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Abstract

Adapting language models (LMs) to novel do-
mains is often achieved through fine-tuning a
pre-trained LM (PLM) on domain-specific data.
Fine-tuning introduces new knowledge into an
LM, enabling it to comprehend and efficiently
perform a target domain task. Fine-tuning can
however be inadvertently insensitive if it ig-
nores the wide array of disparities (e.g in word
meaning) between source and target domains.
For instance, words such as chronic and pres-
sure may be treated lightly in social conversa-
tions, however, clinically, these words are usu-
ally an expression of concern. To address insen-
sitive fine-tuning, we propose Mask Specific
Language Modeling (MSLM), an approach that
efficiently acquires target domain knowledge
by appropriately weighting the importance of
domain-specific terms (DS-terms) during fine-
tuning. MSLM jointly masks DS-terms and
generic words, then learns mask-specific losses
by ensuring LMs incur larger penalties for in-
accurately predicting DS-terms compared to
generic words. Results of our analysis show
that MSLM improves LMs sensitivity and de-
tection of DS-terms. We empirically show that
an optimal masking rate not only depends on
the LM, but also on the dataset and the length
of sequences. Our proposed masking strategy
outperforms advanced masking strategies such
as span- and PMI-based masking.

1 Introduction

Fine-tuning is the prevailing practice for adapting
an LM to a new domain. A plethora of research
works ranging from task-generalization (Claudino
et al., 2018; Peters et al., 2019; Peng et al., 2019),
to few-shot learning (Gao et al., 2020; McCann
et al., 2018) to in-context tuning (Chen et al., 2021)
all unanimously credit fine-tuning for the state-of-
the-art results across a diverse set of NLP tasks.
Despite its remarkable strides, fine-tuning has been
reasonably criticised for its instability and brittle-
ness by a few pockets of NLP researchers (Mos-

Social Conversation

Dan: Hi Gary, how was your week?

Gary:
It has ended well but I had a lot of pressure
throughout the week to meet a deadline. I
felt like I would get attacked by colleagues.

Clinical Conversation

Dan: Hi Gary, how was your week?

Gary:
It has ended well but my pressure was high
throughout the week. I felt like I would get
an attack .

Table 1: Comparing the sensitivity of two words in
two different conversations (Social and Clinical setting).
The brighter the colored boxes wrapping the words, the
more concerning for the respective conversation.

bach et al., 2020; Lee et al., 2019; Dodge et al.,
2020). Lee et al. (2019); Dodge et al. (2020) at-
tributed fine-tuning’s instability to catastrophic for-
getting and small sized datasets, and most recently
Mosbach et al. (2020) exposed the optimization
challenges encountered during fine-tuning LMs.

It is notable that, across all prior critics, the fo-
cus and attention has been strongly directed to-
wards the performance of these LMs, and very
limited attention has been paid towards the sen-
sitivity and domain-specific knowledge these LMs
pickup during fine-tuning. There is usually a wide
range of disparities between the source (used for
pre-training) and the target (used for fine-tuning)
domains. Some of these may include but not lim-
ited to, word meaning (Navigli, 2009; Zhou and
Bollegala, 2021), word intensity (strength or po-
tency of a word in given domain) (Yin et al., 2020;
Baek, 2022) and abbreviation disambiguation (Wu
et al., 2015). If these disparities are not properly
catered for, fine-tuning can easily become an under-
whelming adaptation process and insensitive to spe-
cialised target domains. For instance, words such
as chronic, pressure and attack will often be treated
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Figure 1: Joint ELM-BLM masking of tokens in an input sequence.

lightly in social conversations, however, clinically
these words are usually a cause of concern. For
example, we notice that, whereas the words “pres-
sure” and “attack” are mentioned by the respondent
in both the social and clinical contexts in Table 1,
they definitely require more attention in the clinical
conversation, hence the questioner “Dan” ought to
be more sensitive to the respondent “Gary”.

In this work, we address the domain sensitive
fine-tuning (DSFT) discussed in the previous para-
graph. We use insensitivity in our context to imply
the below par awareness of DS-terms, rather than
language-insensitivity as it pertains to human feel-
ings. We investigate the hypothesis: “The aware-
ness of or sensitivity of PLMs towards DS-terms
can be appropriately elevated without hurting
their downstream performance”.

In order to strategically increase an LM’s aware-
ness of DS-terms, we revisit the language under-
standing and generation phenomenon of Mask Lan-
guage Modeling (MLM) (Devlin et al., 2019). We
modify MLMs to up-weight the significance of
masked DS-term tokens such that the attention to-
wards them is relatively larger than that towards
masked non DS-term tokens. In doing so, we in-
troduce the notion of “mask-specific loss”, which
we compute using appropriately assigned weights
that are computed using a strategy similar to the
one Mosbach et al., 2020 used to address class im-
balance. We further introduce entity recognition
and entity classification objectives to collectively
contribute towards a cross entropy loss with an aim
to enhance the ability of a model to detect men-
tions. We refer to this approach as Mask-Specific
Language Modeling (MSLM1).

Using the biomedical domain as our test bed, we
evaluate how well MSLM can perform when tasked
to extract clinical entities from a host of datasets
within the Biomedical Language Understanding &
Reasoning Benchmark (BLURB) (Gu et al., 2021).
To study the effectiveness of MSLM, we do not
simply compare the perplexity of our sensitive mod-

1https://github.com/mykelismyname/MSLM

els to the vanilla models, instead, we proceed to
check confidence scores with which the two sets
of models predict DS-terms. We assess the impact
of our proposed masking strategy by varying the
masking rate and lengths of input sequences and
monitoring their influence on the LMs prediction re-
sults. In addition, we study how this masking strat-
egy compares to other advanced strategies such as
PMI (Pointwise Mutual Information) (Levine et al.,
2020) and Span (Joshi et al., 2020). Our experi-
ments demonstrate (a) a performance improvement
in extraction of exact mentions of named entities,
(b) the influence the masking rate and sequence
lengths has on prediction performance, and (c) the
superiority of the proposed masking strategy over
other advanced masking strategies.

2 Mask-Specific Language Modeling

In designing our approach, we draw lessons from
two prior tested and proven phenomena: (1) MLMs
are effective in learning representations for sub-
tokens, words (Devlin et al., 2019), phrases (Sun
et al., 2019) and spans (Levine et al., 2020; Joshi
et al., 2020); and (2) high prediction rates (pro-
portion of tokens to be predicted) substantively
affect optimization, i.e. they increase training sig-
nals, which subsequently boost performance (Wet-
tig et al., 2022). We refer to these two phenom-
ena respectively as the MLM-effect and the High-
prediction-effect in the remainder of this paper.

2.1 Masking

Randomly replacing a proportion of tokens in a
sentence with [MASK] tokens (Base level Mask-
ing (BLM; Devlin et al., 2019)) intuitively enables
LMs to learn the bi-directional context that often
surrounds words in written language text.

