
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pages 5725–5737

June 16-21, 2024 ©2024 Association for Computational Linguistics

TabSQLify: Enhancing Reasoning Capabilities of LLMs Through Table
Decomposition

Md Mahadi Hasan Nahid
University of Alberta
mnahid@ualberta.ca

Davood Rafiei
University of Alberta
drafiei@ualberta.ca

Abstract

Table reasoning is a challenging task that re-
quires understanding both natural language
questions and structured tabular data. Large
language models (LLMs) have shown impres-
sive capabilities in natural language understand-
ing and generation, but they often struggle with
large tables due to their limited input length.
In this paper, we propose TabSQLify, a novel
method that leverages text-to-SQL generation
to decompose tables into smaller and relevant
sub-tables, containing only essential informa-
tion for answering questions or verifying state-
ments, before performing the reasoning task.
In our comprehensive evaluation on four chal-
lenging datasets, our approach demonstrates
comparable or superior performance compared
to prevailing methods reliant on full tables as
input. Moreover, our method can reduce the
input context length significantly, making it
more scalable and efficient for large-scale table
reasoning applications. Our method performs
remarkably well on the WikiTQ benchmark,
achieving an accuracy of 64.7%. Additionally,
on the TabFact benchmark, it achieves a high
accuracy of 79.5%. These results surpass other
LLM-based baseline models on gpt-3.5-turbo
(chatgpt). TabSQLify can reduce the table size
significantly alleviating the computational load
on LLMs when handling large tables without
compromising performance.

1 Introduction

Tables serve as the most prevalent forms of struc-
tured information across diverse domains, rang-
ing from databases and spreadsheets to open data
repositories, web pages and document collections.
Developing natural language interfaces for tabu-
lar data poses a significant challenge, primarily in
terms of effectively interpreting the semantics of
table cells and understanding the relationships be-
tween cell values in response to a user query. This
challenge is accentuated when tables are enveloped
in text, such as titles, captions, and contextual text

Rank Nation Gold Silver Bronze Total

1 China 13 9 13 35

2 Japan 7 10 7 24

3 Uzbekistan 1 2 3 6

4 Kazakhstan 2 2 0 4

5 North
Korea

1 0 1 2

6 South
Korea

0 0 2 2

Total 24 23 26 73

Table: Figure skating at the Asian Winter Games

Q: who received more bronze medals: japan or south korea?
A: Japan

Figure 1: An example of table-based question answer-
ing.

within a document. In these instances, the scope
of reasoning expands beyond the confines of table
cells to incorporate the surrounding natural lan-
guage text. This reasoning is essential for many
downstream tasks such as table-based fact verifica-
tion and table-based question answering (TableQA).
As depicted in Figure 1, table-based reasoning is
intricate, demanding sophisticated textual, numeri-
cal, and logical reasoning across both unstructured
text and (semi-)structured tables.

Recent studies highlight the impressive capabil-
ity of LLMs in reasoning over both text and tabular
data. However, these works typically utilize the
full table as context for reasoning (Chen, 2023),
limiting their ability to large tables. In particular,
LLMs operate under a maximum token limit, and
when processing a large table, there is a risk of po-
tential truncation of the input or hallucination in the
output (Chen, 2023; Ji et al., 2023). This limitation
poses difficulties in handling large tables, making
it impractical to encompass the entire table within
the maximum token boundary of a prompt. Chen

5725

Rank Nation Gold Silver Bronze Total

1 China 13 9 13 35

2 Japan 7 10 7 24

3 Uzbekistan 1 2 3 6

4 Kazakhstan 2 2 0 4

5 North
Korea

1 0 1 2

6 South
Korea

0 0 2 2

Total 24 23 26 73

Table: Figure skating at the Asian Winter Games

Q: who received more bronze medals: japan or south korea?
A: Japan

Table title: Figure skating at the Asian Winter Games

Columns: ['rank', 'nation', 'gold', 'silver', 'bronze', 'total']

Q: who received more bronze medals: japan or south korea?

Sub-table Selection
(LLM)

SQL: select nation, bronze from T
where nation = 'japan' or nation = 'south korea'

Sub-table

Nation Bronze

Japan 7

South
Korea

2

Table title: Figure skating at the Asian Winter Games

select nation, bronze from T
where nation = 'japan' or nation = 'south korea'

Answer Generation
(LLM)

Response: Based on the table, Japan received 7 bronze medals and
South Korea received 2 bronze medals. Therefore, Japan received
more bronze medals than South Korea.
Answer: Japan

Sub-table

Nation Bronze

Japan 7

South
Korea

2
Q: who received more bronze medals: japan or south korea?

Execute

(1) Subtable Selection (2) Reasoning and Answer Generation

Figure 2: Overview of TabSQLify, consisting of two steps: (1) generating SQL queries from natural language
questions or statements and executing the SQL queries on the original tables to obtain sub-tables containing only
essential information, and (2) using LLMs with the sub-table and the question or claim to generate the answer.

(2023) highlights that LLMs struggle to general-
ize when confronted with “large” tables containing
30 or more rows, leading to a decline in accuracy
as the table size increases. While there have been
works to decompose both questions and tables us-
ing LLMs (Ye et al., 2023), this line of work still
requires providing the full table to the LLM and
cannot scale to large tables. The question studied
in this work is if the size of a table can be reduced
before passing it to the language model without
impacting its performance.

In this work, our aim is to leverage the symbolic
representation capabilities of LLMs to reduce table
size and their robustness to natural language varia-
tions for addressing formatting differences. Sym-
bolic models, such as text-to-SQL, are not affected
by table size and can reliably scale to large tables.
However, for reliable storage and querying in a re-
lational database, tables are expected to adhere to a
more rigorous formatting. Tables in the wild, such
as those found on the web, often lack this format-
ting, necessitating substantial preprocessing and
normalization efforts to convert the content (Cheng
et al., 2023). LLMs are well-suited for resolving
potential differences in the formating of rows and
cell values. This work aims to strike a balance
between table reasoning and table decomposition.
Our approach involves using symbolic methods to
narrow down the task to a targeted region in a table
and then utilizes LLMs to reason over the limited
relevant information.

We propose TabSQLify, a novel approach that
integrates symbolic methods with the reasoning
power of LLMs. TabSQLify leverages text-to-SQL
generation to decompose large tables into smaller
and relevant sub-tables for table reasoning tasks.
The method involves two key steps: (1) generat-

ing SQL queries from natural language questions
or statements using LLMs under few-shot prompt-
ing, then executing the SQL queries on the original
tables to obtain sub-tables containing only essen-
tial information for answering questions or ver-
ifying statements, and (2) using LLMs with the
sub-table and the question or claim to generate
the answer. The core concept of the approach is
to utilize the natural language understanding and
generation strengths of LLMs while reducing their
burden in table encoding and reasoning (see Fig-
ure 2). Decomposing tables into sub-tables offers
several advantages, including (1) reducing input
length for improved scalability and efficiency in
reasoning tasks involving large tables, (2) filtering
out irrelevant and redundant information that do
not contribute to the reasoning process, hence mak-
ing the reasoning more focused, and (3) providing
an intermediate representation (in this case, SQL
queries and sub-tables) that is more interpretable
and explainable for tracing and verification pur-
poses.

