LLatrieval: LLM-Verified Retrieval for Verifiable Generation

Xiaonan Li*, Changtai Zhu*, Linyang Li, Zhangyue Yin, Tianxiang Sun, Xipeng Qiu
School of Computer Science, Fudan University
Shanghai Key Laboratory of Intelligent Information Processing, Fudan University
{lixn20, xpqiu} @fudan.edu.cn, ctzhu23 @m.fudan.edu.cn

Abstract

Verifiable generation aims to let the large lan-
guage model (LLM) generate text with support-
ing documents, which enables the user to flex-
ibly verify the answer and makes the LLM’s
output more reliable. Retrieval plays a cru-
cial role in verifiable generation. Specifically,
the retrieved documents not only supplement
knowledge to help the LLM generate correct an-
swers, but also serve as supporting evidence for
the user to verify the LLM’s output. However,
the widely used retrievers become the bottle-
neck of the entire pipeline and limit the over-
all performance. Their capabilities are usually
inferior to LLMs since they often have much
fewer parameters than the large language model
and have not been demonstrated to scale well
to the size of LLMs. If the retriever does not
correctly find the supporting documents, the
LLM can not generate the correct and verifi-
able answer, which overshadows the LLM’s
remarkable abilities. To address these limita-
tions, we propose LLatrieval (Large Language
Model Verified Retrieval), where the LLM up-
dates the retrieval result until it verifies that the
retrieved documents can sufficiently support
answering the question. Thus, the LLM can
iteratively provide feedback to retrieval and fa-
cilitate the retrieval result to fully support veri-
fiable generation. Experiments on ALCE show
that LLatrieval significantly outperforms ex-
tensive baselines and achieves state-of-the-art
results.

1 Introduction

Large language models (LLMs) have shown
remarkable abilities over various downstream
tasks (OpenAl, 2023; Ouyang et al., 2022; Chowd-
hery et al., 2023; Touvron et al., 2023; Zhao et al.,
2023). However, LLMs struggle with factual errors,
and often produce non-factual and fabricated con-
tent (Zhang et al., 2023; Rawte et al., 2023; Wang
et al., 2023a; Huang et al., 2023b; Min et al., 2023;

*Equal Contribution

Question
When did the US split from Britain?]

Output
The United States initiated its journey to autonomy from Great
Britain with the pronouncement of independence on July 2, 1776,
despite the current celebrations occurring on July 4, 1776,
which is when the Declaration of Independence was formally
ratified by Congress.[1][2] Subsequently, the Treaty of Paris
was concluded on September 3, 1783, officially marking the
distinction of the United States from British rule.[3]

[3] American Revolu-
tion:... The Treaty
of Paris was signed
September 3, 1783 ..

[1] Decolonization of
the Americas: ... in-
) |dependence from GB on

776 ...
Corpus |2V1Y 2» 1776

[2] Decolonization:..)
It was officially
adop- ted by Congress
on July 4, 1776 ...

((Retrieve 3 .
ny———— &l

Figure 1: Verifiable Generation (Gao et al., 2023c)

Retrieval

Query ——> Docs —|! \)—> Answer

(a) Vanilla Retrieval

Retrieval
Query — > Docs

Update No

(b) LLatrieval

— Support? ——|U5\—> Answer

Figure 2: When the vanilla retrieval overshadows the
LLM’s remarkable abilities in the pipeline, LLatrieval
can fully harness the LLM’s abilities to the retrieval by
verify-update iterations.

Chern et al., 2023), which is usually referred to
as “hallucination” and makes the LLM’s response
not trustworthy. To address these challenges, re-
searchers propose a new generation paradigm, Ver-
ifiable Generation (Gao et al., 2023a; Bohnet et al.,
2022; Gao et al., 2023c; Li et al., 2023a), shown in
Figure 1. For a given question, it requires the LLM
to generate the answer with corresponding support-
ing documents. In this way, these documents can
serve as evidence and enable users to flexibly verify
the answer, which makes the LLM’s response more
reliable and facilitates its application in various
important scenarios, medical diagnosis (Schuster
et al., 2021), scientific writing (Salvagno et al.,
2023), situation reports (Reddy et al., 2023), etc.
Retrieval plays a crucial role in verifiable gen-
eration. Take retrieval-read, a typical pipeline for
verifiable generation (Gao et al., 2023c; Bohnet

5453

Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pages 5453-5471
June 16-21, 2024 ©2024 Association for Computational Linguistics

et al., 2022), as an example, shown in Figure 2(a).
It is divided into two stages: 1) retrieve the rele-
vant documents for the given question, 2) generate
the answer according to the retrieved documents.
On the one hand, the retrieved documents serve as
knowledge supplement to help the LLM generate
the answer. On the other hand, the answer’s verifia-
bility relies on the retrieved documents. Thus, both
of the answer’s correctness and verifiability highly
rely on the quality of retrieval result.

However, the widely used retrievers become the
bottleneck of the entire pipeline and limit the over-
all performance (Wang et al., 2023c; Yoran et al.,
2023). Specifically, although the dense retrievers
have achieved a series of state-of-the-art results in
various scenarios (Karpukhin et al., 2020; Zhang
et al., 2022a; Su et al., 2023), their capabilities are
substantially inferior to LLMs (Brown et al., 2020;
Chowdhery et al., 2023), since they usually have
much fewer parameters, and have not been demon-
strated to scale well to the size of LLMs (Brown
et al., 2020) and achieve comparable capabilities. If
the retriever does not correctly find the supporting
documents, it is challenging for the LLM to output
the answer which is both correct and verifiable. In
the typical pipeline, the LLM usually receives the
retrieval result in a passive manner and can not pro-
vide feedback to the low-quality retrieval even if
it is capable of identifying that the retrieved docu-
ments are irrelevant to the question. These make
the retrieval overshadow the LLM’s remarkable
abilities and limit the overall performance.

To address these limitations, we propose the
framework of LLatrieval (Large Language Model
Verified Retrieval), shown in Figure 2(b), where
the LLM fully provides feedback to the retrieval
and augments it by the verify-update iteration: 1)
Retrieval Verification: The LLM verifies whether
the retrieval result can support answering the give
question. For questions whose documents fail the
verification, we will update their documents and
thus avoid low-quality retrieval. 2) Retrieval Up-
date: The LLM updates and improves the retrieval
result. Specifically, we propose Progressive Se-
lection and Missing-Info Query to let the LLM
progressively scan document candidates and sup-
plement missing information to facilitate better ver-
ifiable generation. Through the verify-update iter-
ation, the LLM can iteratively refine the retrieval
result until it verifies that the retrieved documents
can support answering the given question, and thus
generate both correct and verifiable answers.

‘We summarize our contributions as follows:

* To the best of our knowledge, LLatrieval is
the first framework to let the LLM fully pro-
vide feedback to retrieval and thus augments
it through verify-update iterations.

* We conduct comparison with extensive base-
lines and results show that LLatrieval signif-
icantly outperforms baselines and achieves
new state-of-the-art results on verifiable gen-
eration.

* Further analyses show that each component
contributes critically to improvements and our
method shows the potential to scale retrieval
by scaling the LLM.

* We make our code publicly available to facili-
tate future research. !

We hope that LLatrieval can inspire researchers
of the important design choices for LLM-
augmented Retrieval and pave the way for further
improvements.

2 Background: Verifiable Generation

In this paper, we follow the setting proposed by
Gao et al. (2023c), which requires the LLM to gen-
erate the answer with citations to the supporting
documents, as shown in Figure 1. This setting is
close to the real-world applications of generative
search engines, e.g., New Bing, and the citations
allow the user to verify the answer more conve-
niently. We introduce its typical pipeline and the
verifiability evaluation as follows.

2.1 Pipeline

Verifiable generation is usually demonstrated by
retrieval-read (Gao et al., 2023c; Bohnet et al.,
2022; Malaviya et al., 2023), divided into two

stages: retrieval and generation. First, given
the question ¢, the relevant documents, D =
{dy,dsa, - ,dy}, are retrieved as follows:

D= R(qa]D)v k) = TOp_de]D) Score(q, d) (1)

where R is the retriever and score(-, -) is the simi-
larity score of R (Robertson and Zaragoza, 2009;
Karpukhin et al., 2020). Then the LLM leverages
these documents to generate the answer as:

A = LLM(I4; Demos; q; D), ?2)

"https://github.com/BeastyZ/LLM-Verified-Retrieval

5454

https://github.com/BeastyZ/LLM-Verified-Retrieval

where we follow Gao et al. (2023c¢) to use the
instruction, I,, and demonstrations, Demos, to
make the LLM generate answer and citations to D.

2.2 Verifiability Evaluation

Following Gao et al. (2023c); Liu et al. (2023b),
we evaluate the answer’s verifiability by measuring
citation quality: Citation Recall evaluates whether
the output is fully supported by cited documents;
Citation Precision identifies those citations which
can not help support the answer. According to them,
we calculate Citation F1 to comprehensively eval-
uate the answer’s verifiability. Since the retrieved
documents determine the citation quality and the
answer’s verifiability, the retrieval is crucial for the
overall pipeline. We adopt the recently proposed
ALCE benchmark for automatic citation evalua-
tion (Gao et al., 2023c).

3 LLatrieval: LLM-Verified Retrieval

In the retrieval-read pipeline, the LLM passively
receives the retrieval result and can not provide
feedback to the low-quality retrieval, which makes
the large language model with remarkable abilities
overshadowed by the retriever with much fewer pa-
rameters. To address these limitations, we propose
LLatrieval, where the LLM iteratively provides
feedback to the retrieval through verify-update it-
erations, and thus fully harnesses its abilities for
verifiable generation. In this section, we introduce
the modules of retrieval verification and update,
and the iterative verify-update process as follows.

3.1 Retrieval Verification

Since low-quality retrieval overshadows the LLM’s
remarkable abilities for verifiable generation, we
propose to use the LLM itself to identify the low-
quality retrieval and thus avoid it. In this paper, we
instantiate the retrieval verification as two simple
instruction-based methods, shown in Figure 3, to
let the LLM verify whether the retrieved documents
can support answering the question, and leave more
elaborate methods as future work.