Because certain spans of words are best under-
stood when all of their constituted words are writ-
ten together to denote a named entity such as a
person, an organisation and a location, replacing
named entity spans with [MASK] tokens (Entity
level Masking (ELM; Sun et al., 2019; Abaho
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et al., 2022)) has also proven to be effective in
learning contextualised representations for these
entities.

We leverage benefits of the two above strate-
gies and propose a new masking strategy, “Joint
ELM-BLM” shown in Figure 1. On its own, ELM
would help enrich an LM with contextual knowl-
edge necessary in discriminating our targeted DS-
terms, however, when exploiting the MLM-effect,
we consider it necessary to avoid tightly coupling
the LM’s weights onto these DS-terms. We there-
fore utilise BLM to preserve a PLM’s inherent do-
main and generic knowledge. More so, we avoid
the assumption that 15% masking rate is optimal
(Devlin et al., 2019) and instead explore a spectrum
of rates to find an optimum. In our experimental
setup, we ensure that BLM- and ELM-masked sets
are disjoint sets of tokens.

Besides datasets with annotations of DS-terms
(clinical entities), we assume access to a Biomedi-
cal PLM denoted as EncPLM. This LM can be used
for encoding each input sequence s of n tokens to
obtain H, a matrix of n vectors as shown in (1).

H = EncPLM(x1, . . . , [MASK]i, . . . , xn) (1)

2.1.1 Mask specific losses
The main goal in our approach is to strategically in-
crease a PLM’s sensitivity towards DS-terms while
simultaneously retaining sufficient knowledge of
generic terms. The first attempt in achieving this
is masking DS-terms along with generic terms as
discussed in §2.1.

To further achieve our goal, we introduce the
idea of mask specific losses, which essentially aims
to impose larger penalties on the model for inaccu-
racies in predicting corrupted (masked) DS-terms
compared to the corrupted generic terms.

Typically, instance-specific losses are computed
by re-scaling weights for each possible class in the
label space (Wang et al., 2017; Cui et al., 2019),
however, in this case, rather than classes, we have
ELM- and BLM-masked tokens as well as un-
masked tokens. To compute the weights assigned to
the tokens in our masked input, we firstly obtain the
number of ELM- and BLM-masked tokens within
the training dataset and denote them as NELM and
NBLM respectively. A mask specific weight is com-
puted for each of the mask types (ELM & BLM), as
the difference between 1 and the the corresponding
mask type probability (i.e. the mask type’s distribu-

tion out of the total mask types distribution), given
by (2). The final mask specific weight is obtained
as the softmax over the mask specific weights from
previous step as given by (5).

wx = 1− Nx∑
x∈{BLM,ELM}Nx

(2)

wBLM =

{
0.5 if wBLM > 0.5
wBLM

wELM =

{
0.5 if wELM < 0.5
wELM

(3)

w = ([wBLM, wELM]) (4)

w = softmax(w) (5)

In order to elevate the sensitivity towards DS-
terms but equally avoid overfitting onto them, we
introduce a sensitivity threshold, which is used to
encourage the ELM-masked tokens related weight
(wELM) and also to carefully suppress the BLM-
masked tokens related weight (wBLM). Because of
the sporadic nature of the mentions of DS-terms
within the dataset, the distribution of ELM-masked
tokens will typically be lower than that of BLM-
masked tokens, in other words not every input se-
quence will have a mention of DS-term/s, while
every input sequence will have tokens that are sub-
ject to BLM. We therefore set the sensitivity thresh-
old to 0.5 to force a balance in their probability
distribution (i.e. implying that BLM and ELM are
equally likely to occur for a given input sequence).
We then ensure that wBLM never rises above this
threshold and similarly, wELM should never fall
below that threshold as shown in (5).

The normalized weight vector w is used to com-
pute the MSLM loss (LMSLM) during the predic-
tion of the masked tokens xi as given by (6).

LMSLM = −
∑

w
(x)
i logP (xi|s) (6)

Here, w(x)
i ∈ w is a mask-specific weight for a

masked token xi that lies within the sequence s.

2.2 Entity detection and Classification
Because the biomedical domain has many clas-
sification schemes that are used in categorizing
clinical entities (Jackson et al., 2018; Gu et al.,
2021), we maximize the High-prediction-effect by
formulating an entity recognition and classification
task. The idea behind this is, the more predictions a
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#Sents
Train | Val | Test

#Classes AvgSentLen
#Ments

Train | Val | Test
AvgMents AvgMentsLen

BC2GM 12632 | 2531 | 5065 2 25.17 15197 | 3061 | 632 1.20 2.4
NCBI-disease 5432 | 923 | 942 2 25.24 5134 | 787 | 960 0.95 2.2
BC5CDR-chem 4812 | 4602 | 4582 2 25.75 5385 | 5203 | 5347 1.12 1.3

Table 2: Dataset statistics. #Sents is the number of sentences and #Ments is the number of DS-term mentions,
AvgSentLen is the average length of sentences, AvgMents is the average number of DS-terms mentioned per
sentence obtained as (# of train Ent_Ments)/(# of train sents). Full table with all datasets in 9 in the Appendix.

model has to make (both in predicting masked-out
tokens as well as classifying unmasked entities),
the more signals it would get through computing
gradients during optimization. The entity recogni-
tion task is defined below.

Task formulation: Given a sentence s =
{xi}ni=1 of n tokens, where each xi is tagged with
a BIO label (Sang and Veenstra, 1999), we build a
model that can accurately extract entities {e(s)i }Ni=1

mentioned in s. We obtain a probability distribu-
tion across all BIO labels as given by (7).

ŷi = softmax(f(hi ◦W (ed))) (7)

Here, f is a nonlinear function, ◦ denotes the
vector concatenation and W (ed) ∈ R1×k is a train-
able weight vector, hi ∈ H. In addition to LMSLM,
we compute an entity detection loss given by (8).

LED = −
n∑

i=1

∑

j∈BIO

yi,j log ŷi,j (8)

Entity Linking/Classification loss: Given a de-
tected entity, we obtain an entity span representa-
tion in (9), and compute probability distribution
across all entity types E in (10),

em = meanpool(hi, . . . , hM ) (9)

where the entity m has 1 to M tokens.

ŷlm = softmax(f(em ◦W (ec))) (10)

where f is a non-linear function and W (ec) ∈
R1×d is a trainable weight vector. We introduced
the task specific trainable parameters W (ed) and
W (ec) to enrich the MLM representations that
are used in the token class prediction layer and
the entity class prediction layer respectively. The
MSLM loss would benefit from the extra knowl-
edge brought in from these parameters during op-
timization. Task type trainable parameters have

proven to be beneficial in prior work (Yao et al.,
2019; Eberts and Ulges, 2021).