We evaluate our method on four challenging
table reasoning datasets: WikiTQ (Pasupat and
Liang, 2015), FeTaQA (Nan et al., 2022), TabFact
(Chen et al., 2020) and WikiSQL (Zhong et al.,
2017). Our evaluation on table-based question an-
swering and fact verification tasks show that our
method outperforms other LLM-based baselines,
with gpt-3.5-turbo (chatgpt) as the LLM. More-
over, our method can significantly reduce the input
length, making it more scalable and efficient for
large-scale table reasoning applications than exist-
ing methods that require the full table context as
input.

The contributions of this paper are as follows:

1. We present a novel approach that utilizes text-

5726

to-SQL generation to decompose tables into
smaller, contextually relevant sub-tables, par-
ticularly designed for table reasoning tasks.
This method offers a substantial reduction in
table size, proving particularly advantageous
for large tables that exceed the maximum al-
lowable context window of LLMs.

2. Our model outperforms some of the leading
models that employ multiple responses and
self-consistency. Clearly using those tech-
niques can further boost the performance of
our method.

3. Our evaluation on challenging table reasoning
datasets demonstrates the remarkable perfor-
mance of our method compared to existing
methods that rely on full tables as input. A
comprehensive evaluation across various tasks
is conducted to elucidate both the advantages
and constraints of our approach.

2 Related Work

Our work is closely intertwined with the literature
on semantic parsing of questions and table schema
(also known as text to data) as well as the reason-
ing applied to semi-structured tables (alternatively
known as data to text).

2.1 Semantic Parsing: Text to Data

Table-based reasoning conventionally involves se-
mantic parsing of questions and subsequent execu-
tion of the generated queries on tables. Traditional
models in this domain were often domain-specific,
supporting controlled natural language (Popescu
et al., 2003; Li et al., 2007), and posed challenges
in adaptation to new domains or datasets. How-
ever, recent models leveraging machine learning
techniques or large language models are trained on
extensive datasets and query repositories, support-
ing a shift towards greater domain-independence.
In particular, LLMs, when used with few-shot
prompting, serve as powerful code generators, and
techniques such as controlled decoding further im-
proves the reliability of code generation (Brown
et al., 2020; Rajkumar et al., 2022; Pourreza and
Rafiei, 2023; Chang and Fosler-Lussier, 2023; Ni
et al., 2023).

Cross-domain benchmarks such as WikiSQL
(Zhong et al., 2017), Spider (Yu et al., 2018),
CoSQL (Yu et al., 2019a), SParC (Yu et al., 2019b),
and BIRD (Li et al., 2023) have played a pivotal

role in advancing this field, offering diverse exam-
ples of natural language queries paired with formal
query language counterparts, such as SQL.

Glass et al. (Glass et al., 2021) innovatively ex-
plores methods to capture both row and column
semantics, improving the model’s query compre-
hension. Inner Table Retrieval (ITR) (Lin et al.,
2023) employs a similarity-based approach for lo-
cating sub-tables. These approaches involve pre-
training and fine-tuning, which heavily rely on spe-
cific datasets. This reliance makes them inappli-
cable without access to a corresponding training
dataset, while the need for optimal hyperparame-
ters further limits their generalization.

In this line of work, the reasoning is generally
done on questions and table schemata, with the
expectation that the data in a table strictly adheres
to the table schema (e.g., all values in a column
having the same data type).

2.2 Table Reasoning: Data to Text

The relevant models can be categorized into more
traditional models and recent LLM-based mod-
els. Many early models undergo pre-training on
both tables and text to acquire a joint represen-
tation, utilizing this representation for reasoning
without relying on symbolic execution. Notably,
TaPas (Herzig et al., 2020) retrieves masked in-
formation from tables, TAPEX (Liu et al., 2022b)
employs the BART model to emulate an SQL ex-
ecutor, ReasTAP (Zhao et al., 2022) instills rea-
soning skills via pre-training, TABERT (Yin et al.,
2020) encodes a subset of table content most perti-
nent to the input, and PASTA (Gu et al., 2022) pre-
trains language models to be cognizant of common
table-based operations. All these models have con-
tributed to the progress on table-based reasoning.
Despite achieving commendable results through
pre-training on substantial datasets, these models
still necessitate fine-tuning on task-specific datasets
(Chen, 2023).

Large language models have become competi-
tive models in many domains and tasks including
table reasoning, with their reasoning capabilities
covering math, common sense, and symbolic rea-
soning. This is often done using few-shot prompts
without fine-tuning (Brown et al., 2020). It has
been shown that the reasoning capabilities of these
models can be further improved by breaking more
complex tasks into steps, using methods such as
chain-of-thought (CoT) (Wei et al., 2023) and Ze-

5727

roCoT (Kojima et al., 2023) or more carefully se-
lecting examples in the prompt (Liu et al., 2022a).
The Table-CoT Model (Chen, 2023) generates the
final answer to a question by employing in-context
learning and chain-of-thought prompting to table-
based tasks. In contrast, the BINDER (Cheng et al.,
2023) model generates programs in a programming
language, extending its capabilities to solve com-
monsense problems. The DATER (Ye et al., 2023)
approach uses LLMs to decompose tables and ques-
tions for solving table-based QA and fact verifica-
tion tasks.

ReAcTable (Zhang et al., 2023) adopts the ReAct
paradigm, encompassing step-by-step reasoning,
code execution through external tools, intermedi-
ate table generation, and a majority voting mecha-
nism. This method leverages LLMs to decompose
the problem into multiple steps, each consisting of
logical operations in the form of code to process
tabular data as required. In a more recent model,
LEVER (Ni et al., 2023) presents a method to en-
hance language-to-code generation by training to
validate the generated programs based on their exe-
cution results.

StructGPT (Jiang et al., 2023) enhances LLM
reasoning for structured data using an Iterative
Reading-then-Reasoning approach. However, the
complexity and cost of StructGPT are exacerbated
by the practice of passing entire tables to LLM in
the reading phase, thus limiting the model’s scala-
bility to large tables due to token limits. Chain-
of-Table (Wang et al., 2024) extends Chain-of-
Thought to tables, improving accuracy by trans-
forming input tables and guiding LLM with inter-
mediate tables during reasoning. However, it re-
quires multiple intermediate steps and LLM calls.

Table reasoning approaches typically operate un-
der the assumption that the tables in question are
sufficiently small to be directly input into the model.
This specific issue is the focus of our investigation
in this paper.

3 Methodology

Our approach capitalizes on the proficiency of
LLMs in parsing natural language text and gen-
erating SQL to enhance their capabilities in table
reasoning. Large language models face challenges
in accommodating extensive contextual informa-
tion, especially when dealing with large tables that
exceed their token limits. Increasing this size for
large tables is unrealistic due to the quadratic time

and memory complexities of self-attention mecha-
nism in input length. Furthermore, LLMs are more
likely to produce errors when handling lengthy con-
texts (Chen, 2023; Ji et al., 2023). To overcome
these challenges, our work efficiently identifies and
extracts relevant table parts, optimizing the input
prompt size without sacrificing performance.