Classification Given the question g and retrieved
documents D, we verify whether D can sufficiently
support answering g by prompting LLM to give a
binary label (yes or no) as:

Verify-Result = LLM(Iy; ¢; D) 3)

where I is the corresponding instruction. Through
the LLM’s strong natural language understanding

Question and Docs
Question: Who is the highest, Trump, Biden, or Obama?

Docl: Joe Biden, the current president, is 6 feet @
inches (183 centimeters)...

Doc2: Barack Obama, the previous president, is 6
feet 1.5 inches (187 centimeters)

Doc3: Joseph Robinette Biden Jr. (born November 20,
1942) is an American politician who is the 46th and

Qurr‘ent president of the United States. /
e Retrieval Verification ~

Instruction (Classification): Can these documents
support answering the question? (Yes or No)
LLM: No
Instruction(Score and Filter): How well do these
documents support answering the question? Give me a
score from @ to 10.
\FLM: 4 Y,

//— Missing-Info Query ~

Instruction: To answer the question, what information
is missing in the provided documents? Generate a
corresponding (question / passage).

LLM(question): What is the height of Donald Trump?

LLM(passage): The height of Donald Trump is 6 feet
\} inches. Donald Trump.. Y,

Figure 3: Retrieval Verification: We propose two ways
to verify whether the documents can support answer the
question. Missing-Info Query: We propose to let the
LLM generate missing-info query in two styles.

ability, we can fully identify the low-quality re-
trieval and thus avoid it. Meanwhile, LLatrieval
finishes when the example’s retrieved documents
pass the retrieval verification, which enables it to
dynamically adjust the LLLM cost under varying
retrieval demands.

Score-and-Filter We further explore a score-and-
filter strategy for retrieval verification. We first
score the current documents by how well they can
support answering the question and then filter low-
quality retrieval by the pre-defined threshold 7 as:

Scorep = LLM(Z;; ¢; D) 4)
Verify-Result = Yes if Scorep > 7 else No 5)

where I is the corresponding instruction. The
higher 7 leads to stricter retrieval verification crite-
rion, better quality of the final retrieval result and
more iterations. By tuning 7, we can dynamically
adjust the strictness of verification and the corre-
sponding LLM cost.

3.2 Retrieval Update

When the current documents fail the retrieval veri-
fication, we will update and refine the low-quality
retrieval result. Specifically, we propose the follow-
ing two LLM-based modules to update the retrieval
result in synergy and thus better harness the LLM’s
abilities for retrieval.

5455

Doc Candidates D1 D2 D3 D4 D5 D6 D7 D8

Selected Docs D2 D8

(a) Progressively selecting the documents, where the
blue and purple color represent the current documents
D and new candidates D in each selection.

Document Selection

The following are docs related to query {QUERY}
Doc 1: {DOC-1}

Doc 2: {DOC-2}

Doc 20: {DOC-20}

Instruction: Select up to k documents for answering
the given question. Output their identifiers.

LLM: 3 7 8 12 15

(b) Using the LLM to select docs from candidates.

Figure 4: Retrieval update by progressive selection.

Progressive Selection Since the dense retriev-
ers (Karpukhin et al., 2020; Su et al., 2023) measure
similarity based on the dual-encoder architecture
and usually have fewer parameters than the pre-
vailing large language models (Brown et al., 2020;
Chowdhery et al., 2023), it is challenging for them
to fully demonstrate fine-grained token-level inter-
actions and thus accurately rank the most relevant
documents at top-K (Zhang et al., 2022a). Inspired
by the retrieval-rerank framework (Nogueira and
Cho, 2019), which reranks the document candi-
dates returned by the retriever to get the final re-
trieval result, we propose Progressive Selection for
retrieval update: the LLM progressively scans the
document candidates returned by the retriever and
selects the supporting documents, shown in Fig-
ure 4. For each selection, we obtain a small list of
new document candidates, D}, by sliding window
on the document candidates (Figure 4(a)). Then
we use the LLM to select £ documents which can
maximally support answering ¢, from D U D?, as
the updated D (Figure 4(b)). Thus, the LLM can
remove irrelevant documents in D and integrate the
critical information in D} to update and improve
D, with D’s size unchanged. Compared to rerank-
ing, the selection directly outputs a combination of
documents, so the updated D can avoid documents
with redundant information and thus get more com-
prehensive. With iteratively updating D from new
D?, the LLM can progressively improve D to make
it better suppport verifiable generation.

Missing-Info Query Since the current docu-
ments can not sufficiently support answering the
question, we propose to update the current docu-
ments D by querying missing information of D
for supplement, shown in Figure 3. Specifically,
we first use the LLM to generate the query of the
missing information in D for answering ¢ as:

Q = LLM(Iy; ¢; D), (6)

where [, instructs the LLM to identify the miss-
ing information in the current documents D for the
given question ¢ and generate the corresponding
query @, shown in Figure 3. Then we use @ to re-
trieve the corresponding documents for information
supplement. For the fusion of the newly retrieved
documents and D, please refer to section 3.3.
When the current dense retrievers often use the
BERT-based architecture (Karpukhin et al., 2020)
and produce one vector for calculating similarity, it
is challenging for them to comprehensively tackle
the user query involving the knowledge from multi-
ple aspects (Chen et al., 2023; Zhang et al., 2022b)
and complicated reasoning, which widely exists
in the real-world scenarios. During the verify-
update iterations, the missing-info query can sup-
plement multiple-aspect information through iter-
atively identifying and querying the missing in-
formation by LLM, which can fully harness the
LLM’s remarkable language understanding and
reasoning abilities. In experiments, we explore
two styles of missing-info query: 1) guestion: the
corresponding question of missing information; 2)
pseudo passage: inspired by the query rewriting
methods (Gao et al., 2023b; Shen et al., 2023), we
generate a pseudo passage of missing information
as retrieval query, which neighbors the relevant
documents and thus can help better retrieve them.
We regard developing stronger missing-info query
modules as future work.

3.3 Verify-Update Iteration

We show the overall procedure in Algorithm 1.
In each iteration, we first update the missing-info
query and retrieve a new list of document candi-
dates D, that may contain missing information of
D (Line 4 ~ 7). Then we update the current D
by progressively selecting from D, (Line 8 ~ 10).
Through the synergy between progressive selec-
tion and missing-info query, we can identify and
retrieve D’s missing information and progressively
incorporate them into D. Since the progressive se-
lection is conducted on D U D, we can not only

5456

Algorithm 1 LLatrieval

Input: Question g, document pool D, the large language
model LLM, the retriever R, the maximum iteration 7',
each iteration’s document candidates quantity N

Output: Supporting Documents D

I: Q<+gq
2: D+ {}
3: foriin1,2---T do

4 if D # {} then

5 @ <+ Use LLM to generate missing-info’s query

6: endif

7

8

DC — R(Qa Da N)
for D} in SlidingWindow(D.) do
D <+ Use LLM to select k docs from D U D,
10: end for
11: if Verify(q, D) — Yes then
12: # D can support answering g, so return D.
13: break
14: end if
15: end for
16: return D

2 20

supplement D’s missing information for g, but also
fully retain the critical documents in D. In this
way, we comprehensively integrate the relevant
documents with multifaceted information and thus
support better verifiable generation. After each
update, we use the LLM to verify whether the cur-
rent documents D can support answering the given
question g (Line 11 ~ 13) and continue updating
the low-quality retrieval result in the next iteration.
Through the verify-update iteration, the retrieval
result can be iteratively updated and improved until
it can sufficiently support high-quality verifiable
generation, and thus help the LLM generate both
correct and verifiable answers. Meanwhile, our
method can dynamically adjust the number of it-
erations under varying retrieval demands and thus
help save the LLM cost.

4 Experiments

4.1 Experimental Settings

Method Comparison Since we focus on aug-
menting the retrieval for verifiable generation,
we compare LLatrieval with various retrieval
methods by evaluating the LL.M output’s correct-
ness and verifiability under the same retrieval-
read pipeline (Gao et al., 2023c¢), including: Re-
triever: 1) BM25 (Robertson and Zaragoza,
2009) 2) DPR (Karpukhin et al., 2020) 3) Con-
triever (Izacard et al., 2022): A large-scale unsu-
pervised contrastive learned dense encoder (Izac-
ard et al., 2022). 4) GTR (Ni et al., 2022): A
large dense retriever initialized from T5-XXL, pre-
trained on a web-mined corpus and fine-tuned
on information retrieval datasets. 5) Instruc-

tor (Su et al., 2023): An instruction-tuned dense
retriever on about 330 diverse tasks. 6) BGE-
Embedding (Xiao et al., 2023): A recent large-scale
trained general-purpose embedder which outper-
forms OpenAl’s “text-embedding-ada-002” APL.
Re-ranker: 1) monoBERT (Nogueira and Cho,
2019)&monoT5 (Nogueira et al., 2020): traditional
point-wise re-rankers based on BERT and T5. 2)
BGE-Reranker (Xiao et al., 2023): A recent large-
scale trained general purpose re-ranker. LLM-
based Retrieval Augmentation: 1) Query Rewrit-
ing: We follow HYDE (Gao et al., 2023b) and
LAMER (Shen et al., 2023) to generate the pseudo
passage based on the question and its relevant
passages, respectively. Then we use the pseudo
passage to conduct retrieval. 2) LLM-reranking:
RankGPT (Sun et al., 2023), which prompts the
LLM to rerank passages by permutation genera-
tion. Except the retriever baselines, we use the
same retriever as in LLatrieval. For more details,
please refter Appendix A. We show the correlation
between retrieval quality and generation quality in
Appendix B.

Dataset and Evaluation We conduct experi-
ments on the ALCE benchmark (Gao et al., 2023c),
which consists of three long-form QA datasets, and
follow ALCE to evaluate the correctness and verifi-
ability of generation.

