
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pages 4971–5012

June 16-21, 2024 ©2024 Association for Computational Linguistics

Leveraging Code to Improve In-context Learning for Semantic Parsing

Ben Bogin1∗ Shivanshu Gupta2∗ Peter Clark1 Ashish Sabharwal1

1Allen Institute for AI 2University of California Irvine
{benb,peterc,ashishs}@allenai.org, shivag5@uci.edu

Abstract

In-context learning (ICL) is an appealing ap-
proach for semantic parsing due to its few-
shot nature and improved generalization. How-
ever, learning to parse to rare domain-specific
languages (DSLs) from just a few demonstra-
tions is challenging, limiting the performance
of even the most capable LLMs.

In this work, we show how pre-existing coding
abilities of LLMs can be leveraged for semantic
parsing by (1) using general-purpose program-
ming languages such as Python instead of DSLs
and (2) augmenting prompts with a structured
domain description that includes, e.g., the avail-
able classes and functions. We show that both
these changes significantly improve accuracy
across three popular datasets; combined, they
lead to dramatic improvements (e.g., 7.9% to
66.5% on SMCalFlow compositional split) and
can substantially improve compositional gener-
alization, nearly closing the performance gap
between easier i.i.d. and harder compositional
splits. Finally, comparisons across multiple
PLs and DSL variations suggest that the similar-
ity of a target language to general-purpose code
is more important than prevalence in pretrain-
ing corpora. Our findings provide an improved
methodology for building semantic parsers in
the modern context of ICL with LLMs.1

1 Introduction

Semantic parsing, the task of translating natural lan-
guage utterances to structured meaning representa-
tions (Zelle and Mooney, 1996; Kate et al., 2005)
is a core requirement for building task-oriented di-
alog systems and voice assistants. This task is pri-
marily addressed with two approaches: fine-tuning
models on labeled datasets of utterances mapped
to domain-specific language (DSL) programs (Xu
et al., 2020; Oren et al., 2021; Gupta et al., 2022;

∗ Equal contribution
1https://github.com/allenai/

code-semparse

Domain Description + DSL

Domain Description + Python

city(all) # return all cities
most(s) # given a set of items, return the item that appears most f…
...

Which state has the most major cities?
 answer(largest_one(state(city(major(all)))))

Gold: answer(most(state(loc_1(major(city(all))))))

𝜙

class State:
 cities: List[City]
...

Which state has the most major cities?
 def answer() -> State:
 state_with_most_major_cities = max(geo_model.states,
 key=lambda x: len([c for c in x.cities if c.is_major]))
 return state_with_most_major_cities

✅𝑐𝑎𝑙𝑖𝑓𝑜𝑟𝑛𝑖𝑎

Figure 1: An example illustrating how moving the prob-
lem space from a DSL to a general-purpose program-
ming language such as Python can improve output accu-
racy. When prompted with a DSL, the model doesn’t use
the operator most, resulting in an incorrect program.
When prompted with Python, the model leverages its
pre-existing knowledge of coding to produce the correct
program and answer.

Yin et al., 2022) and employing in-context learn-
ing (ICL; Brown et al., 2020) to prompt a large
language model (LLM) with a few demonstrations.

However, both strategies present significant lim-
itations. Fine-tuning requires substantial pools of
labeled data, which can be expensive and time-
consuming to obtain. Crucially, fine-tuned models
also struggle to compositionally generalize, e.g.,
to decode programs longer than seen during train-
ing or to emit unseen structures (Kim and Linzen,
2020; Keysers et al., 2020; Bogin et al., 2022; Yao
and Koller, 2022). While ICL can improve com-
positional generalization in some cases (Anil et al.,
2022; Qiu et al., 2022b; Drozdov et al., 2023; Hos-
seini et al., 2022), learning from a few demonstra-
tions is challenging: LLMs need to not only under-
stand the meaning of the input utterance but also
learn how to correctly use a typically rare domain-
specific language (DSL), given only few demonstra-
tions. This makes ICL sensitive to demonstration
selection (Zhao et al., 2021), which may not cover

4971

https://github.com/allenai/code-semparse
https://github.com/allenai/code-semparse

all functionalities and subtleties of a DSL. While
prior work has tried to alleviate this with a better
selection of demonstration (Liu et al., 2022; Levy
et al., 2023; Gupta et al., 2023), such approaches
require access to a large pool of labeled demonstra-
tions to select from and are not applicable in a true
few-shot settings.

Given that LLMs show remarkable coding abil-
ities in general-purpose programming languages
(PLs; Chen et al. 2021; Xu et al. 2022), in this
work, we ask two main questions: (1) How can
we leverage these abilities to improve ICL-based
semantic parsing? (2) Can LLMs compositionally
generalize better with PLs rather than DSLs?

To investigate this, first, we replace DSLs with
equivalent code written in popular programming
languages such as Python or Javascript. This helps
better align the output space with pretraining cor-
pora, obviating the need for LLMs to learn new
syntax, basic operations, or other coding practices
from scratch. For example, consider Figure 1: to se-
lect a state that has the most major cities, an LLM
prompted with a DSL needs to use the operator
most, for which it might not be given an example.
In contrast, with Python, the LLM can leverage its
pre-existing knowledge of code to find such a state.

Second, we augment the ICL prompt with a
structured description of the output meaning repre-
sentation, which we refer to as Domain Description
(DD). This provides domain-specific information
such as types of entities, attributes, and methods
(e.g., State and its attributes in Figure 1). While
such descriptions can also be added to DSLs, we
find that domain descriptions for PLs are easier to
precisely define with explicit declarations of ob-
jects, methods, their signatures, etc. Furthermore,
LLMs are more likely to leverage descriptions with
PLs rather than DSLs, as using previously defined
objects and methods is a common coding practice.

We evaluate our approach on both ChatGPT2 and
the open-source Starcoder model (Li et al., 2023a),
by implementing Python-executable environments
for three complex semantic parsing benchmarks,
namely GeoQuery (Zelle and Mooney, 1996),
Overnight (Wang et al., 2015), and SMCalFlow
(Andreas et al., 2020), and annotating them with
Python programs and DDs.

In a true few-shot setting, where only a few (e.g.,
10) labeled examples are available to use as demon-
strations, we find that PL prompts with DDs dra-

2https://chat.openai.com/

matically improve execution-based accuracy across
the board, e.g., 49.7 points absolute improvement
(31.0% to 80.7%) on the length split of GeoQuery,
compared to the standard ICL approach of a DSL-
based prompt with no DD. Prompting a model with
Python and domain description can often even elim-
inate the need for many demonstrations: with just
a single demonstration, accuracy on a composi-
tional split of GeoQuery reaches 80%, compared
to 17% for DSL prompting with no DD. In fact,
for two datasets, a single PL demonstration with
DD outperforms DSL prompts with as many as
25 demonstrations and an equivalent DD. Interest-
ingly, we find that employing Python with a DD
substantially improves compositional generaliza-
tion, almost entirely closing the compositionality
gap, i.e., the performance difference between an
i.i.d. split and harder compositional splits.

One might hypothesize that the strong perfor-
mance of Python is due to its prevalence in the
pretraining corpus (Cassano et al., 2023). To in-
vestigate this, we evaluate the performance of PLs
whose popularity differs from that of Python. Sur-
prisingly, we find that prevalence in pretraining
corpora does not explain superiority: both Scala, a
PL much rarer than Python, and Javascript, which
is much more prevalent, perform roughly similarly.
SQL, a common query language, performs better
than DSLs, but worse than the other more general-
purpose PLs. Further analyses with simplified ver-
sions of DSLs indicate that even rare DSLs, as long
as they resemble general-purpose code, might per-
form nearly as well as PLs, provided a detailed DD
is used.

In conclusion, we demonstrate that using pop-
ular PLs instead of DSLs and adding domain de-
scriptions dramatically improves ICL for semantic
parsing while nearly closing the compositionality
gap. Further, we show that when LLMs are used for
semantic parsing, it is better to either prompt them
with PLs or design DSLs to resemble popular PLs.
Overall, these findings suggest an improved way of
building semantic parsing applications in the mod-
ern context of in-context learning with LLMs.

2 Related Work

Compositional Generalization. Semantic pars-
ing has been studied extensively in recent years in
the context of compositional generalization (CG),
where models are evaluated on examples that con-
tain unseen compositions of structures, rather than

2
4972

https://chat.openai.com/

Dataset MR # chars Depth Example

GeoQuery input How high is the highest point in the largest state?

FunQL 49.4 4.8 answer(elevation_1(highest(place(loc_2(largest(state(all)))))))

Python 115.4 largest_state = max(geo_model.states, key=lambda x: x.size)
return largest_state.high_point.elevation

Overnight input person whose gender is male and whose birthdate is 2004

λ-DCS 282.0 6.8
(call SW.listValue (call SW.filter (call SW.filter (call SW.getProperty (call
SW.singleton en.person) (string !type)) (string gender) (string =)
en.gender.male) (string birthdate) (string =) (date 2004 -1 -1)))

λ-DCS
(Simp.) 164.1 6.0 (listValue (filter (filter (getProperty en.person !type)

gender = en.gender.male) birthdate = 2004))

Python 270.0

people_born_in_2004 = [p for p in api.people if p.birthdate == 2004]
males_born_in_2004 = [p for p in people_born_in_2004 if p.gender ==

Gender.male]
return males_born_in_2004

SMCalFlow input Make an appointment in Central Park on Friday.