3.1 Table Preprocessing
Although tabular data is typically stored in a re-
lational database and queried using SQL, many
tables collected from web sources lack the rigorous
structure and consistency that is needed for SQL
queries to retrieve correct answers. It is generally a
challenge to fully clean data from different sources
or with no clean lineage records. Our hypothesis is
that applying some general table cleaning and relax-
ing the granularity of retrievals to relevant rows and
columns that have the answers, instead of the exact
answers, makes the SQL engine more reliable. Of
course, the exact answer must be extracted at the
end. This is done in our reasoning phase (§ 3.3)
where an LLM is used, and it is better equipped to
handle formatting differences.

For our table cleaning, we normalized numerical
values and date fields. In particular, numerical val-
ues frequently feature commas, necessitating pre-
processing to ensure consistency. To address this,
we uniformly removed commas from all numeri-
cal entries. Additionally, the diverse date formats
within the tables posed a challenge in generating
accurate conditions for SQL queries. To address
this, we standardized all date formats to the YYYY-
MM-DD format. As an example, we converted
numbers like “360,000” to “360000,” and different
date formats such as “31 October 2008,” “31 Oct
2008” and “October 31, 2008” to the standardized
“2008-10-31”.

3.2 Subtable Selection
The subtable selection can be done by three strate-
gies: (1) selecting essential columns, (2) select-
ing essential rows, and (3) selecting both essential
columns and rows.

In this step, instead of feeding the entire table to
the LLM, we provide essential table information
such as the title, column names, and three example
rows alongside the question. We utilize few-shot
learning for this step, where we provide the LLM
with a few examples. Subsequently, the LLM gen-
erates an SQL query to select the subtable based
on this provided information. Selecting essential

5728

rows may require performing grouping and aggre-
gation, and our generated SQL queries can include
GROUP BY clauses and aggregation functions.

By selecting the essential columns and rows, we
are reducing the context size while optimizing the
relevance of information for subsequent reasoning
tasks. When employing strategies (2) or (3), some-
times essential rows may not be safely extracted,
for example returning an empty table due to noisy
input. In those cases, we opt for the column selec-
tion strategy. The format of the prompt used for
selecting necessary columns and row is described
in Figure 3.

Generate SQL for selecting the required rows and columns, given the question and table to answer the
question correctly.

SQLite table properties:

Table: 2012–13 Exeter City F.C. season(row_number,name,league,fa_cup,league_cup,jp_trophy,total)

3 example rows:
select * from T limit 3;
row_number | name | league | fa_cup | league_cup | jp_trophy | total
0 | scot bennett | 5 | 0 | 0 | 0 | 5
1 | danny coles | 3 | 0 | 0 | 0 | 3
2 | liam sercombe | 1 | 0 | 0 | 0 | 1

Q: does pat or john have the highest total?
SQL: select name, total from T where name like '%pat%' or name like '%john%'
....
SQLite table properties:

Table: Figure skating at the Asian Winter Games (row_number, rank, nation, gold, silver, bronze, total)

3 example rows:
select * from T limit 3;
row_number | rank | nation | gold | silver | bronze | total
0 | 1 | china | 13 | 9 | 13 | 35
1 | 2 | japan | 7 | 10 | 7 | 24
2 | 3 | uzbekistan | 1 | 2 | 3 | 6

Q: who received more bronze medals: japan or south korea?
SQL:
----- ------ ------ ------
response: select nation, bronze from T where nation = 'japan' or nation = 'south korea'

Figure 3: Prompt used for the subtable selection step of
TabSQLifycol+row.

It is still conceivable that the output of the sub-
table selection step remains large, for example
when finding the top-k most popular products for
large values of k. We consider this limitation as
inherent to the nature of the task and not specific
to our approach since the sub-table containing all
the items of the top-k is necessary to answer this
question.

3.3 Reasoning and Answer Generation
In this step, an LLM is employed, wherein we in-
put the SQL derived from the previous step, the
subtable obtained by executing the SQL query and
the question. Depending on the domain, additional
contextual information, such as the surrounding
text, may also be incorporated. This approach is
adopted to help the model focus on the relevant
parts for understanding the context and answer-
ing the question. Moreover, we utilize few-shot
learning techniques while adhering to the Chain-of-
Thought prompting style. The format of the answer

generation prompt is described in Figure 4.

Based on the table title and execution result of the sql query bellow, find the answer to the given question correctly.
....
Table_title: Playa de Oro International Airport
SQL: select City, Passengers from T;

City | Passengers
United States, Los Angeles | 14,749
United States, Houston | 5,465
Canada, Calgary | 3,761
Canada, Saskatoon | 2,282
Canada, Vancouver | 2,103
United States, Phoenix | 1,829
Canada, Toronto | 1,202
Canada, Edmonton | 110
United States, Oakland | 107

Question: how many more passengers flew to los angeles than to saskatoon from manzanillo airport in 2013?
A: To find the answer to this question, let’s think step by step. Based on the table, in 2013, the number of
passengers who flew to Los Angeles from Manzanillo Airport was 14,749, while the number of passengers who flew
to Saskatoon was 2,282. So, the difference in the number of passengers between Los Angeles and Saskatoon is
14,749 - 2,282 = 12,467. Therefore, the answer is 12,467.
Answer: 12,467
....
Table_title: Figure skating at the Asian Winter Games
SQL: select nation, bronze from T where nation = 'japan' or nation = 'south korea'

nation | bronze
japan | 7
south korea | 2

Question: who received more bronze medals: japan or south korea?
A: To find the answer to this question, let’s think step by step.
----- ------ ------- -------
response: Based on the table, Japan received 7 bronze medals and South Korea received 2 bronze
medals. Therefore, Japan received more bronze medals than South Korea.
Answer: Japan

Figure 4: Prompts used for the answer generation step.

4 Experimental Setup

4.1 Dataset

We assess our proposed approach across four
datasets centered on reasoning with tables. Given
our constraints on using LLMs, in terms of the num-
ber of requests and associated costs, our method
is exclusively evaluated on the test sets of these
datasets, with no fine-tuning on the training sets.

WikiTQ WikiTableQuestions (WikiTQ) con-
tains complex questions annotated by crowd work-
ers based on Wikipedia tables. These questions in-
volve multiple complex operations, such as compar-
ison, aggregation, and arithmetic operations, which
require reasoning over multiple entries in a table.
The standard test set contains 4,344 samples (Pasu-
pat and Liang, 2015).

FetaQA Free-form Table Question Answering
(FeTaQA) contains free-form table questions that
require deep reasoning and understanding. These
questions are usually hard because it requires pro-
cessing information from different parts of the ta-
ble. Unlike WikiTQ, this dataset annotates long
free-form answers. Our approach is evaluated on
the test set that contains 2,003 samples (Nan et al.,
2022).

TabFact Table-Fact-Checking (TabFact) is a
benchmark for verifying facts based on tables,
which includes statements created by crowd work-
ers using tables from Wikipedia. For example,
a statement must be judged as either “True” or

5729

“False” based on the information in a given ta-
ble. The accuracy is reported on the test-small set,
which contains 2,024 statements and 298 tables
(Chen et al., 2020).