ASQA (Stelmakh et al., 2022) is a long-form
factoid QA dataset where each question requires
multiple short answers to cover the multiple aspects
of it. To evaluate the answer’s correctness, we cal-
culate the recall of correct short answers (from the
dataset) by identifying whether the short answers
match substrings of model output (exact match re-
call; EM-R).

QAMPARI (Amouyal et al., 2022): a factoid
QA dataset where the answer is a list of entities
from different documents. To evaluate the answer’s
correctness, we calculate the F1 of the prediction
by identifying the exact match to the gold answer
list. Following Gao et al. (2023c), we consider the
recall to be 100% when prediction covers at least 5
correct answers.

ELIS (Fan et al., 2019): a long-form QA dataset
where each question requires comprehensive long
answers and multiple documents as evidence. To
evaluate the answer’s correctness, we follow Gao
et al. (2023c¢) to measure whether the model predic-

tion entails the sub-claims of the gold answer.
Following ALCE (Gao et al., 2023c), on ASQA

5457

Dataset ASQA QAMPARI ELIS Overall
Evaluation Correct Citation Correct Citation Correct Citation Citation
Metric Correct gy
EM-R Rec Prec Fl1 F1 Rec Prec F1 Claim Rec Prec F1
BM25 51.7 433 485 457 17,5 214 257 233 11.7 529 49.0 509 27.0 40.0
DPR 544 522 546 533 185 200 232 215 - - - - - -
Contriever-MS 549 540 57.1 555 17.8 20.7 237 22.1 - - - - - -
GTR 544 522 546 533 185 200 232 215 - - - - - -
Instructor-large 55.6 521 541 531 172 194 219 20.6 - - - - - -
BGE-E-large 559 564 58.6 57.5 173 227 255 240 - - - - - -
monoBERT (50) 53.8 558 574 566 209 26.6 303 283 13.8 635 583 60.8 29.5 48.5
monoBERT (100) 530 540 565 552 202 255 29.1 272 141 633 582 60.6 29.1 47.7
monoT5-3B (50) 54.0 556 577 56.6 203 28.1 320 30.0 139 642 593 61.7 294 494
monoT5-3B (100) 537 53.0 552 541 197 260 29.6 277 141 639 588 61.2 29.2 47.7
BGE-R-large (50) 553 572 59.0 58.1 20.7 26.6 308 28.5 139 659 614 63.6 30.0 50.1
BGE-R-large (100) 54.7 57.4 587 581 19.9 259 296 27.6 144 67.1 62.6 648 29.7 50.2
HYDE 56.8 59.1 60.5 59.8 162 202 277 234 152 704 634 66.7 294 49.9
HYDE* 56.7 575 574 575 165 20.1 262 22.7 - - - - - -
LAMER 553 59.1 60.1 59.6 19.0 23.0 31.0 264 144 70.8 627 66.5 29.0 50.0
LAMER* 557 587 602 594 16.8 20.6 29.1 24.1 - - - - - -
RankGPT (50) 564 585 589 587 207 27.8 316 29.6 135 647 588 61.6 302 50.0
RankGPT (100) 570 588 59.7 59.2 220 284 329 305 13,5 635 576 604 30.8 50.1
LLatrieval (passage) 57.7 609 613 61.1 243 324 36.6 344 165 758 674 713 329 55.6
LLatrieval (question) 57.3 60.5 60.6 60.6 23.6 309 348 327 167 754 68.0 715 325 54.9

Table 1: The performance comparison on ALCE (Gao et al., 2023c), where “(passage)” and “(question)” represent
the styles of missing-info query in LLatrieval. For reranking baselines, the number in parentheses is the number of
reranked document candidates. For query rewriting baselines, the superscript “*” represnets using their original

retriever, otherwise using ours.

and QAMPARI, we use aliases of short answers
provided by the dataset and normalize the model
output and the short answers when measuring exact
match. For ASQA, we use its sub-questions as
the question to eliminate the original question’s
ambiguity, for simplicity.

For detailes of verifiabiliy evaluation, please re-
fer to Section 2.2.

Implementation Details We use the public Ope-
nAl API of “gpt-3.5-turbo-0301" for retrieval and
generation, unless otherwise specified. We use
window size=20 and set the number of document
candidates per query as 50. We set the number of
supporting documents and the maximum of itera-
tions as 5 and 4. We show LLatrieval’s performance
under different hyper-parameters and retrievers in
Appendix C. For the document pool, we follow
Gao et al. (2023c¢) to use the Wikipedia for ASQA
and QAMPARI, and Sphere (Piktus et al., 2021),
a filtered version of a filtered version of Common
Crawl for ELIS, respectively. For ASQA and QAM-
PARI, we use the recently proposed dense embed-
der, BGE-large (Xiao et al., 2023), as the retriever.
For ELIS, we follow Gao et al. (2023c) to use
BM?25 (Robertson and Zaragoza, 2009) since dense
retrievers are costly and slow for large-scale web

corpus. Since our method may involve multiple
queries for one example, the number of its doc-
ument candidates per example is from 50 to 100
(See Appendix A). For comprehensive comparison,
we evaluate the re-ranking baselines with both 50
and 100 document candidates. For the overall im-
plementation details, please refer to Appendix A.

4.2 Main Results

We show the results in Table 1, where we adopt
the classification mode in retrieval verification
for stable performance since the performance of
score-and-filter mode varies with different thresh-
olds. We see that LLatrieval significantly outper-
forms baselines on all three datasets’ correctness
and verifiability, which shows its best overall re-
trieval performance. Specifically, LLatrieval out-
performs the used retriever by 3.4 and 5.9 points
on correctness and citation-F1, respectively, which
straightly demonstrates its effectiveness. Notably,
our method shows consistent improvements over
other LLM-augmented retrieval methods, which
only show comparable performance with tradi-
tional rerankers, and these indicate that our method
can more effectively harness the LLM’s abilities
for augmenting retrieval. Meanwhile, various re-

5458

60 e e

60—

—— AsQA
40 QAMPARI

— AsQA
QAMPARI

v
=)

Citation-F1

N
S

0 2 6 8 0 2 4 6 8

)
Threshold Threshold

Figure 5: The generation quality of filtered examples
over different thresholds.

trievers consistently show worse performance than
LLM-augmented methods, and this demonstrates
that the traditional retrievers become the bottle-
neck for verifiable generation and overshadow the
LLM’s strong abilities. Additionally, our method
demonstrates significant improvements over tradi-
tional neural rerankers, which indicates that the
bottleneck effect of retriever can not be fully miti-
gated by traditional rerankers.

4.3 Analyses

In this section, we conduct analyses of LLatrieval,
where we adopt classification-based retrieval verifi-
cation and “passage” style missing-info query, and
report Citation-F1 for verifiability for simplicity.

Ablation Study We evaluate the effectiveness of
each component on ASQA and QAMPARI. We
show the performance changes after adding each
component one-by-one, from the original retriever
to the second iteration, in Table 2. First we conduct
progressive selection on the original question’s doc-
ument candidates and find it leads to performance
improvements, which directly indicates that it can
help the LLM find better relevant documents from
the candidates. Then we verify whether each ques-
tion’s current documents can support answering it.
Based on the verification results, we divide them
into two groups and separately evaluate their gener-
ation quality. We observe that on questions whose
documents fail the verification, the LLM shows sig-
nificantly worse generation quality in correctness
and verifiability. And after retrieval update, the
updated retrieval result leads to better generation
quality. These demonstrate that the retrieval veri-
fication and update can identify and improve low-
quality retrieval results respectively, and thus lead
to better verifiable generation. In general, these
results show that each component of LLatrieval
contributes critically to the overall performance.

Performance over Different Thresholds We
evaluate the score-and-filter mode of retrieval veri-
fication on ASQA and QAMPARI. We first plot the
generation quality on examples (question & docs

ASQA QAMPARI
Num EM-R Cite Num F1 Cite

BGE-large 948 559 57.5 1000 17.3 24.0
+ Progressive Selection 948 56.8 60.2 1000 23.0 32.3
+ Verification 779 60.3 64.5 827 25.8 36.6

+ Verification X 169 41.0 40.0 173 10.1 9.1
+ Update 169 443 443 173 17.7 21.1

Table 2: The effect of each component. “Verification
/ X ” represent the question whose documents pass /
fail the retrieval verification, respectively. “Update 1
represents the questions paired with updated retrieval
result. “Num” is the corresponding example quantity.

i
@
@

57.6] o corert PN
57.4 e N

£57.2

—— Citation-F1

ey
@
=
o
=
o
R
@ @
s @

Correct
AN
N
Y
o
&
Doc Candidates
Citation-F1

J—
/
/
/

AN
3
©
3
©

5701 /

o
=4
\n

o
a
o
=
1)
&
Doc Candidates

Doc Candidates

8

o
Y

Doc Candidates

8

1
Y

56.81%
0

2 4 6
Threshold

(b) ASQA-Citation

2 4 6
Threshold

(a) ASQA-Correct

-
@
)

w

W

N
-
173
)

2] —— citation-F1

ey
N
@

Doc Candidates

ey
N
G

24.5
/

33.0 _

N
i
o

\

\
ey

1)
S

ey

1)

S

Correct

N
\
\
3
a
3
a

235 /

Citation-F1
w
N
@
Doc Candidate:

Doc Candidates

8

G
o

Doc Candidates

8

o
o

23007
0

2 4 6
Threshold

(d) QAMPARI-Citation

2 4 6
Threshold

(c) QAMPARI-Correct

Figure 6: The performance over different thresholds.

pairs) filtered by different thresholds in the first iter-
ation, shown in Figure 5. We see that the examples
filtered by the higher threshold have better genera-
tion quality, which shows that our verification score
can effectively evaluate the retrieval result. Then
we plot the performance and the LLM cost of our
method over different thresholds in Figure 6, where
we use each example’s overall document candidates
quantity to measure the LLLM cost since their to-
kens predominate in the LLM’s input. We see that
increasing the threshold leads to better performance
with higher LLM cost trade-off. This shows that
our method’s speed, i.e., average iterations, and
LLM cost can be flexibly adjusted to adapt to vary-
ing demands. Meanwhile, compared with rerank-
ing baselines, which do not show significant im-
provements with increasing document candidates
(see Table 1), we can effectively scale our method’s
performance by stricter threshold and more docu-
ment candidates from missing-info query. Addi-
tionally, we observe that a too-strict threshold may
not necessarily improve performance, e.g., “8” for
ASQA’s correctness. We observe that its failure
is because there is no relevant information in the

5459

Dataset QAMPARI
Metric F1 Cite Cite
Original Retriever 173 240 152 66.7

GPT-3.5-Turbo-0301 243 344 165 713
GPT-3.5-Turbo-0613 24.8 329 17.1 71.7
GPT-3.5-Turbo-1106 239 33.6 173 71.7
Llama-2-70B-Chat 21.0 289 158 61.0
Xwin-LM-70B-V0.1 225 30.8 16.1 70.8
Tulu-2-DPO-70B 227 320 169 718

ELI5

Claim

Table 3: The results of LLatrieval across various LLMs.

document pool or the LLLM fails to follow the in-
struction of missing-info query, and we regard the
research of these two aspects as future work.

