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Abstract

Byte-pair encoding (BPE) has become the de-
fault subword tokeniser in language models
(LMs), allowing the representation of an in-
finite space of text with a finite set of units.
Yet, BPE training is unsupervised, receiving no
explicit information about a language’s mor-
phology. This results in a subword vocabulary
wherein many units are a concatenation of par-
tial morphemes, preventing their formation as
tokens. This, in turn, causes consistent intra-
word patterns to be displayed inconsistently to
downstream models, and bloats the vocabulary,
hence requiring unnecessary embedding stor-
age. In this paper, we address this issue by iden-
tifying blameworthy BPE merges and removing
the resulting subwords from the BPE vocabu-
lary, without impeding further use of merges
that relied on them. We find that our method,
BPE-KNOCKOUT, is effective at making BPE’s
segmentation positions adhere better to deriva-
tional and compound boundaries in English,
Dutch and German, and improves token-based
tasks in Dutch RoBERTa models, indicating
that a tokeniser’s adherence to morphology im-
pacts downstream models. We demonstrate the
latter not only by training LMs from scratch,
but also by continuing the pre-training of exist-
ing LMs. This proves promising, showing that
suboptimal tokenisers can be remedied whilst
salvaging training cost of downstream LMs.

1 Introduction

Subword tokenisation has become a mainstay in
natural language processing (NLP) in recent years,
riding on the success of translation models (TMs)
(Sennrich et al., 2016) and language models (LMs)
(Devlin et al., 2019) that incorporate it as the first
step to process text. Rather than keeping a theoreti-
cally infinite dictionary of words in the considered
language, a subword tokeniser segments each word
into smaller parts (subword tokens) such that each
segment is part of a known and finite set (the sub-
word vocabulary V of subword types).

Ġbruids

ids

id s

Ġbeleids

Ġbru Ġbele

sen

en

idsen

ids

Ġbruids

id s

Ġbeleids

Ġbru Ġbele

sen

en

idsen

Figure 1 – Visualisation of the changes in part of the
merge graph for RobBERT’s BPE tokeniser after knock-
out of type ids, with merge id+s. (Note that as shown
in § 3.1, this graph is not sufficient to reconstruct the
corresponding merges of M. See Figure 11 for that.)

An early subword tokeniser was proposed by
Creutz and Lagus (2002), and in the last decade,
there has been a growing set of alternatives (Schus-
ter and Nakajima, 2012; Varjokallio et al., 2013;
Sennrich et al., 2016; Kudo, 2018; Wu and Zhao,
2018; Grönroos et al., 2020; He et al., 2020; Vilar
and Federico, 2021). Subword tokenisation rose to
fame when Sennrich et al. (2016) proposed translat-
ing a sequence of subwords (rather than words) into
a sequence of subwords (rather than words) in the
attention-based machine translation architecture of
Bahdanau et al. (2015). In particular, Sennrich et al.
proposed adapting Gage (1994)’s hierarchical com-
pression algorithm byte-pair encoding (BPE) for
building the subword vocabulary (later termed vo-
cabularisation by Xu et al. (2021)), as well as for
applying the learnt vocabulary in a tokeniser.

A recap of the BPE algorithm follows later. For
now, it suffices to know that BPE vocabularisation
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builds types in the vocabulary with a bottom-up ap-
proach. This has its pathologies (Bauwens, 2023):
e.g., some subwords are formed by adding few
characters at a time, similar to the chaining effect
in hierarchical clustering (Manning et al., 2008).
Many of the stepping stones are never used after-
wards, either to learn other types or even as tokens
during application (Bostrom and Durrett, 2020),
which means it is pointless to reserve storage for
them in downstream models (Cognetta et al., 2024).

Furthermore, BPE vocabularisation and segmen-
tation are both unsupervised, informed by noth-
ing more than absolute frequencies in the training
corpus. The benefit is that massive, automatically
gathered corpora can be used. The downside is that
no morphological constraints are imposed on the
tokeniser, and indeed, BPE segmentation bound-
aries often deviate from morphological boundaries
deduced from underlying morphemes (Huck et al.,
2017; Zhou, 2018; Bostrom and Durrett, 2020).

In particular, BPE tends to abridge morphemes.
In the best case, it fuses full morphemes into one
token, but the problem is often worse: Ataman et al.
(2017) show an example wherein the letters of the
passivating Turkish morpheme -ıl- are pulled apart
into the adjacent tokens, which obscures it enough
to lose the passive voice in translation.

We hypothesise that recalling these boundaries
in token sequences improves downstream perfor-
mance of a model trained on them. Not only will
this avoid evaporation of morphemes by subsuming
their characters into other tokens (as above), but it
will also provide the most reliable intra-word pat-
terns possible in the model’s input (namely, those
dictated by the language of the corpus): as Tan
et al. (2020) point out, the most consistent surface
segmentation of danced, dancing and entered are
the morphologically sound danc ed, danc ing and
enter ed, using the same token for the same seman-
tics. Patterns found in any other segmentation (e.g.:
dance d, dancing, ente red ) are necessarily more
noisy, making the language harder to model.

That said, only recall of morphological bound-
aries is not sufficient; otherwise, character-level
tokenisation would do. The advantage of subword
tokenisation is that there are many more units to
which a static embedding is assigned. Having more
embeddings means having more storage space for
pooling any knowledge obtained about a subword
across all the contexts it appears in.

Ideally, all words containing the same morpheme

would contribute towards informing a single em-
bedding for that morpheme, rather than fragment-
ing knowledge about it across the vocabulary. This
way, when an unseen word arrives with that mor-
pheme, the model could draw on all of its past oc-
currences, rather than a subset. Furthermore, hav-
ing only a single subword type for a morpheme
could facilitate equity across languages, allowing a
model to store the same amount of meanings given
the same vocabulary capacity, even if its language
produces many more surface word forms.1

In summary, BPE tokenisers have a bloated vo-
cabulary and a lack of morphology. In light of this,
we present the following contributions:

• We formalise BPE’s learnt subword and merge
relations in a deduplicated graph (§3.1).

• We address the bloated-vocabulary problem
with a method to prune subword types from
these graphs, which we call knockout (§3.3).

• We introduce a metric to detect BPE merges
that cause a consistent mismatch between
tokenisations and morphological decomposi-
tions, which we call blame (§3.4).

• We evaluate the combination of these two so-
lutions, BPE-knockout, on three non-isolating
languages (English, Dutch and German), and
find significant gains in both precision and re-
call of derivational and compound boundaries.

• Finally, we pre-train several RoBERTa models
with BPE and BPE-knockout, and show that
BPE-knockout improves token-level classifi-
cation tasks, particulary for models already
pre-trained with BPE.

2 Related Work

Byte-Pair Encoding (BPE) Gage (1994)’s BPE
consists of compressing a sequence of bytes by
iteratively selecting the most frequent pair of bytes
(x, y), replacing it by a single unused byte z, and
recording this as the merge x + y → z stored in
an ordered list M , so that decompression consists

1E.g.: the lexeme of the English verb TO CHOOSE only con-
tains 4 word types {choose, chooses, chose, chosen}, whereas
the equivalent French verb CHOISIR has many more – even
just the indicative present tense has 5, {choisis, choisit, choi-
sissons, choisissez, choisissent}. Given a fixed vocabulary
size, a word-level tokeniser would fill up its capacity tens of
times faster in French, and hence can’t store the same amount
of distinct verbs as in English, making the model arbitrarily
less knowledgeable about the world. In a subword tokeniser,
storing the essence of both lexemes can be done with 1 type,
resp. cho- and choisi-, despite their vast size difference.
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of reversing the merges from end to start. Sennrich
et al. (2016) adapt BPE compression to text with
two changes: they apply the algorithm to characters
instead of bytes (later reverted by e.g. Radford et al.
(2019) and Wang et al. (2019)), and they disallow
merges involving a space character.

Whereas Gage intended BPE for compressing
the sequence over which the merges were learnt
(the "training corpus"), Sennrich et al. assumed
these merges to also be applicable to unseen charac-
ter sequences: their BPE tokeniser collects merges
in a list M , and replays them in order so as to
compress any input sequence, even if it contains
never-before-seen words or has a different word dis-
tribution than the training corpus. This continues
until no more merges can be applied; the remaining
sequence of tokens is the BPE segmentation.

Wu and Zhao (2018) point out that many vari-
ants on BPE can be created by simply swapping out
the metric which is maximised to select the next
subword pair to be merged. In BPE, it is absolute
frequency; they propose other metrics like "descrip-
tion length gain" (Kit and Wilks, 1999). Note that
although this generalises the BPE algorithm, it does
not formalise it mathematically as in §3.1.