Dataflow 372.6 8.7

(Yield :output (CreateCommitEventWrapper :event (CreatePreflightEventWrapper
:constraint (Constraint[Event] :location (?= # (LocationKeyphrase "Central
Park")) :start (Constraint[DateTime] :date (?= (NextDOW :dow # (DayOfWeek
"FRIDAY"))))))))

Dataflow
(Simp.) 118.7 4.2 CreateEvent(AND(at_location(Central Park) , starts_at(NextDOW(

FRIDAY))))

Python 174.4 api.add_event(Event(subject="Appointment in Central Park", starts_at=[
DateTimeClause.get_next_dow(day_of_week="Friday")], location="Central Park"))

Table 1: Sample input, program, average program length and average maximum depth for each dataset and meaning
representation considered. Depth is computed based on parentheses.

easier i.i.d. train-test splits (Finegan-Dollak et al.,
2018). Initial work on CG focused on fine-tuning-
based approaches. As simply scaling the model
size or amount of data CG has been shown to be in-
sufficient for improving CG (Hosseini et al., 2022;
Qiu et al., 2022b), prior work explored approaches
like specialized architectures, (Herzig and Berant,
2021; Bogin et al., 2021; Yin et al., 2021; Lin-
demann et al., 2023), data augmentation (Andreas,
2020; Qiu et al., 2022a; Akyürek et al., 2021), train-
ing data selection (Bogin et al., 2022; Gupta et al.,
2022), etc. With the increasing prevalence of in-
context learning with LLMs, recent works have
focused on improving its compositional general-
ization through better demonstration selection (Liu
et al., 2022; Ye et al., 2023; An et al., 2023; Li
et al., 2023b; Zhang et al., 2022; SU et al., 2023;
Levy et al., 2023; Gupta et al., 2023, 2024). How-
ever, all these methods require a large pool of
demonstrations or annotation efforts. In contrast,
we show that by leveraging pre-existing coding
abilities, LLMs do not need as many examples to
generalize.

Effect of Meaning Representations. To address
specific challenges with DSLs, previous work has
proposed to work with simpler meaning representa-
tions (MRs) (Herzig et al., 2021; Li et al., 2022; Wu

et al., 2023) or synthetic NL utterances (Shin et al.,
2021), or prompting models with the grammar of
the DSL (Wang et al., 2023). Recently, Jhamtani
et al. (2023) used Python to satisfy virtual assistant
requests. Differently from that, our work provides
an extensive study exploring the advantage of using
code and domain descriptions in semantic parsing,
across different datasets and PLs.

Code Prompting. Numerous works have shown
that code-pretrained LLMs can be leveraged to im-
prove various tasks such as arithmetic reasoning,
commonsense reasoning, and others with prompts
that involve code (Gao et al., 2022; Madaan et al.,
2022; Chen et al., 2022; Zhang et al., 2023; Hsieh
et al., 2023). In this work, we show for the first
time how to effectively use code prompts for se-
mantic parsing, demonstrating that when the output
of the task is already programmatic and structured,
performance gains can be dramatically high.

3 Setup

Given a natural language request x and an en-
vironment e, our task is to “satisfy” the request
as follows by executing a program z: If x is an
information-seeking question, program z should
output the correct answer y; if x is an action re-
quest, z should update the environment e appropri-

3
4973

Class Person:
 name: str
 def find_team_of() -> List[Person]: …
 def find_reports_of() -> List[Person]: …
 def find_manager_of() -> Person: …

Class Event:
 attendees: List[Person] = None
 subject: Optional[str] = None
 location: Optional[str] = None
 starts_at: Optional[List[DateTimeClause]] = None
 ...

class API:
 def find_person(name: str) -> Person: …
 def get_current_user() -> Person: …
 def add_event(event: Event) -> None: …
 ...

Figure 2: A partial example of a domain description
containing the names of all objects and operators (in
green) and type signatures (in orange).

ately. For example, an information-seeking ques-
tion could be “what is the longest river?”, where
e contains a list of facts about rivers and lengths,
and the answer y should be returned based on these
facts. An action request could be “set a meeting
with John at 10am” where e contains a database
with a list of all calendar items, and the task is to
update e such that the requested meeting event is
created. The environment e can be any type of
database or system that provides a way to retrieve
information or update it using a formal language
program. Each environment accepts a different for-
mal language for z, and has its own specific list
of accepted operators (see Table 1 for examples of
different formalisms used in this work).

We focus on the true few-shot setup where
only a small (≤ 10) set of demonstrations is used.
Specifically, we assume knowledge of the formal-
ism and operators supported by e, and a set of
training examples {(xi, zi)}ki=1 where k is small
(≤ 10), and no other data, labeled or otherwise.

4 Domain-Augmented PL Prompts

Semantic parsing studies have traditionally used
DSLs. We posit that using general-purpose PLs
with a structured description of the domain in hand
could better exploit the potential of modern LLMs,
which are pretrained on a mix of code and natural
language.

Leveraging Existing Coding Knowledge.
While DSLs tailored to specific domains can be
valuable for trained domain experts, their rarity
makes it challenging for LLMs to learn them from
just a few demonstrations. In contrast, PLs are
prevalent in pretraining corpora; by prompting
LLMs to generate PLs rather than DSLs, LLMs

can leverage their existing coding knowledge
without the need to learn the syntax and standard
operations for a new language from scratch.

For instance, consider the operator most in
Figure 1. LLMs with no prior knowledge of the
given DSL struggle to correctly apply this operator
without sufficient demonstrations. However, with
Python, the model can exploit its parametric knowl-
edge to perform this operation by employing the
built-in max and len operators of Python, along
with list comprehension. Another example is fil-
tering sets of items in λ-DCS (Table 1, Overnight).
Using a rare DSL, models must learn how to cor-
rectly use the filter operator from just a few demon-
strations. However, LLMs have likely already seen
a myriad of filtering examples during pretraining,
e.g. in the form of Python’s conditional list com-
prehension.

Domain Descriptions. While using PLs allows
the model to leverage its parametric knowledge of
the language’s generic aspects, the LLM is still
tasked with understanding domain-specific func-
tionalities from a few in-context demonstrations.
This is challenging, often even impossible, in a true
few-shot setup, where the few fixed demonstra-
tions may not cover all the functionality necessary
to satisfy the test input request. A line of prior
work alleviated this issue by selecting the most
relevant demonstrations for every test input (Levy
et al., 2023; Gupta et al., 2023), but this approach
typically requires a large labeled pool of demon-
strations.

To address this challenge in a true few-shot
setup, we propose an intuitive solution that nat-
urally aligns with the use of PLs: providing the
model with a Domain Description (DD) outlining
the available operators. Specifically, when using
PLs, we prefix the ICL prompt with definitions of
the domain classes, methods, attributes, and con-
stants exactly as they are defined in the environ-
ment, with the implementations of specific meth-
ods concealed for prompt brevity (e.g., replaced
with ‘...’ in Python).

Figure 2 provides a snippet of the Python DD
for SMCalFlow (Andreas et al., 2020), where users
can create calendar events with certain people from
their organization. Perhaps most importantly, DDs
include the names of all available operators (high-
lighted in green in the figure). Without a list of
available operators and relevant demonstrations,
models are unlikely to generate a correct program.

4
4974

The type signatures (highlighted in orange in the
figure) provide additional important information
on how these operators and attributes can be used.
The complete DDs are deferred to App. E.

While DDs can also be used with DSLs, there’s
typically no consistent and formal way to write
such descriptions. In contrast, DDs for PLs are
not only easier to write, they could be particularly
effective as pretraining corpora contain countless
examples of how previously defined classes and
methods are used later in the code. As we will em-
pirically demonstrate in Section 6, DDs are indeed
utilized more effectively with PLs than with DSLs.

Prompt Construction. The prompt that we use
is a concatenation of the domain description (such
as the example in Figure 2) and demonstrations
(such as the inputs and MRs in Table 1) for a given
environment. See App. F for the exact format.

5 Experimental Setup

5.1 Datasets and Environments

Datasets. We experiment with three seman-
tic parsing datasets, covering both information-
seeking questions and action requests. See Table 1
for examples.
• GeoQuery (Zelle and Mooney, 1996) contains

user utterances querying about geographical facts
such as locations of rivers and capital cities.

• SMCalFlow (Andreas et al., 2020) contains user
requests to a virtual assistant helping with actions
such as setting up organizational calendar events.

• Overnight (Wang et al., 2015) contains queries
about various domains; in this work, we use the
‘social network’ domain, with questions about
people’s employment, education, and friends.

DSLs. Unless mentioned otherwise, we experi-
ment with the original DSLs of the tasks: FunQL
(Kate and Mooney, 2006) for GeoQuery, Dataflow
for SMCalFlow, and λ-DCS (Liang et al., 2011) for
Overnight. We also experiment with a simpler ver-
sion of λ-DCS for Overnight, where we reversibly
remove certain redundant keyword, and Dataflow-
Simple (Meron, 2022), a simpler (and less expres-
sive) version of Dataflow, to better understand the
effect of the design of DSLs (§6.2).

Dataset Splits. For each dataset, we experiment
with both i.i.d. splits (random splits between train-
ing and test sets) and compositional generalization

splits, as detailed in App A.2. All results are re-
ported on development sets where available, except
for Tables 2 and 5, where we use the test sets.

Executable environments. As described in § 3,
an environment is capable of executing a program
z and either outputting an answer y (e.g., the name
of a river) or modifying its own state (e.g., creating
an event). In this work, for each dataset, we use
an existing executable environment for the DSL
formalism and implement one for Python.

To implement the Python environments, we ana-
lyze the original DSL programs to identify the req-
uisite classes, their properties, and their methods,
and then write Python code to create an executable
environment. Importantly, whenever possible, we
retain the original names of properties and con-
stants used in the DSLs, ensuring that performance
improvements can be attributed to the change in
MR rather than changes in naming. We refer to
App. A.1 for implementation details of all of the
environments we use.

5.2 Evaluation

Metrics. The executable environments we have
for all datasets, for both DSL and Python, allow us
to compute execution-based accuracy. For Geo-
Query and Overnight, we compare answers re-
turned by generated programs to those generated by
gold DSL programs. For SMCalFlow, we compare
the state (i.e., calendar events) of the environments
after executing gold and predicted programs. For
DSL experiments, we additionally provide Exact
Match metric results in App. B, which are com-
puted by comparing the generated programs to
gold-annotated programs.

We run all experiments with three seeds, each
with a different sample of demonstrations, and re-
port average accuracy. For each seed, the same set
of demonstrations is used across different test in-
stances, MRs, and prompt variations. Standard
deviations for main results are provided in Ap-
pendix B.2.

Conversion to Python. To generate Python pro-
grams demonstrations, we convert a subset of the
DSL programs of each dataset to Python using
semi-automatic methods while validating them by
ensuring they execute correctly. See App. C for
details.

Models. We experiment with OpenAI’s ChatGPT
(gpt-3.5-turbo-0613) and the open-source Star-

5
4975

Coder (Li et al., 2023a). Since GPT’s maximum
context length is longer, we conduct our experi-
ments with GPT with k = 10 demonstrations and
provide main results for StarCoder with k = 5.
We use a temperature of 0 (greedy decoding) for
generation.