59.0

62.0

—+— Correct(Ours) 120 —e— Citation(Ours) 120

-=-- Correct(RankGPT) w 61.01 Citation(RankGPT) — n
58.0 008 L0 — 1002
5 — 3 k& - s
] — 2 £60.0 / 2
] 80 3 § / 80 T
£57.0 - g2 s / 2
38 / 60 O £590 60 O
56.0{. g O / 8
. Doc Candidates(Ours) 40 © 58.01 / Doc Candidates(Ours) 40 O

Doc Candidates(RankGPT) L4 Doc Candidates(RankGPT)

5051 37 3 4 S0 1 3 3 4

Max Iteration

(b) ASQA-Citation

Max Iteration

(a) ASQA-Correct

26.0

—=— Correct(Ours) 120 —=— Citation(Ours) 120
- Comrect(RankGPT) oo n 35.01 - citation(RankGPT) . »
24.0 e 1008 o 1008
" = ® T ©
%] / = - =]
9220 7 80 % § 80
5 / g =300 5
o o
©200{ 60 O & / 60
/ 8 3
Doc Candidates(Ours) Doc Candidates(Ours)
18.01 / Doc Candidates(RankGeT) | +0 25.0 ‘/ Doc Candidates(RonkGeT) | *0
0 a4 0 4

1 2 3
Max Iteration

(d) QAMPARI-Citation

1 2 3
Max Iteration

(c) QAMPARI-Correct

Figure 7: The performance over different max iteration.

Performance during Iteration We observe the
performance changes during verify-update itera-
tions on ASQA and QAMPARI. Specifically, we
plot the performance curve and each example’s av-
erage document candidate quantity over different
maximum iterations in Figure 7. We see that the
performance of LLatrieval gets improved with in-
creasing max iterations, which shows that the docu-
ment quality can be gradually improved during the
multiple verify-update iterations. Meanwhile, we
observe that although the average document candi-
dates slightly increase with increasing max itera-
tions, our method can outperform RankGPT with
fewer average document candidates, which shows
LLatrieval’s efficiency that it can dynamically fin-
ish when the retrieved documents can sufficiently
support answering the question.

The Comparison with Gold Feedback Recent
work indicates that the feedback from the LLM can
not help improve the prediction of itself (Huang

ASQA
Doc Candidates Correct Cite
Our Method 68.9 57.7 614
Our Method (with gold) 136.9 58.1 60.8
QAMPARI
Doc Candidates Correct Cite
Our Method 64.5 243 34.4
Our Method (with gold) 101.0 25.2 33.6

Table 4: The comparison with using gold answers for
retrieval verification.

et al., 2023a; Stechly et al., 2023; Valmeekam et al.,
2023). Since we use the LLM to verify the retrieval
result updated by itself, and such verification can
be seen as a type of internal feedback, we compare
it with the external feedback from gold answers on
ASQA and QAMPARI. Specifically, for external
feedback, we take whether gold answers fully ap-
pear in the retrieved result as verification criteria.
We show the results in Table 4. We see that both
internal and external feedbacks achieve compara-
ble performance with each other, when the internal
feedback leads to less LLM cost. These show that
the LLM is capable of evaluating the retrieval re-
sult and has the potential to provide competitive
feedback for retrieval as gold answers.

The Generality across Various LLMs We ana-
lyze the performance of LLatrieval over various
closed-source and open-source LLLMs (Touvron
et al., 2023; Team, 2023; Ivison et al., 2023) ,
shown in Table 3. In general, our method con-
sistently leads to significant improvements over the
original retriever, which shows its robustness and
generality. Meanwhile, we find that our method
with stronger LLM (from Llama2-70B to GPT-3.5)
can lead to better performance, which indicates the
potential to scale retrieval performance by scaling
LLM and our method’s utility in the future where
more powerful LLMs are built, while dense retriev-
ers have not been proved to scale well to the size
of LLMs.

5 Related Work

Verifiable Generation Verifiable generation,
which aims to generate content with supporting
documents, has drawn increasing attention in re-
cent years. The previous work mainly focuses on
two aspects: 1) Modeling: Nakano et al. (2021),
Menick et al. (2022), Liu et al. (2023¢) and Qin
et al. (2023a) explore training the specialized LLM

5460

to browse web pages and answer long-form ques-
tions with supporting evidence. Gao et al. (2023a)
propose research-and-revision to retrieve support-
ing evidence for LLM’s output and fix unsupported
content. Li et al. (2023b) explore verifiable gener-
ation on knowledge graph. 2) Verifiability Eval-
uation: Rashkin et al. (2021) define Attributable
to Identified Sources (AlS), a framework of human
evaluation that considers whether the answer can
be supported by the evidence. Gao et al. (2023a)
propose auto-AIS, which utilizes a strong NLI
model (Honovich et al., 2022) to approximate hu-
man AIS judgments. Liu et al. (2023b) propose
citation-recall and citation-precision to evaluate
the verifiability of prevailing generative search en-
gines, e.g., New Bing. Gao et al. (2023c) propose a
framework that automates the evaluation of recall
and precision for the citation in the LLM’s output.
Since retrieval is important for finding supporting
evidence, we propose LLatrieval to iteratively up-
date and verify the retrieval result, and thus fully
harness the LLM for better verifiable generation.

LLM-based Retrieval Augmentation The exist-
ing methods of LLM-augmented Retrieval can be
divided into three categories: 1) Query Rewriting:
Gao et al. (2023b); Wang et al. (2023b) propose to
use the LLM to generate a pseudo passage of the
question as retrieval query, which neighbors rele-
vant documents and helps retrieve them. Shen et al.
(2023) use the retrieved passage to help the LLM
generate better pseudo passage as retrieval query.
Shao et al. (2023) propose to iteratively improve the
retrieval query by synergizing retrieval and genera-
tion. Ma et al. (2023) train specialized query rewrit-
ers for downstream RAG tasks. 2) Re-ranking:
Sun et al. (2023) propose RankGPT, which uses
ChatGPT to generate the permutation of documents
for reranking. Tang et al. (2023) and Qin et al.
(2023b) use multiple-sampling and pair-wise rank-
ing to mitigate the positional bias of RankGPT, re-
spectively. 3) Data Augmentation: Bonifacio et al.
(2022), Dai et al. (2023) and Jeronymo et al. (2023)
use the LLM to generate relevant queries for ex-
isting documents for training the retriever. Sachan
et al. (2022) use the LLLM to provide soft labels of
unpaired question&documents for the retriever’s
training. Although these methods use the LLM
to enhance the retrieval from various aspects, the
LLM can not fully provide feedback to the retrieval
result and the overall performance is highly limited
by the retriever. For example, the query rewrit-

ing methods take the pseudo passage as query in
a heuristic manner, which relies on the generated
passage quality and can not ensure the relevance of
retrieved documents. In LLatrieval, the LLM can
iteratively provide feedback to the retriever until
the documents sufficiently support verifiable gener-
ation, which can fully harness the LLM’s ability to
facilitate the retrieval stage.

6 Conclusion

We propose LLatrieval to retrieve supporting doc-
uments for verifiable generation, which lets the
LLM iteratively refine the retrieval result until the
LLM verifies the retrieved documents can support
answering the given question. In this manner, LLa-
trieval can fully harness the LLM’s ability and fa-
cilitate the retrieval result to help generate both
correct and verifiable answers. Experimental re-
sults show that our method outperforms extensive
baselines and achieves new state-of-the-art results.

Limitations

* Although LLatrieval can dynamically ad-
just the running time according to the re-
trieval demand and shows better performance-
efficiency trade-off than RankGPT (Sun et al.,
2023), it relies on real-time LLM inference
and thus may not be suitable for tasks that
require low latency or high throughput. How-
ever, over the years we have seen the model
acceleration mechanisms advance and hard-
ware performance increase, which can help
improve the efficiency of LLM inference.

* Since existing works have shown LLMs ex-
hibit various types of biases (Bender et al.,
2021), LLatrieval based on LLMs, may bias
the final retrieval result. We are optimistic that
this problem can be mitigated as LLatrieval
is based on ChatGPT, and OpenAl has made
substantial efforts to reduce its toxicity and
bias (Ouyang et al., 2022). Additionally, we
can use more elaborate prompts on LLMs to
further reduce the bias in the process of LLa-
trieval.

Acknowledgments

This work was supported by the National Key
Research and Development Program of China
(N0.2022CSJGGO0801). The computations in this
research were performed using the CFFF platform
of Fudan University.

5461

References

Samuel Joseph Amouyal, Ohad Rubin, Ori Yoran,
Tomer Wolfson, Jonathan Herzig, and Jonathan
Berant. 2022. QAMPARI: : An open-domain
question answering benchmark for questions with
many answers from multiple paragraphs. CoRR,
abs/2205.12665.