Morphology As the application of a BPE to-
keniser is deterministic (like its training), the same
word always results in the same token sequence.
Since LMs can’t see the characters underlying a
token, the token patterns they learn from should be
as reliable as possible. Morphology could provide
this reliability, but it is unlikely that the output of a
BPE tokeniser accords with it: indeed, even when
a morphological constraint is put on its data during
training time, the same constraint is still violated
at application time (Huck et al., 2017).
Therefore, token sequences often obscure the under-
lying morphemes, making it difficult for a model
to discern when two very distinct token sequences
actually have very similar character subsequences
or morphology. Provilkov et al. (2020) propose
BPE-dropout to remedy this: by providing a model
with multiple equivalent segmentations of the same
word at application time, it can "triangulate" its un-
derstanding of the underlying characters. This also
improves support for homographs with unequal
morphological decompositions, since now all of
them could be seen rather than just one (or none)
with a deterministic BPE tokeniser. Additionally, as
BPE-dropout works by temporarily disabling some
merges, it leads to smaller tokens (and longer in-

put sequences) on average, and might hence recall
more morphological boundaries.

The beneficial effect of adhering to morphologi-
cal boundaries on downstream tasks was observed
by Park et al. (2021), finding that causal LMs had
consistently lower perplexities when pretokenis-
ing BPE’s input with a morphological analyser. In
masked LMs, Hofmann et al. (2021) found that
even just isolating hand-picked derivative affices
improved topic and sentiment classification, trac-
ing back the effect to poor segmentation of word
stems due to merges with surrounding affices.

Redundancy It is well-known that several units
of natural language, in particular word types, have
a Zipfian frequency distribution (Zipf, 1949): when
ranked by frequency, a word type’s rank r is in-
versely proportional to its frequency f . The order
of magnitude of f and r, namely log f and log r,
then fall on a straight line.
Unsurprisingly, BPE’s subword types also vary by
orders of magnitude in their frequency; however,
Bostrom and Durrett (2020) observe that unlike for
word types, the Zipfian distribution breaks down
nearing the low-frequency tail of the vocabulary.
Rather than the frequency tapering off gradually,
it drops sharply, towards subword types appearing
very rarely or never. This suggests that these sub-
words are purposeless, both because they are barely
used and because they don’t follow Zipf’s law.

Salesky et al. (2018) make a similar observa-
tion in a different context: they notice that when
a model is given access to a progressively larger
BPE vocabulary during training (increasing |V |
by 10 000 every few epochs), the model seems to
lose sight of a quarter of the previously available
subword types with each expansion. Half of the
forgotten subword types also no longer appear in
the tokeniser’s output, yet they still belong to V
and hence require memory for storing embeddings.
The authors suggest dropping those subwords from
the vocabulary, for which we devise an algorithm
in §3.3. Large vocabularies indeed lead to several
practical complications, see Stahlberg (2020).

Most similar to the present paper is concurrent
work by Cognetta et al. (2024) on trimmed BPE:
they mark BPE types whose frequency falls under
a given threshold as disabled, and then, when to-
kenising a word, all BPE merges are applied as
usual, but the final segmentation is post-processed
by reverting the merge of any token of a disabled
type. The latter is repeated recursively until no such
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token is present. We compare our approach to this
sort of vocabulary reduction in §3.5.

Semi-supervision All subword tokenisers men-
tioned in the introduction are trained completely
unsupervised from raw text corpora, with the ex-
ception of later members of the Morfessor family
like FlatCat (Grönroos et al., 2014) and EM+Prune
(Grönroos et al., 2020) which both allow – but don’t
require – supplementing the unlabelled data with
pre-segmented words to show desirable segmen-
tations. The latter are provided by datasats such
as those of the Morpho Challenge (Kurimo et al.,
2010) and the CELEX project (Baayen et al., 1995),
which is still available as part of WebCelex2 and
datasets like the Dutch e-Lex (Taalunie, 2014).

3 BPE-knockout

As hinted at in the introduction, we want to rid the
BPE vocabulary of excessive types. Since types
depend on each other, the impact of doing this is
not immediately obvious, and hence it is best to
construct an equivalent representation of a BPE
tokeniser that makes this clear. Once this is set up,
we can define which types are "excessive" based
on morphological resources.

3.1 Formalising BPE
Let there be an alphabet Σ of non-empty strings.
BPE vocabularisation initialises V by Σ, and con-
structs an ordered list M of merges x + y → xy,
with x, y ∈ V before merging and xy ∈ V after.

By itself, M has a flat structure, but it is possi-
ble to transform it into a directed graph (digraph).
As demonstrated by Delobelle et al. (2022) and in
our Figure 1, subword types in V could serve as
vertices in such a graph, with each merge adding
two parent-child relationships. However, this intu-
itive model will not suffice to replace M : to fully
encode the ith merge x+y → z, we must conserve
i and the tuple (x, y). Let the collection of all such
objects be M = {(i, (xi, yi))}|M |

i=1. Now we can
see why such a simple graph doesn’t captureM:

1. All merge priorities i are missing.
2. The ordering of the set of incoming arcs
{x, y} is unknown.

3. In case multiple merges form the same sub-
word type (which isn’t the case in BPE by
default, see below), it is unknown which of
the >2 arcs belong to the same merge.

2http://celex.mpi.nl/

It is sufficient to useM itself as the set of vertices,
as a merge rule x+ y → xy is implicitly referred
to by any amount of later rules (i.e. xy+ . . .→ . . .
and . . . + xy → . . .) and by 0 or more earlier
merge rules (i.e. . . .→ x and . . .→ y, which exist
if x /∈ Σ and y /∈ Σ respectively).

However, there is redundancy in such a graph:
if multiple merges inM (and hence vertices) pro-
duce xy, then all such vertices will have the same
outgoing arcs. We solve this by reorganising the
digraph to alternate between merge objects ofM
and types of V as vertices; every merge vertex is
connected to the vertex of the type it produces, and
every type vertex is connected to the vertices of
merges it participates in. Figure 11 illustrates this.

For use in an algorithm, the entire digraph can
be described from the point of view of each type
vertex t ∈ V via its incoming arcsMi(t) ⊂ M
and its outgoing arcsMo(t) ⊂M.

3.2 Byte-tuple encoding

The BPE graph above has two invariants: the first
is by design, and for the second, the proof by
Bauwens (2023) is reproduced in §A.1.

1. Every merge has exactly two parents:
∀(i,m) ∈M : |m| = 2

2. Every type is formed by exactly one merge:
∀t ∈ V : |Mi(t)| = 1

The first invariant mirrors Gage (1994)’s algorithm
and is useful to bound the complexity of each BPE
iteration to search the most frequent pair of types.
Yet, it isn’t strictly necessary: a merge (i, (a, b, c))
to form a type abc is perfectly compatible with
the existing BPE application step as long as it is
created during vocabularisation.

Indeed, it is trivial to extend "byte-pair encod-
ing", which deletes 1 space per applied merge,
to byte-tuple encoding (BTE), which deletes ≥1
spaces per merge. This generalisation is not novel:
Kit and Wilks (1999) already provide support for it
in the algorithm they describe.

Using BTE will become inevitable in the next
section, but it has other benefits: as mentioned
above, Bostrom and Durrett (2020) notice that BPE
fills its vocabulary with types that become obsolete
soon after being added, since they are only needed
as stepping stones to form larger, more useful types.
Whilst BPE is forced to do this (it can only con-
catenate one pair of types at a time to build bigger
ones), BTE is free to concatenate many types in a
single merge, no longer requiring stepping stones.
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3.3 Knockout

Now that we have BTE, we could extend BPE’s
search for the most frequent pair to find the most
frequent N -tuple instead. However, this leads to
combinatoric explosion in the search space of pos-
sible merges, which has size |V |N . Not only would
it take excessive time to do the counting, but more
importantly, given the same amount of words, a
higher N inherently leads to more sparsity and thus
the counts can’t be trusted as being representative,
reminiscent of the limitations of N -gram models
(Jurafsky and Martin, 2009).

We propose, instead of adding merges, remov-
ing them from an existing, binary BPE tokeniser
(V,Mi,Mo). Doing this naively raises one issue:
by deleting a type t from the graph, it becomes im-
possible to ever apply the merges inMo(t), since
they all require the presence of t, and due to the
second invariant, the merges inMo(t) are the only
merges that produce the types they produce. This
means that all those types are rendered obsolete
too, when we only wanted to stop one type t. This
cascades recursively through the graph. We need
extra provisions to prevent this unintended cascade.

Algorithm 1 Knockout: removing a type from the
BPE merge graph.