WikiSQL WikiSQL is a simpler TableQA
dataset, necessitating the filtering and aggregation
of information from the table content. Each ques-
tion in WikiSQL is associated with a ground truth
SQL query, from which we extract the gold answer
and compare it with our results. We present the ac-
curacy achieved on the test set of WikiSQL (Zhong
et al., 2017).

4.2 Implementation Details

In the experiments, we use gpt-3.5-turbo (chat-
gpt) as our language model. The prompt for-
mat mainly follows Chang and Fosler-Lussier
(2023) and Tai et al. (2023), which inputs
the table schema and the first three table
rows. The detail LLM hyper-parameters are
provided in Appendix A, and all our code and
prompts are available at https://github.
com/mahadi-nahid/TabSQLify.

4.3 Baselines

We compare our approach with several strong base-
line methods. These methods can be split into two
groups.

Pre-training and fine-tuning based models
Our evaluation involves comparing our work with
different models ranging from pre-training to fine-
tuning. These models, pretrained on a large table
corpus, aim to encode a given table as a plain se-
quence into an encoder and subsequently employ
a decoder to generate an answer. As our baselines,
we consider Table-BERT (Chen et al., 2020), Log-
icFactChecker (Zhong et al., 2020), TaPas (Herzig
et al., 2020), SAT (Zhang et al., 2020), TAPEX (Liu
et al., 2022b), GraPPa (Yu et al., 2020), PASTA (Gu
et al., 2022) as our baslines. For FeTaQA evalu-
ation, we compare our results against T5 (Raffel
et al., 2020; Nan et al., 2022).

LLM based models For the LLM based meth-
ods with in-context learning, we compare against
TableCoT (Chen, 2023), BINDER (Cheng et al.,
2023), DATER (Ye et al., 2023), StructGPT (Jiang
et al., 2023), ReAcTable (Zhang et al., 2023), ITR
(Lin et al., 2023), LEVER (Ni et al., 2023) and
Chain-of-Table (Wang et al., 2024) as our base-
lines.

4.4 Evaluation metrics
For the WikiTQ and WikiSQL dataset, exact match
(EM) accuracy was used to check if the predicted
answers were the same as the correct ones. To ac-
count for different formatting of date and number
fields, we added a pre-mactching check (Cheng
et al., 2023), consistent with preprocessing (§
3.1). The accuracy of TabFact was determined
using binary classification accuracy. To evaluate
FeTaQA, metrics such as ROUGE-1, ROUGE-2,
and ROUGE-L (Lin, 2004) were used. However,
ROUGE score lacks the ability to gauge the faith-
fulness and correctness of model-generated content.
In line with Chen (2023), a human evaluation was
conducted across four aspects: fluency (assessing
linguistic errors), correctness (ensuring accurate an-
swers to questions), faithfulness (verifying ground-
ing on the input table), and adequacy (evaluating
the comprehensiveness of the generated sentence
in covering all answers) (Nan et al., 2022).

5 Results

5.1 Model accuracy
As shown on Table 1, TabSQLify achieves an ac-
curacy of 62.0% and 63.7% on the more challeng-
ing WikiTA dataset when reasoning is performed
solely using the extracted columns and extracted
rows, respectively. By extracting both the neces-
sary columns and rows, we achieve an accuracy of
64.7%. Our model outperforms all pretrained mod-
els and LLM-based baselines, with chatgpt used
as the LLM, on WikiTQ dataset 1. It surpasses
BINDER-Codex and achieves accuracy very close
to the state-of-the-art model DATER. It is worth
noting that, unlike our model, which considers only
one response, both BINDER and DATER utilize
20 responses for the WikiTQ dataset to obtain the
final answer.

For the TabFact dataset, as illustrated in Table
2, TabSQLify outperforms all LLM-based state-
of-the-art approaches, with ChatGPT as the LLM.
We achieve an accuracy of 79.5% when we extract
the required sub-table by applying both column
and row filtering. It is important to highlight that
BINDER and DATER employ multiple responses
and self-consistency to obtain the final answer. The
reported results on TabFact are based on 50 re-
sponses for BINDER, 20 responses for DATER,

1Codex was not available at the time of running our exper-
iments, and the reported results are from the respective papers
of our baselines.

5730

https://github.com/mahadi-nahid/TabSQLify
https://github.com/mahadi-nahid/TabSQLify

Models Accuracy
Agarwal et al., 2019 44.1
Wang et al., 2019 44.5
TaPas 48.8
GraPPa 52.7
LEVER 62.9
ITR 63.4
GPT-3 CoT 45.7
TableCoT-Codex 48.8
DATER-Codex 65.9
BINDER-Codex 61.9
ReAcTable-Codex 65.8
SQL-Codex 61.1
BINDER-chatgpt 55.4
DATER-chatgpt 52.8
ReAcTable-chatgpt 52.5
SQL-chatgpt 54.1
TableCoT-chatgpt 52.4
StructGPT 52.2
Chain-of-Table 59.9
TabSQLifycol 62.0
TabSQLifyrow 63.7
TabSQLifycol+row 64.7

Table 1: Accuracy compared to the baselines on WikiTQ
with the official evaluator.

and only one response for our model, hence it gives
a lower bound of our model performance.

Model Accuracy
Table-BERT 68.1
LogicFactChecker 74.3
SAT 75.5
TaPas 83.9
TAPEX 85.9
SaMoE 86.7
PASTA 90.8
Human 92.1
TableCoT-Codex 72.6
DATER-Codex 85.6
BINDER-Codex 85.1
ReAcTable-Codex 83.1
ReAcTable-chatgpt 73.1
TableCoT-chatgpt 73.1
BINDER-chatgpt 79.1
DATER-chatgpt 78.0
Chain-of-Table 80.2
TabSQLifycol 77.0
TabSQLifyrow 78.5
TabSQLifycol+row 79.5

Table 2: Experimental results on TabFact. Here, “Hu-
man” indicates the human performance (Ye et al., 2023)

For FeTaQA dataset, we achive a performance
comparable to the baselines. As ROUGE metrics
do not reflect the actual correctness of the model’s
responses, we manually evaluated 100 randomly
chosen sample and quantified their performance in
terms of fluency, correctness, adequacy and faith-
fulness. The performance is summarized in Tables
3 and 4. TabSQLify outperforms models based

on fine-tuning and pre-training, such as T5-large.
The evaluation suggests that the model’s output
closely aligns with average human performance in
terms of fluency, adequacy, and faithfulness. The
correctness is notably impressive, although it falls
behind human-level performance. This indicates
that, utilizing TabSQLify results in high accuracy
without the need for the entire table, showcasing
the model’s high level of precision in retrieving
the relevant sub-table. We additionally assess the
results using RAGAS (Gradients, 2023). The evalu-
ation outcomes obtained from RAGAS are detailed
in Appendix D.