Emily M. Bender, Timnit Gebru, Angelina McMillan-
Major, and Shmargaret Shmitchell. 2021. On the
dangers of stochastic parrots: Can language models
be too big? In FAccT '21: 2021 ACM Conference on
Fairness, Accountability, and Transparency, Virtual
Event / Toronto, Canada, March 3-10, 2021, pages
610-623. ACM.

Bernd Bohnet, Vinh Q. Tran, Pat Verga, Roee Aharoni,
Daniel Andor, Livio Baldini Soares, Jacob Eisen-
stein, Kuzman Ganchev, Jonathan Herzig, Kai Hui,
Tom Kwiatkowski, Ji Ma, Jianmo Ni, Tal Schuster,
William W. Cohen, Michael Collins, Dipanjan Das,
Donald Metzler, Slav Petrov, and Kellie Webster.
2022. Attributed question answering: Evaluation
and modeling for attributed large language models.
CoRR, abs/2212.08037.

Luiz Henrique Bonifacio, Hugo Queiroz Abonizio,
Marzieh Fadaee, and Rodrigo Frassetto Nogueira.
2022. Inpars: Data augmentation for informa-
tion retrieval using large language models. CoRR,
abs/2202.05144.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurlPS 2020, December 6-12,
2020, virtual.

Sihao Chen, Hongming Zhang, Tong Chen, Ben Zhou,
Wenhao Yu, Dian Yu, Baolin Peng, Hongwei Wang,
Dan Roth, and Dong Yu. 2023. Sub-sentence en-
coder: Contrastive learning of propositional semantic
representations. CoRR, abs/2311.04335.

I-Chun Chern, Steffi Chern, Shigi Chen, Weizhe Yuan,
Kehua Feng, Chunting Zhou, Junxian He, Graham
Neubig, and Pengfei Liu. 2023. Factool: Factual-
ity detection in generative Al - A tool augmented

framework for multi-task and multi-domain scenar-
ios. CoRR, abs/2307.13528.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,

5462

Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2023. Palm: Scaling language mod-
eling with pathways. J. Mach. Learn. Res., 24:240:1-
240:113.

Zhuyun Dai, Vincent Y. Zhao, Ji Ma, Yi Luan, Jianmo

Ni, Jing Lu, Anton Bakalov, Kelvin Guu, Keith B.
Hall, and Ming-Wei Chang. 2023. Promptagator:
Few-shot dense retrieval from 8 examples. In The
Eleventh International Conference on Learning Rep-
resentations, ICLR 2023, Kigali, Rwanda, May 1-5,
2023. OpenReview.net.

Angela Fan, Yacine Jernite, Ethan Perez, David Grang-

ier, Jason Weston, and Michael Auli. 2019. ELI5:
long form question answering. In Proceedings of
the 57th Conference of the Association for Compu-
tational Linguistics, ACL 2019, Florence, Italy, July
28- August 2, 2019, Volume 1: Long Papers, pages
3558-3567. Association for Computational Linguis-
tics.

Luyu Gao, Zhuyun Dai, Panupong Pasupat, Anthony

Chen, Arun Tejasvi Chaganty, Yicheng Fan, Vin-
cent Y. Zhao, Ni Lao, Hongrae Lee, Da-Cheng Juan,
and Kelvin Guu. 2023a. RARR: researching and
revising what language models say, using language
models. In Proceedings of the 61st Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), ACL 2023, Toronto, Canada,
July 9-14, 2023, pages 16477-16508. Association for
Computational Linguistics.

Luyu Gao, Xueguang Ma, Jimmy Lin, and Jamie Callan.

2023b. Precise zero-shot dense retrieval without rel-
evance labels. In Proceedings of the 61st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), ACL 2023, Toronto,
Canada, July 9-14, 2023, pages 1762-1777. Associa-
tion for Computational Linguistics.

Tianyu Gao, Howard Yen, Jiatong Yu, and Dangi Chen.

2023c. Enabling large language models to generate
text with citations. CoRR, abs/2305.14627.

Or Honovich, Roee Aharoni, Jonathan Herzig, Hagai

Taitelbaum, Doron Kukliansy, Vered Cohen, Thomas
Scialom, Idan Szpektor, Avinatan Hassidim, and
Yossi Matias. 2022. TRUE: re-evaluating factual

https://doi.org/10.48550/ARXIV.2205.12665
https://doi.org/10.48550/ARXIV.2205.12665
https://doi.org/10.48550/ARXIV.2205.12665
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.48550/ARXIV.2212.08037
https://doi.org/10.48550/ARXIV.2212.08037
http://arxiv.org/abs/2202.05144
http://arxiv.org/abs/2202.05144
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.48550/ARXIV.2311.04335
https://doi.org/10.48550/ARXIV.2311.04335
https://doi.org/10.48550/ARXIV.2311.04335
https://doi.org/10.48550/ARXIV.2307.13528
https://doi.org/10.48550/ARXIV.2307.13528
https://doi.org/10.48550/ARXIV.2307.13528
https://doi.org/10.48550/ARXIV.2307.13528
http://jmlr.org/papers/v24/22-1144.html
http://jmlr.org/papers/v24/22-1144.html
https://openreview.net/pdf?id=gmL46YMpu2J
https://openreview.net/pdf?id=gmL46YMpu2J
https://doi.org/10.18653/V1/P19-1346
https://doi.org/10.18653/V1/P19-1346
https://doi.org/10.18653/V1/2023.ACL-LONG.910
https://doi.org/10.18653/V1/2023.ACL-LONG.910
https://doi.org/10.18653/V1/2023.ACL-LONG.910
https://doi.org/10.18653/V1/2023.ACL-LONG.99
https://doi.org/10.18653/V1/2023.ACL-LONG.99
https://doi.org/10.48550/ARXIV.2305.14627
https://doi.org/10.48550/ARXIV.2305.14627
https://doi.org/10.18653/V1/2022.NAACL-MAIN.287

consistency evaluation. In Proceedings of the 2022
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, NAACL 2022, Seattle, WA,
United States, July 10-15, 2022, pages 3905-3920.
Association for Computational Linguistics.

Jie Huang, Xinyun Chen, Swaroop Mishra,
Huaixiu Steven Zheng, Adams Wei Yu, Xiny-
ing Song, and Denny Zhou. 2023a. Large language
models cannot self-correct reasoning yet. CoRR,
abs/2310.01798.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong,
Zhangyin Feng, Haotian Wang, Qianglong Chen,
Weihua Peng, Xiaocheng Feng, Bing Qin, and Ting
Liu. 2023b. A survey on hallucination in large lan-
guage models: Principles, taxonomy, challenges, and
open questions. CoRR, abs/2311.05232.

Hamish Ivison, Yizhong Wang, Valentina Pyatkin,
Nathan Lambert, Matthew Peters, Pradeep Dasigi,
Joel Jang, David Wadden, Noah A. Smith, Iz Belt-
agy, and Hannaneh Hajishirzi. 2023. Camels in a
changing climate: Enhancing Im adaptation with tulu
2.

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Se-
bastian Riedel, Piotr Bojanowski, Armand Joulin,
and Edouard Grave. 2022. Unsupervised dense in-
formation retrieval with contrastive learning. Trans.
Mach. Learn. Res., 2022.

Vitor Jeronymo, Luiz Henrique Bonifacio,
Hugo Queiroz Abonizio, Marzieh Fadaee, Roberto
de Alencar Lotufo, Jakub Zavrel, and Rodrigo Fras-
setto Nogueira. 2023. Inpars-v2: Large language
models as efficient dataset generators for information
retrieval. CoRR, abs/2301.01820.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
S. H. Lewis, Ledell Wu, Sergey Edunov, Dangi Chen,
and Wen-tau Yih. 2020. Dense passage retrieval for
open-domain question answering. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP 2020, Online,
November 16-20, 2020, pages 6769—6781. Associa-
tion for Computational Linguistics.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, Kristina Toutanova, Llion Jones, Matthew
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: A benchmark for question answering
research. Transactions of the Association for Compu-
tational Linguistics, 7:452-466.

Dongfang Li, Zetian Sun, Xinshuo Hu, Zhenyu Liu,
Ziyang Chen, Baotian Hu, Aiguo Wu, and Min
Zhang. 2023a. A survey of large language models
attribution. CoRR, abs/2311.03731.

Xinze Li, Yixin Cao, Liangming Pan, Yubo Ma, and
Aixin Sun. 2023b. Towards verifiable generation:

A benchmark for knowledge-aware language model
attribution. CoRR, abs/2310.05634.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2023a. Lost in the middle: How language
models use long contexts. CoRR, abs/2307.03172.

Nelson F. Liu, Tianyi Zhang, and Percy Liang. 2023b.
Evaluating verifiability in generative search engines.
CoRR, abs/2304.09848.

Xiao Liu, Hanyu Lai, Hao Yu, Yifan Xu, Aohan Zeng,
Zhengxiao Du, Peng Zhang, Yuxiao Dong, and
Jie Tang. 2023c. Webglm: Towards an efficient
web-enhanced question answering system with hu-
man preferences. In Proceedings of the 29th ACM
SIGKDD Conference on Knowledge Discovery and
Data Mining, KDD 2023, Long Beach, CA, USA,
August 6-10, 2023, pages 4549-4560. ACM.

Xinbei Ma, Yeyun Gong, Pengcheng He, Hai Zhao,
and Nan Duan. 2023. Query rewriting for
retrieval-augmented large language models. CoRR,
abs/2305.14283.

Chaitanya Malaviya, Subin Lee, Sihao Chen, Elizabeth
Sieber, Mark Yatskar, and Dan Roth. 2023. Ex-
pertqa: Expert-curated questions and attributed an-
swers. CoRR, abs/2309.07852.

Jacob Menick, Maja Trebacz, Vladimir Mikulik, John
Aslanides, H. Francis Song, Martin J. Chadwick,
Mia Glaese, Susannah Young, Lucy Campbell-
Gillingham, Geoffrey Irving, and Nat McAleese.
2022. Teaching language models to support answers
with verified quotes. CoRR, abs/2203.11147.