1: function KNOCKOUT(V , Mi, Mo, t)
2: if |Mi(t)| = 0 then
3: return (V,Mi,Mo)
4: {mold} ←Mi(t)
5: p1, . . . , pn ← PARTS(mold)
6: for i ∈ 1 . . . n do
7: Mo(pi)←Mo(pi) \ {mold}
8: for all (q, (t1, . . . , t, . . . , tm)) ∈Mo(t) do
9: mnew ←(q, (t1, . . . , p1, . . . , pn, . . . , tm))

10: Mi(t1 . . . t . . . tm)← {mnew}
11: for i ∈ 1 . . . n do
12: Mo(pi)←Mo(pi)∪{mnew}
13: V ← V \ {t}
14: Mi(t)← {}
15: Mo(t)← {}
16: return (V,Mi,Mo)

Hence, we provide an alternative procedure for re-
moving types from the BPE merge graph, knockout,
with limited effect. It abridges the removed type
by reassigning its outgoing arcs to its parent types.
This is formalised in Algorithm 1. As a visual aid,
Figure 1 shows (part of) the merge graph surround-
ing the type t = ids inside the Dutch BPE tokeniser

whose output was used by Delobelle et al. (2020)
to train RobBERT, a Dutch RoBERTa base model.
The bottom panel of the figure shows what happens
when it is knocked out: notice, for example, that
the resulting BTE tokeniser now forms the type
Ġbruids (from bruid, "bride", and the possessive
interfix s)3 using a triplet merge Ġbru+id+s rather
than a pair merge Ġbru+ids.

3.4 Blame

We now need some kind of signal to point out
which types are beneficially removed; intuitively
(but see §A.2), removing subword types randomly
will lead to suboptimal outcomes since many sub-
words are useful additions to the vocabulary.

Because the second invariant holds before and
after knockout, we can synonymise a type with the
unique merge that forms it. We can hence ask which
merges, rather than which types, should disappear.
We judge a merge as follows: after BPE has been
applied to a sequence of characters, every position
where they were concatenated was affected by ex-
actly one merge. We can judge the validity of this
concatenation with a morphological reference cor-
pus wherein words are pre-split along morpheme
boundaries. If the reference segmentation dictates
that two characters should be kept separated be-
cause they belong to different morphemes, it is bad
for a merge to delete the space in between.4

Indeed, given a BPE tokeniser, we can apply it
to the words in such a corpus and check for false-
negative split positions (i.e.: spaces between char-
acters that have been deleted, but should have been
kept). There is one merge to blame for each of
those. We keep a tally for each merge m ∈ M
of how many times N(m) it was applied and how
many times B(m) it was blamed for an erroneous
contraction. The blame ratio

R(m) = B(m)/N(m) (1)

then gives the degree to which a merge is unwanted.
As a simple heuristic (but see §A.3), merges with
R(m) ≥ 1

2 cause more harm than good, so we
select those for knockout. The order in which they
are knocked out, does not matter.5

3Ġ is the "start-of-word" character inherited from GPT-2’s
byte-based BPE (Radford et al., 2019).

4Note that it is sufficient for a merge to glue one character
of each morpheme together, even before each morpheme’s
characters have been grouped into a token. Indeed, once the
boundary merges, such grouping becomes impossible.

5We encourage the reader to verify this on a small graph.
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As pointed out by Creutz and Lagus (2005), mor-
phology can be learnt from either word types (like
Morfessor CatML) or word tokens (like Morfessor
CatMAP), i.e. ignoring a word’s frequency in run-
ning text or not. To avoid neglecting rare words,
we stick with word types (but see §A.5).

3.5 Comparison to trimmed BPE

As mentioned in §2, an alternative way of pruning
types from the BPE graph was studied by Cognetta
et al. (2024). Now that we have introduced knock-
out and blame, a comparison is appropriate.

There exist cases where knockout and trimming
produce the same segmentation: indeed, for leaves
in the BPE graph (t ∈ V for which |Mo(t)| = 0),
it is equivalent to not do the merge (knockout) or
to do and undo it (trimming). For general t ∈ V ,
however, this equivalence doesn’t hold: the reason
is that trimming post-processes the segmentation,
whilst knockout post-processes the tokeniser. That
is, for any word, trimmed BPE applies the same
merges as BPE and then preserves a subset by trun-
cating that word’s merge tree, whilst knockout al-
lows merges outside of the original set and can
hence changes the tree structure, as shown in Fig-
ure 7. Furthermore, if the type of a high-priority
merge (i.e. low in the merge tree, like dt in Figure 7)
is trimmed, this will only affect the segmentation if
all types built on top of it are also trimmed; mean-
while, when such a merge (like d+t) is knocked out,
it becomes completely forbidden and guarantees a
different tree, except in the limited contexts of the
tuple merges it is absorbed into.

The latter is related to the different measuring
object of the two approaches: Cognetta et al. (2024)
judge a type directly by measuring its frequency,
whereas we use the unique merge that forms a type
as a proxy for it and measure one of its properties,
morphological blame, instead.

4 Experiments

To evaluate tokenisers resulting from blame-guided
knockout (henceforth called BPE-knockout), we
first check whether it indeed produces closer
matches with morphological boundaries, after
which we verify our hypothesis by pre-training and
fine-tuning LMs downstream of it.

4.1 Better morphologicality of BPE tokens

A tokeniser splits a word into tokens. As suggested
by Kurimo et al. (2006), the points at which it splits

this word can be compared to the points at which a
reference lexicon of morphological decompositions
splits it (as was already explained for calculating
B(m) in Eq. 1), to then compute the binary classi-
fication metrics of precision (Pr), recall (Re) and
F1, micro-averaged across all entries in the lexicon.
Each entry of n characters contributes n− 1 binary
tests, with a split point being a positive.

Reference We use the CELEX lexicon as gold
standard, giving us decompositions for English,
Dutch and German lemmata. Note that although
computing merge blame can be done using any flat
segmentation as reference, CELEX assigns to each
lemma a PoS-tagged morpheme tree. For example,
the Dutch compound reanimatietechniek ("resusci-
tation technique") receives the analysis

((((re)[V|.V],(animeer)[V])[V],(atie)[N|V.])[N],
((technisch)[A],(iek)[N|A.])[N])[N]

where the square brackets denote each morpheme’s
tag and the parentheses indicate the hierarchy of
how the word is formed. (See Figure 8 for a visual
aid.) Note that these morphemes are "hidden" and
cannot be concatenated to get the original word,
although they can be linked to the corresponding
substrings with an efficient Viterbi algorithm. Do-
ing so for the above example gives

((((re)[V|.V],(anim)[V])[V],(atie)[N|V.])[N],
((techn)[A],(iek)[N|A.])[N])[N]

which, removing all markup, gives the flat segmen-
tation re anim atie techn iek. This con-
tributes 4 positives and 13 negatives. Following
Table 1, we can expect a CELEX lemma to con-
tribute around 1 positive on average (see Figure 10
for the full morpheme distribution).

Whole-word boundaries We motivate the
choice of CELEX, with its languages and hierar-
chical format, by introducing a new metric: whole-
word boundary recall.

English, Dutch and German range from a low to
high morpheme-to-word ratio, also called the index
of synthesis (IoS) (Lieber, 2009), with English in-
flecting, deriving and compounding the least, and
German the most.6 Morphemes due to inflection
and derivation are bound (and can’t appear on their
own), whereas those due to compounding are free.
CELEX labels for bound morphemes include a
"|" and a code to indicate if it is a prefix (|.y), a

6For completeness: English and Dutch are predominantly
analytic languages with equal amounts of derivation, although
closed compounding is much more commonplace in Dutch.
German is synthetic due to its fusional suffices.
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suffix (|x.), or an interfix (|x.y). By concatenat-
ing prefices and suffices to their respective sibling
nodes in the tree, any remaining splits are com-
pound boundaries, as in

((reanimatie)[N],(techniek)[N])[N]

It is useful to evaluate recall on this reduced set
of split positions, because recalling the boundaries
between compound constituents is a necessary con-
dition for whole-word recognition by the subword
tokeniser. Merging such a boundary is guaranteed
to confuse an LM, because it produces at least one
token that would not be produced when tokenising
the constituents separately.7 For example, consider
the closed English compound horseshoe. An En-
glish BPE tokeniser (like ours, see below) segments
the separate constituents as Ġhorse and Ġshoe. Yet,
the first merge applied in the compound is e+s, the
whole-word boundary, resulting in two unrecognis-
able tokens Ġhorses hoe (with equally unrecognis-
able merge trees, making dropout ineffective).

Weights In some applications, erroneously split-
ting a highly frequent word is worse than erro-
neously splitting a very rare word. To better re-
flect this in the metrics, we additionally report
frequency-weighted Pr, Re and F1: for each word
in the CELEX lexicon, we retrieve the absolute
frequency f from its language’s part in OSCAR8

(Ortiz Suárez et al., 2019), a corpus of web texts
grouped by language, defaulting to 1 if the word
isn’t present. We then multiply that word’s positive
and negative contributions by f , as if the lexicon
consists of word tokens rather than word types.9

Baseline tokenisers For each language, we train
one BPE tokeniser on its part in OSCAR (see §B.1
for preprocessing details). We follow the tokeniser
training of RoBERTa (Liu et al., 2019) with a byte-
based alphabet and |V | = 40 000 like RobBERT.
Knockout based on CELEX blame is applied to
each baseline, and both versions are evaluated.