Domain Descriptions for DSLs. For a thorough
comparison, we also provide DDs for each DSL,
containing similar information as the PL-based
DDs (§4). We manually write these DDs based
on the existing environments, listing all operators
and describing type signatures. We write the de-
scriptions of operators in natural language (NL);
For GeoQuery we also experiment with code de-
scriptions, where names of operators are followed
by Python-like signatures (see App. E for all DDs).
Unless mentioned otherwise, Full DD for DSLs
refers to the NL version.

We note that providing DDs for DSLs is of-
ten not as straightforward as for PLs; we design
the DSL-based DDs to be as informative as possi-
ble but do not explore different description design
choices. This highlights another advantage of us-
ing PLs—their DDs can simply comprise extracted
definitions of different objects without the need to
describe the language itself.

6 Results

We first compare Python-based prompts with DSL-
based prompts and the effect of DDs (§6.1). We
then experiment with several other PLs and varia-
tions of DSLs to better understand how the design
of the output language affects performance (§6.2).

6.1 Python vs DSLs

Baselines and Ablations. We compare multiple
variations of DDs. List of operators simply lists all
available operators without typing or function sig-
natures (i.e., we keep only green text in Figure 2).
Full DD contains the entire domain description,
while DD w/o typing is the same as Full DD, ex-
cept that it does not contain any type information
(i.e., none of the orange text in Figure 2).

Main Results. Table 2 presents the results for
ChatGPT (k=10), while Table 5 in App. B.1 shows
results for Starcoder (k=5). We observe that Python
programs without a DD outperform not only DSLs
without a DD but even surpass DSLs prompted
with a full DD across all splits for GPT and on
most splits for Starcoder. Python with a full DD

GeoQuery SMC-CS Overnight

i.i.d. Templ. TMCD Len. i.i.d. 0-C i.i.d. Templ.

D
SL

No DD 37.6 34.2 43.5 31.0 42.9 7.3 34.0 23.1
List of operators 48.6 31.8 47.3 38.0 45.9 20.1 38.1 24.0
Full DD (code) 51.9 34.5 53.6 43.9 - - - -
Full DD (NL) 61.0 41.5 52.5 39.4 40.7 20.7 38.8 23.2

Py
th

on

No DD 72.6 54.6 67.1 57.3 58.0 28.0 62.8 69.2
List of operators 83.5 83.0 81.9 75.3 59.6 46.9 61.7 71.5
DD w/o typing 82.1 83.1 83.4 75.7 69.1 65.6 62.1 68.5
Full DD 84.4 84.4 84.9 80.7 69.2 66.7 64.5 72.9

Table 2: Execution accuracy of GPT-3.5-turbo, compar-
ing Python-based prompts with DSL-based prompts
across different DD variations, when 10 in-context
demonstrations are used. Python-based prompts with
Full DD consistently outperform DSL-based prompts
by substantial amounts. Test sets results.

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

GeoQuery (TMCD)

1 5 10 25
0.0

0.2

0.4

0.6

0.8

1.0
SMCalFlow (0-C)

1 5 10 25
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Overnight (Template)

DSL, Full DD
Python, Full DD
DSL, No DD
Python, No DD

Figure 3: Execution accuracy for varying number of
demonstrations. In almost all cases, Python outper-
forms DSL, both with a domain description and without,
across different numbers of demonstrations (prompt for
SMCalFlow, DSL, Full DD could not fit more than 15
examples given the model’s context length limitation).

performs best in all 8 splits for GPT and on 5 splits
for Starcoder. Notably, for ChatGPT, using Python
with Full DD almost entirely eliminates the compo-
sitionality gap, i.e., the difference in performance
between the i.i.d. split and compositional splits.

Ablating different parts of the DDs (rows “List
of operators” and “DD w/o typing”) reveals that
in some cases, most of the performance gain
for Python-based prompts is already achieved by
adding the list of operators (e.g., GeoQuery i.i.d.
split), while in other cases (e.g., GeoQuery length
split) providing typing and signatures further im-
proves accuracy. For DSL-based prompts, both
formal DDs and natural language (rows Full DD
formal/NL) underperform Python-based prompts,
suggesting that Python’s performance gains are not
only due to descriptions being formal.

Prompt Length Trade-off. Figure 3 demon-
strates that using Python consistently outperforms

6
4976

0

20

40

60

80

A
cc

ur
ac

y
Split = i.i.d. Split = Templ.

Random Coverage BM25
0

20

40

60

80

A
cc

ur
ac

y

Split = TMCD

Random Coverage BM25

Split = Len.

DSL, Full DD Python, Full DD DSL, No DD Python, No DD

Figure 4: Python-based prompts, both with and without
DD, consistently outperform DSL-based prompts, even
with better demonstrations, for every split of GeoQuery.

DSLs across varying numbers (k) of demonstra-
tions. For both GeoQuery and SMCalFlow, just
a single demonstration with a DD outperforms 25
demonstrations without a DD. However, the impact
of DDs depends on the dataset and the domain:
DDs lead to dramatic gains for the more complex
SMCalFlow, but are less impactful in Overnight
where the domain is small.

Considering a real-world setup with constrained
resources, where one might want to optimize per-
formance given a maximum prompt length, we also
investigate accuracy as a function of the total num-
ber of prompt tokens for three Python DD varia-
tions. We find that the optimal point in the trade-off
between DD detail and number of demonstrations
in the prompt varies per dataset (see Figure 5 in
App. B.5). For Overnight, where the domain is
simple, using demonstrations alone might suffice.
However, for both GeoQuery and SMCalFlow, hav-
ing the Full DD is preferred whenever it can fit.

Effect of Better Demonstrations Selection. Our
results so far have demonstrated performance with
a random, fixed set of demonstrations, in line with
our goal of minimizing labeling workload. How-
ever, in some scenarios, the budget may allow ac-
cess to larger pools of demonstrations, in turn al-
lowing more sophisticated demonstration selection
methods to be applied. To evaluate our approach
in such a setting, we additionally experiment with
two selection methods.

The first method optimizes for operator cover-
age (Levy et al., 2023; Gupta et al., 2023) by select-
ing a fixed set of demonstrations that cover as many
of the operators as possible. This is achieved by

greedily and iteratively selecting demonstrations
to cover operators (see App. D for details). This
fixed set covers 68% to 81% of the operators with
k = 10 (coverage varies across splits). Our sec-
ond selection method is similarity-based retrieval:
given a test example utterance, we retrieve the train-
ing examples with the most similar utterances using
BM25 (Robertson and Zaragoza, 2009).

We present the results for the different demon-
stration selection methods in Figure 4 for Geo-
Query, for which we have annotated the entire
training set with Python programs. We observe
that for every selection method, both with and with-
out DD, Python-based prompts consistently outper-
form DSL-based prompts.

Error Analysis. We now analyze the kinds of er-
rors made by the LLM when prompted with Python
and a DD. For SMCalFlow and ChatGPT, the devel-
opment set of the compositional split (of size 250)
resulted in 78 errors on one of the seeds; we include
common examples of errors in App. B.3 (Table 7,
with examples of correct predictions in Table 8).
42 (54%) of the errors were because the program
failed to execute. The remaining 36 were due to
incorrect execution. Closer analysis revealed most
of these errors to be due to failure to understand
the input utterance or not using the API correctly.
A small fraction (11, 14%) of the error instances
were found to be unsupported by the original en-
vironment or our Python re-implementation. For
GeoQuery, on the other hand, among the 18 errors
made by ChatGPT on the development set of the
TMCD split (of size 100) on one of the seeds, only
8 were attributed to model errors, while 8 were due
to discrepancies in the dataset3 and 2 resulted from
environment limitations.

The above analysis suggests that while using
PLs and DDs greatly improves the performance of
LLMs, there is still scope for improvement in more
complex domains (like SMCalFlow). Future work
can explore how to ensure LLMs remain faithful to
the DD and how to design PL environments to be
more amenable to LLMs.

6.2 What Makes a Good MR?

Building on the findings from Section 6.1, showing
that Python prompts consistently outperform DSLs,

3These include incorrect FunQL annotation or discrep-
ancies in the GeoBase database underlying GeoQuery, e.g.,
Mount McKinley is referred to as “Mount McKinley” and
“mckinley” leading to ambiguity.

7
4977

GeoQuery SMC-CS Overnight

i.i.d. Templ. TMCD Len. i.i.d. 0-C i.i.d. Templ.

DSL No DD 38.7 32.1 42.7 25.8 42.9 7.5 34.0 23.1
Full DD 61.9 44.8 56.7 39.1 40.8 22.0 38.8 23.2

Python No DD 71.6 50.9 61.5 51.8 58.1 29.7 62.8 69.2
Full DD 83.1 80.6 80.9 80.9 69.3 69.9 64.5 72.9

Javascript No DD 80.0 72.1 75.2 73.6 64.1 46.1 61.6 51.3
Full DD 81.1 80.0 77.3 73.6 68.1 71.6 61.1 50.1

Scala No DD 82.5 73.3 73.9 68.5 62.3 45.9 69.7 65.1
Full DD 83.5 83.3 82.4 82.1 69.2 72.4 69.9 61.9

SQL No DD 65.7 56.6 61.8 45.6
Full DD† 73.1 68.7 75.7 62.7

Dataflow-
Simple

No DD 50.9 22.7
Full DD 59.7 63.9

λ-DCS
Simple

No DD 37.3 27.5
Full DD 38.0 31.7

Table 3: Development set execution accuracies for
Python, Javascript, Scala and SQL comprising 2.5%,
19.6%, 0.1% and 4.9% of Stack (Kocetkov et al., 2023),
respectively, along with two DSL variations. There is
no clear winner among the various PLs, suggesting that
the prevalence in pretraining corpora is not a good pre-
dictor of performance. † For SQL we use the schema
definition, see App. E.

we now investigate the source of these performance
gains. Specifically, in this section, we ask:

1. Is the performance gain of a PL linked to its
prevalence in pretraining corpora?

2. Can rare DSLs be simplified in a way that
enables them to perform as well as PLs?

3. Does the ability to break down programs into
intermediate steps contribute to the improved
performance of PLs?

6.2.1 Effect of a PL’s Prevalence
To answer the first question, we extend our exper-
iments to include Scala and Javascript. For Geo-
Query, which requires querying a database, we ad-
ditionally experiment with SQL, a common query
language.