The classification loss is given by (11).

LEL = −
∑

l∈E
ylm log ŷlm (11)

Model loss: We optimize the joint loss of all
three cross-entropy losses as given in (12).

L = LMSLM + LED + LEL (12)

3 Experiments

To evaluate MSLM, we initialize multiple biomed-
ical LMs which were pre-trained on massive col-
lections of publicly available scientific literature in
PubMed. Compared LMs include BioBERT (Lee
et al., 2020), SciBERT (Beltagy et al., 2019),
PubMedBERT (Gu et al., 2021) and BioELEC-
TRA (raj Kanakarajan et al., 2021).

Datasets: To facilitate our investigation, we use
Named Entity Recognition (NER) datasets within
the BLURB benchmark (Gu et al., 2021). These
include NCBI-disease containing 6892 disease
mentions linked to 790 distinct disease concepts,
BC5CDR-Disease & BC5CDR-Chemical con-
taining mentions of diseases and chemicals in 1,500
PubMed articles, BC2GM containing 20,000 sen-
tences with gene mentions, JNLPBA containing
2,000 PubMed abstracts with mentions of molecu-
lar biology-related entities such as DNA and EBM-
NLP containing 5,000 PubMed clinical trial ab-
stracts with mentions of the PICO elements (We
specifically use the version with denoised outcome
annotations as used by Abaho et al. (2019, 2021)).

Metrics: We use an exact match (EM) score met-
ric to measure the sensitivity towards DS-terms.
EM counts a prediction of an entire entity as 1 if
and only if it completely matches the correct an-
swer, both in terms of the precise boundary of the
DS-term mention as well as the term’s classifica-
tion. Furthermore, we measure macro-F1 score for
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Figure 2: Visualization of the confidence score with which different DS-terms belonging to different outcome
(within the EBM-NLP dataset) are predicted. The color intensity increases with the confidence score.

NER performance (Hajic et al., 2009) and perplex-
ity of the models to monitor how well the models
adapt to and comprehend the domain datasets.

Setup: Two important factors in our setup in-
clude, (1) we establish ELM rate with respect to
the total number of DS-terms mentioned in an input
sequence rather than all input sequence tokens. For
example, if the number of DS-terms in a sequence
s is denoted as DSs and DSs = 4, an ELM of 25%
implies 0.25 × 4 = 1, hence 1 out of the 4 DS-
terms are randomly masked. Whenever this com-
putation returns a decimal value, we round off the
value upward to the nearest integer (e.g if DSs = 3,
and ELM=25%, 0.25 × 3 = 0.75, which will be
rounded off to 1), (2) Since ELM consumes a por-
tion of the masking budget as explained above, we
halve the conventional 15% rate to get a BLM rate
of 7.5%. Furthermore, high masking rates are not
favourable for moderately-sized (ca. 125M param-

Vanilla MSLM
ELM=1,BLM=0.075

BC2GM BioBERT 88.4 90.3±0.5

PubMedBERT 86.8 89.8±0.4

BioELECTRA 87.6 89.1±0.2

SciBERT 85.7 87.1±0.4

NCBI-disease BioBERT 89.1 90.1±0.1

PubMedBERT 89.9 89.9±0.2

BioELECTRA 88.5 88.9±0.2

SciBERT 88.4 89.9±0.1

BC5DCR-chem BioBERT 93.3 94.0±0.2

PubMedBERT 94.0 94.4±0.2

BioELECTRA 90.8 94.0±0.2

SciBERT 90.7 93.7±0.2

EBM-NLP BioBERT 64.3 75.4±0.4

PubMedBERT 65.5 76.2±0.3

BioELECTRA 63.7 73.2±0.3

SciBERT 69.7 73.4 ±0.2

Table 3: Exact match (EM) scores obtained when
MSLM (ELM=100%, BLM=7.5%) is initialized with
various biomedical PLMs. Average scores across 5 runs
and their standard deviation are reported for the MSLM
models which are compared against Vanilla versions of
the LMs. Best results are in bold and full results are
provided in Table 8 in Appendix.

eters) LMs (Wettig et al., 2022) such as the ones
we use in this paper. This constraint is used in our
initial set of experiments, however, later on, we ex-
plore how varying both BLM and ELM rates would
affect model performance especially because the
average length of sentences and DS-term mentions
varies across different datasets listed in Table 2.

Implementation details: The infrastructure used
in our experiments includes, PyTorch 2.0 for
developing MSLM and two GPU machines, a
48G NVIDIA RTX A6000 and a 28G N-series
(NC6s_v3) Azure Virtual Machine. The two GPUs
are not used to concurrently run the same experi-
ment but to run different experiments in parallel.
Results reported are based on testing performance.
Dataset statistics are included in Table 2.

3.1 Sensitivity towards DS-terms

To investigate the sensitivity of MSLM-fine-tuned
models, we evaluate two metrics: (a) the confi-
dence in the models predictions, and (b) the EM
score of the predictions. With the former, we vi-
sualize the softmax probabilities (which we also
refer to as confidence scores) with which model
predicts DS-terms using the heatmap in Figure 2.
For demonstration purposes, we use the EBM-NLP
dataset since it has multiple classes in compari-
son to the other datasets. As observed in Figure 2,
despite both sets of models predicting the correct
classes for the 3 DS-terms, cardiovascular death
(Mortality outcome), rehospitalization (Resource-
use outcome) and congestive heart failure (Physio-
logical outcome), the confidence score with which
the model predicts classes for the DS-terms is visi-
bly higher for MSLM-BioBERT models.

Table 3 reports EM scores, which are indica-
tive of the model performance in detecting full
or exact mentions of DS-terms. We notice that,
MSLM improves the performance (+3.2 percent-
age points on average) with which LMs detect full
mentions. Most notably, we observe significant per-
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Figure 3: Downstream NER F1 performance of the vanilla and the MSLM-fine-tuned models (i.e. DSFT models).
ELM and BLM rates used in §3.1 are maintained. More plots in Appendix F.

BioB
(PPL)

BioB_MSLM
(PPL)

Pub
(PPL)

Pub_MSLM
(PPL)

BC2GM 1.2 2.3 (+1.1) 1.2 1.9 (+0.7)
BC5CDR-Chem 1.1 1.5 (0.4) 1.1 1.2 (+0.1)
JNLPBA 1.4 4.3 (+2.9) 1.4 3.2 (+1.8)
NCBI-Disease 1.2 1.3 (+0.1) 1.1 1.2 (+0.1)

Table 4: Validation perplexity (PPL) recorded when the
best NER F1 performance was obtained for vanilla and
MSLM models. Biob is BioBERT & Pub is PubMed-
BERT, and the change in perplexity when vanilla flavors
are replaced by MSLM is indicated in brackets.

formance increases in the EM scores for the EBM-
NLP dataset (+8.5 percentage points average across
models) in comparison to the other datasets, which
we attribute to (1) the relatively higher number
of Average DS-term mentions per sentence within
the dataset, and (2) the relatively bigger training
set size as seen in Table 9. With the exception of
NCBI-dataset (with PubMedBERT model), we ob-
serve that MSLM achieves consistent performance
improvements when detecting full mentions of DS-
terms.

