must
also have at least one independent clause [2].

Sentences Not Supported by Citations:
None.

Answer:

Yes, Robert Wadlow could hypothetically see Franken-
stein’s monster’s bald spot from above. Frankenstein’s
monster is described as having a square bald head [1].
Robert Wadlow was 8 feet 11 inches tall. Frankenstein’s
monster was portrayed by John Bloom, who was 7 feet 4
inches tall [4].

Sentences Not Supported by Citations:
Robert Wadlow was 8 feet 11 inches tall.

Figure 7: An example of tuning data created from NQ.

Figure 8: An example of tuning data created from Strat-
egyQA.
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