According to the PL distribution provided by
the Stack (Kocetkov et al., 2023), a large corpus of
GitHub code, Scala is far less common than Python
(0.1% vs 2.5%), while Javascript and SQL are more
popular (19.6% and 4.9%).

Evaluation Procedure for Additional PLs. We
evaluate the performance of these additional PLs
by prompting LLMs similarly to how we evaluated
Python prompts (§6.1). However, to avoid the un-
due engineering effort of implementing a complete
executable environment for Scala and Javascript,
as we did for Python, we evaluate generated pro-

grams by first automatically converting them to
Python during inference time, similar to previous
work (Cassano et al., 2023), while confirming that
the conversion is faithful and does not introduce
bias. For SQL, we use the original dataset queries4

and use the schema definition instead of a Domain
Description. We provide the complete procedure,
prompts and analysis in App. C.2.

Results. Table 3 demonstrates that all three PLs
outperform DSL-based prompts. However, the per-
formance of the three PLs varies across datasets
and splits, with Scala performing best in most splits,
and SQL performing worst. This suggests that the
prevalence of a PL in pretraining corpora alone
does not reliably predict performance in semantic
parsing tasks. This finding offers a subtle counter-
point to the results of Cassano et al. (2023), who
identified a correlation between the prevalence of
a PL in pretraining data and performance on other
programming benchmarks.

6.2.2 Simplifying PLs
If the prevalence of PLs in pretraining corpora
doesn’t correlate with performance, could it be that
DSL-based prompts perform worse because DSLs
are overly complex, and simplifying them could
improve performance (Herzig et al., 2021; Li et al.,
2022)?

To investigate this, we experiment with sim-
plified versions of SMCalFlow and Overnight’s
DSLs. Specifically, we use Dataflow-Simple
(Meron, 2022), a version of Dataflow tailored for
creating events and querying organizational charts,
which uses fewer operators and an entirely different
syntax, with function calls in the style of popular
PLs. While Dataflow-Simple isn’t equivalent to
Dataflow, it can be used to satisfy all of the re-
quests in SMCalFlow’s dataset. For Overnight, we
create a simplified version of λ-DCS, where we
remove redundant operators in the context of the
evaluation setup, reducing its length by 42% on
average. Specifically, we remove the call opera-
tor, typing (string, date, number), redundant
parentheses and the namespace SW. Examples for
both MRs are provided in Table 1.

The results presented in the bottom two sections
of Table 3 reveal that the surface-level simplifica-
tion of λ-DCS provides only a marginal boost to
performance. On the other hand, Dataflow-simple

4Taken from https://github.com/
jkkummerfeld/text2sql-data

8
4978

https://github.com/jkkummerfeld/text2sql-data
https://github.com/jkkummerfeld/text2sql-data

GeoQuery SMCalFlow-CS Overnight

i.i.d. Templ. TMCD Len. i.i.d. 0-C i.i.d. Templ.

Single 83.2 80.9 80.3 79.1 64.8 60.4 62.9 57.6
Multi. 83.7 80.6 80.0 80.3 67.7 70.0 64.5 72.9

Table 4: Accuracy of single-line programs against
multiple-line programs with intermediate steps, in the
Full DD setup. Breaking down code into intermediate
steps usually contributes to performance, yet single line
demonstrations still outperform DSL-based prompts.

surprisingly performs nearly as well as the other
PLs. These findings suggest that designing DSLs to
resemble PLs could also be effective (when DD is
included), even when DSLs are rare in pretraining
corpora. However, what unique elements of PLs
should be adopted in DSLs to yield comparable
performance gains remains an open question.

6.2.3 Effect of Intermediate Steps
A key distinction between the PLs and the DSLs
evaluated in this work lies in the fact that PLs allow
breaking down the programs into multiple steps
and assigning intermediate results to variables. To
measure the impact of this aspect, we modify PL
programs such that if a program contains more than
one line, we compress it into a single line, elimi-
nating intermediate variables and vice versa. We
employ GPT-4 to perform these modifications and
use execution-based evaluation to ensure that the
program meaning does not change (see App. C.3
for the exact prompt). We note that the only mod-
ification made is to the programs of the prompt
demonstrations, however, models can still output a
program of any line length.

Results presented in Table 4 suggest that break-
ing down code into intermediate steps indeed con-
tributes to higher performance in most cases. How-
ever, even single line demonstrations still signifi-
cantly outperform DSL-based prompts.

7 Conclusions

In this work, we have shown that leveraging PLs
and DDs does not only improve the effectiveness
of in-context learning for semantic parsing, lead-
ing to substantial accuracy improvements across
various datasets, but also significantly narrows the
performance gap between i.i.d. and compositional
splits and reduces the need for large demonstration
pools. Our findings carry significant implications
for the development of semantic parsing applica-
tions using modern LLMs.

Limitations

We evaluate models and methods using executable
environments that we have implemented in Python;
however, these implementations might not always
accurately replicate the original environment. Par-
ticularly in SMCalFlow, which includes many long-
tail operators infrequently used in the dataset, we
omit some operators in our implementation.

We use OpenAI’s API to annotate most of the
Python programs that are used as demonstrations.
While we validate the correctness of all programs,
it is possible that this method introduces some bias
into the nature of the generated programs.

We present the prevalence of different PLs in
the Stack, assuming it offers a rough estimate of
these languages’ popularity on the web. However,
the actual prevalence of PLs specifically within
the training data of OpenAI’s models, employed
in this work, remains unknown. Further, while our
experiments with simplified versions of DSLs and
rare PLs suggest that the improved performance of
LLMs with PLs in compositional settings is not
merely due to surface-level memorization, how
much of these can be attributed to LLMs’ abil-
ity to generalize compositionally versus memoriza-
tion from pre-training corpus remains an important
open question.

Finally, while this study focused on semantic
parsing, the idea of using a PL for output represen-
tation and for specifying background information
and task structure (as in DDs) could be applicable
to any other generative tasks where the output must
conform to some structure and has a step-wise na-
ture (e.g., recipes, travel itineraries). We leave it to
future work to explore these settings.

References

Ekin Akyürek, Afra Feyza Akyürek, and Jacob An-
dreas. 2021. Learning to recombine and resample
data for compositional generalization. In 9th Inter-
national Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021.
OpenReview.net.

Shengnan An, Zeqi Lin, Qiang Fu, Bei Chen, Nan-
ning Zheng, Jian-Guang Lou, and Dongmei Zhang.
2023. How do in-context examples affect compo-
sitional generalization? In Proceedings of the 61st
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 11027–
11052, Toronto, Canada. Association for Computa-
tional Linguistics.

9
4979

https://openreview.net/forum?id=PS3IMnScugk
https://openreview.net/forum?id=PS3IMnScugk
https://doi.org/10.18653/v1/2023.acl-long.618
https://doi.org/10.18653/v1/2023.acl-long.618

Jacob Andreas. 2020. Good-enough compositional data
augmentation. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 7556–7566, Online. Association for
Computational Linguistics.

Jacob Andreas, John Bufe, David Burkett, Charles
Chen, Josh Clausman, Jean Crawford, Kate Crim,
Jordan DeLoach, Leah Dorner, Jason Eisner, Hao
Fang, Alan Guo, David Hall, Kristin Hayes, Kellie
Hill, Diana Ho, Wendy Iwaszuk, Smriti Jha, Dan
Klein, Jayant Krishnamurthy, Theo Lanman, Percy
Liang, Christopher H. Lin, Ilya Lintsbakh, Andy Mc-
Govern, Aleksandr Nisnevich, Adam Pauls, Dmitrij
Petters, Brent Read, Dan Roth, Subhro Roy, Jesse
Rusak, Beth Short, Div Slomin, Ben Snyder, Stephon
Striplin, Yu Su, Zachary Tellman, Sam Thomson, An-
drei Vorobev, Izabela Witoszko, Jason Wolfe, Abby
Wray, Yuchen Zhang, and Alexander Zotov. 2020.
Task-oriented dialogue as dataflow synthesis. Trans-
actions of the Association for Computational Linguis-
tics, 8:556–571.

Cem Anil, Yuhuai Wu, Anders Johan Andreassen, Aitor
Lewkowycz, Vedant Misra, Vinay Venkatesh Ra-
masesh, Ambrose Slone, Guy Gur-Ari, Ethan Dyer,
and Behnam Neyshabur. 2022. Exploring length gen-
eralization in large language models. In Advances in
Neural Information Processing Systems.

Ben Bogin, Shivanshu Gupta, and Jonathan Berant.
2022. Unobserved local structures make composi-
tional generalization hard. In Proceedings of the
2022 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2731–2747, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Ben Bogin, Sanjay Subramanian, Matt Gardner, and
Jonathan Berant. 2021. Latent compositional rep-
resentations improve systematic generalization in
grounded question answering. Transactions of the As-
sociation for Computational Linguistics, 9:195–210.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual.

Federico Cassano, John Gouwar, Francesca Lucchetti,
Claire Schlesinger, Carolyn Jane Anderson, Michael
Greenberg, Abhinav Jangda, and Arjun Guha. 2023.
Knowledge transfer from high-resource to low-
resource programming languages for code llms.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluating
large language models trained on code.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W. Cohen. 2022. Program of thoughts
prompting: Disentangling computation from reason-
ing for numerical reasoning tasks. ArXiv preprint,
abs/2211.12588.

Andrew Drozdov, Nathanael Schärli, Ekin Akyürek,
Nathan Scales, Xinying Song, Xinyun Chen, Olivier
Bousquet, and Denny Zhou. 2023. Compositional
semantic parsing with large language models. In
The Eleventh International Conference on Learning
Representations.

Catherine Finegan-Dollak, Jonathan K. Kummerfeld,
Li Zhang, Karthik Ramanathan, Sesh Sadasivam, Rui
Zhang, and Dragomir Radev. 2018. Improving text-
to-SQL evaluation methodology. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 351–360, Melbourne, Australia. Association
for Computational Linguistics.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2022. Pal: Program-aided language
models. ArXiv preprint, abs/2211.10435.