Model R-1 R-2 R-L
T5-small 0.55 0.33 0.47
T5-base 0.61 0.39 0.51
T5-large 0.63 0.41 0.53
TableCoT-Codex 0.62 0.40 0.52
DATER-Codex 0.66 0.45 0.56
ReAcTable 0.71 0.46 0.61
TableCoT-chatgpt 0.62 0.39 0.51
TabSQLifycol 0.57 0.34 0.47
TabSQLifyrow 0.60 0.37 0.49
TabSQLifycol+row 0.58 0.35 0.48

Table 3: Experimental results on FeTaQA.

Model Fluency Correct Adequate Faithful
T5-large 94.6 54.8 50.4 50.4
Human (Chen, 2023) 95 92.4 95.6 95.6
TableCoT-chatgpt 96 82 75 87
TabSQLifycol 98 83 79 85
TabSQLifyrow 96 80 77 89
TabSQLifycol+row 97 88 84 93

Table 4: Human evaluation results on FeTaQA.

TabSQLify shows an outstanding performance
on the WikiSQL dataset, as demonstrated in Table
5. This dataset appears to be easier compared to the
WikiTQ test dataset, with our approach achieving
76.7% accuracy. In 70% of cases, it can produce
the answer in the first step, eliminating the need to
pass the sub-table and question for the second step.

Model Accuracy
SEQ2SQL 59.4%
StructGPT 65.6%
RCI (Glass et al., 2021) 89.8%
TabSQLifycol+row 76.7%

Table 5: Experimental results on WikiSQL. RCI is a
fine tuning based model, and its results may not be
directly comparable due to the model’s high reliance on
the training set.

5731

5.2 Scalability and robustness

We assessed the scalability and robustness of our
model by imposing a token limit on each table
across three datasets: WikiTQ, FeTaQA and Tab-
Fact. To accomplish this, we established cutoff
thresholds to discard tokens exceeding these lim-
its. Subsequently, we evaluated the model’s perfor-
mance within these constrained token boundaries.
For the WikiTQ dataset, we set the cutoff threshold
at 2000, while for both the TabFact and FeTaQA
datasets, it was set to 600. Table 6 summarizes
the distribution across different classes, illustrating
the categories based on the percentage of discarded
table tokens (see Appendix B for more detail).

Cut-off (%) WikiTQ FeTaQA TabFact
0 - 10% 76 81 91
10 - 25% 89 143 141
25 - 50% 116 202 260
50% + 128 69 81

Table 6: The distribution of samples across various
classes as a function of the percentage cut-off of table
tokens.

The evaluation results for the WikiTQ dataset
are presented in Table 7. Our model consistently
performs well within the specified token boundary.
In contrast, the performance of TableCoT is subpar.
We have observed a similar trend in the other two
datasets (see Tables 8 and 9).

Cut-off (%) TableCoT TabSQLifycol+row

0 - 10% 40.7 64.4
10 - 25% 49.4 60.6
25 - 50% 46.5 66.3
50% + 33.3 56.2

Table 7: Performance across different classes based on
the percentage cut-off of table tokens in the WikiTQ
dataset.

Cut-off (%) TableCoT TabSQLifycol+row

0 - 10% 76.9 79.1
10 - 25% 67.3 80.8
25 - 50% 63.0 70.0
50% + 55.5 72.8

Table 8: Performance across different classes based on
the percentage cut-off of table tokens in the TabFact
dataset

TableCoT
Cut-off (%) R-1 R-2 R-L
0 -10% 0.58 0.35 0.45
10-25% 0.60 0.37 0.50
25-50% 0.53 0.30 0.43
50% + 0.49 0.28 0.40

TabSQLifycol+row

Cut-off (%) R-1 R-2 R-L
0 -10% 0.62 0.39 0.50
10-25% 0.64 0.42 0.53
25-50% 0.55 0.32 0.44
50% + 0.51 0.31 0.41

Table 9: Performance across different classes based on
the percentage cut-off of table tokens in the FeTaQA
dataset

In the WikiTQ dataset, 128 tables contain >4000
tokens exceeding chatGPT’s maximum token limit
(4096 tokens including table and question). Ta-
ble 10 reports the performance on these instances.
These results reveal that both BINDER (Cheng
et al., 2023) and DATER (Ye et al., 2023) face
challenges when dealing with large tables. Specifi-
cally, BINDER-Codex achieves only 29.6% accu-
racy, while DATER achieves an accuracy of 34.6%.
BINDER-chatgpt fails to produce any correct an-
swers for these large tables. On the other hand,
Chain-of-Table (Wang et al., 2024) achieves an
accuracy of 44.8%.

In contrast, our model outperforms these base-
lines significantly. It is crucial to note that our
Table-CoT achieves this accuracy because the an-
swers for questions about those large tables are
typically in the upper part, fitting within the LLM’s
context boundary. If the answer is elsewhere, all
models fail. On the other hand, our model has no
issue with the answer’s position in a table, making
it scalable for large tables.

Model Acc (Large)
BINDER-Codex 29.6
BINDER-chatgpt 0.0
DATER-chatgpt 34.6
Table-CoT-chatgpt 35.1
Chain-of-Table (Wang et al., 2024) 44.8
TabSQLifycol 50.0
TabSQLifyrow 57.0
TabSQLifycol+row 52.3

Table 10: Experimental results on Large (>4000 tokens)
tables from WikiTQ. As the input tables grow larger,
we observe a decline in performance for strong baseline
models.

5732

Figure 5: Reduction in table size using our row-col filter-
ing across four datasets, showing a significant reduction
of the table size.

5.3 Table size reduction
Figure 5 demonstrates the average reduction in the
number of table cells before and after employing
TabSQLifycol+row across three datasets. This reduc-
tion, from 183 to 32 cells in WikiTQ, indicates a
substantial decrease in sub-table size while main-
taining a strong performance. Likewise, similar
trends can be observed in the TabFact, FetaQA
and WikiSQL datasets. When utilizing both col-
umn and row filters to extract the required subtable,
direct answers to questions may be found. Specif-
ically, in the WikiTQ dataset, TabSQLifycol+row
successfully retrieves answers in 58% of cases by
executing the generated query, requiring the an-
swer generation step only for the remaining 42%
of cases.

5.4 Error Analysis
An important advantage of TabSQLify is its abil-
ity to provide the intermediate stages of reasoning
path, including SQL queries and sub-tables. To
conduct our error analysis, we randomly selected
100 responses generated by TabSQLifyrow+col from
the WikiTQ and TabFact test sets. The identified
errors are categorized into incorrect columns, in-
correct conditions, incorrect reasoning, and false
negatives, as listed in Table 11.

In this context, a “missing column” refers to in-
stances where TabSQLify either selects incorrect
columns or omits necessary columns to answer the
question. “missing rows” denotes situations where
the generated SQL query contains an erroneous
condition within the WHERE clause. Cases where
the extracted sub-table is adequate to answer the
question, but the LLM fails to provide a correct

response, are labeled as “incorrect reasoning”. Ad-
ditionally, within the dataset, there are instances
where the gold answer is incorrect or misjudged
by the evaluator, which we classify as “incorrect
annotation”.