Sewon Min, Kalpesh Krishna, Xinxi Lyu, Mike
Lewis, Wen-tau Yih, Pang Wei Koh, Mohit Iyyer,
Luke Zettlemoyer, and Hannaneh Hajishirzi. 2023.
Factscore: Fine-grained atomic evaluation of fac-

tual precision in long form text generation. CoRR,
abs/2305.14251.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu,
Long Ouyang, Christina Kim, Christopher Hesse,
Shantanu Jain, Vineet Kosaraju, William Saunders,
Xu Jiang, Karl Cobbe, Tyna Eloundou, Gretchen
Krueger, Kevin Button, Matthew Knight, Benjamin
Chess, and John Schulman. 2021. Webgpt: Browser-
assisted question-answering with human feedback.
CoRR, abs/2112.09332.

Jianmo Ni, Chen Qu, Jing Lu, Zhuyun Dai, Gustavo
Hernandez Abrego, Ji Ma, Vincent Zhao, Yi Luan,
Keith Hall, Ming-Wei Chang, and Yinfei Yang. 2022.
Large dual encoders are generalizable retrievers. In
Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, pages
98449855, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

Rodrigo Nogueira, Zhiying Jiang, Ronak Pradeep, and
Jimmy Lin. 2020. Document ranking with a pre-
trained sequence-to-sequence model. In Findings

5463

https://doi.org/10.18653/V1/2022.NAACL-MAIN.287
https://doi.org/10.48550/ARXIV.2310.01798
https://doi.org/10.48550/ARXIV.2310.01798
https://doi.org/10.48550/ARXIV.2311.05232
https://doi.org/10.48550/ARXIV.2311.05232
https://doi.org/10.48550/ARXIV.2311.05232
http://arxiv.org/abs/2311.10702
http://arxiv.org/abs/2311.10702
http://arxiv.org/abs/2311.10702
https://openreview.net/forum?id=jKN1pXi7b0
https://openreview.net/forum?id=jKN1pXi7b0
https://doi.org/10.48550/ARXIV.2301.01820
https://doi.org/10.48550/ARXIV.2301.01820
https://doi.org/10.48550/ARXIV.2301.01820
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.550
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.550
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.48550/ARXIV.2311.03731
https://doi.org/10.48550/ARXIV.2311.03731
https://doi.org/10.48550/ARXIV.2310.05634
https://doi.org/10.48550/ARXIV.2310.05634
https://doi.org/10.48550/ARXIV.2310.05634
https://doi.org/10.48550/ARXIV.2307.03172
https://doi.org/10.48550/ARXIV.2307.03172
https://doi.org/10.48550/ARXIV.2304.09848
https://doi.org/10.1145/3580305.3599931
https://doi.org/10.1145/3580305.3599931
https://doi.org/10.1145/3580305.3599931
https://doi.org/10.48550/ARXIV.2305.14283
https://doi.org/10.48550/ARXIV.2305.14283
https://doi.org/10.48550/ARXIV.2309.07852
https://doi.org/10.48550/ARXIV.2309.07852
https://doi.org/10.48550/ARXIV.2309.07852
https://doi.org/10.48550/ARXIV.2203.11147
https://doi.org/10.48550/ARXIV.2203.11147
https://doi.org/10.48550/ARXIV.2305.14251
https://doi.org/10.48550/ARXIV.2305.14251
http://arxiv.org/abs/2112.09332
http://arxiv.org/abs/2112.09332
https://doi.org/10.18653/v1/2022.emnlp-main.669
https://doi.org/10.18653/v1/2020.findings-emnlp.63
https://doi.org/10.18653/v1/2020.findings-emnlp.63

of the Association for Computational Linguistics:
EMNLP 2020, pages 708-718, Online. Association
for Computational Linguistics.

Rodrigo Frassetto Nogueira and Kyunghyun Cho.
2019. Passage re-ranking with BERT. CoRR,
abs/1901.04085.

OpenAl. 2023.
abs/2303.08774.

GPT-4 technical report. CoRR,

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray,
John Schulman, Jacob Hilton, Fraser Kelton, Luke
Miller, Maddie Simens, Amanda Askell, Peter Welin-
der, Paul F. Christiano, Jan Leike, and Ryan Lowe.
2022. Training language models to follow instruc-
tions with human feedback. In NeurIPS.

Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin,
Dmytro Okhonko, Samuel Broscheit, Gautier Izacard,
Patrick S. H. Lewis, Barlas Oguz, Edouard Grave,
Wen-tau Yih, and Sebastian Riedel. 2021. The web
is your oyster - knowledge-intensive NLP against a
very large web corpus. CoRR, abs/2112.09924.

Yujia Qin, Zihan Cai, Dian Jin, Lan Yan, Shihao
Liang, Kunlun Zhu, Yankai Lin, Xu Han, Ning Ding,
Huadong Wang, Ruobing Xie, Fanchao Qi, Zhiyuan
Liu, Maosong Sun, and Jie Zhou. 2023a. Webcpm:
Interactive web search for chinese long-form ques-
tion answering. In Proceedings of the 61st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), ACL 2023, Toronto,
Canada, July 9-14, 2023, pages 8968—-8988. Associa-
tion for Computational Linguistics.

Zhen Qin, Rolf Jagerman, Kai Hui, Honglei Zhuang,
Junru Wu, Jiaming Shen, Tianqi Liu, Jialu Liu, Don-
ald Metzler, Xuanhui Wang, and Michael Bendersky.
2023b. Large language models are effective text
rankers with pairwise ranking prompting. CoRR,
abs/2306.17563.

Hannah Rashkin, Vitaly Nikolaev, Matthew Lamm,
Michael Collins, Dipanjan Das, Slav Petrov, Gau-
rav Singh Tomar, Tulia Turc, and David Reitter. 2021.
Measuring attribution in natural language generation
models. CoRR, abs/2112.12870.

Vipula Rawte, Amit P. Sheth, and Amitava Das. 2023.
A survey of hallucination in large foundation models.
CoRR, abs/2309.05922.

Revanth Gangi Reddy, Yi R. Fung, Qi Zeng, Manling
Li, Zigi Wang, Paul Sullivan, and Heng Ji. 2023.
Smartbook: Ai-assisted situation report generation.
CoRR, abs/2303.14337.

Stephen E. Robertson and Hugo Zaragoza. 2009. The
probabilistic relevance framework: BM25 and be-
yond. Found. Trends Inf. Retr., 3(4):333-389.

Devendra Singh Sachan, Mike Lewis, Dani Yogatama,
Luke Zettlemoyer, Joelle Pineau, and Manzil Zaheer.
2022. Questions are all you need to train a dense
passage retriever. CoRR, abs/2206.10658.

M. Salvagno, E.S. Taccone, A.G. Gerli, and ChatGPT.
2023. Can artificial intelligence help for scientific
writing? Critical Care, 27(1). Publisher: BioMed
Central Ltd.

Tal Schuster, Adam Fisch, and Regina Barzilay. 2021.
Get your vitamin c! robust fact verification with
contrastive evidence. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, NAACL-HLT 2021, Online,
June 6-11, 2021, pages 624—643. Association for
Computational Linguistics.

Zhihong Shao, Yeyun Gong, Yelong Shen, Minlie
Huang, Nan Duan, and Weizhu Chen. 2023. En-
hancing retrieval-augmented large language models
with iterative retrieval-generation synergy. CoRR,
abs/2305.15294.

Tao Shen, Guodong Long, Xiubo Geng, Chongyang
Tao, Tianyi Zhou, and Daxin Jiang. 2023. Large lan-
guage models are strong zero-shot retriever. CoRR,
abs/2304.14233.

Kaya Stechly, Matthew Marquez, and Subbarao Kamb-
hampati. 2023. GPT-4 doesn’t know it’s wrong: An
analysis of iterative prompting for reasoning prob-
lems. CoRR, abs/2310.12397.

Ivan Stelmakh, Yi Luan, Bhuwan Dhingra, and Ming-
Wei Chang. 2022. ASQA: factoid questions meet
long-form answers. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, EMNLP 2022, Abu Dhabi, United Arab
Emirates, December 7-11, 2022, pages 8273—8288.
Association for Computational Linguistics.

Hongjin Su, Weijia Shi, Jungo Kasai, Yizhong Wang,
Yushi Hu, Mari Ostendorf, Wen-tau Yih, Noah A.
Smith, Luke Zettlemoyer, and Tao Yu. 2023. One
embedder, any task: Instruction-finetuned text em-
beddings. In Findings of the Association for Com-
putational Linguistics: ACL 2023, Toronto, Canada,
July 9-14, 2023, pages 1102—-1121. Association for
Computational Linguistics.

Weiwei Sun, Lingyong Yan, Xinyu Ma, Pengjie Ren,
Dawei Yin, and Zhaochun Ren. 2023. Is chatgpt
good at search? investigating large language models
as re-ranking agent. CoRR, abs/2304.09542.

Raphael Tang, Xinyu Zhang, Xueguang Ma, Jimmy Lin,
and Ferhan Ture. 2023. Found in the middle: Permu-
tation self-consistency improves listwise ranking in
large language models. CoRR, abs/2310.07712.

Xwin-LM Team. 2023. Xwin-lm.