Shivanshu Gupta, Matt Gardner, and Sameer Singh.
2023. Coverage-based example selection for in-
context learning.

Shivanshu Gupta, Clemens Rosenbaum, and Ethan R.
Elenberg. 2024. Gistscore: Learning better repre-
sentations for in-context example selection with gist
bottlenecks.

Shivanshu Gupta, Sameer Singh, and Matt Gardner.
2022. Structurally diverse sampling for sample-
efficient training and comprehensive evaluation. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2022, pages 4966–4979, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

10
4980

https://doi.org/10.18653/v1/2020.acl-main.676
https://doi.org/10.18653/v1/2020.acl-main.676
https://doi.org/10.1162/tacl_a_00333
https://openreview.net/forum?id=zSkYVeX7bC4
https://openreview.net/forum?id=zSkYVeX7bC4
https://doi.org/10.18653/v1/2022.emnlp-main.175
https://doi.org/10.18653/v1/2022.emnlp-main.175
https://doi.org/10.1162/tacl_a_00361
https://doi.org/10.1162/tacl_a_00361
https://doi.org/10.1162/tacl_a_00361
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
http://arxiv.org/abs/2308.09895
http://arxiv.org/abs/2308.09895
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2211.12588
https://arxiv.org/abs/2211.12588
https://arxiv.org/abs/2211.12588
https://openreview.net/forum?id=gJW8hSGBys8
https://openreview.net/forum?id=gJW8hSGBys8
https://doi.org/10.18653/v1/P18-1033
https://doi.org/10.18653/v1/P18-1033
https://arxiv.org/abs/2211.10435
https://arxiv.org/abs/2211.10435
http://arxiv.org/abs/2305.14907
http://arxiv.org/abs/2305.14907
http://arxiv.org/abs/2311.09606
http://arxiv.org/abs/2311.09606
http://arxiv.org/abs/2311.09606
https://doi.org/10.18653/v1/2022.findings-emnlp.365
https://doi.org/10.18653/v1/2022.findings-emnlp.365

Jonathan Herzig and Jonathan Berant. 2018. Decou-
pling structure and lexicon for zero-shot semantic
parsing. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 1619–1629, Brussels, Belgium. Association
for Computational Linguistics.

Jonathan Herzig and Jonathan Berant. 2021. Span-
based semantic parsing for compositional general-
ization. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 908–921, Online. Association for Computa-
tional Linguistics.

Jonathan Herzig, Peter Shaw, Ming-Wei Chang, Kelvin
Guu, Panupong Pasupat, and Yuan Zhang. 2021. Un-
locking compositional generalization in pre-trained
models using intermediate representations. ArXiv
preprint, abs/2104.07478.

Arian Hosseini, Ankit Vani, Dzmitry Bahdanau,
Alessandro Sordoni, and Aaron Courville. 2022. On
the compositional generalization gap of in-context
learning. In Proceedings of the Fifth BlackboxNLP
Workshop on Analyzing and Interpreting Neural Net-
works for NLP, pages 272–280, Abu Dhabi, United
Arab Emirates (Hybrid). Association for Computa-
tional Linguistics.

Cheng-Yu Hsieh, Si-An Chen, Chun-Liang Li, Yasuhisa
Fujii, Alexander Ratner, Chen-Yu Lee, Ranjay Kr-
ishna, and Tomas Pfister. 2023. Tool documenta-
tion enables zero-shot tool-usage with large language
models.

Harsh Jhamtani, Hao Fang, Patrick Xia, Eran Levy, Ja-
cob Andreas, and Ben Van Durme. 2023. Natural
language decomposition and interpretation of com-
plex utterances.

Rohit J. Kate and Raymond J. Mooney. 2006. Using
string-kernels for learning semantic parsers. In Pro-
ceedings of the 21st International Conference on
Computational Linguistics and 44th Annual Meet-
ing of the Association for Computational Linguistics,
pages 913–920, Sydney, Australia. Association for
Computational Linguistics.

Rohit J. Kate, Yuk Wah Wong, and Raymond J. Mooney.
2005. Learning to transform natural to formal lan-
guages. In AAAI Conference on Artificial Intelli-
gence.

Daniel Keysers, Nathanael Schärli, Nathan Scales,
Hylke Buisman, Daniel Furrer, Sergii Kashubin,
Nikola Momchev, Danila Sinopalnikov, Lukasz
Stafiniak, Tibor Tihon, Dmitry Tsarkov, Xiao Wang,
Marc van Zee, and Olivier Bousquet. 2020. Measur-
ing compositional generalization: A comprehensive
method on realistic data. In 8th International Confer-
ence on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26-30, 2020. OpenReview.net.

Najoung Kim and Tal Linzen. 2020. COGS: A compo-
sitional generalization challenge based on semantic
interpretation. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 9087–9105, Online. As-
sociation for Computational Linguistics.

Denis Kocetkov, Raymond Li, Loubna Ben allal, Jia LI,
Chenghao Mou, Yacine Jernite, Margaret Mitchell,
Carlos Muñoz Ferrandis, Sean Hughes, Thomas Wolf,
Dzmitry Bahdanau, Leandro Von Werra, and Harm
de Vries. 2023. The stack: 3 TB of permissively li-
censed source code. Transactions on Machine Learn-
ing Research.

Itay Levy, Ben Bogin, and Jonathan Berant. 2023. Di-
verse demonstrations improve in-context composi-
tional generalization. In Proceedings of the 61st An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1401–
1422, Toronto, Canada. Association for Computa-
tional Linguistics.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim,
Qian Liu, Evgenii Zheltonozhskii, Terry Yue Zhuo,
Thomas Wang, Olivier Dehaene, Mishig Davaadorj,
Joel Lamy-Poirier, João Monteiro, Oleh Shliazhko,
Nicolas Gontier, Nicholas Meade, Armel Zebaze,
Ming-Ho Yee, Logesh Kumar Umapathi, Jian Zhu,
Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo
Wang, Rudra Murthy, Jason Stillerman, Siva Sankalp
Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey,
Zhihan Zhang, Nour Fahmy, Urvashi Bhattacharyya,
Wenhao Yu, Swayam Singh, Sasha Luccioni, Paulo
Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel
Romero, Tony Lee, Nadav Timor, Jennifer Ding,
Claire Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri
Dao, Mayank Mishra, Alex Gu, Jennifer Robinson,
Carolyn Jane Anderson, Brendan Dolan-Gavitt, Dan-
ish Contractor, Siva Reddy, Daniel Fried, Dzmitry
Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis,
Sean Hughes, Thomas Wolf, Arjun Guha, Leandro
von Werra, and Harm de Vries. 2023a. Starcoder:
may the source be with you!

Xiaonan Li, Kai Lv, Hang Yan, Tianyang Lin, Wei Zhu,
Yuan Ni, Guotong Xie, Xiaoling Wang, and Xipeng
Qiu. 2023b. Unified demonstration retriever for in-
context learning. In Proceedings of the 61st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 4644–4668,
Toronto, Canada. Association for Computational Lin-
guistics.

Zhenwen Li, Jiaqi Guo, Qian Liu, Jian-Guang Lou, and
Tao Xie. 2022. Exploring the secrets behind the learn-
ing difficulty of meaning representations for semantic
parsing. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 3616–3625, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

11
4981

https://doi.org/10.18653/v1/D18-1190
https://doi.org/10.18653/v1/D18-1190
https://doi.org/10.18653/v1/D18-1190
https://doi.org/10.18653/v1/2021.acl-long.74
https://doi.org/10.18653/v1/2021.acl-long.74
https://doi.org/10.18653/v1/2021.acl-long.74
https://arxiv.org/abs/2104.07478
https://arxiv.org/abs/2104.07478
https://arxiv.org/abs/2104.07478
https://doi.org/10.18653/v1/2022.blackboxnlp-1.22
https://doi.org/10.18653/v1/2022.blackboxnlp-1.22
https://doi.org/10.18653/v1/2022.blackboxnlp-1.22
http://arxiv.org/abs/2308.00675
http://arxiv.org/abs/2308.00675
http://arxiv.org/abs/2308.00675
http://arxiv.org/abs/2305.08677
http://arxiv.org/abs/2305.08677
http://arxiv.org/abs/2305.08677
https://doi.org/10.3115/1220175.1220290
https://doi.org/10.3115/1220175.1220290
https://api.semanticscholar.org/CorpusID:7396224
https://api.semanticscholar.org/CorpusID:7396224
https://openreview.net/forum?id=SygcCnNKwr
https://openreview.net/forum?id=SygcCnNKwr
https://openreview.net/forum?id=SygcCnNKwr
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://openreview.net/forum?id=pxpbTdUEpD
https://openreview.net/forum?id=pxpbTdUEpD
https://doi.org/10.18653/v1/2023.acl-long.78
https://doi.org/10.18653/v1/2023.acl-long.78
https://doi.org/10.18653/v1/2023.acl-long.78
http://arxiv.org/abs/2305.06161
http://arxiv.org/abs/2305.06161
https://doi.org/10.18653/v1/2023.acl-long.256
https://doi.org/10.18653/v1/2023.acl-long.256
https://doi.org/10.18653/v1/2022.emnlp-main.237
https://doi.org/10.18653/v1/2022.emnlp-main.237
https://doi.org/10.18653/v1/2022.emnlp-main.237

Percy Liang, Michael Jordan, and Dan Klein. 2011.
Learning dependency-based compositional seman-
tics. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 590–599, Port-
land, Oregon, USA. Association for Computational
Linguistics.

Matthias Lindemann, Alexander Koller, and Ivan Titov.
2023. Compositional generalization without trees
using multiset tagging and latent permutations. In
Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 14488–14506, Toronto, Canada.
Association for Computational Linguistics.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,
Lawrence Carin, and Weizhu Chen. 2022. What
makes good in-context examples for GPT-3? In
Proceedings of Deep Learning Inside Out (DeeLIO
2022): The 3rd Workshop on Knowledge Extrac-
tion and Integration for Deep Learning Architectures,
pages 100–114, Dublin, Ireland and Online. Associa-
tion for Computational Linguistics.