From the table, we observe that out of 100 error
cases from WikiTQ, 6% involve the generated SQL
query missing columns, while 56% miss required
rows. The irregular format of the text in the table
is identified as the primary cause. Additionally, in
29% of cases, the reasoning is found to be incor-
rect, while 9% exhibit incorrect annotation. In the
TabFact dataset, 10% of the time, the subtable se-
lection query misses required columns, and in 32%
of cases, it misses required rows. The main source
of errors is incorrect reasoning, accounting for 50%
of cases, while 8% involve incorrect annotations.

Error Type WikiTQ TabFact
Missing Columns 6% 10%
Missing Rows 56% 32%
Incorrect Reasoning 29% 50%
Incorrect Annotation 9% 8%

Table 11: Error types of 100 samples from WikiTQ and
TabFact of TabSQLifycol+row

6 Conclusion

Our proposed decomposition approach has shown
promise across different table reasoning tasks,
achieving remarkable performance compared to
models that require the use of a full table. Our
method is novel in leveraging text-to-SQL genera-
tion to decompose tables into smaller and relevant
sub-tables tailored for table reasoning tasks. This
approach provides a new perspective and direc-
tion for table reasoning research, and we hope it
will inspire more future work on combining nat-
ural language understanding and structured data
processing.

Limitations

Our approach is not without its limitations. While
it shows promise in reducing table size and main-
taining a strong performance, for large tables, the
size of a column can exceed the context window
size, and the approach may not be applicable. Also,
after our preprocessing, the tables are stored in
a relational tables. For less regular tables, more
preprocessing may be needed.

5733

Acknowledgements

We extend our sincere gratitude to all anonymous
reviewers for their invaluable feedback, insight-
ful suggestions, and positive remarks about our
work. This research has been supported by the Nat-
ural Sciences and Engineering Research Council of
Canada. Also, Md Mahadi Hasan Nahid was sup-
ported by the Alberta Innovates Graduate Student
Scholarship.

Ethical Considerations

The datasets utilized in this study are accessible
through peer-reviewed articles, as specified in the
references. Our source code is made openly avail-
able for future research under the MIT License. It’s
important to note that since our framework relies on
gpt-3.5-turbo, it may inherit ethical concerns asso-
ciated with gpt models, such as potential responses
to toxic content or displaying a biased behavior.

References
Rishabh Agarwal, Chen Liang, Dale Schuurmans, and

Mohammad Norouzi. 2019. Learning to generalize
from sparse and underspecified rewards. In Interna-
tional conference on machine learning, pages 130–
140. PMLR.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners.

Shuaichen Chang and Eric Fosler-Lussier. 2023. How
to prompt llms for text-to-sql: A study in zero-shot,
single-domain, and cross-domain settings.

Wenhu Chen. 2023. Large language models are few(1)-
shot table reasoners. In Findings of the Associa-
tion for Computational Linguistics: EACL 2023,
pages 1120–1130, Dubrovnik, Croatia. Association
for Computational Linguistics.

Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai
Zhang, Hong Wang, Shiyang Li, Xiyou Zhou, and
William Yang Wang. 2020. Tabfact: A large-scale
dataset for table-based fact verification.

Zhoujun Cheng, Tianbao Xie, Peng Shi, Chengzu
Li, Rahul Nadkarni, Yushi Hu, Caiming Xiong,
Dragomir Radev, Mari Ostendorf, Luke Zettlemoyer,

Noah A. Smith, and Tao Yu. 2023. Binding language
models in symbolic languages.

Michael Glass, Mustafa Canim, Alfio Gliozzo, Sa-
neem Chemmengath, Vishwajeet Kumar, Rishav
Chakravarti, Avi Sil, Feifei Pan, Samarth Bharadwaj,
and Nicolas Rodolfo Fauceglia. 2021. Capturing row
and column semantics in transformer based question
answering over tables. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 1212–1224, Online.
Association for Computational Linguistics.

Exploding Gradients. 2023. Ragas: Evalu-
ation framework for retrieval augmented
generation. https://github.com/
explodinggradients/ragas.

Zihui Gu, Ju Fan, Nan Tang, Preslav Nakov, Xiao-
man Zhao, and Xiaoyong Du. 2022. PASTA: Table-
operations aware fact verification via sentence-table
cloze pre-training. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, pages 4971–4983, Abu Dhabi, United
Arab Emirates. Association for Computational Lin-
guistics.

Jonathan Herzig, Pawel Krzysztof Nowak, Thomas
Müller, Francesco Piccinno, and Julian Eisenschlos.
2020. TaPas: Weakly supervised table parsing via
pre-training. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4320–4333, Online. Association for Computa-
tional Linguistics.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan
Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea
Madotto, and Pascale Fung. 2023. Survey of halluci-
nation in natural language generation. ACM Comput.
Surv., 55(12).

Jinhao Jiang, Kun Zhou, Zican Dong, Keming Ye, Xin
Zhao, and Ji-Rong Wen. 2023. StructGPT: A general
framework for large language model to reason over
structured data. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing, pages 9237–9251, Singapore. Associa-
tion for Computational Linguistics.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2023. Large lan-
guage models are zero-shot reasoners.

Jinyang Li, Binyuan Hui, Ge Qu, Binhua Li, Jiaxi Yang,
Bowen Li, Bailin Wang, Bowen Qin, Rongyu Cao,
Ruiying Geng, Nan Huo, Chenhao Ma, Kevin C. C.
Chang, Fei Huang, Reynold Cheng, and Yongbin Li.
2023. Can llm already serve as a database interface?
a big bench for large-scale database grounded text-
to-sqls.

Yunyao Li, Huahai Yang, and HV Jagadish. 2007. Nalix:
A generic natural language search environment for
xml data. ACM Transactions on database systems
(TODS), 32(4):30–es.

5734

http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2305.11853
http://arxiv.org/abs/2305.11853
http://arxiv.org/abs/2305.11853
https://doi.org/10.18653/v1/2023.findings-eacl.83
https://doi.org/10.18653/v1/2023.findings-eacl.83
http://arxiv.org/abs/1909.02164
http://arxiv.org/abs/1909.02164
http://arxiv.org/abs/2210.02875
http://arxiv.org/abs/2210.02875
https://doi.org/10.18653/v1/2021.naacl-main.96
https://doi.org/10.18653/v1/2021.naacl-main.96
https://doi.org/10.18653/v1/2021.naacl-main.96
https://github.com/explodinggradients/ragas
https://github.com/explodinggradients/ragas
https://doi.org/10.18653/v1/2022.emnlp-main.331
https://doi.org/10.18653/v1/2022.emnlp-main.331
https://doi.org/10.18653/v1/2022.emnlp-main.331
https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.1145/3571730
https://doi.org/10.1145/3571730
https://doi.org/10.18653/v1/2023.emnlp-main.574
https://doi.org/10.18653/v1/2023.emnlp-main.574
https://doi.org/10.18653/v1/2023.emnlp-main.574
http://arxiv.org/abs/2205.11916
http://arxiv.org/abs/2205.11916
http://arxiv.org/abs/2305.03111
http://arxiv.org/abs/2305.03111
http://arxiv.org/abs/2305.03111

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Weizhe Lin, Rexhina Blloshmi, Bill Byrne, Adria
de Gispert, and Gonzalo Iglesias. 2023. An inner
table retriever for robust table question answering.
In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 9909–9926, Toronto, Canada.
Association for Computational Linguistics.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,
Lawrence Carin, and Weizhu Chen. 2022a. What
makes good in-context examples for GPT-3? In
Proceedings of Deep Learning Inside Out (DeeLIO
2022): The 3rd Workshop on Knowledge Extrac-
tion and Integration for Deep Learning Architectures,
pages 100–114, Dublin, Ireland and Online. Associa-
tion for Computational Linguistics.

Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi
Lin, Weizhu Chen, and Jian-Guang Lou. 2022b.
Tapex: Table pre-training via learning a neural sql
executor.

Linyong Nan, Chiachun Hsieh, Ziming Mao, Xi Victoria
Lin, Neha Verma, Rui Zhang, Wojciech Kryściński,
Hailey Schoelkopf, Riley Kong, Xiangru Tang,
Mutethia Mutuma, Ben Rosand, Isabel Trindade,
Renusree Bandaru, Jacob Cunningham, Caiming
Xiong, Dragomir Radev, and Dragomir Radev. 2022.
FeTaQA: Free-form table question answering. Trans-
actions of the Association for Computational Linguis-
tics, 10:35–49.

Ansong Ni, Srini Iyer, Dragomir Radev, Ves Stoyanov,
Wen-tau Yih, Sida I Wang, and Xi Victoria Lin.
2023. Lever: Learning to verify language-to-code
generation with execution. In Proceedings of the
40th International Conference on Machine Learning
(ICML’23).

Panupong Pasupat and Percy Liang. 2015. Composi-
tional semantic parsing on semi-structured tables. In
Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 1470–
1480, Beijing, China. Association for Computational
Linguistics.

Ana-Maria Popescu, Oren Etzioni, and Henry Kautz.
2003. Towards a theory of natural language inter-
faces to databases. In Proceedings of the 8th interna-
tional conference on Intelligent user interfaces, pages
149–157.

Mohammadreza Pourreza and Davood Rafiei. 2023.
Din-sql: Decomposed in-context learning of
text-to-sql with self-correction. arXiv preprint
arXiv:2304.11015.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former.

Nitarshan Rajkumar, Raymond Li, and Dzmitry Bah-
danau. 2022. Evaluating the text-to-sql capabilities
of large language models.

Chang-You Tai, Ziru Chen, Tianshu Zhang, Xiang Deng,
and Huan Sun. 2023. Exploring chain-of-thought
style prompting for text-to-sql.

Bailin Wang, Ivan Titov, and Mirella Lapata. 2019.
Learning semantic parsers from denotations with la-
tent structured alignments and abstract programs. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3774–
3785, Hong Kong, China. Association for Computa-
tional Linguistics.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. 2023. Self-consistency improves chain
of thought reasoning in language models.

Zilong Wang, Hao Zhang, Chun-Liang Li, Julian Mar-
tin Eisenschlos, Vincent Perot, Zifeng Wang, Lesly
Miculicich, Yasuhisa Fujii, Jingbo Shang, Chen-Yu
Lee, et al. 2024. Chain-of-table: Evolving tables in
the reasoning chain for table understanding. arXiv
preprint arXiv:2401.04398.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2023. Chain-of-thought prompting elic-
its reasoning in large language models.

Yunhu Ye, Binyuan Hui, Min Yang, Binhua Li, Fei
Huang, and Yongbin Li. 2023. Large language mod-
els are versatile decomposers: Decomposing evi-
dence and questions for table-based reasoning. In
Proceedings of the 46th International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, SIGIR ’23, page 174–184, New
York, NY, USA. Association for Computing Machin-
ery.

Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Se-
bastian Riedel. 2020. TaBERT: Pretraining for joint
understanding of textual and tabular data. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 8413–8426, On-
line. Association for Computational Linguistics.

Tao Yu, Chien-Sheng Wu, Xi Victoria Lin, Yi Chern Tan,
Xinyi Yang, Dragomir Radev, Caiming Xiong, et al.
2020. Grappa: Grammar-augmented pre-training for
table semantic parsing. In International Conference
on Learning Representations.

5735

https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://doi.org/10.18653/v1/2023.acl-long.551
https://doi.org/10.18653/v1/2023.acl-long.551
https://doi.org/10.18653/v1/2022.deelio-1.10
https://doi.org/10.18653/v1/2022.deelio-1.10
http://arxiv.org/abs/2107.07653
http://arxiv.org/abs/2107.07653
https://doi.org/10.1162/tacl_a_00446
https://doi.org/10.3115/v1/P15-1142
https://doi.org/10.3115/v1/P15-1142
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/2204.00498
http://arxiv.org/abs/2204.00498
http://arxiv.org/abs/2305.14215
http://arxiv.org/abs/2305.14215
https://doi.org/10.18653/v1/D19-1391
https://doi.org/10.18653/v1/D19-1391
http://arxiv.org/abs/2203.11171
http://arxiv.org/abs/2203.11171
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903
https://doi.org/10.1145/3539618.3591708
https://doi.org/10.1145/3539618.3591708
https://doi.org/10.1145/3539618.3591708
https://doi.org/10.18653/v1/2020.acl-main.745
https://doi.org/10.18653/v1/2020.acl-main.745

Tao Yu, Rui Zhang, Heyang Er, Suyi Li, Eric Xue,
Bo Pang, Xi Victoria Lin, Yi Chern Tan, Tianze
Shi, Zihan Li, Youxuan Jiang, Michihiro Yasunaga,
Sungrok Shim, Tao Chen, Alexander Fabbri, Zifan
Li, Luyao Chen, Yuwen Zhang, Shreya Dixit, Vin-
cent Zhang, Caiming Xiong, Richard Socher, Walter
Lasecki, and Dragomir Radev. 2019a. CoSQL: A
conversational text-to-SQL challenge towards cross-
domain natural language interfaces to databases. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 1962–
1979, Hong Kong, China. Association for Computa-
tional Linguistics.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radev. 2018. Spider: A large-scale human-labeled
dataset for complex and cross-domain semantic pars-
ing and text-to-SQL task. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3911–3921, Brussels, Bel-
gium. Association for Computational Linguistics.

Tao Yu, Rui Zhang, Michihiro Yasunaga, Yi Chern
Tan, Xi Victoria Lin, Suyi Li, Heyang Er, Irene
Li, Bo Pang, Tao Chen, Emily Ji, Shreya Dixit,
David Proctor, Sungrok Shim, Jonathan Kraft, Vin-
cent Zhang, Caiming Xiong, Richard Socher, and
Dragomir Radev. 2019b. SParC: Cross-domain se-
mantic parsing in context. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 4511–4523, Florence, Italy.
Association for Computational Linguistics.

Hongzhi Zhang, Yingyao Wang, Sirui Wang, Xuezhi
Cao, Fuzheng Zhang, and Zhongyuan Wang. 2020.
Table fact verification with structure-aware trans-
former. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 1624–1629, Online. Association for
Computational Linguistics.

Yunjia Zhang, Jordan Henkel, Avrilia Floratou, Joyce
Cahoon, Shaleen Deep, and Jignesh M. Patel. 2023.
Reactable: Enhancing react for table question answer-
ing.