3.2 Is DSFT destructive?

The success in increasing the sensitivity of LMs to-
wards the DS-terms (via DSFT) is strongly positive
as discussed in §3.1, but at what cost? We inves-
tigate whether the increased sensitivity comes at
the expense of downstream performance, training
times and the inherent knowledge of the PLM. For
the downstream performance and training times,
we monitor the validation NER F1 performance
of the MSLM and vanilla flavors over a training
time of 20 epochs. Figure 3 shows the MSLM-fine-
tuned models consistently outperform the vanilla
BioBERT and PubMedBERT during the course of
training across the 4 datasets. Furthermore, we ob-
serve that MSLM-fine-tuned models achieve the
best vanilla performance in a much shorter training
time of at most 7 epochs (blue dotted line).

For the inherent knowledge of PLMs, we inves-
tigate the validation perplexity to check how well
the models understand the domain datasets. As
seen in Table 4, perplexity increases when MSLM-
fine-tuned models replace vanilla models, however,
only by a few percentage points. We hypothesize
that, diminishing the penalties incurred when pre-
dicting non DS-terms (as constrained by (3)) will
most likely limit the model’s capability to recon-
struct corrupted non DS-terms, hence affecting the
net perplexity of the models. This change however
proves that low perplexity does not necessarily cor-
relate with good performance, a hypothesis also
discovered by Wettig et al. 2022.

Overall, the performance improvement achieved
by DSFT is evidence supporting the earlier defined
hypothesis; i.e. The awareness of or sensitivity
of PLMs towards DS-terms can be appropriately
elevated without hurting downstream performance.

4 Analysis

4.1 Varying the Masking rates

Devlin et al. 2019 choose the 15% masking rate
with caution, suggesting that a higher rate risks
leaving insufficient context for the LM to learn
good representations. However, this caution can
be misleading because, several other factors can
influence the optimal masking rates such as the
model size and type of the task (Liao et al., 2020).
We therefore vary the BLM and ELM rates and
study the performance changes of the model. To
do this, we design the experiments as follows,

1. ELM: We select a range of ELM rates from
25% to 100% with interval gaps of 25%. The
interval is kept to 25% because values < 25%
would not change the overall number of DS-
terms to mask, following the ELM mask com-
putation we establish in our setup in §3.
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Figure 4: Test Exact match (EM) scores of varying ELM and BLM rates when two MSLM-fine-tuned models
(MSLM_biobert and MSLM_PubMedBERT) are evaluated on the datasets.

2. BLM: We select a minimum rate of 0% and
maximum rate of 22.5% with intervals of
7.5%. We cap the masking budget for BLM
to 22.5% because we use base models (ca.
125M parameters), which have been reported
to struggle in high masking regimes (>20%)
(Wettig et al., 2022). Using a 7.5% interval is
our strategy that enables inclusion of the pop-
ular 15% rate in our set of rates to investigate.

The resulting sets of rates used in the experiments
are [0.25, 0.50, 0.75, 1] and [0, 0.075, 0.15, 0.225]
for ELM and BLM respectively.

From Figure 4, we see that increasing both the
ELM and BLM rates consistently degrades the per-
formance of the models across all four datasets (i.e.
the lowest performance is certainly obtained when
both BLM and ELM are high as seen at the top
right of all plots). As seen, increasing the BLM
rate is only beneficial up to a certain point (7.5%),
and that irrespective of a high or low ELM rate, per-
formance dramatically drops when BLM hits 15%.
These two noticed revelations point to the fact that
a high net corruption/masking rate leaves very min-
imal context to learn from and hence effectively
re-construct DS-terms in input sequences, which
are already not very long sequences as shown in Ta-
ble 2. Overall, we observe two things, 1) distribut-
ing the masking rate budget between the targeted
DS-terms and the generic words can contribute to
performance gains i.e. optimal scores are obtained
when ELM≥0.25 and BLM≤0.15, and 2) the op-
timal Joint ELM-BLM masking rate is dataset de-
pendent as the optimal ELM and BLM rates vary
from one dataset to another.

Masking Rate and Sequence Length: To fur-
ther understand how much context is necessary
when fine-tuning the MLM, we study the perfor-
mance of different rates with different sequence

ELM(%) BLM(%)

<AvgSentLen
[51]

>AvgSentLen
[5104]

100 22.5 19.4 85.4
75 15.0 41.2 84.4
50 7.5 75.1 84.0
25 0.0 66.3 77.9

Table 5: Comparisons of the EM performance of low
and high masking regimes for short and long sequences
using MSLM_BioBERT. <AvgSenLen [51] implies, 51
sentences that are shorter than the average sentence
length and similarly, >AvgSentLen, 5104 sentences that
are longer than the average sentence length.

lengths on BC2GM.2 We constrain the rates to
low masking regimes, which we define as ELM ≤
0.5 and BLM ≤ 0.075, and high masking regimes
as ELM ≥ 0.75 and BLM ≤ 0.15. Because of
the laborious nature of the task of constructing
a test set with sufficient samples for varying se-
quence lengths, we use the average sentence length
(AvgSentLen in Table 2) as a cut off point, where
sentences above it are considered as relatively long
(>AvgSentLen) and those below as relatively short
(<AvgSentLen). We do not perform separate ex-
periments but rather compute the EM scores of the
predictions on the short and long sentences.

In Table 5, we observe that high masking
regimes favour long sentences (i.e. overall, highest
rates produce the best performance for long sen-
tences and worst performance for short ones). This
implies that the models are still able to learn suffi-
ciently from long sequences despite a high masking
rate. We also observe, while the performance on
long sentences is consistently better, it does not sig-
nificantly differ from that of short ones for the low
rates, implying that low rates have minimal impact
on varying sequence lengths, and hence LM relies

2We use BC2GM as it has the largest number of sentences
below average length compared to the other datasets, which
are dominated (ca. 95%) by sentences above average length
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BC2GM BC5CDR-chem JNLPBA NCBI

BioB_MSLM 90.3 94.0 89.9 90.1
−wx∈{BLM,ELM} 88.7 ↓ 93.3 ↓ 86.5 ↓ 89.9 ↓
Pub_MSLM 89.8 94.4 89.8 89.9
−wx∈{BLM,ELM} 86.9 ↓ 94.1 ↓ 86.5 ↓ 89.1 ↓

Table 6: EM scores obtained with and without the mask
specific weights. Biob is BioBERT & Pub is PubMed-
BERT, ↓ indicates a performance drop from the origi-
nally obtained best scores using the MSLM models.

heavily on its inherent pre-trained knowledge.