Aman Madaan, Shuyan Zhou, Uri Alon, Yiming Yang,
and Graham Neubig. 2022. Language models of code
are few-shot commonsense learners. In Proceedings
of the 2022 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1384–1403, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Joram Meron. 2022. Simplifying semantic annotations
of SMCalFlow. In Proceedings of the 18th Joint
ACL - ISO Workshop on Interoperable Semantic An-
notation within LREC2022, pages 81–85, Marseille,
France. European Language Resources Association.

Inbar Oren, Jonathan Herzig, and Jonathan Berant. 2021.
Finding needles in a haystack: Sampling structurally-
diverse training sets from synthetic data for compo-
sitional generalization. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 10793–10809, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Linlu Qiu, Peter Shaw, Panupong Pasupat, Pawel
Nowak, Tal Linzen, Fei Sha, and Kristina Toutanova.
2022a. Improving compositional generalization with
latent structure and data augmentation. In Proceed-
ings of the 2022 Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
4341–4362, Seattle, United States. Association for
Computational Linguistics.

Linlu Qiu, Peter Shaw, Panupong Pasupat, Tianze Shi,
Jonathan Herzig, Emily Pitler, Fei Sha, and Kristina
Toutanova. 2022b. Evaluating the impact of model
scale for compositional generalization in semantic
parsing. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 9157–9179, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Stephen Robertson and Hugo Zaragoza. 2009. The prob-
abilistic relevance framework: Bm25 and beyond.
Foundations and Trends® in Information Retrieval,
3(4):333–389.

Peter Shaw, Ming-Wei Chang, Panupong Pasupat, and
Kristina Toutanova. 2021. Compositional generaliza-
tion and natural language variation: Can a semantic
parsing approach handle both? In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 922–938, Online. Asso-
ciation for Computational Linguistics.

Richard Shin, Christopher Lin, Sam Thomson, Charles
Chen, Subhro Roy, Emmanouil Antonios Platanios,
Adam Pauls, Dan Klein, Jason Eisner, and Benjamin
Van Durme. 2021. Constrained language models
yield few-shot semantic parsers. In Proceedings of
the 2021 Conference on Empirical Methods in Natu-
ral Language Processing, pages 7699–7715, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Hongjin SU, Jungo Kasai, Chen Henry Wu, Weijia Shi,
Tianlu Wang, Jiayi Xin, Rui Zhang, Mari Ostendorf,
Luke Zettlemoyer, Noah A. Smith, and Tao Yu. 2023.
Selective annotation makes language models better
few-shot learners. In The Eleventh International Con-
ference on Learning Representations.

Bailin Wang, Zi Wang, Xuezhi Wang, Yuan Cao, Rif A.
Saurous, and Yoon Kim. 2023. Grammar prompting
for domain-specific language generation with large
language models.

Yushi Wang, Jonathan Berant, and Percy Liang. 2015.
Building a semantic parser overnight. In Proceedings
of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 1332–1342, Beijing,
China. Association for Computational Linguistics.

Zhengxuan Wu, Christopher D. Manning, and Christo-
pher Potts. 2023. ReCOGS: How incidental details of
a logical form overshadow an evaluation of semantic
interpretation. ArXiv preprint, abs/2303.13716.

Frank F. Xu, Uri Alon, Graham Neubig, and Vincent Jo-
sua Hellendoorn. 2022. A systematic evaluation
of large language models of code. ArXiv preprint,
abs/2202.13169.

Silei Xu, Sina Semnani, Giovanni Campagna, and Mon-
ica Lam. 2020. AutoQA: From databases to QA
semantic parsers with only synthetic training data. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 422–434, Online. Association for Computa-
tional Linguistics.

Yuekun Yao and Alexander Koller. 2022. Structural gen-
eralization is hard for sequence-to-sequence models.

12
4982

https://aclanthology.org/P11-1060
https://aclanthology.org/P11-1060
https://doi.org/10.18653/v1/2023.acl-long.810
https://doi.org/10.18653/v1/2023.acl-long.810
https://doi.org/10.18653/v1/2022.deelio-1.10
https://doi.org/10.18653/v1/2022.deelio-1.10
https://doi.org/10.18653/v1/2022.emnlp-main.90
https://doi.org/10.18653/v1/2022.emnlp-main.90
https://aclanthology.org/2022.isa-1.11
https://aclanthology.org/2022.isa-1.11
https://doi.org/10.18653/v1/2021.emnlp-main.843
https://doi.org/10.18653/v1/2021.emnlp-main.843
https://doi.org/10.18653/v1/2021.emnlp-main.843
https://doi.org/10.18653/v1/2022.naacl-main.323
https://doi.org/10.18653/v1/2022.naacl-main.323
https://doi.org/10.18653/v1/2022.emnlp-main.624
https://doi.org/10.18653/v1/2022.emnlp-main.624
https://doi.org/10.18653/v1/2022.emnlp-main.624
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.18653/v1/2021.acl-long.75
https://doi.org/10.18653/v1/2021.acl-long.75
https://doi.org/10.18653/v1/2021.acl-long.75
https://doi.org/10.18653/v1/2021.emnlp-main.608
https://doi.org/10.18653/v1/2021.emnlp-main.608
https://openreview.net/forum?id=qY1hlv7gwg
https://openreview.net/forum?id=qY1hlv7gwg
http://arxiv.org/abs/2305.19234
http://arxiv.org/abs/2305.19234
http://arxiv.org/abs/2305.19234
https://doi.org/10.3115/v1/P15-1129
https://arxiv.org/abs/2303.13716
https://arxiv.org/abs/2303.13716
https://arxiv.org/abs/2303.13716
https://arxiv.org/abs/2202.13169
https://arxiv.org/abs/2202.13169
https://doi.org/10.18653/v1/2020.emnlp-main.31
https://doi.org/10.18653/v1/2020.emnlp-main.31
https://doi.org/10.18653/v1/2022.emnlp-main.337
https://doi.org/10.18653/v1/2022.emnlp-main.337

In Proceedings of the 2022 Conference on Empiri-
cal Methods in Natural Language Processing, pages
5048–5062, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

Jiacheng Ye, Zhiyong Wu, Jiangtao Feng, Tao Yu, and
Lingpeng Kong. 2023. Compositional exemplars for
in-context learning.

Pengcheng Yin, Hao Fang, Graham Neubig, Adam
Pauls, Emmanouil Antonios Platanios, Yu Su, Sam
Thomson, and Jacob Andreas. 2021. Compositional
generalization for neural semantic parsing via span-
level supervised attention. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 2810–2823, Online.
Association for Computational Linguistics.

Pengcheng Yin, John Wieting, Avirup Sil, and Graham
Neubig. 2022. On the ingredients of an effective
zero-shot semantic parser. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1455–
1474, Dublin, Ireland. Association for Computational
Linguistics.

John M. Zelle and Raymond J. Mooney. 1996. Learn-
ing to parse database queries using inductive logic
programming. In AAAI/IAAI, Vol. 2.

Li Zhang, Liam Dugan, Hainiu Xu, and Chris Callison-
burch. 2023. Exploring the curious case of code
prompts. In Proceedings of the 1st Workshop on
Natural Language Reasoning and Structured Expla-
nations (NLRSE), pages 9–17, Toronto, Canada. As-
sociation for Computational Linguistics.

Yiming Zhang, Shi Feng, and Chenhao Tan. 2022. Ac-
tive example selection for in-context learning. In Pro-
ceedings of the 2022 Conference on Empirical Meth-
ods in Natural Language Processing, pages 9134–
9148, Abu Dhabi, United Arab Emirates. Association
for Computational Linguistics.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and
Sameer Singh. 2021. Calibrate before use: Improv-
ing few-shot performance of language models. In
Proceedings of the 38th International Conference on
Machine Learning, ICML 2021, 18-24 July 2021, Vir-
tual Event, volume 139 of Proceedings of Machine
Learning Research, pages 12697–12706. PMLR.

13
4983

http://arxiv.org/abs/2302.05698
http://arxiv.org/abs/2302.05698
https://doi.org/10.18653/v1/2021.naacl-main.225
https://doi.org/10.18653/v1/2021.naacl-main.225
https://doi.org/10.18653/v1/2021.naacl-main.225
https://doi.org/10.18653/v1/2022.acl-long.103
https://doi.org/10.18653/v1/2022.acl-long.103
https://dl.acm.org/doi/10.5555/1864519.1864543
https://dl.acm.org/doi/10.5555/1864519.1864543
https://dl.acm.org/doi/10.5555/1864519.1864543
https://doi.org/10.18653/v1/2023.nlrse-1.2
https://doi.org/10.18653/v1/2023.nlrse-1.2
https://doi.org/10.18653/v1/2022.emnlp-main.622
https://doi.org/10.18653/v1/2022.emnlp-main.622
http://proceedings.mlr.press/v139/zhao21c.html
http://proceedings.mlr.press/v139/zhao21c.html

A Datasets

A.1 Executable Environments
We describe the executable environments we use
separately for each dataset and formalism.

A.1.1 Geoquery
FunQL To execute the FunQL queries, we use
the GeoQuery5 system, a prolog-based implemen-
tation that we execute using SWI-Prolog6.

Python We manually write a Python environ-
ment that is functionally equivalent to the Geo-
Query system. The environment includes two
components: a class for parsing and loading the
Geobase database and an API for executing queries
against this database. We show the API in Figures
10 and 11.

SQL We use the SQLite engine to run SQL
queries, with the data and schema provided in
https://github.com/jkkummerfeld/
text2sql-data.

Evaluation Running queries with the GeoQuery
system using FunQL, SQL and Python programs
results in either a numeric result of a set of entities.
We evaluate FunQL and Python programs by com-
paring their denotation against the gold denotation
obtained by executing the gold FunQL program for
each query, with no importance to order, and sim-
ilarly evaluate SQL programs by comparing their
denotation of gold SQL programs.

A.1.2 SMCalFlow
Dataflow and Dataflow-Simple We use the
software provided by Meron (2022)7 to execute
Dataflow-Simple. Dataflow programs are executed
by ‘simplifying’ them, i.e. converting them to
Dataflow-Simple, using the code provided in that
package. The environment holds a database with
people, the relationship between them in the orga-
nization, and a list of events.