Dropout As a second point of comparison, we
evaluate the three baseline tokenisers with a ran-
dom dropout rate of10 p = 5%, averaging each of
Pr, Re and F1 across 10 repetitions.

7A similar hypothesis is proposed by Rogers et al. (2021)
for why BERT struggles to interpret numbers.

8https://huggingface.co/datasets/oscar
9For example: reanimatietechniek appears 26 times in

OSCAR, so it contributes 26 times as many positives (26 ·4 =
104) and negatives (26 · 13 = 338) to the weighted metrics.

10This is half the recommended p = 10% by Provilkov
et al. (2020). Our more conservative rate is motivated in §A.6.

We hypothesise these variants to have better re-
call, as mentioned in §2. Since BPE-dropout dis-
ables merges temporarily and data-agnostically, it
serves as a nice midpoint between BPE and BPE-
knockout, the latter permanently disabling merges
while informed by morphology.

Holdout In computing blame (Eq. 1) to apply
knockout to the baseline tokenisers, the same
dataset (CELEX) is used as for evaluation. When
the goal is to measure how well a predictive model
generalises, exposing it to the test set alongside the
training set is evidently bad practice. In our case,
however, the goal of BPE-knockout is to memorise
as much morphological information from the data
it is given, meaning it is useful to train and test on
the same data;11 furthermore, there certainly exist
merges whose application is confined to one spe-
cific word, so by restricting that word to only one
of the two aforementioned sets, BPE-knockout will
either never be tested on it or never be given the
chance to correct BPE’s errors.

For transparency, we also report the same met-
rics as above except using a random 50-50 holdout.

Hypothesis We hypothesise that recall of split
positions will increase after knockout, given the ob-
servation by Provilkov et al. (2020) that (temporar-
ily) dropping merges tends to increase the amount
of splits made per word (but see §A.4). Due to past
works showing that BPE recalls barely 20% of En-
glish morpheme boundaries (Zhou, 2018; Bostrom
and Durrett, 2020), we also foresee an increase in
precision, despite the increased amount of splits
and hence more opportunity for incorrect ones.

Language Morphologies Index of synthesis (IoS)
English 38 108 1.94
German 44 437 2.31

Dutch 96 540 2.48

Table 1 – Amount of entries with unique morphological
decompositions in CELEX ( StrucLab in the database)
per language, and the morpheme-to-word ratio.

4.2 Effect on language modelling
As Dutch has the most available data in CELEX, we
pre-train two RoBERTa models from scratch on the
Dutch part of OSCAR, one using the Dutch BPE
tokeniser before applying knockout and one after.
We then evaluate these on the same downstream

11It is not obvious that memorisation is easy. As an example,
we again point to the constraints put on BPE’s training data
by Huck et al. (2017) being violated at application time.
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language modelling tasks as Delobelle et al. (2022)
do for RobBERT-2022,12 including Salazar et al.
(2020)’s pseudo-perplexity (PPPL). We train both
with a fixed budget of 30k training batches.

BPE-knockout tokenisers have the benefit of be-
ing inherently backwards-compatible with all mod-
els that were trained on their output prior to knock-
out. Hence, as a third model in our comparison, we
take the model trained on BPE, apply knockout to
its tokeniser, and then resume pre-training for an
added 30% of the budget. As a control, we also
pre-train the original model 30% more.

Setup We follow Izsak et al. (2021)’s recommen-
dations for training LMs on a budget, see §B.2.

Hypothesis We hypothesise that model loss will
be lower after pre-training with BPE-knockout,
given that it reduces the amount of types that could
be behind a mask. Furthermore, if the morpholog-
ical evaluation shows improvement, our main hy-
pothesis suggests that pre-training loss should drop
faster since the tokeniser presents clearer input pat-
terns to the model, and that using knowledge from
morphology should help token-based downstream
tasks since certain highly informative token bound-
aries are prevented from disappearing.

5 Results

5.1 Morphology
Binary metrics Table 2 shows the evaluation re-
sults for the four tokeniser variants compared in
each of the three languages.17 Table 11 shows the
relative offsets w.r.t. each language’s BPE baseline.

For morphemic boundaries in word types, BPE’s
baseline is always superseded by BPE-knockout’s,
with Pr rising by an absolute +10%, Re by +25%
and F1 by +15%. For word tokens, Re and F1 each
see a striking +50%-60%, whereas Pr improves
more inconsistently (resp. by +45% in English,
+5% in German, and +25% in Dutch).

For whole-word boundaries, Re improves about
+10% in word types and again +50%-70% in word

12To eliminate all possible variability in the training setup,
we chose to redo Delobelle et al. (2020)’s pre-training from
scratch. We hence deviate slightly from RobBERT-2020.

13
https://universaldependencies.org/treebanks/nl_

lassysmall/index.html
14
https://www.clips.uantwerpen.be/conll2002/ner/

15
https://github.com/benjaminvdb/DBRD

16
https://github.com/gijswijnholds/sick_nl

17Keep in mind that the four orange-red columns are overly
pessimistic, since we aim to isolate all morphemes: this in-
cludes affices, which count towards false positives in the right
half of the table. §A.7 explores the ceiling on precision.

tokens. Unsurprisingly (see § A.7), better mor-
pheme recall means worse precision identifying
whole-word boundaries, with small drops for word
types and drops up to -10% for word tokens; never-
theless, F1 still rises due to the gains in Re.

Applying p = 5% dropout to BPE causes a slight
rise in Re, yet drops in both Pr and F1, with most
remarkably an absolute drop of -31% morphemic
precision in English word tokens. BPE-dropout is
thus only useful for regularisation, not for improved
adherence to morphology.

Applying 50% holdout to BPE-knockout reduces
its gains by much less than 50% on word types,
showing that memorisation of single types is not
the primary driver of BPE-knockout’s gains. Simul-
taneously, holdout reduces the gains in Re by an
absolute -30% to -50% in word tokens, confirming
that BPE undersegments very common lemmata
and that a few knockouts can already cause major
gains in a corpus. Despite these moderated gains,
note that even after 50% holdout, BPE-knockout
boosts morphemic F1 in word tokens by +30% in
English and Dutch, and +20% in German.

Finally, note that precision tends to increase with
a language’s CELEX size and IoS (Table 1). Size
likely doesn’t matter, since using only 50% of all
Dutch data still allows better precision than using
all German data (but see §A.8). Rather, tokenisers
in a language with higher IoS are more likely to hit
a boundary even when splitting a word at a random
position, making them more precise by default.

Knockout distribution Lastly, we analyse which
subwords are knocked out. If knockout mainly
takes place at the end of the subword vocabulary,
then BPE-knockout would be equivalent to choos-
ing a smaller |V |, in line with Ding et al. (2019).

However, for all three languages, the distribution
of merges with R(m) ≥ 1

2 is very uniform across
the vocabulary: e.g., all adjacent quartiles lie apart
by between 9000 and 11 000 types, typical for a
discrete uniform distribution across |V | = 40 000
values (see Figure 6 for detailed histograms).

5.2 Language modelling

Table 3 shows fine-tuning metrics for all RoBERTa
LMs at various points in pre-training; see Figure 12
for the validation loss curves.

From scratch As hypothesised, loss decreases
quicker using BPE-knockout, although the BPE
model still obtains a lower test-set PPPL than the
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morphemic whole-word
word types word tokens word types word tokens

|V | Pr Re F1 Pr Re F1 Pr Re F1 Pr Re F1

English
BPE

base 40 000 43.0 49.6 46.1 40.7 4.0 7.3 13.3 80.2 22.8 11.2 9.5 10.3
dropout 40 000 41.3 50.3 45.3 9.7 5.9 7.1 12.6 80.5 21.8 2.4 11.9 3.9

BPE-knockout
base 36 814 53.2 75.1 62.3 84.5 59.2 69.6 12.1 89.0 21.2 12.7 76.5 21.8
holdout 37 952 50.0 67.8 57.5 69.2 28.4 40.3 11.7 83.0 20.6 8.4 32.8 13.3

German
BPE

base 40 000 45.0 54.0 49.1 54.3 8.4 14.5 19.8 67.5 30.6 24.3 14.7 18.3
dropout 40 000 44.0 54.5 48.7 30.4 10.7 15.7 19.3 67.7 30.0 11.7 17.3 13.8

BPE-knockout
base 35 919 55.3 79.8 65.3 59.5 69.2 64.0 19.8 81.1 31.8 16.6 76.0 27.2
holdout 37 309 53.2 73.3 61.7 51.4 25.9 34.4 19.5 76.4 31.1 13.1 28.4 17.9

Dutch
BPE

base 40 000 52.6 55.3 53.9 54.3 11.0 18.4 38.3 69.7 49.5 36.2 29.5 32.5
dropout 40 000 51.4 55.6 53.4 38.1 12.7 19.0 37.3 69.8 48.7 22.6 31.4 26.3

BPE-knockout
base 35 525 61.7 78.2 68.9 81.6 64.1 71.8 37.6 82.5 51.7 25.8 81.2 39.1
holdout 36 763 60.8 75.8 67.5 73.0 35.1 47.4 37.7 81.1 51.4 25.8 48.8 33.7

Table 2 – Evaluation (in %) of BPE and BPE-knockout on morphemic and whole-word split points in CELEX, with word
token frequencies from OSCAR. Note: the four redmost columns (whole-word Pr and F1) don’t adjust for the fact that a
tokeniser with morphemic F1 = 1.0 can’t have a whole-word Pr = 1.0, see §A.7.