Yilun Zhao, Linyong Nan, Zhenting Qi, Rui Zhang,
and Dragomir Radev. 2022. ReasTAP: Injecting ta-
ble reasoning skills during pre-training via synthetic
reasoning examples. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, pages 9006–9018, Abu Dhabi, United
Arab Emirates. Association for Computational Lin-
guistics.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries
from natural language using reinforcement learning.
CoRR, abs/1709.00103.

Wanjun Zhong, Duyu Tang, Zhangyin Feng, Nan
Duan, Ming Zhou, Ming Gong, Linjun Shou, Daxin
Jiang, Jiahai Wang, and Jian Yin. 2020. Logical-
FactChecker: Leveraging logical operations for fact
checking with graph module network. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 6053–6065, On-
line. Association for Computational Linguistics.

A LLM Hyper-parameters

We configured the in-context learning hyperparam-
eters for gpt-3.5-turbo according to the specifica-
tions outlined in Table 12 and Table 13.

Sub table selection using Text-to-SQL
Parameter WTQA FeTaQA TabFact
temperature 0.3 0.3 0.3
top_p 1 1 1
sample_n 1 1 1
max_tokens 100 100 100
num_shots 10 6 8

Table 12: Our hyper-parameter setting of LLM for se-
lecting required column/row

Answer Generation
Parameter WTQA FeTaQA TabFact
temperature 0.7 0.7 0.6
top_p 1 1 1
sample_n 1 1 1
max_tokens 200 64 100
num_shots 2 6 4

Table 13: Our hyper-parameters setting of LLM for the
answer generation

B Scalability and Robustness Experiment

LLMs function within a restricted token boundary,
allowing us to provide only a limited number of
tokens as a prompt to the LLM. We report the im-
pact of the cutoff threshold where tokens beyond
the cutoff points are discarded (§ 5.2).

The cutoff percentage denotes the percentage of
tokens that are truncated when the threshold is ap-
plied. For example, if a table has 4500 tokens and
we set the threshold at 2000, then 2500 tokens of
the original table are truncated, and the percentage
is 2500/4500 = 55.56%. We separated the number
of samples in different cutoff ranges (see table 5)
and compared the results of those samples from
different cutoff ranges in table 6 and 7.

For the WikiTQ dataset, we set the threshold at
2000 tokens. In this case, out of 4,344 samples,
there are 128 samples where more than 50% of the
tokens of the original table are truncated if we want

5736

https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/P19-1443
https://doi.org/10.18653/v1/P19-1443
https://doi.org/10.18653/v1/2020.emnlp-main.126
https://doi.org/10.18653/v1/2020.emnlp-main.126
http://arxiv.org/abs/2310.00815
http://arxiv.org/abs/2310.00815
https://doi.org/10.18653/v1/2022.emnlp-main.615
https://doi.org/10.18653/v1/2022.emnlp-main.615
https://doi.org/10.18653/v1/2022.emnlp-main.615
https://doi.org/10.18653/v1/2020.acl-main.539
https://doi.org/10.18653/v1/2020.acl-main.539
https://doi.org/10.18653/v1/2020.acl-main.539

to pass the original table to the LLM with a max-
imum token boundary of 2000. In our approach,
TabSQLify selects the relevant limited subtable
from the original table for a given question. This
allows us to fit the subtable within the maximum
token boundary when passing it to the LLM, re-
sulting in improved performance. The aim of this
experiment is to demonstrate that TabSQLify can
be useful under limited token (context) boundary
conditions.

C Comparison with other models

In this section, we conduct a comparative analysis
of our model against two strong baselines, DATER
(Ye et al., 2023) and BINDER (Cheng et al., 2023).
DATER utilizes Large Language Models (LLMs)
for decomposing both questions and tables. On the
other hand, BINDER stands out by offering an Ap-
plication Programming Interface (API) that extends
language model (LM) functionalities to program-
ming languages such as SQL and Python. This
extension broadens its grammar coverage, enabling
the model to address a more diverse range of ques-
tions. However, a drawback is that both DATER
and BINDER necessitates sending the entire table
to the LLM and face challenges when dealing with
large tables. Both DATER and BINDER leverage
self-consistency (Wang et al., 2023) strategies to
bolster their performance, ensuring a higher level
of consistency in their responses.

In our experiment we did not consider using
self-consistence decoding strategy. Using self-
consistency we can push the performance even
higher. Our implementation does not require
any additional processing on the SQL code, un-
like BINDER, which necessitates a complex re-
implementation of the SQL executor (Ni et al.,
2023). BINDER generates a total of 50 samples for
a given table and question in the intermediate stages
(Generate Neural-SQL: 50); while DATER gener-
ates 100 samples in its intermediate stages (table
decomposition: 40; Generate Cloze: 20; Generate
SQL: 20; reasoning: 20). In contrast, TabSQLify
generates only two samples in total, making it sim-
pler and more cost-effective. We summarize the
comparison with DATER and BINDER in Table
14.

Compared to the other LLM-based approach,
our approach has several benefits: (1) Unlike other
models our approach do not need to provide the
table data to LLM to select the target portion of

- DATER BINDER TabSQLify
stage 4 2 2
Max context size 8000 8000 4096
of generated samples 100 50 2
sampling_n 20-50 20 1
Self Consistency yes yes no
Table required full full partial
Cost high high low

Table 14: Comparison with the other LLM based mod-
els. TabSQLify is much simpler than the other approach.

the table. Instead we utilize text-to-sql capability
of LLMs. (2) Our approach requires partial ta-
ble, not full table. (3) Our model can be applied
in tight token boundary (4) Considering only one
response our model can achive comparable perfor-
mance while other top performing model uses more
than 20 responses (5) Our approach is less costly
and it requires less LLM calls which can be vital
factor to reduce the cost.

D RAGAS Evaluation for FeTaQA

Apart from human evaluation, we analyze 100 sam-
ple outputs from the FeTaQA dataset using the
RAGAS evaluator (Gradients, 2023), a framework
specifically designed for evaluating Retrieval Aug-
mented Generation (RAG) pipelines. The RAGAS
evaluation results is listed in Table 15. RAGAS
assesses several key aspects: (1) Faithfulness: Eval-
uates the factual consistency of the answer concern-
ing the context based on the question, (2) Context
Precision: Measures the relevance of the retrieved
context to the question, reflecting the quality of the
retrieval pipeline, (3) Answer Relevancy: Assesses
the relevance of the answer to the question, and (4)
Context Recall: Measures the retriever’s capability
to retrieve all essential information required to an-
swer the question. The performance of TabSQLify
is comparable to that of Table-CoT-chatgpt, which
utilized the full table context. Additionally, the
RAGAS evaluation shows a similar trend to our
human evaluation.

Model Precision Recall Relevancy Faithfulness
TableCoT-chatgpt 0.44 0.94 0.94 0.73
TabSQLifycol 0.42 0.92 0.93 0.67
TabSQLifyrow 0.45 0.97 0.94 0.73
TabSQLifycol+row 0.44 0.94 0.94 0.72

Table 15: RAGAS evaluation results on FeTaQA.

5737