4.2 The effect of mask specific weights

We perform an ablation analysis to study the impact
of the mask specific weights that are used in com-
puting the mask specific losses in the MSLM fine-
tuning process (§2.1.1). Table 6 shows that there is
performance decline across all experiments when
the mask specific weights are eliminated. This per-
formance decline suggests that incorporation of
these weights contributes to the performance gains
observed in the results.

We attribute these gains to our proposed mask
specific weighting scheme which ensures higher
weights and hence higher loss costs for the masked
named entities (DS-terms) compared to the masked
generic words during prediction. Unlike most
weighting schemes that consider the overall class
distribution in the data, the weighting scheme con-
siders the distribution of masked units rather than of
classes. Furthermore, the scheme mitigates against
overfitting the LM’s weights to DS-terms by in-
troducing a sensitivity threshold, which is used to
encourage the weights of DS-terms while carefully
suppressing weights of generic terms. For instance,
if eq (2) provides wELM = 0.4, eq (3) will calibrate
the weight giving wELM = max(0.5, 0.4) = 0.5,
implying the weight for DS-terms should never
fall below 0.5, and similarly if eq (2) provides
wBLM = 0.6, eq (3) will calibrate the weight as
wBLM = min(0.5, 0.6) = 0.5, implying that the
weight for generic or random words should never
rise above 0.5. The intuition is that the model be-
comes more sensitive to DS-terms but also keeping
it aware of the context surrounding the DS-terms.

5 Comparisons with Prior Masking
Strategies

Besides our proposed masking strategy (i.e. Joint
ELM-BLM), there are various other advanced
masking strategies such as PMI-Masking (PMI)

(Levine et al., 2020) and Random-Span masking
(SPAN) (Joshi et al., 2020). With PMI, spans of
co-occurring words (2-4) (a.k.a collocations) are
identified, ranked based on PMI scores computed
using the PMI measure proposed by Levine et al.
(2020) and stored in a vocabulary. The ranked
spans discovered in an input sequence are masked.
In the SPAN approach, spans of varying lengths
(2-4) are arbitrarily selected and masked. In both
approaches, the total masking budget (number of
tokens to mask) is maintained to avoid biasing the
comparative analysis. Extended details of how we
implement SPAN and PMI are in Appendix E.

In Figure 5, we directly replace Joint ELM-BLM
with either SPAN or PMI and vary the total mask-
ing budget while maintaining the optimal budget
for Joint ELM-BLM. For instance, we keep ELM
= 0.75 and BLM = 0.0 for Joint ELM-BLM, when
evaluating MSLM_Biobert on BC2GM dataset be-
cause they are the optimal rates. However, we vary
the rates for both PMI and SPAN across the values
in the set of BLM rates established in §4.1.

We observe that Joint ELM-BLM outperforms
other strategies across all experiments. PMI pro-
duces majority of the second best results despite
SPAN masking being quite competitive. We at-
tribute PMI’s performance to the fact that the PMI’s
vocabulary from which spans to mask are drawn
has a high concentration (> 50%) of DS-terms (de-
tails in Appendix E.3)), which effectively makes it
similar to ELM that directly masks DS-terms. As
noticed earlier in §4.1, masking DS-terms is highy
effective even with no BLM masking (i.e. BLM

Figure 5: Comparing performance of other masking
strategies across various rates with the best performance
of our proposed Joint ELM-BLM. Results of BioBERT
(left) and PubMedBERT (right) evaluated on BC2GM
and BC5CDR-chem and hatch the bars with best scores.
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= 0.0). We also observe the slight drop in perfor-
mance as the masking rate increases across PMI
and SPAN, which further confirms the fact that
LMs are likely to struggle when decoding highly
corrupted sequences (Devlin et al., 2019).

6 Related work

Domain adaptation of PLMs for NER: The con-
ventional approach in prior work tackling domain
adaptation for NER has focused pre-training on
unlabelled target domain corpora and then fine-
tune on downstream target domain dataset (Lee
et al., 2020; Beltagy et al., 2019). Recent work has
explored minimising the discrepancy between the
source and target embedding distributions (Zhang
et al., 2021; Poerner et al., 2020). Our work mostly
aligns with Poerner et al. (2020) who also adopt
“non-target domain pre-training”.

Masking: The originally proposed masking ap-
proach that involved replacing a percentage of to-
kens at random (TOKEN masking) with [MASK]
tokens (Devlin et al., 2019) has been modified in
recent works to improve MLM. Sun et al. (2019)
and Abaho et al. (2022) mask named entity spans
(entity masking), Joshi et al. (2020) mask random
spans of tokens (SPAN masking) and Levine et al.
(2020) mask groups of co-occurring words (PMI
masking). With the exception of PMI, our pro-
posed Joint ELM-BLM masking approach aligns
well with all recent masking modifications. It si-
multaneously masks disjoint sets of random tokens
and entity spans. Targeting multiple units in a sen-
tence makes it greedier than prior works, however,
we emphasize mask rate tuning and upholding a
masking budget to achieve optimal performance.

7 Conclusion

We considered the problem of DSFT aiming to
improve an LM’s sensitivity (i.e. awareness of)
towards DS-terms. We proposed MSLM, an ap-
proach that jointly masks DS-terms and random
words, while conditioning the LM to larger penal-
ties during optimisation for incorrect predictions
of DS-terms. Using the biomedical domain as a
testbed, the performed experiments reveal improve-
ments MSLM makes over vanilla fine-tuning in ex-
act DS-term match detection. MSLM’s efficiency
is proven when models achieve higher NER F1
scores in a much shorter training time. We sub-
stantiate the recent narrative, dismissing 15% as

a universally optimal rate in MLM (Wettig et al.,
2022), by proving that optimal performance is in-
fluenced by varying masking rates and length of
sequences.

The Joint ELM-BLM masking strategy we pro-
pose outperforms advanced masking methods. Al-
though we focus on biomedical NER, our proposed
MSLM approach can be be adapted for DSFT for
other domains. The positive impact of our pro-
posed masking method motivates us to investigate
its effectiveness during pre-training of MLMs in
future work.

Limitations

The list of pre-trained biomedical LMs we use in
our experiments can be considered as a represen-
tative sample that is used frequently for biomedi-
cal text mining. However, there are some other
biomedical LMs such ClinicalBERT (Alsentzer
et al., 2019) and BlueBERT (Peng et al., 2020),
whose inclusion can quantitatively improve results
of our analysis. Despite casting it as an NER task
focused on not simply detecting DS-terms, but con-
fidently detecting them for that matter, some other
tasks worthy of consideration for investigating sen-
sitivity may include but not limited to, question and
answering (Choi et al., 2018), common sense rea-
soning (Davis and Marcus, 2015), event detection
(Weng and Lee, 2011) etc. Furthermore, studying
the performance of domain sensitive fine-tuning
in other domains besides biomedicine would be
a qualitative addition and is recommendable for
future research under the guise of improving LM
sensitivity.