Sequence-level Token-level
PPPL SA NLI NER PoS

30k 35k 39k 30k 35k 39k 30k 35k 39k 30k 35k 39k 30k 35k 39k

Dutch
BPE 3.88 3.74 3.66 82.10 81.56 81.43 83.16 82.55 83.53 80.04 83.18 83.98 93.50 85.91 93.78
BPE-knockout 4.67 82.01 82.98 86.21 91.19
BPE→ BPE-knockout 200.37 4.62 4.35 81.34 82.42 81.74 81.74 82.59 83.14 80.58 86.77 87.51 94.82 96.03 96.01

Table 3 – Evaluation of RoBERTa models trained on Dutch OSCAR with different tokenisers. From left to right: pseudo-
perplexity, sentiment analysis accuracy on DBRD13(van der Burgh and Verberne, 2019), natural-language inference
accuracy on SickNL14(Wijnholds and Moortgat, 2021), named-entity recognition F1 on CoNLL-200215(Tjong Kim Sang,
2002), and part-of-speech tagging accuracy on LassyUD16(van Noord et al., 2013).

BPE-knockout model and overall outperforms it in
fine-tuning (except in NER, where there is quite a
large gap in the opposite direction). Two possible
explanations might be that (i) all LMs use the same
hyperparameters as a control, which might end up
benefitting one tokeniser over the other, and (ii) the
BPE-knockout model has a slightly steeper slope at
the pre-training cut-off of 30k batches, indicating
that it might be further from convergence and hence
have more training potential left.

Adapted from existing LM After applying
knockout to the BPE model’s tokeniser, perplexity
spikes due to the novel segmentations shown to the
model. Yet, remarkably, after being shown only 5k
extra batches, this adapted model’s PPPL already
drops below that of the model that has always seen
BPE-knockout segmentations. What’s more: de-
spite PPPL remaining higher than for BPE, the
adapted model performs better on token-level tasks
by several percentage points, achieving scores com-
parable to SOTA models (Delobelle et al., 2020) yet
on a lower budget. Perhaps most surprisingly is that
even without any further pre-training, fine-tuning
with a different tokeniser can already produce su-
perior results, in line with Hofmann et al. (2021)’s
conclusion and reminiscent of zero-shot learning.

All of this shows that it is not only feasible to

adapt existing LMs to a new tokeniser, but that it
might even be better than using a novel tokeniser
from the start, highlighting exciting new research
opportunities.

A speculative hypothesis for why this adapted
model works so well, is that perhaps BPE’s linguis-
tically inconsistent behaviour might actually have a
regularising effect: hence, the bulk of pre-training
is more challenging, producing a stronger model
that can then maximally capitalise on the clearer
segmentation of BPE-knockout during fine-tuning.

6 Releases

We release all code on GitHub at https://
github.com/bauwenst/BPE-knockout.
In addition, we release the final checkpoints for
the 3 Dutch LMs on HuggingFace as part of a
collection, Bauwens/BPE-knockout.

7 Conclusion

In this paper, we showed that a BPE tokeniser can
be made significantly more adherent to morpholog-
ical boundaries by disabling merges that abridge
them excessively. We showed that this adherence
to morphology benefits downstream LM tasks, and
that it is even possible to adjust the tokeniser of
LMs after their pre-training in a cost-effective way.
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8 Limitations

8.1 Dataset
No inflection As shown in Table 1, the morpho-
logical decompositions in CELEX have an IoS,
i.e. an average amount of morphemes per word, of
roughly 2. This says nothing about the grammati-
cal role of those morphemes, however: a language
can have a high IoS whilst having few suffices
for conjugation or declension, making it more ana-
lytic than synthetic. Dutch and English behave this
way, so their tokenisers are mainly attempting to
recognise word stems and derivational affices, not
inflectional morphemes.

Even for German, which does have inflection,
our experiments do not cover false-negative merges
of fusional morphemes, because CELEX only de-
composes lemmata, which are uninflected. Hence,
no plural words, no conjugated verbs and (for Ger-
man) no other cases than the nominative are present
in CELEX, which means that not all merges that
are morphologically harmful in a corpus of running
text are counted towards blame. This likely doesn’t
affect the intrinsic experiments (§4.1) since the test
set also consists of only lemmata, but it does limit
the improvement of our LMs (§ 4.2) since those
encounter more inflected forms than lemmata.

No indication of lexicalisation Sometimes, the
meaning of a word cannot be deduced from its mor-
phemes; the meaning is lexicalised, i.e. taken up as
a new, standalone unit in a speaker’s vocabulary. It
would hence also be confusing to split such a word
into the morphemes it originates from and then use
the embeddings associated with them.

An example of such non-compositionality is the
Dutch verb muggenziften ("to nitpick", but literally
"to sift mosquitoes"), which is analysed by CELEX
as if it were compositional:

((mug)[N],(e)[V|N.V],(zift)[V])[V]

This then informs BPE-knockout that the verb
should be split. In fact, merges that form lexicalised
words from their constituents (like muggen and
ziften) are most at risk of being blamed, because
those merges are likely applied nowhere else and
so B(m) increases whenever N(m) does in Eq. 1.

8.2 Resulting vocabulary
No new merges Although our method removes
pathological types, it does not add new, better types.
In some cases, BPE spontaneously applies differ-
ent merges to subsume the newly available tokens

into bigger, better tokens: BPE tokenises the Dutch
noun twintiger ("twenty-year-old", from twintig,
"twenty") as Ġtwint iger, whilst BPE-knockout pro-
hibits the merge ig+er and subsequently uses the
ig token in a later merge to output Ġtwintig er.

In other examples, this might not happen: the
Dutch adjective subtropisch ("subtropical") is to-
kenised by BPE as Ġsubt rop isch, whereas it is
just decomposed further as Ġsub t rop isch by BPE-
knockout. Learning a new merge t+rop would be
useful here (with the embedding of a subword trop
more suitable for storing relevant knowledge).

No iteration In Figure 1, we saw the example of
Ġbru+ids turning into Ġbru+id+s after knockout.
However, note that this didn’t actually fix the erro-
neous concatenation of id and s in any of the words
known to the tokeniser; the string bruids- ("bridal")
will indeed be tokenised the same way as before,
just in fewer steps (due to the triplet merge).

This problem could be solved by repeating the
process of computing blame and applying knock-
out. In a sense, knockout makes a binary merge
context-sensitive: we know that the merge id+s is
problematic as it is blamed in the majority of its
applications, but instead of never again merging id
with s, the decision to do so is spread across several
merges with several other tokens. In Ġbru+id+s,
the merge should not happen, whilst in Ġg+id+s
("guide") it should. Iteratively applying knockout
would reveal this: the triplet merge Ġbru+id+s
would be knocked out next, whilst the triplet merge
Ġg+id+s would stay.

This approach would leave the token sequence
Ġbru, id, s unmerged. Optionally, after the first
round of knockout, a new binary merge Ġbru+id
could be inserted to turn the triplet Ġbru+id+s back
into a binary merge, Ġbruid+s. If knockout is then
run a second time, the merge Ġbruid+s would be
flagged as bad, and we would end up with the most
recognisable tokens Ġbruid ("bride") and s ("of").

We leave this iterative application of the BPE-
knockout process as future work.

Chain effect BPE’s stepping stones (single-use
types that only exist to reach bigger types) bloat the
vocabulary, but cannot be detected by our blame
metric as they don’t abridge morpheme boundaries.

An example is the formation of the Dutch noun
bibliotheken ("libraries"), for which three of the
intermediate tokens are exclusively dedicated to
forming only that word (see Figure 9 for details).
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A Substantiations

This appendix substantiates some of the appeals to
intuition made in the main body of the paper.

A.1 Proof of the second BPE invariant

Consider BPE’s vocabularisation phase: a corpus is
split into words, every word is split into character
tokens, and then merges are learnt by iteratively
selecting the type pair (x, y) ∈ V ×V that appears
most commonly as a pair of adjacent tokens. Im-
portantly, when the merge x+ y → xy is learnt, it
is not only added toM, but it is also immediately
applied throughout the corpus.