5464

http://arxiv.org/abs/1901.04085
https://doi.org/10.48550/ARXIV.2303.08774
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://arxiv.org/abs/2112.09924
http://arxiv.org/abs/2112.09924
http://arxiv.org/abs/2112.09924
https://doi.org/10.18653/V1/2023.ACL-LONG.499
https://doi.org/10.18653/V1/2023.ACL-LONG.499
https://doi.org/10.18653/V1/2023.ACL-LONG.499
https://doi.org/10.48550/ARXIV.2306.17563
https://doi.org/10.48550/ARXIV.2306.17563
http://arxiv.org/abs/2112.12870
http://arxiv.org/abs/2112.12870
https://doi.org/10.48550/ARXIV.2309.05922
https://doi.org/10.48550/ARXIV.2303.14337
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.48550/ARXIV.2206.10658
https://doi.org/10.48550/ARXIV.2206.10658
https://doi.org/10.1186/s13054-023-04380-2
https://doi.org/10.1186/s13054-023-04380-2
https://doi.org/10.18653/V1/2021.NAACL-MAIN.52
https://doi.org/10.18653/V1/2021.NAACL-MAIN.52
https://doi.org/10.48550/ARXIV.2305.15294
https://doi.org/10.48550/ARXIV.2305.15294
https://doi.org/10.48550/ARXIV.2305.15294
https://doi.org/10.48550/ARXIV.2304.14233
https://doi.org/10.48550/ARXIV.2304.14233
https://doi.org/10.48550/ARXIV.2310.12397
https://doi.org/10.48550/ARXIV.2310.12397
https://doi.org/10.48550/ARXIV.2310.12397
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.566
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.566
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.71
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.71
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.71
https://doi.org/10.48550/ARXIV.2304.09542
https://doi.org/10.48550/ARXIV.2304.09542
https://doi.org/10.48550/ARXIV.2304.09542
https://doi.org/10.48550/ARXIV.2310.07712
https://doi.org/10.48550/ARXIV.2310.07712
https://doi.org/10.48550/ARXIV.2310.07712
https://github.com/Xwin-LM/Xwin-LM

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurélien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models. CoRR, abs/2307.09288.

Karthik Valmeekam, Matthew Marquez, and Subbarao
Kambhampati. 2023. Can large language models
really improve by self-critiquing their own plans?
CoRR, abs/2310.08118.

Cunxiang Wang, Xiaoze Liu, Yuanhao Yue, Xiangru
Tang, Tianhang Zhang, Jiayang Cheng, Yunzhi Yao,
Wenyang Gao, Xuming Hu, Zehan Qi, Yidong Wang,
Linyi Yang, Jindong Wang, Xing Xie, Zheng Zhang,
and Yue Zhang. 2023a. Survey on factuality in large
language models: Knowledge, retrieval and domain-
specificity. CoRR, abs/2310.07521.

Liang Wang, Nan Yang, and Furu Wei. 2023b.
Query2doc: Query expansion with large language
models. CoRR, abs/2303.07678.

Zhiruo Wang, Jun Araki, Zhengbao Jiang, Md. Rizwan
Parvez, and Graham Neubig. 2023c. Learning
to filter context for retrieval-augmented generation.
CoRR, abs/2311.08377.

Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas
Muennighof. 2023. C-pack: Packaged resources
to advance general chinese embedding. CoRR,
abs/2309.07597.

Ori Yoran, Tomer Wolfson, Ori Ram, and Jonathan
Berant. 2023. Making retrieval-augmented lan-
guage models robust to irrelevant context. CoRR,
abs/2310.01558.

Hang Zhang, Yeyun Gong, Yelong Shen, Jiancheng Lv,
Nan Duan, and Weizhu Chen. 2022a. Adversarial
retriever-ranker for dense text retrieval. In The Tenth
International Conference on Learning Representa-
tions, ICLR 2022, Virtual Event, April 25-29, 2022.
OpenReview.net.

Shunyu Zhang, Yaobo Liang, Ming Gong, Daxin Jiang,
and Nan Duan. 2022b. Multi-view document repre-
sentation learning for open-domain dense retrieval.

In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), ACL 2022, Dublin, Ireland, May
22-27, 2022, pages 5990-6000. Association for Com-
putational Linguistics.

Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu,
Tingchen Fu, Xinting Huang, Enbo Zhao, Yu Zhang,
Yulong Chen, Longyue Wang, Anh Tuan Luu, Wei
Bi, Freda Shi, and Shuming Shi. 2023. Siren’s song
in the Al ocean: A survey on hallucination in large
language models. CoRR, abs/2309.01219.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yinggian Min, Be-
ichen Zhang, Junjie Zhang, Zican Dong, Yifan Du,
Chen Yang, Yushuo Chen, Zhipeng Chen, Jinhao
Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang
Liu, Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen.
2023. A survey of large language models. CoRR,
abs/2303.18223.

5465

https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2310.08118
https://doi.org/10.48550/ARXIV.2310.08118
https://doi.org/10.48550/ARXIV.2310.07521
https://doi.org/10.48550/ARXIV.2310.07521
https://doi.org/10.48550/ARXIV.2310.07521
https://doi.org/10.48550/ARXIV.2303.07678
https://doi.org/10.48550/ARXIV.2303.07678
https://doi.org/10.48550/ARXIV.2311.08377
https://doi.org/10.48550/ARXIV.2311.08377
https://doi.org/10.48550/ARXIV.2309.07597
https://doi.org/10.48550/ARXIV.2309.07597
https://doi.org/10.48550/ARXIV.2310.01558
https://doi.org/10.48550/ARXIV.2310.01558
https://openreview.net/forum?id=MR7XubKUFB
https://openreview.net/forum?id=MR7XubKUFB
https://doi.org/10.18653/V1/2022.ACL-LONG.414
https://doi.org/10.18653/V1/2022.ACL-LONG.414
https://doi.org/10.48550/ARXIV.2309.01219
https://doi.org/10.48550/ARXIV.2309.01219
https://doi.org/10.48550/ARXIV.2309.01219
https://doi.org/10.48550/arXiv.2303.18223

A Implementation Details

A.1 Method Details

We use the public OpenAl language model API of
“gpt-3.5-turbo-0301” for retrieval and generation,
unless otherwise specified. We set the temperature
as 0 to mitigate the random fluctuation. We use
window size=20 and set the number of document
candidates per query as 50. We set the number of
supporting documents and the maximum of itera-
tion as 5 and 4. For the document pool, we follow
Gao et al. (2023c) to use the Wikipedia for ASQA
and QAMPARYI, and Sphere (Piktus et al., 2021), a
filtered version of a filtered version of Common
Crawl? for ELI5, respectively. For ASQA and
QAMPARI, we use the recently proposed dense
embedder, BGE-large (Xiao et al., 2023), as the
retriever. For ELIS, we follow Gao et al. (2023c¢) to
use BM25 (Robertson and Zaragoza, 2009) since
dense retrievers are costly and slow for large-scale
web corpus.

In progressive selection, we put the current doc-
uments before the new list of candidates in the
LLM’s input. Inspired by Gao et al. (2023c), we
use the document summary generated by LLM in
progressive selection and thus we can significantly
reduce the overall input length when the LLM se-
lect documents, which alleviates the challenges of
LLMs finding relevant content in long context (Liu
et al., 2023a). For ELI5, we use the HYDE (Gao
et al., 2023b) to generate the first iteration’s query
to get the better document candidates.

Compared Method Details For HYDE,
LAMER and RankGPT (Sun et al., 2023), we use
its original instructions and the LLM used in LLa-
trieval for fair comparison. For DPR, we follow
Gao et al. (2023c¢) to use its original checkpoints
on NQ (Kwiatkowski et al., 2019). For Contriever,
we use its unsupervised version 3 and supervised
version* fine-tuned on MS MARCO. For GTR (Ni
etal., 2022), we follow Gao et al. (2023c) to use its
T5-XXL verison’. For instructor (Su et al., 2023),
we use its large® version. For BGE-Embedding,
we use its large’ version. Following Sun et al.
(2023), we use the 340M version of monoBERT?,

*https://commoncrawl.org.
3https://huggingface.co/facebook/contriever
“https://huggingface.co/facebook/contriever-msmarco
Shttps://huggingface.co/sentence-transformers/gtr-t5-xxI
®https://huggingface.co/hkunlp/instructor-large
"https://huggingface.co/BAAl/bge-large-en-v1.5
8https://huggingface.co/castorini/monobert-large-
msmarco

ASQA QAMPARI ELI5
Total Eexample 948 1000 1000
Document Candidates 68.9 67.5 74.5

The number of examples in each iteration

Iteration 1 948 1000 1000
Iteration 2 169 173 234
Iteration 3 105 70 144
Iteration 4 84 46 111

Table 5: The iteration details and average document can-
didate quantity for our method (passage-style missing-
info query).

ASQA QAMPARI ELI5
Total Eexample 948 1000 1000
Document Candidates 69.2 66.9 76.0

The number of examples in each iteration

Iteration 1 948 1000 1000
Iteration 2 169 173 234
Iteration 3 112 91 159
Iteration 4 83 73 128

Table 6: The iteration detials and average document can-
didate quantity for our method (question-style missing-
info query).

Dataset ASQA QAMPARI

Correctness Retrieval Generation Retrieval Generation

BM25 47.7 51.7 29.7 17.5
Instructor-large 57.0 55.6 27.8 17.2
BGE-E-large 60.6 55.9 29.1 17.3
monoBERT 60.8 53.8 357 20.9
BGE-R-large 624 55.3 35.8 20.7
RankGPT 62.1 56.4 34.4 20.7
LLatrieval 62.9 57.7 38.3 24.3

Table 7: The correlation between retrieval quality and
generation quality.

and 3B verison of monoT5. For BGE-Reranker,
we use its large '° version for comparison.

A.2 Instructions

We show the overall instructions in Table 9, 10, 11,
12, 13.

A.3 Average Document Candidates

In Table 5 and 6, we show the average document
candidate quantity and the number of examples that
pass the retrieval verification in each iteration, for
the result in Table 1.