Python We run Python programs by automat-
ically converting them to Dataflow-Simple in
a determinstic method, then executing them
as mentioned above. Conversion is done
by implementing each of the python classes
and operators with a method that returns an

5https://www.cs.utexas.edu/users/ml/
nldata/geoquery.html

6https://www.swi-prolog.org/
7https://github.com/telepathylabsai/

OpenDF

AST that represents a relevant Dataflow-Simple
sub-tree. For example, the Python method
find_manager_of(‘person’) returns the
corresponding AST of Dataflow-Simple’s method,
FindManager(‘person’).

Evaluation All of the test instances in the splits
we work with are requests to create events. Thus,
to evaluate programs, we compare if the events cre-
ated after running a generated program is exactly
the same as the event create after running the gold
Dataflow program. Since programs are executed us-
ing a database, which is used, for example, to find
people by their names, we populate the database
with a short list of people with random names. Dur-
ing evaluation, we extract names of people from
both generated and gold programs, and arbitrarily
map and replace each name in the programs to one
of the people in the database. We do this for both
generated and gold programs, while making sure
that mapping is consistent in both of them during
an evaluation for a single example.

We ignore the generated subject of the meeting,
as we found that there are many inconsistencies in
the way subjects were annotated: underspecified
requests such as Set up a meeting with John are
often be annotated inconsistently, having either no
subject, the subject “meeting”, or something else.

A.1.3 Overnight
λ-DCS and λ-DCS-Simple To execute λ-DCS
programs, we use Sempre.8 Specifically, we use
the executable Java program provided by Herzig
and Berant (2018).9

Python To create the Python environment, we
first use Sempre to output all entities in the ‘social-
network’ domain. We implement the python envi-
ronment to be executed over these loaded entities.

Evaluation Running the programs returns a list
of entities. For all formalisms, we consider accu-
racy to be correct iff the list of entities is exactly
the same as the list of entities returned by running
the gold λ-DCS program.

A.2 Splits

For GeoQuery, we use the splits provided by Shaw
et al. (2021), comprising the original i.i.d. split and

8https://github.com/percyliang/sempre
9https://github.com/jonathanherzig/

zero-shot-semantic-parsing/blob/master/
evaluator/evaluator.jar

14
4984

https://github.com/jkkummerfeld/text2sql-data
https://github.com/jkkummerfeld/text2sql-data
https://www.cs.utexas.edu/users/ml/nldata/geoquery.html
https://www.cs.utexas.edu/users/ml/nldata/geoquery.html
https://www.swi-prolog.org/
https://github.com/telepathylabsai/OpenDF
https://github.com/telepathylabsai/OpenDF
https://github.com/percyliang/sempre
https://github.com/jonathanherzig/zero-shot-semantic-parsing/blob/master/evaluator/evaluator.jar
https://github.com/jonathanherzig/zero-shot-semantic-parsing/blob/master/evaluator/evaluator.jar
https://github.com/jonathanherzig/zero-shot-semantic-parsing/blob/master/evaluator/evaluator.jar

the compositional generalization splits (Template,
TMCD and length).

For SMCalFlow, we use the i.i.d. and com-
positional splits proposed by Yin et al. (2021).
These compositional splits evaluate predictions
for queries that combine two domains: event cre-
ation and organizational chart. Specifically, we
use the hardest "0-C" split, where the training set
contains examples only from each of the domains
separately, with no single example that combines
both domains. For experiments with 5 or more
demonstrations, we make sure there are at least two
demonstrations from each of the domains.

For Overnight, we take the i.i.d. split and a com-
positional split (specifically template/split_0,
selected arbitrarily) from those published in Bo-
gin et al. (2022).

We used the development sets for each of the
datasets only to make sure predicted programs were
executed as expected. For Overnight, where such a
set was unavailable, we used 50 examples from the
training set.

For GeoQuery, we use the entire tests sets (of
size ranging from 279 to 331), while for SM-
CalFlow and Overnight, we sample 250 examples
from the test sets.

We sample in-context demonstrations from the
pool of training examples for which we have
Python annotations. For GeoQuery, we have 824
such annotated programs, for SMCalFlow 128 and
for Overnight 60.

B Additional Results

B.1 Starcoder

Main results for Starcoder are presented in Table 5.
With k = 5 Starcoder’s performance is generally
lower than ChatGPT’s, however the main trends
remain the same: Python-based prompts with Full
DD outperform DSL-based prompts in all cases,
and Python-based prompts with Full DD outper-
form No DD in all cases but one.

B.2 Standard Deviations

All reported accuracy figures are average values
obtained from three different seeds. The standard
deviations corresponding to Table 2 are detailed in
Table 6.

B.3 Prediction Examples

Examples for failed predictions are presented in
table 7, and for correct predictions in table 8.

B.4 Exact Match Accuracy

We provide results for all DSL experiments with
exact match as the metric for reference in Table 9.
Note that for Geoquery, while Full DD leads to sig-
nificant improvements in execution accuracy (Ta-
ble 2), when measuring exact match we see less of
an improvement (e.g. 37.6 to 61.0 vs 20.7 to 27.6 in
the i.i.d. split). We find that this is due to correct but
different usage of the DSL, e.g. the model gener-
ates answer(count(traverse_2(stateid(’colorado’)))),
which is different from the gold program
answer(count(river(loc_2(stateid(’colorado’))))).

B.5 Accuracy vs # of Tokens

We present execution-based accuracy against the
number of prompt tokens in Figure 5 for three
Python DD variations.

C Program Annotations

C.1 Python

To create the pool of python programs for our
experiment, we start by manually convert 2-10 ex-
amples to Python programs to seed our pool of
Python-annotated instances. We then iteratively
sample demonstrations from the pool and prompt
an LLM with the Python DD (§4) to automatically
annotate the rest of the examples (we use either
OpenAI’s gpt-3.5-turbo or gpt-42). Only predic-
tions that are evaluated to be correct, using the
same execution-based evaluation described above,
are added to the pool (see App. C for further de-
tails).

We use the prompt in Figure 6 with Python DD
to generate Python programs.

C.2 Scala and Javascript

We use the prompt in Figure 6 with the Scala or
Javascript DD to generate programs for the corre-
sponding language. To further convert to Python
for execution-based evaluation, we use the prompt
in Figure 7. Tables 10 and 11 contain example con-
versions from Javascript and Scala respectively to
Python for GeoQuery.

To confirm that the conversion is faithful and
does not introduce bias, such as fixing incorrect
programs or breaking correct ones, we manually
analyzed 100 random examples of the converted
Python programs, 50 each from Javascript and
Scala, finding only 1 instance each of an unfaithful
conversion.

15
4985

0 250 500 750 1000125015001750
Number of tokens

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

GeoQuery (TMCD)

0 500 1000 1500 2000
Number of tokens

0.0

0.2

0.4

0.6

0.8

1.0
SMCalFlow (0-C)

0 500 1000 1500 2000
Number of tokens

0.0

0.2

0.4

0.6

0.8

1.0
Overnight (Template)

Python, List of Operators Python, Full DD Python, No DD

Figure 5: Execution accuracy for varying number of demonstrations, presenting the same data as Figure 3 but
visualizes it against the number of prompt tokens. The effect of DDs greatly varies between the datasets. For both
GeoQuery and SMCalFlow, having the Full DD is preferred whenever it can fit.

1 Given the following data structures and functions:
2 [DD]
3
4 Write code to solve the following queries:
5
6 query: [query-1]
7 solution: [solution-1]
8 ...
9 query: [query-test]

Figure 6: The prompt template we use. [DD] is replaced with the domain description for the environment being
used, [query-i] and [solution-i] are replaced with utterance/output demonstrations, and [query-test] is replaced with
the test utterance. Lines 1-3 are only included in experiments that contain DD.

1 Given the following python data structures and functions:
2
3 [Python DD]
4
5 and the corresponding javascript data structures and functions:
6
7 [Javascript DD]
8
9 convert the following javascript functions to python:

10
11 Javascript:
12 ```javascript
13 [javascript-code-1]
14 ```
15
16 Python:
17 ```python
18 [python-code-1]
19 ```
20 ...
21
22 Javascript:
23 ```javascript
24 [query-javascript-code]
25 ```
26 Python:
27 ```python

Figure 7: The prompt template we use to convert non-Python programs (Javascript in this case) to Python for
evaluation. [Python DD] and [Javascript DD] are replaced with the corresponding domain descriptions, [javascript-
code-i] and [python-code-i] with demonstrations of javascript to python conversion, and [query-javascript-code] is
replaced with test Javascript code to be converted.

16
4986

GeoQuery SMCalFlow-CS Overnight

i.i.d. Templ. TMCD Len. i.i.d. 0-C i.i.d. Templ.

DSL
No DD 24.4 19.0 28.0 14.7 23.3 0.7 18.1 7.7
List of operators 39.8 27.2 36.2 32.3 18.4 0.3 23.2 9.9
Full DD 46.9 45.2 45.2 38.9 22.7 2.0 22.4 12.0

Python

No DD 56.1 42.2 50.2 32.4 22.8 5.1 51.9 39.9
List of operators 73.3 70.1 70.7 61.7 22.4 13.2 55.5 38.1
DD w/o typing 73.0 70.0 69.7 62.3 35.1 25.2 56.1 36.8
Full DD 73.2 69.7 75.2 68.6 43.7 33.2 56.9 36.9

Table 5: Execution accuracy of Starcoder, comparing Python-based prompts with DSL-based prompts, across
different DD variations, with 5 in-context demonstrations. Similarly to ChatGPT (Table 2), Starcoder used with
Python-based prompts with Full DD is consistently better than with DSL-based prompts. Test sets results.

GeoQuery SMCalFlow-CS Overnight

i.i.d. Templ. TMCD Len. i.i.d. 0-C i.i.d. Templ.

DSL
No DD 4.3 11.4 1.4 4.6 6.9 8.8 3.8 2.0
List of operators 3.2 10.1 0.3 0.9 2.1 9.0 9.9 6.1
Full DD (formal) 6.1 8.7 5.5 4.7 - - - -
Full DD (NL) 3.9 5.4 2.4 5.3 6.2 6.9 5.8 7.1

Python

No DD 13.0 11.6 5.6 3.8 4.5 8.7 2.8 0.7
List of operators 2.2 0.9 2.5 1.9 5.0 10.7 9.3 10.2
DD w/o typing 2.5 2.8 1.7 2.0 3.7 9.7 2.9 4.6
Full DD 0.9 1.2 0.5 1.5 3.4 10.9 1.1 4.5

Table 6: Standard deviations for ChatGPT’s accuracy in Table 2.