We now prove that the same type can never be
learnt by two different merges within the same
vocabularisation phase, or equivalently, that it is
impossible to learn a second merge that results in
it after a first has been learnt. For this, it suffices
to prove the stronger statement that after a merge
has been applied throughout the corpus during
vocabularisation, there cannot exist a sequence of
>1 tokens in the corpus whose concatenation is
that merge’s result; if this is true, then all possible
merges that could form the resulting type – even
tuple merges of more than two tokens – will forever
have 0 frequency and thus there will always be a
better merge to be added toM instead.

Proof. Call the type of interest xy (e.g. x = "re"
and y = "d" ) for which we know a merge x+ y →
xy = "red" occurs at some point.

Consider all occurrences of the string xy in the
training corpus after splitting it into words but be-
fore applying any merges. For each word, three
possible cases can occur: it doesn’t contain xy, it is
equal to xy, or it strictly contains xy and is hence
a string of the form wxyz with |wz| > 0 (in our
example: redness, layered, heredity, ...).

1. Words that don’t contain xy will, at no point
in vocabularisation, produce a token subse-
quence that concatenates to xy. Neglect these.

2. Words18 of the form wxyz bifurcate into two
sets. Specifically, consider all merges that take
place before x+ y → xy:

• If one such merge occurs in a word wxyz
such that some characters of w and x, or
some characters of y and z, are merged

18Technically, "occurrences" is more appropriate, since a
single word could contain the substring xy more than once,
and each of those should be treated as an independent case of
the wxyz pattern. This is just a matter of phrasing, though.

into an abridging token, then it is im-
possible for subsequent merges to ever
end up with the isolated token xy, since
this would require losing the characters
amassed from w and/or z later on. These
too can hence be neglected.

• If this situation never occurs, then w
and z can be safely ignored until xy is
merged into a single type. Hence, the
subsequence of tokens corresponding to
the substring xy will be the same for all
such words at all times, and indeed, al-
ways match the tokens into which the
isolated word xy itself is currently split.

Because the latter subset behaves uniformly, exe-
cuting the merge x+y → xy will either form xy in
all of its words, or none of them. If the latter, then
the pair (x, y) must have 0 occurrences, meaning
the merge would have never been selected, which
contradicts that it was. Hence the former is true;
therefore, after applying the merge, the corpus con-
sists only of words whose tokens can never merge
to xy, and words containing the token xy. ■

A.2 Randomly knocking out merges is bad

We saw in Table 2 that Re, Pr and F1 all increased
due to knockout informed by blame (Eq. 1). It isn’t
obvious that this hinges on the selection metric;
perhaps any amount of knockout after vocabular-
ising a BPE tokeniser, or the mere mechanism of
merging N -tuples, causes this positive change.

Hence, we do intrinsic evaluation (morphemic,
unweighted, Dutch, no-holdout Re, Pr, F1) for two
other methods of selecting merges to knock out:

• Randomly choosing p% of merges (with re-
sults averaged over 10 repetitions);

• Choosing the last p% of merges;

Although the blame metric eliminates between 10%
and 20% of merges, we let p range between 0 and
50 to get a better idea of the trend.

Figure 2 shows line plots of both selection
methods. As expected, recall increases with more
deleted merges, as with usage of blame. However,
unlike knockout informed by blame, both selection
methods have a consistent decrease in precision.

We found the same results when knocking out
the same amounts of leaves from the latest merges
(i.e. types that don’t partake in any merge), proba-
bly since leaves are so prevalent (90% of the last
50% of merges, see Figure 3).
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A.3 R(m) ≥ 1/2 is a good blame threshold

Although it makes intuitive sense that merges are
undesirable if they cause a false negative more of-
ten than not when applied (exceeding a blame ra-
tio threshold of 1

2 ), it could also be true that such
a merge is absolutely essential in that minority
of cases where it is desirable. Conversely, some
merges might be blamed a minority of the time,
but lead to bad merges the majority of the time.
To verify if R(m) ≥ 1

2 is a good middle ground,
we evaluate the Dutch BPE-knockout tokeniser for
blame thresholds between R(m) ≥ 1% (very pun-
ishing) and R(m) ≥ 99% (very tolerant). We also
track the amount of knocked-out merges. The two
panels of Figure 5 show the results.

The amount of knocked-out merges decreases
linearly (and monotonously) with an increasing
threshold. The Pr, Re and F1 curves, however, all
have a concave progression, attaining a maximum
at different thresholds. Recall peaks at a very low
threshold (because knocking out more merges leads
to more segmentation, see §A.4), precision peaks
at 50%, and F1 somewhere in between.

Indeed, although recall is vital (it directly mea-
sures our goal of getting rid of false negatives), it
is also easy to increase by just segmenting more
granularly. Meanwhile, ensuring that we segment
sparingly, i.e. have tokens that are big enough to
have more than an alphabet’s worth of meaningful
embeddings, is much more delicate, which preci-
sion measures. The fact that a threshold of 50%
maximises precision is hence a good justification
for the heuristic in the main body of the paper.

A.4 Knockout produces more tokens per
word on average

Given the same training corpus, a BPE tokeniser
with a smaller vocabulary size always produces at
least as many tokens as one with a larger vocabulary
size, because applying the latter is equivalent to ap-
plying the former plus additional merges. Knockout
reduces the vocabulary size, but not necessarily by
pruning only the latest merges (as shown above), so
it’s not obvious how it affects the amount of tokens
produced per word.

To see how knockout could actually increase
the amount of merges that take place and hence
decrease the amount of produced tokens, consider
the Dutch word masterthesis ("master’s thesis"), a
compound of master and thesis. RobBERT’s BPE
tokeniser splits it into 4 tokens (after adding the

start-of-word symbol "Ġ"):

Ġmast ert hes is

Yet, it produces only 3 tokens when segmenting the
two distinct substrings separately:

Ġmaster and the sis

The token Ġmaster couldn’t be formed in the
compound because the merge er + t → ert has
priority over the merge Ġmast + er → Ġmaster,
hence "trapping" the er token. By removing ert
from the vocabulary, the compound is segmented
with the same 3 tokens

Ġmaster the sis

which is fewer tokens even though there are also
fewer types in the vocabulary.

Since there must be a suitable alternative avail-
able, this effect takes place only sparsely in practice.
For Dutch CELEX lemmata, fewer than 1% have a
smaller amount of tokens after knockout, whereas
more than 25% see an increase. Figure 4 shows
the full distribution, confirming the hypothesis of
overall gain in tokens.

A.5 Weighted blame isn’t strictly better
To construct the BPE-knockout tokenisers, we com-
puted blame ratio over CELEX lemmata without
accounting for their frequency in running text,
whilst to evaluate them, we did do so in half of
the columns of Table 2.

We could also compute blame this way, which
could change whether R(m) ≥ 1

2 or not. As an
example, take the three Dutch nouns bruidsjurk
("bridal gown"), beleidsmaker ("policymaker") and
gids ("guide"), all applying the merge m = id+s
at some point. If this is the whole lexicon, then m
merges across a morpheme boundary in the first
B(m) = 2 examples of the N(m) = 3, and is thus
blamed in R(m) = 2

3 ≥ 1
2 of them. Assume now

that the word gids appears 30 times in a corpus,
whilst the others appear 10 times each. Multiplying
each word’s contributions by its frequency, we see
B(m) = 10 ·1+10 ·1+30 ·0 = 20 and N(m) =
10 + 10 + 30 = 50, giving R(m) = 20

50 < 1
2 .

Table 5 shows that unsurprisingly, accounting
for weighted blame optimises the weighted metrics
at the cost of the unweighted ones. It is hence not
strictly better, but could be used in applications
where it is more desirable to split the majority of
word tokens correctly rather than the majority of
word types. The latter is more suitable when rare
words are important, for example.
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(b) Latest-merge selection

Figure 2 – Evaluation over Dutch CELEX after removing p% of all merges according to a selection criterion.
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Figure 3 – Fraction of selected merges that make leaves
(i.e. the resulting type isn’t merged further) as function of
selection size, in the Dutch tokeniser before knockout.
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Figure 4 – Increase in produced amount of tokens after
knockout for Dutch CELEX lemmata.
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Figure 5 – Effect of varying the blame ratio threshold for knockout in the Dutch tokeniser.
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morphemic whole-word
word types word tokens word types word tokens

p |V | Pr Re F1 Pr Re F1 Pr Re F1 Pr Re F1

Dutch BPE-dropout

0% 40 000 52.6 55.3 53.9 54.3 11.0 18.4 38.3 69.7 49.5 36.2 29.5 32.5
1% 40 000 52.4 55.4 53.8 50.4 11.3 18.5 38.1 69.7 49.3 32.5 29.8 31.1

2.5% 40 000 52.0 55.5 53.7 40.5 11.9 18.2 37.9 69.8 49.1 28.6 30.5 29.5
5% 40 000 51.4 55.6 53.4 34.4 12.6 18.3 37.3 69.8 48.7 21.9 31.5 25.8