Ethics

This work addresses insensitive fine-tuning that
arises from the neglection of the disparities and
nuances between source and target domains. In
addressing this problem, our proposed fine-tuning
method neither guards against nor removes any
present biases (social, gender etc) in the pre-trained
MLMs.

Additionally, we do not annotate any data for the
datasets we adopt as they are all existing datasets
within the BLURB benchmark (Gu et al., 2021) that
are commonly used for biomedical text mining.

Furthermore, we credit all prior work whose
output directly or indirectly influences our work
especially with the datasets and the methods. In
our evaluation experiments, we declare some re-
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sults that were not generated from a seperate set
of experiments but instead obtained by selectively
retrieving a set of sentences that conform to the
evaluation criteria we targeted i.e. short and long
sentences. In comparing our masking strategy to
the advanced bench-marking strategies, we study
performance across various masking budgets in or-
der to provide a fair comparison with our proposed
method. To further remove any modelling bias,
we elaborately discuss implementation details of
compared methods in Appendix.
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Appendices

A Dataset statistics

The full table containing dataset statistics partially
presented in Table 2, is shown in Table 9.

B Hyperparameters

Parameter Tuned-range Optimal

Train Batch size [8,16,32] 8
Eval Batch size [8,16,32] 8
Epochs [10,20,30,50] 20
k [50, 100,200,300] 100
d [50,100,200,300] 100
Optimizer [Adam, SGD] Adam
Learning rate [5e-5, 1e-4, 5e-3, 1e-3] 5e-5

Table 7: Parameter settings for the MSLM-fine-tuned
models. k and d are dimensions of the the randomly ini-
tialised trainable weight vectors W (ed) ∈ R1×k defined
in 7 and W (ec) ∈ R1×d defined in 10 respectively.

C Sensitivity towards DS-terms

Table 8 presents the full results of EM scores in
detecting full or exact mentions of DS-terms. We
observe an average increment of +3.2 points across
all datasets when all four LMs are used.

D Domain Adaptation

Even if we do not technically have a source and tar-
get domain for respectively pre-training fine-tuning,
our work aligns with prior work which achieves
domain adaptation without pre-training on a tar-
get domain. Poerner et al. 2020 build a model
called greenBioBERT in a relatively less expen-
sive approach and fine-tune it on the same datasets
we do. greenBioBERT is word2vec trained on
PubMed+PMC articles and with an updated em-
bedding layer and tokenizer following BERT’s ar-
chitecture. The authors consider this as an LM not
pre-trained on target domain.

We compare test NER F1 perfomance in our ex-
periments with both grteenBioBERT and vanilla
BioBERT. Results in Table 10 show our MSLM-
fine-tuned BioBERT outperform all the others by
at least +2.3 points. This further indicates the heit-
ened awareness of DS-terms that MSLM is able

Vanilla MSLM
BLM=0.075 ELM=1

BC2GM BioBERT 88.4 90.3±0.5

PubMedBERT 86.8 89.8±0.4

BioELECTRA 87.6 89.1±0.2

SciBERT 85.7 87.1±0.4

NCBI-disease BioBERT 89.1 90.1±0.1

PubMedBERT 89.9 89.9±0.2

BioELECTRA 88.5 88.9±0.2

SciBERT 88.4 89.9±0.1

BC5DCR-chem BioBERT 93.3 94.0±0.2

PubMedBERT 94.0 94.4±0.2

BioELECTRA 90.8 94.0±0.2

SciBERT 90.7 93.7±0.2

EBM-NLP BioBERT 64.3 75.4±0.4

PubMedBERT 65.5 76.2±0.3

BioELECTRA 63.7 73.2±0.3

SciBERT 69.7 73.4 ±0.2

BC5DCR-dis BioBERT 91.7 93.4 ±0.2

PubMedBERT 92.3 94.1 ±0.1

BioELECTRA 89.7 93.5 ±0.3

SciBERT 90.1 93.4 ±0.2

JNLPBA BioBERT 86.3 88.9 ±0.2

PubMedBERT 85.7 89.8 ±0.2

BioELECTRA 80.0 83.4 ±0.2

SciBERT 82.4 85.4 ±0.2

Table 8: Full Exact match scores obtained when MSLM
is initialized with various pre-trained biomedical LMs.
These scores are compared against Vanilla versions of
the LMs. Best and second-best are bold and underlined.
Partial results of the table are presented in the main body
in Table 3.

to achieve hence effectively improving its entity
detection performance.

E Masking strategies

We compare our proposed joint ELM-BLM mask-
ing strategy to two other advanced masking strate-
gies, PMI (Levine et al., 2020) and Random SPAN
(Joshi et al., 2020) whose implementation we re-
spectively present in a pseudo code in the algo-
rithms 2 and 1.

E.1 SPAN Masking (1)

Given a tokenized input sequence and a masking
rate mr as input (line 1), we initialize a pool of
indices (of the same size as the input sequence |s|)
randomly ordered (srandom_pool). Each random in-
dex is a possible starting index of a contiguous
span to be masked. We compute the masking bud-
get mb as product between rate and input sequence
size to get number of tokens to be masked e.g. if
|s| = 10 and mr = 0.15, mb = 0.15 × 10. For
each random index in the pool srandompool

, we ini-
tialize a span length sl randomly sl ∈ 2, 3, 4 at line
4 i.e. this is the length of the contiguous span to
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#Sents
Train | Val | Test

#Classes AvgSentLen
#Ments

Train | Val | Test
AvgMents AvgMentsLen

BC2GM 12632 | 2531 | 5065 2 25.17 15197 | 3061 | 632 1.20 2.4
NCBI-disease 5432 | 923 | 942 2 25.24 5134 | 787 | 960 0.95 2.2
BC5CDR-chem 4812 | 4602 | 4582 2 25.75 5385 | 5203 | 5347 1.12 1.3
BC5CDR-dis 4812 | 4602 | 4582 2 25.75 4182 | 4246 | 4424 0.87 1.7
JNLPBA 14731 | 3876 | 3873 2 30.05 32178 | 8575 | 6241 2.18 3.0
EBM-NLP 32074 | 4009 | 4010 5 24.68 21498 | 2677 | 2736 2.67 2.0
MIMIC III 9937 | 1242 | 1243 3 1943.85 863732 | 106539 | 107330 8.67 2.0

Table 9: Dataset statistics. #Sents and #Ments are the number of sentences and number of DS-term mentions
respectively for the train, validation and test splits, AvgSentLen is the Average length of sentences, AvgMents is
the Average number of DS-terms mentioned per sentence obtained as (# of train Ent_Ments)/(# of train sents) and
AvgMentsLen is the average length of DS-terms.