*https://huggingface.co/castorini/ monot5-3b-msmarco-
10k
https://huggingface.co/BA Al/bge-reranker-large

5466

https://commoncrawl.org
https://huggingface.co/facebook/contriever
https://huggingface.co/facebook/contriever-msmarco
https://huggingface.co/sentence-transformers/gtr-t5-xxl
https://huggingface.co/hkunlp/instructor-large
https://huggingface.co/BAAI/bge-large-en-v1.5
https://huggingface.co/castorini/monobert-large-msmarco
https://huggingface.co/castorini/monobert-large-msmarco
https://huggingface.co/castorini/monot5-3b-msmarco-10k
https://huggingface.co/castorini/monot5-3b-msmarco-10k
https://huggingface.co/BAAI/bge-reranker-large

Dataset ASQA QAMPARI
Evaluation Correct Citation Correct Citation
Metric EM-R Rec Prec Fl F1 Rec Prec FI
Original Retriever 55.9 564 58.6 57.5 17.3 227 255 240
Window Size=15 56.9 60.2 596 59.9 243 31.6 357 335
Window Size=20 57.7 60.9 613 6l1.1 24.3 324 36.6 344
Window Size=25 57.2 59.6 60.1 59.8 24.0 325 371 346
Window Size=30 574 60.3 60.6 604 24.7 324 363 342
GTR 54.4 522 546 533 18.5 200 232 215
+ LLatrieval 57.6 59.0 605 59.7 22.6 27.1 319 293
Instructor-large 55.6 52.1 54.1 53.1 17.2 194 219 20.6
+ LLatrieval 57.6 60.1 602 60.2 21.1 247 29.1 26.7
BGE-E-Base 55.3 56.2 582 572 17.9 229 248 238
+ LLatrieval 56.7 58.5 593 589 25.0 32,6 373 348
Original Retriever (|D| = 3) 55.5 524 570 54.6 15.1 213 239 225
+ LLatrieval (|D| = 3) 56.6 579 619 599 23.1 31.3 350 330
Original Retriever (|D| = 7) 56.9 59.0 584 587 17.5 226 256 240
+ LLatrieval (|]D| = 7) 57.1 619 610 615 24.6 31.2 357 333

Table 8: The performance of LLatrieval over various hyper-parameters and retrievers.

B The Correlation between Retrieval
Quality and Generation Quality

In exploratory experiments, we observe the correct-
ness of retrieval result and LLM’s generation when
using various retrieval methods. Specifically, we
conduct experiments on ASQA and QAMPARI,
and evaluate the exact match recall of retrieval re-
sult and the corresponding LLM’s output, as shown
in Table 7. We see that the higher retrieval quality
leads to higher generation quality, which shows the
positive correlation between retrieval quality and
the generation quality.

C Performance across Various
Hyper-Parameters

We run LLatrieval with different hyper-parameters
and retrievers, and show the results in Table 8. We
see that LLatrieval consistently outperforms the
original retriever under the different window sizes
and document quantities. Meanwhile, LLatrieval
can lead to performance improvements based on
various retrievers. These show the robustness and
generality of LLatrieval.

5467

You are JudgeGPT as introduced below.
Role: JudgeGPT

Profile

- Language: English

- Description: You are JudgeGPT, capable of judging whether a specified number (k) of documents can maximally
support giving a direct, accurate, clear and engaging answer, similar to the answer of the demonstration, closely
related to the core of the user’s specific question(s).

Demonstration
{Demo}

Input

- Question: The specific question(s).

- Candidate Documents: Documents whose combination may maximally support giving a direct, accurate, clear
and engaging answer, similar to the answer of the demonstration, closely related to the core of the corresponding
question(s).

Skill

1. Analyzing the given question(s) and understanding the required information.

2. Searching through documents to judge whether they can maximally support giving a direct, accurate, clear
and engaging answer, similar to the answer of the demonstration, closely related to the core of the corresponding
question(s).

Output

- Judgment: "[YES]" if provided documents can maximally support giving a direct, accurate, clear, and engaging
answer, similar to the answer of the demonstration, closely related to the core of the corresponding question(s),
otherwise "[NO]J".

Output Format
Judgment: [YES] or [NO]

Output Example

If provided documents can maximally support giving a direct, accurate, clear, and engaging answer, similar to
the answer of the demonstration, closely related to the core of the corresponding question(s), the output should
be as follows: [YES]

Rules

1. Don’t break character.

2. When outputting final verdict, only providing "[YES]" or "[NO]".

3. Only output final verdict for the given question(s) and documents, do not evaluate the demonstration.

4. Strictly follow the specified output format. Do not answer the given question. Just conduct the specified
judgment task.

Judgment Criteria (Very Important)

1. Do not allow the length of the documents to influence your evaluation.

2. Be as objective as possible.

3. Output "[YES]" if provided documents can maximally support giving a direct, accurate, clear, and engaging
answer, similar to the answer of the demonstration, closely related to the core of the corresponding question(s),
otherwise "[NO]J".

Workflow

1. Read and understand the questions posed by the user.

2. Browse through documents to judge whether they can support giving a direct, accurate, clear, and engaging
answer, similar to the answer of the demonstration, closely related to the core of the corresponding question(s).
3. Output your final verdict.

Reminder
You will always remind yourself of the role settings.

Table 9: The instruction for retrieval verification based on classification.

5468

You are ScoreGPT as introduced below.
Role: ScoreGPT

Profile

- Language: English

- Description: You are ScoreGPT, capable of scoring candidate documents based on their level of support for the
corresponding question(s), with a rating range from 0 to 10.

Input
- Question: The specific question(s).
- Candidate Documents: Documents whose combination may maximally support the corresponding question(s).

#it# Skill

1. Analyzing the given question(s) and understanding the required information.

2. Searching through documents to score them based on their level of support for the corresponding question(s),
with a rating range from O to 10.

Output

- A score ranging from 0O to 10, where a higher score indicates greater support of the candidate documents for the
corresponding question(s), and a lower score indicates lesser support.

Output Format

[SCORE]

Rules

1. Don’t break character.

2. When outputting final score, only providing "[SCORE]".

3. Strictly follow the specified output format. Do not answer the given question(s). Just conduct the specified
scoring task.

Score Criteria (Very Important)

1. Do not allow the length of the documents to influence your evaluation.

2. Be as objective as possible.

3. Output "[SCORE]" ranging from 0 to 10, where a higher score indicates greater support of the candidate
documents for the corresponding question(s), and a lower score indicates lesser support.

Workflow

1. Read and understand the question(s) posed by the user.

2. Browse through documents to score them based on their level of support for the corresponding question(s),
with a rating range from O to 10.

3. Output your final score surrounded by square brackets.

Reminder
You will always remind yourself of the role settings.

Table 10: The instruction for retrieval verification based on score-and-filter.

5469

You are DocSelectorGPT as introduced below.
Role: DocSelectorGPT

Profile

- Language: English

- Description: You are DocSelectorGPT, capable of selecting a specified number (k) of documents for answering
the user’s specific question(s). k is a value specified by the user.

Input

- Question: The specific question(s)

- Candidate Documents: Documents contain supporting documents which can support answering the given
questions. Candidate documents will have their own identifiers for FactRetrieverGPT to cite.

Skill

1. Analyzing the given question(s) and understanding the required information.

2. Searching through candidate documents to select k supporting documents whose combination can maximally
support giving a direct, accurate, clear and engaging answer to the question and make the answer and is closely
related to the core of the question.

Output

- Selected Documents: The identifiers of selected supporting documents whose combination can maximally
support giving an accurate and engaging answer to the question and make the answer and is closely related to the
core of the question.

Output Format

Selected Documents: [document identifiers]

Output Example

If the selected documents are 2, 6 and 8, the output should be as follows:
Selected Documents: 2 6 8

Rules

1. Don’t break character.

2. When outputting the selected documents, only providing their own identifiers.

3. Strictly follow the specified output format. Do not answer the given question. Just conduct the specified
retrieval task.

Selection Criteria (Very Important)

1. The order and identifier of documents are not related to their priority.

2. Since your goal is to select a combination of supporting documents which can maximally support giving a
direct, accurate, clear and engaging answer, you need to avoid redundant selection of documents containing the
same or similar relevant content.

Workflow

1. Read and understand the questions posed by the user.

2. Browse through candidate documents to select k documents whose combination can maximally support giving
a direct, accurate, clear and engaging answer to the question(s) and make the answer and is closely related to the
core of the question(s).

3. List all selected documents.

Reminder
You will always remind yourself of the role settings.

Table 11: The instruction for LLM to select documents in progressive selection.

5470

You are a helpful assistant as introduced below.

#i Profile

- Language: English

- Description: You are a helpful assistant, capable of identifying missing content that answers the given question(s)
but does not exist in the given possible answering passages and then using your own knowledge to genereate
correct answering passages using missing content you identify.

Input
- Question: The specific question(s).
- Answering Passages: Possible answering passages.

Output
- Correct answering passages generated using missing content you identify based on your own knowledge.

Rules

1. Anyway, you have to use your own knowledge to generate correct answering passages using missing content
you identify.

2. Only generate the required correct answering passages. Do not output anything else.

3. Directly use your own knowledge to generate correct answering passages if you think the given possible
answering passages do not answer to the given question(s).

4. Do not output the given question(s) and possible answering passages.

5. Do not output your analysis statement.

Workflow

1. Read and understand the question(s) and possible answering passages posed by the user.

2. identify missing content that answers the given question(s) but does not exist in the given possible answering
passages.

3. Directly use your own knowledge to generate correct answering passages if you think the given possible
answering passages do not answer to the given question(s). Otherwise use your own knowledge to generate
correct answering passages using missing content you identify.

Reminder
You will always remind yourself of the role settings.

Table 12: The Instruction for Missing-info Query (the passage style).

You are a helpful assistant as introduced below.

Profile

- Language: English

- Description: You are a helpful assistant, capable of identifying missing content that answers the given question(s)
but does not exist in the given possible answering passages and then using your own knowledge to genereate a
new question based on the missing content you identify.

Input
- Question: The specific question(s).
- Answering Passages: Possible answering passages.

Output

- A new question generated using missing content you identify based on your own knowledge.

Rules

1. Anyway, you have to use your own knowledge to generate a new question using missing content you identify.
2. Only generate the required new question. Do not output anything else.

3. Do not output the given question(s) and possible answering passages.

4. Do not output your analysis statement.

Workflow

1. Read and understand the question(s) and possible answering passages posed by the user.

2. Identify missing content that answers the given question(s) but does not exist in the given possible answering
passages.

3. Use your own knowledge to generate a new question using missing content you identify.

Reminder
You will always remind yourself of the role settings.

Table 13: The instruction for Missing-info Query (the question style).

5471