10% 40 000 50.0 56.0 52.8 26.4 14.7 18.8 36.2 70.0 47.7 15.9 33.9 21.6

Table 4 – Evaluation of BPE-dropout for increasing dropout rates p, averaged over 10 runs.

morphemic whole-word
word types word tokens word types word tokens

|V | Pr Re F1 Pr Re F1 Pr Re F1 Pr Re F1

Dutch
BPE base 40 000 52.6 55.3 53.9 54.3 11.0 18.4 38.3 69.7 49.5 36.2 29.5 32.5

BPE-knockout
base 35 525 61.7 78.2 68.9 81.6 64.1 71.8 37.6 82.5 51.7 25.8 81.2 39.1
weighted 35 585 61.1 76.4 67.9 85.9 64.1 73.4 37.3 80.6 51.0 27.0 80.5 40.4

Table 5 – Comparison of knockout with unweighted vs. weighted blame.

morphemic whole-word
word types word tokens word types word tokens

|V | Pr Re F1 Pr Re F1 Pr Re F1 Pr Re F1

Dutch

BPE base 40 000 52.6 55.3 53.9 54.3 11.0 18.4 38.3 69.7 49.5 36.2 29.5 32.5

BPE-knockout

base 35 525 61.7 78.2 68.9 81.6 64.1 71.8 37.6 82.5 51.7 25.8 81.2 39.1
90-10 35 734 61.0 75.7 67.6 73.9 35.7 48.2 37.7 80.7 51.4 25.0 45.0 32.1
80-20 35 985 60.9 76.0 67.6 73.5 34.8 47.3 37.5 80.9 51.2 23.5 45.2 30.9
70-30 36 259 60.9 75.9 67.6 74.3 35.4 47.9 37.6 81.0 51.4 25.0 47.2 32.7
60-40 36 552 60.8 75.7 67.4 74.1 35.5 48.0 37.6 80.8 51.3 24.1 45.8 31.6
50-50 36 827 60.7 75.4 67.2 73.9 34.9 47.4 37.7 81.0 51.5 24.1 45.1 31.4

Table 6 – Comparison of different holdout splits.

morphemic whole-word
word types word tokens word types word tokens

|V | Pr Re F1 Pr Re F1 Pr Re F1 Pr Re F1

English ideal 15 374 100 100 100 100 100 100 19.1 100 32.1 11.6 100 20.9
German ideal 16 923 100 100 100 100 100 100 35.2 100 52.1 25.4 100 40.4
Dutch ideal 18 216 100 100 100 100 100 100 57.8 100 73.3 25.0 100 39.9

Table 7 – Best possible evaluation values for morphologically perfect tokenisers.

A.6 p = 5% dropout is a fairer baseline than
the usual p = 10% dropout

BPE-dropout disables the application of any in-
stance of any merge with probability p. Provilkov
et al. (2020) find that p = 10% gives the best
BLEU in machine translation, and hence recom-
mend using it (including in their own follow-up ex-
periments). For comparison against BPE-knockout,
however, we now motivate that it is fairer to com-
pare against the more conservative p = 5%.

Retrospective effective dropout rate Like BPE-
dropout, BPE-knockout also disables the applica-
tion of certain merge instances, namely all merges
that would form a knocked-out subword type. Be-

cause we already track the amount of times N(m)
that a merge m was applied (in order to compute
blame in Eq. 1), we can count in retrospect what
fraction of merge instances that did happen will
become impossible after knockout:

peff,ret =

∑

m∈M†

N(m)

∑

m∈M
N(m)

(2)

whereM† = {m ∈ M | R(m) ≥ 1
2} is the set

of all knocked-out merges. This could be seen as
an estimate for the effective dropout rate of apply-
ing BPE-knockout; it is retrospective because it
doesn’t actually reflect the state of the tokeniser af-
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peff,ret |M†|/|M|
English BPE-knockout 4.681% 8.017%
German BPE-knockout 5.174% 10.270%
Dutch BPE-knockout 5.025% 11.261%

Table 8 – Retrospective effective dropout rate peff,ret and
vocabulary pruning rate |M†|/|M| after knockout.

ter knockout, since N(m) is accumulated in every
word’s original merge tree, prior to those merge
trees changing due to knockout (see Figure 7).

As shown in Table 8, this dropout rate is∼5% for
each of the tested languages (even though ∼10%
of merges are pruned from the BPE graph).

Precision hit with p Naturally, when the dropout
rate increases, fewer merges are performed, more
tokens are produced, and hence more split
points are predicted. We should hence expect a
monotonous rise in recall and a montonous drop in
precision for BPE-dropout with increasing p, but it
is not obvious how fast both will take place (given
that p’s range is from 0% to 100%).

Table 4 shows how a Dutch BPE-dropout to-
keniser’s morphological evaluation evolves when
we vary p ∈ [0%, 10%], a tenth of its full range,
where the upper bound of 10% is the usual rec-
ommended value. Notice that when measured in
a corpus, precision is extremely sensitive to small
changes in p, in such a way that 4% is lost when
adding a mere 1% of dropout, and less than half of
BPE’s precision is conserved for the recommended
p = 10%. Hence, when compared to having no
dropout at all, using this value for p gives an overly
pessimistic view of BPE-dropout’s adherence to
morphology.

A.7 Whole-word precision has a low ceiling
for morphologically perfect tokenisers

As explained in §3.4, a merge is blamed when it
abridges any morpheme boundary in CELEX, not
just whole-word boundaries. The goal of knocking
out blameworthy merges is hence to approach a
tokeniser with lower and lower blame, with the
optimum being a tokeniser for which ∀m ∈ M :
B(m) = 0. In other words: a tokeniser whose
output is indistinguishable from the morphemic
segmentation in CELEX.

This ideal tokeniser will necessarily have a per-
fect score in the left half of Table 2, but will also
necessarily have an imperfect score in the right
half. Whole-word boundaries are a subset of all

morpheme boundaries (which follows from their
construction in §4.1), so a tokeniser that puts a split
position at every morpheme boundary will split on
whole-word boundaries and others, counting to-
wards false positives and therefore taking away
from perfect precision.

Table 7 shows the result of evaluating CELEX’s
morpheme boundaries as if they are produced by
a tokeniser. As described above, this gives a per-
fect score in the left half of the table, and also a
perfect recall for whole-word boundaries because
the segmentation positions are a superset of those.
The remaining four columns are again orange-red
as in Table 2; as it turns out, the BPE-knockout
tokenisers are only 10%-20% removed from this
ceiling at most, not over 50%.

A.8 Holdout performs worse due to which
data it sees, not how much

Table 2 showed how computing blame on 50% of
the data and evaluating on the other 50% produced
markedly worse recall than when using the full
dataset for both. The cause could be either under-
fitting due to lack of data (only 50%), or not being
given the opportunity to memorise the test set. We
argued the latter in §4.1: confining words to only
one of the two sets prohibits us from measuring
BPE-knockout’s improvement on leaf merges.

Table 6 shows that intrinsic performance barely
changes when varying the holdout split from 50-
50 to 90-10 to increase the amount of data seen
whilst still hiding the test set. This confirms that
the bottleneck is not the former, but the latter.
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B Experimental Setup

B.1 Corpus preprocessing

Sennrich et al. (2016) train their BPE tokeniser
over a dictionary of words and their counts. To
obtain this from each of the three languages’ part
of OSCAR, we proceed as follows:

1. Limit to first 30 million entries (∼paragraphs).

2. Add whitespace around all non-hyphen punc-
tuation. For example, the Dutch sentence

BPE-knockout snoeit vocabularia; zelfs
tokenisers van modellen die reeds
geconvergeerd zijn, kunnen zo verbeteren
zonder verlies van pre-training (wat
energie-efficiëntie bevordert).

becomes

BPE-knockout snoeit vocabularia ; zelfs
tokenisers van modellen die reeds
geconvergeerd zijn , kunnen zo verbeteren
zonder verlies van pre-training ( wat
energie-efficiëntie bevordert ).

3. Split on (and drop all) whitespace.

4. Count the amount of times every unique string
in the result appears.

5. Drop all strings with frequency <10. (This
reduces the amount of strings to operate on.)

6. Drop all strings containing >60 characters
(which are likely garbage strings from the
web) or any character from a foreign alphabet
(which were misclassified by OSCAR).

7. Byte-encode each string with UTF-8. (In the
above example, the only character that be-
comes longer than one byte is "ë".)

8. Prefix each string by the start-of-word byte
(printed as Ġ for historical reasons).

9. Split each string on hyphens.

The BPE training algorithm19 is then run on the
remaining byte-based word count dictionary.

B.2 RoBERTa hyperparameters

To speed up pre-training, we limit the sequence
length to 128 tokens during the entire process, as
proposed by Izsak et al. (2021); this is also how
90% of BERT’s pre-training proceeded (Devlin
et al., 2019). As we are only comparing models
we trained ourselves, any debt incurred due to this
limited context length is equal across all models.
Table 9 gives other pre-training hyperparameters.