BioBERT
(Lee et al., 2020)

GreenBioBERT
(Poerner et al., 2020)

MSLM-BioBERT
ELM=1,BLM=0.075

BC5CDR-disease 87.15 85.08 89.45
NCBI-disease 89.71 85.94 91.91
BC5CDR-chem 93.47 93.08 96.79
BC2GM 84.72 83.45 92.17
JNLPBA 77.49 76.89 83.24

Table 10: Downstream NER test F1 scores when differ-
ent variants of BioBERT are fine-tuned on the datasets.
Reference scores from compared methods (Lee et al.,
2020) and (Poerner et al., 2020). Best and second best
results are in bold and underlined respectively.

be masked. Three different constraints satisfied as
we iteratively select random spans to be masked
include, 1) the number of already masked tokens
summed up with span length sl should be less than
the masking budget mb (line 7-9), 2) then the end
index of span to masked should not be greater than
the end index of the input sequence (line 11-13),
then finally the selected span to be masked should
not contain already masked tokens inhibiting over-
lapping masking (line 15-17). Once all constraints
are satisfied, the span’s tokens within the input se-
quence are masked or replaced with mask token
[MASK].

E.2 PMI Masking (2)
With PMI, we begin by constructing a PMI vo-
cabulary of word n-grams of lengths 2–4. These
n-grams contain words that co-occur in sentences
a minimum of 5 times within the entire dataset.
A PMI score for each collocation (n-gram of co-
occurying words) is computed using the PMI mea-
sure (Levine et al., 2020). The collocations are
ranked and ordered in their respective lengths.
NB: Each dataset has its own PMI vocabulary.

Given a tokenized input sequence and a masking
rate mr as input (line 1). The masking budget mb

is computed similar to the SPAN approach (line 2).

Algorithm 1 SPAN Masking

1: Input: Tokenized input sequence:- s,
masking_rate:- mr, mask token:- [MASK],
Output: Masked Tokenized Input sequence
sM

2: Initialize the below,
- A pool of indices (srandom_pool) randomly

ordered, where |s| = |srandom_pool|
- masked_budget mb = math.ceil(mr ×|s|)
- masked_so_far msf = 0

3: for index i in srandom_pool do
4: Initialize random_span_length sl4i=2

i.e. span to be masked could vary from
length 2 to 4.

5: sl = min(sl,mb)
6: start, end = i, i+sl

Don’t mask beyond the masking budget [7-10]

7: if (msf + sl) > mb: then
8: sl = mb - msf
9: end = i+sl

10: end if
Don’t mask beyond sequence bounds [11-13]

11: if end ≥ |s| − 1 then
12: end = i+ sl
13: sl = end - start
14: end if

Don’t mask already masked spans [15-17]

15: if sM[start:end] has no [MASK] tokens
then

16: sM[start:end] = [MASK] ∗ sl
17: msf += sl
18: end if
19: if msf ≥ mb then
20: break
21: end if
22: end for return sM
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For each collocation (gram) in the vocabulary, we
check if collocation is a subsequence (contiguous)
of the input sequence. One constraint satisfied is 1)
the number of already masked tokens summed up
with span length sl should be less than the masking
budget mb (line 8-10), 2). Once constraint is sat-
isfied, the span’s tokens within the input sequence
are masked or replaced with mask token [MASK].

E.3 PMI vocabularly overlapping DS-terms

#DS-terms #PMI-vocab
#Overlap

(# | %)

18890 15787 8130 | 51.5

Table 11: Number of vocabularly terms that overlap
across with DS-terms in the BC2GM dataset. “#” im-
plies number of, % implies percentage of the vocabu-
larly that are DS-terms.

Table 11 shows that 51.5% of the phrases in the
constructed PMI’s vocabularly (for the BC2GM
dataset) are DS-terms. This high concentration of
DS-terms in the PMI vocabularly implies that there
is a high similarity between PMI masking and En-

Algorithm 2 PMI Masking

1: Input: Tokenized input sequence:- s,
masking_rate:- mr, mask token:- [MASK],
PMI_vocabularly (PMIv)
Output: Masked Tokenized Input sequence
sM

2: Initialize the below,
- masked_budget mb = math.ceil(mr×|s|)
- masked_so_far msf = 0

3: while msf ≤ mb do
4: for gram in PMIv do
5: if gram is a subsequence in sM then
6: Get start (st) and end (ed) indices of

gram in sM
7: graml = |gram|
8: if msf + graml > mb then
9: graml = mb - msf

10: end = st+graml

11: end if
12: sM[st:ed] = [MASK]∗ graml

13: msf += graml

14: end if
15: end for
16: end while
17: return sM

tity Level Masking (ELM) and hence making PMI
masking nearly as effective as standalone ELM
masking (i.e. even without BLM masking). Ta-
ble 14 shows a sample of the DS-terms that overlap
(in blue) across with the PMI vocabularly.

F Is DSFT destructive?

We present the complete list of all plots from the
experiments investigating whether DSFT is destruc-
tive hence exploring an answer to the hypothesis in
the introduction, i.e. the awareness of or sensitivity
towards DS-terms can be appropriately elevated
when fine-tuning without hurting downstream per-
formance.

As observed in Figure 6, we observe better re-
sults achieved by the MSLM fine-tuned models,
more so, achieving the best performance of the
vanilla models in a much shorter training time. A
couple of other things we notive include, perfor-
mance during the course of training of bioelectra
models doesn’t seem to signigicantly differ from
that of the MSLM_bioelectra models across all
datasets. We also notice that unlike all the other
models, with bioelectra, MSLM_fine-tuned models
achieve the best performance of the vanilla models
after 10 epochs, i.e. longer than the other models.
We attribute bioelectra’s competitiveness to its in-
herent architectures (ELECTRA; Clark et al., 2020)
which, similar to MSLM, it adds a model to detect
whether MLM has correctly replaced a token or
not (token replacement detection). Electra trains
a generator (which is an MLM) to predict tokens
for masked slots, and additionally trains a discrimi-
nator to predict whether a token has been replaced
or the original masked token is what the generator
predicted. Whereas MSLM doesn’t add any model
on top of the MLM, it targets MLM components i.e.
tilting the MLMs sensitivity towards masks tokens
corresponding to DS-terms.

G Additional Analysis

Due to space limitations, we defer additional inves-
tigations to further validate our MSLM approach to
this Appendix. We investigate MSLM in a weakly
supervised setting and detail everything in follow-
ing sections.

G.1 Weak supervision of MIMIC-III

Specifically, we employ MIMIC-III v1.4 (John-
son et al., 2016) dataset, and retrieve a sample of
5000 patient records from the NOTESEVENT table
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Figure 6: Downstream NER F1 performance of the vanilla and the MSLM-fine-tuned models. "MSLM" is used
to uniquely identify DSFT models. ELM and BLM rates used in §3.1 are maintained. Each row contains results
specific to a dataset e.g. first row has BC5CDR-chem, second has NCBI-disease etc. Similarly each column contains
results specific to pre-trained biomedical LM.