19
https://github.com/huggingface/tokenizers

Hyperparameter Value
Parameters20 117M

Sequence length 128
Batch size 4096
Precision half (fp16)

Learning rate 10−4 (fixed schedule)

AdamW β 0.9, 0.999
AdamW ϵ 10−8

Weight decay 0.1

Table 9 – RoBERTa hyperparameters for pre-training

We use a similar setup for fine-tuning, where we
do a hyperparameter search with 10 random initial-
isations for the batch size, learning rate and weight
decay. These additional hyperparameters are found
in Table 10. We select the best model of these 10
by evaluating on a held-out validation set, and we
report its performance on a held-out test set.

Hyperparameter Value
Batch size {16, 32, 64, 128, 256, 512}

Learning rate [10−6, 10−3]
Weight decay [0.01, 0.1]

Max epochs 3 (10 for SA)

Table 10 – Changed and additional RoBERTa hyperpa-
rameter ranges for fine-tuning.

B.3 Hardware
The intrinsic evaluation (generating word counts
for OSCAR, training BPE tokenisers and testing
them morphologically) was performed on a con-
sumer machine with an Intel i7-4790 3.6 GHz CPU
and 8 GiB of RAM.

The extrinsic evaluation (training LMs) was per-
formed on (i) a server with 2 Intel Xeon Gold
6230R 2.10GHz CPUs using at most 40 threads
and 2 NVIDIA GeForce RTX 3080 Ti GPUs for
pre-training of all models and (ii) a server with 2
AMD EPYC 7502 32-Core CPUs and 4 NVIDIA
RTX A5000 GPUs.

Collectively, all experiments (preliminary and
final) took 4886 GPU hours to complete, of which
557 hours were needed to generate the results
printed in the body of this paper (and hence also to
reproduce them).

20BERT base (Devlin et al., 2019) has |V | = 30k embed-
dings and 110M parameters, RobBERT-2020 (Delobelle et al.,
2020) has 40k and 117M parameters, and RoBERTa base (Liu
et al., 2019) has 50k and 125M.
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C Supplementary Figures
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Figure 6 – Distribution of the position of knocked-out types in the vocabulary of the Dutch BPE tokeniser.
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Ġ

st

s t

and

an

a n d

aard

aar

aa

a a r d

tarief

t

arief

ar

a r

ief

ie

i e f

(b) BPE-knockout (due to knockout of the merge d+t)

Figure 7 – BPE tokenisation of the Dutch compound standaardtarief (from standaard, "standard", and tarief, "fee").

re+animeer+atie+technisch+iek (N)

re+animeer+atie (N)

re+animeer (V)

re (V←.V) animeer (V)

atie (N←V.)

technisch+iek (N)

technisch (A) iek (N←A.)

Figure 8 – Schematic representation of the CELEX StrucLab tag for the Dutch lemma reanimatietechniek :
((((re)[V|.V],(animeer)[V])[V],(atie)[N|V.])[N],((technisch)[A],(iek)[N|A.])[N])[N]

bliothe

he

Ġbibliotheken

bliot

iot

ken

bl

bliothekenĠbi

Figure 9 – Limitation: multiple single-use types needed to
form the Dutch type Ġbibliotheken.
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Figure 10 – Fraction of words with a certain amount of
morphemes, grouped by language.
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(1, [e, n])

(87, [i, d]) (151, [s, en])

(1331, [Ġb, ele]) (14656, [id, sen])(1200, [id, s])(1810, [Ġb, ru])

(7393, [Ġbele, ids]) (16008, [Ġbru, ids])

di

(18, [Ġ, b]) (107, [r, u])

Ġb ru

Ġ b r u

ele

(8, [e, l])

el

(124, [el, e])
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n

Figure 11 – Formal graph representation of the top panel in Figure 1, fully expanded down to the alphabet. Grey boxes
are merges in M, white boxes are types in V . The set of solid arrows emanating from a type t together represent Mo(t),
whilst the dotted arrows represent Mi(t). Note how there are always exactly two solid arrows arriving in a merge vertex
(the first invariant) and exactly one dotted arrow (the second invariant).
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morphemic whole-word
word types word tokens word types word tokens

|V | Pr Re F1 Pr Re F1 Pr Re F1 Pr Re F1

English
BPE

base 40 000 43.01 49.64 46.09 40.70 4.04 7.35 13.28 80.16 22.79 11.15 9.51 10.26
dropout 40 000 -1.7 +0.6 -0.8 -31.0 +1.8 -0.2 -0.6 +0.3 -0.9 -8.8 +2.4 -6.3

BPE-knockout
base 36 814 +10.2 +25.4 +16.2 +43.8 +55.1 +62.3 -1.2 +8.8 -1.5 +1.6 +67.0 +11.5
holdout 37 952 +7.0 +18.2 +11.5 +28.5 +24.3 +32.9 -1.5 +2.8 -2.2 -2.8 +23.3 +3.1

German
BPE

base 40 000 45.02 54.00 49.10 54.33 8.36 14.49 19.79 67.47 30.60 24.26 14.72 18.32
dropout 40 000 -1.0 +0.5 -0.4 -23.9 +2.3 +1.2 -0.5 +0.2 -0.6 -12.6 +2.6 -4.6

BPE-knockout
base 35 919 +10.3 +25.8 +16.2 +5.1 +60.8 +49.5 -0.0 +13.6 +1.2 -7.7 +61.3 +8.9
holdout 37 309 +8.2 +19.3 +12.6 -3.0 +17.5 +19.9 -0.3 +8.9 +0.5 -11.2 +13.7 -0.4

Dutch
BPE

base 40 000 52.59 55.32 53.92 54.26 11.04 18.35 38.33 69.70 49.46 36.18 29.51 32.51
dropout 40 000 -1.2 +0.3 -0.5 -16.2 +1.6 +0.6 -1.0 +0.1 -0.8 -13.6 +1.9 -6.3

BPE-knockout
base 35 525 +9.1 +22.9 +15.0 +27.3 +53.1 +53.5 -0.7 +12.8 +2.2 -10.4 +51.7 +6.6
holdout 36 763 +8.2 +20.5 +13.6 +18.8 +24.1 +29.1 -0.7 +11.4 +2.0 -10.4 +19.3 +1.2

(a) Absolute differences [%]

morphemic whole-word
word types word tokens word types word tokens

|V | Pr Re F1 Pr Re F1 Pr Re F1 Pr Re F1

English
BPE

base 40 000 43.01 49.64 46.09 40.70 4.04 7.35 13.28 80.16 22.79 11.15 9.51 10.26
dropout 40 000 ×0.96 ×1.01 ×0.98 ×0.24 ×1.45 ×0.97 ×0.95 ×1.00 ×0.96 ×0.21 ×1.25 ×0.38

BPE-knockout
base 36 814 ×1.24 ×1.51 ×1.35 ×2.08 ×14.66 ×9.47 ×0.91 ×1.11 ×0.93 ×1.14 ×8.05 ×2.12
holdout 37 952 ×1.16 ×1.37 ×1.25 ×1.70 ×7.03 ×5.48 ×0.88 ×1.04 ×0.90 ×0.75 ×3.45 ×1.30

German
BPE

base 40 000 45.02 54.00 49.10 54.33 8.36 14.49 19.79 67.47 30.60 24.26 14.72 18.32
dropout 40 000 ×0.98 ×1.01 ×0.99 ×0.56 ×1.28 ×1.09 ×0.97 ×1.00 ×0.98 ×0.48 ×1.18 ×0.75

BPE-knockout
base 35 919 ×1.23 ×1.48 ×1.33 ×1.09 ×8.28 ×4.42 ×1.00 ×1.20 ×1.04 ×0.68 ×5.17 ×1.48
holdout 37 309 ×1.18 ×1.36 ×1.26 ×0.95 ×3.09 ×2.38 ×0.99 ×1.13 ×1.02 ×0.54 ×1.93 ×0.98

Dutch
BPE

base 40 000 52.59 55.32 53.92 54.26 11.04 18.35 38.33 69.70 49.46 36.18 29.51 32.51
dropout 40 000 ×0.98 ×1.01 ×0.99 ×0.70 ×1.15 ×1.03 ×0.97 ×1.00 ×0.98 ×0.62 ×1.07 ×0.81

BPE-knockout
base 35 525 ×1.17 ×1.41 ×1.28 ×1.50 ×5.81 ×3.91 ×0.98 ×1.18 ×1.04 ×0.71 ×2.75 ×1.20
holdout 36 763 ×1.16 ×1.37 ×1.25 ×1.35 ×3.18 ×2.58 ×0.98 ×1.16 ×1.04 ×0.71 ×1.65 ×1.04

(b) Ratios

Table 11 – Intrinsic evaluations of Table 2, but relative to the BPE baselines (grey).
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Figure 12 – Masked language modelling loss over a held-out validation set of 10k examples for Dutch RoBERTa models
with different tokenisers.
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