(within the MIMIC-III v1.4 database) containing
de-identified free text entries recorded by physi-
cians and other care providers during patient-care.
Figure 7 illustrates the pipeline used in annotating
mimic-III in a weakly supervised process.

We use Cogstack medcat3, a biomedical anno-
tation tool, to extract and categorise medical con-
cepts based on medical semantic types defined4 in
UMLS and Snomed.

Because of the unequal distribution of the se-
mantic types across the annotations, we narrow
down the scope of target UMLS semantic concepts
with the help of a clinical consultant who clusters
concepts into three high-level clinical concepts of
Diseases, Symptoms and Treatments, as shown in
Table 12.

After the annotations, we then use SpaCy5 (Neu-
mann et al., 2019) for sentence segmentation of
each record (a row containing multiple paragraphs)

3https://medcat.readthedocs.io/en/latest/
index.html

4https://lhncbc.nlm.nih.gov/ii/tools/MetaMap/
documentation/SemanticTypesAndGroups.html

5https://spacy.io/

Cluster Category Associated UMLS Semantic Types

Treatments
["Pharmacologic Substance", "Clinical Drug",
Antibiotic]

Diseases

["Acquired Abnormality",
"Anatomical Abnormality", "Bacterium",
"Archaeon", "Congenital Abnormality",
"Cell or Molecular Dysfunction",
"Disease or Syndrome", "Virus",
"Neoplastic process"]

Symptoms
["Social Behavior", "Sign or Symptom",
"Mental or Behavioral Dysfunction"]

Table 12: UMLS semantic types that Cogstack can link
to are clustered into three high level categories by a clin-
ical consultant. These clusters encapsulate the semantic
types in an easy-to understand manner

and split the resulting list of sentences into train,
validation and test sets (9937, 1242 and 1243 sen-
tences respectively), which are then subsequently
used in fine-tuning.

G.2 Results

After preliminary tuning of BLM and ELM rates
on validation set, we find the optimal BLM and
ELM rate as 0.075 and 0.5 respectively, which
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Figure 7: Weakly supervised annotation of MIMIC-III v1.4.

Vanilla MSLM
BLM=0.075 ELM=0.5

MIMIC-III BioBERT 90.1 92.6±0.2

PubMedBERT 89.8 93.8±0.4

BioELECTRA 88.1 90.1±0.2

SciBERT 87.5 89.7±0.4

Table 13: Exact match (EM) scores. Average scores
(across 5 runs) obtained for fine-tuning LMs on weakly
supervised dataset constructed using MIMIC-III patient
records.

achieves an average improvement of 2.7 points in
EM scores over the vanilla approach as seen in Ta-
ble 13. This improvement further indicates how
beneficial MSLM is in improving extraction of DS-
terms from clinical patient data. rather than just
scientific literature in BLURB datasets.
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BC2GM PMI Vocabulary

Bombyx mori
IE promoter
CASE REPORT
Codonopsis pilosula
E2 proteins
HMR locus
LY 294002
Leptomonas seymouri
OAE screener
latent membrane protein 2A
Pisum sativum
protein tyrosine kinase
Punta Toro
Rhodosporidium toruloides
PDH complex
dopamine D2 receptor
Trait Personality
Van der
Veterans Affairs
human chorionic gonadotropin
chengchi tang
cysteine proteinase
dig1 dig2
dihydrolipoyl transsuccinylase
bacterial chloramphenicol acetyltransferase
chloroacetate esterase
·
·
·

bHLH proteins
ta chengchi
pleckstrin homology domain
Aedes aegypti
Autographa californica
RNAP II
sigma 54
El Paso
Expiratory Flow
Gulf War
Hematopoietic growth factors
Rhodobacter capsulatus
Src homology
Task Force
Toxocara canis
monoamine oxidase
cytochrome oxidase
acne vulgaris
aluminium hydroxide
binocular pregeniculate
U5 RNA
campestris pv
Ogg1 protein
forward projection
preformed triplexes
areA product
alkaline phosphatase
Aryl hydrocarbon
CEN ENV
Epidemiologic Follow
PKC beta

tyrosine kinase receptor
tyrosine kinase
dystrophic epidermolysis
exacerbate cryoblobulinemia
fluoromethyl ketone
uPA mRNA
police officers
uPA mRNA
Enterococcus faecalis
Fugu rubripes
ets family
RNA polymerase
Nicotiana tabacum
P22 R17
San Francisco
thymidine kinase promoter
bicycle ergometer
paired domain
dura mater
fluticasone propionate
recombinant human erythropoietin
CAT reporter gene
orientational anisotropy
patent ductus
pia mater
translation upstream factor
·
·
·
epidermolysis bullosa
fork head
dopamine receptor
PCC 7120
Selected topics
chloromethyl alkyl
firefly luciferase gene
irritation sensation
viral LTR
Fusarium moniliforme
Jenkins Activity
histone H3
Medical Radiology
S1 nuclease
NnS neurones
Rhizobium leguminosarum
9804 gene
cyclin D1
emollient cream
imino protons
nontumorigenic Ad5
MAP kinase
proportional hazards
pertussis toxin
volatile solvents
Karger AG
env genes
integrin subunits
aryl hydrocarbon
dyad symmetry
multifocal leukoencephalopathy

glucocorticoid receptor
ad lib
ad libitum
aggregative fimbriae
thyroid hormone receptor
amylose cornstarch
prolyl isomerase
fenfluramine anorexia
hexamethylpropyleneamine oxime
IgG antibodies
rheumatoid factor
myasthenia gravis
otoacoustic emissions
substantia innominata
PDGF receptors
synovial chondromatosis
LDL cholesterol
vena cava
Dirofilaria immitis
alpha 2AP
Cre recombinase
Spodoptera frugiperda
Zea mays
reticulocyte lysate
polypyrimidine tract binding protein
BACTEC 9000
·
·
·
TCR beta
NMDA receptor
SELECTION CRITERIA
acoustic neuroma
acoustic startle
exonuclease III
aphthous stomatitis
SR family
flexor motoneurons
plan spared
antithrombin III
epidermal growth factor
rear corner
vas deferens
vinyl siloxane
ERK MAPK
interspecific backcross
growth hormone
SB 203580
circular dichroism
beta receptor
TK gene
hypoxaemic resuscitation
intraindividual fluctuations
northern Norway
capsid proteins
prizidilol hydrochloride
SH3 domain
thiazide diuretics
von Willebrand
proliferating cell nuclear antigen

Table 14: PMI vocabulary constructed from BC2GM dataset. DS-terms (in blue) discovered within the constructed
PMI vocabularly
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