C.3 Single/Multi Line Conversion

As described in §6.2.3, we convert single-line pro-
grams to multiple lines programs with intermediate
steps and vice-versa, using GPT-4. We make sure
conversions are correct by validating the execution-
based accuracy of converted programs; if programs
are invalid, we regenerate programs with a a tem-
perature of 0.4 until a correct solution is found. We
use GPT-4 with the prompts provided in Fig. 8 and
Fig. 9.

The following is an example for a conversion of
a multi-line program given the utterance “Which
states have points higher than the highest point in
Colorado?”. The original annotation:

1 def answer():
2 colorado_state = geo_model.find_state("

colorado")
3 highest_point_in_colorado = colorado_state.

high_point.elevation
4 states_with_higher_points = [s for s in

geo_model.states if s.high_point.elevation >
highest_point_in_colorado]

5 return states_with_higher_points

The converted annotation:

1 def answer():
2 return [s for s in geo_model.states if s.

high_point.elevation > geo_model.find_state("
colorado").high_point.elevation]

D Demonstration Selection Methods

We experiment with two demonstration selection
methods.

Operator Coverage This method selects a sin-
gle fixed set of demonstrations with maximal cov-
erage of operators that are used for every test
input. For this, we use a slightly modified ver-
sion of the greedy set coverage algorithm of
Gupta et al. (2023), shown in Algorithm 1. Here,
the set of structures S is the set of all unigram
operators in given formalism, and the measure
of set-coverage is defined as setcov(S, Z) =∑

s∈S maxz∈Z 1 [s ∈ Sz] where Sz is the set of
operators in the candidate demonstration z.

BM25 We use BM25 to retrieve the most simi-
lar instances and use as demonstrations for each
test input. We use the rank_bm2510 package’s
implementation of the Okapi variant of BM25.

10https://github.com/dorianbrown/rank_
bm25

17
4987

https://github.com/dorianbrown/rank_bm25
https://github.com/dorianbrown/rank_bm25

Input Predicted Python Program Error

Put lunch with Jane ’s
boss in her office down
for next Wednesday at
noon .

1 def answer():
2 jane = api.find_person("Jane")
3 boss = jane.find_manager_of()
4 api.add_event(Event(subject="Lunch with Jane's

Boss", attendees=[jane, boss], starts_at=[
DateTimeValues.NextWeek, DateTimeClause.
time_by_hm(hour=12, am_or_pm="pm")], location="
Jane's Office"))

Execution error due
to incorrect API use:
NextWeek is not a valid
DateTimeValue.

i need to have all of jake
’s team except jennifer at
my staff meeting this fri-
day

1 def answer():
2 jake = api.find_person("Jake")
3 team = jake.find_team_of()
4 team.remove(api.find_person("Jennifer"))
5 api.add_event(Event(subject="Staff Meeting",

attendees=team, starts_at=[DateTimeClause.
get_next_dow(day_of_week="Friday")]))

Execution error due
to incorrect API use:
The right way to ex-
clude people is to use
attendees_to_avoid

argument of the Event
class.

I am going to be with
Abby and her Skip tomor-
row

1 def answer():
2 abby = api.find_person("Abby")
3 skip = abby.find_manager_of()
4 api.add_event(Event(attendees=[abby, skip],

starts_at=[DateTimeValues.Tomorrow]))

Incorrect execution as
the model did not under-
stand skip means man-
ager’s manager.

create drinks with boss on
Tuesday

1 def answer():
2 boss = api.find_person("boss")
3 api.add_event(Event(subject="Drinks with Boss",

starts_at=[DateTimeClause.get_next_dow(
day_of_week="Tuesday")], attendees=[boss]))

Incorrect execution as
the model did not use
find_manager_of to
find the manager.

Table 7: Examples of common errors made by GPT-Turbo-3.5 on the compositional 0-C split of SMCalFlow.
Majority of errors were due to the LLM failing to understand the input utterance or incorrectly using the API.

1 Given the following request and python program:
2
3 request: [query]
4
5 ```python
6 [program]
7 ```
8 We want to decompose the program into multiple lines as much as is reasonable possible.
9

10 ```python

Figure 8: Prompt used to convert single-line programs to multiple-line programs.

Algorithm 1 Greedy Optimization of Set Coverage
Require: Instance pool T ; Set of structures S; desired

number of demonstrations k; coverage scoring function
setcov

1: Z ← ∅ ▷ Selected Demonstrations
2: Zcurr ← ∅ ▷ Current Set Cover
3: curr_cov← − inf
4: while |Z| < k do
5: z∗, next_cov = arg max

z∈T −Z
setcov (S, Zcurr ∪ z)

6: if next_cov > curr_cov then ▷ Pick z∗

7: curr_cov← next_cov
8: Z ← Z ∪ z∗

9: Zcurr ← Zcurr ∪ z∗

10: else ▷ Or start new cover
11: Zcurr ← ∅, curr_cov← − inf
12: end if
13: end while
14: return Z

E Domain Descriptions

We provide the domain descriptions that we use for
each environment in the following figures:

• Geoquery: Python (10, 11), FunQL
(NL: 12, formal: 13), Javascript (14,
15), Scala (16). For SQL, instead of
domain descriptions, we use the schema
definition taken verbatim from https:
//raw.githubusercontent.com/
jkkummerfeld/text2sql-data/
master/data/geography-schema.
csv.

• SMCalFlow: Python (17), Dataflow (18, 19),
Dataflow-Simple (20, 21), Javascript (22, 23),
Scala (24).

• Overnight: Python (25) λ-DCS (26, 27), λ-

18
4988

https://raw.githubusercontent.com/jkkummerfeld/text2sql-data/master/data/geography-schema.csv
https://raw.githubusercontent.com/jkkummerfeld/text2sql-data/master/data/geography-schema.csv
https://raw.githubusercontent.com/jkkummerfeld/text2sql-data/master/data/geography-schema.csv
https://raw.githubusercontent.com/jkkummerfeld/text2sql-data/master/data/geography-schema.csv
https://raw.githubusercontent.com/jkkummerfeld/text2sql-data/master/data/geography-schema.csv

Dataset Input Predicted Python Program

GeoQuery Which states border
states through which the
Mississippi traverses ?

1 def answer() -> List[State]:
2 mississippi_river = geo_model.find_river("mississippi")
3 bordering_states = set()
4 for state in mississippi_river.traverses:
5 bordering_states.update(state.next_to)
6 return list(bordering_states)

SMCalFlow Schedule a meeting with
my team on November
3rd at 11 am as well .

1 def answer():
2 team = api.get_current_user().find_team_of()
3 api.add_event(Event(subject="Meeting with Team", starts_at=[

DateTimeClause.date_by_mdy(month=11, day=3), DateTimeClause.
time_by_hm(hour=11, am_or_pm="am")], attendees=team))

Overnight student whose start date
is end date of employee
alice

1 def answer():
2 alice = api.find_person_by_id("en.person.alice")
3 students_with_same_start_date = [person for person in api.

people if person.education and any(e.start_date ==
alice_employment.end_date for e in person.education for
alice_employment in alice.employment)]

4 return students_with_same_start_date

Table 8: Examples of correct Python predictions made by GPT-Turbo-3.5 on the compositional TMCD split of
GeoQuery, 0-C split of SMCalFlow, and Template split of Overnight.

GeoQuery SMCalFlow-CS Overnight

i.i.d. Templ. TMCD Len. i.i.d. 0-C i.i.d. Templ.

DSL
No DD 20.7 16.5 26.1 14.8 16.7 3.1 26.4 0.3
List of operators 28.7 13.5 29.4 18.3 17.3 4.3 29.2 0.5
Full DD 27.6 17.8 31.0 16.1 15.7 4.5 27.3 0.3

Table 9: Exact match accuracy of GPT-3.5-turbo for DSL-based prompts. Test set results.

DCS Simple (28), Javascript (29), Scala (30).

F Prompt Construction

We provide the prompt template that we use in
Fig. 6.

19
4989

1 Given the following request and python program:
2
3 request: [query]
4
5 ```python
6 [program]
7 ```
8 We want to make the python program a single line program that returns the same output.
9 If a single line program is not possible, use a minimal number of lines.

10
11 ```python

Figure 9: Prompt used to convert multiple-line programs to single-line programs.

Input Directly Annotated Python Pro-
gram

Javascript Program Converted Python Program

In which
state does
the highest
point in USA
exist ?

1 def answer() -> State:
2 highest_point = max(

geo_model.places, key=
lambda x: x.elevation)

3 return highest_point.
state

1 function answer() {
2 let highest_point_state =

geo_model.states.reduce((
maxState, currentState)
=> {

3 return currentState.
high_point > maxState.
high_point ? currentState
: maxState;

4 });
5 return highest_point_state

.name;
6 }

1 def answer() -> str:
2 highest_point_state =

max(geo_model.states,
key=lambda x: x.
high_point.elevation)

3 return
highest_point_state.
name

What rivers
flow through
the largest
state ?

1 def answer() -> List[River
]:

2 largest_state = max(
geo_model.states, key=
lambda x: x.size)

3 return largest_state.
rivers

1 function answer() {
2 let largest_state =

geo_model.states.reduce((
maxState, currentState)
=> {

3 return currentState.
area > maxState.area ?
currentState : maxState;

4 });
5 return largest_state.

rivers;
6 }

1 def answer() -> List[River
]:

2 largest_state = max(
geo_model.states, key=
lambda x: x.area)

3 return largest_state.
rivers

What is
the highest
point in the
state with
the capital
Des Moines
?

1 def answer() -> Place:
2 state = [s for s in

geo_model.states if s.
capital and s.capital.
name == "des moines"
][0]

3 return state.high_point

1 function answer() {
2 let des_moines_state =

geo_model.find_city("des
moines").state;

3 return des_moines_state.
high_point;

4 }

1 def answer() -> Place:
2 des_moines_state =

geo_model.find_city("
des moines").state

3 return des_moines_state
.high_point

Table 10: Example conversions of predicted Javascript programs for GeoQuery to Python along with original (direct)
Python annotation. Converted programs can differ from the directly annotated Python programs as the conversions
were performed without the original query and hence tended to be faithful to given Javascript programs.

20
4990

Input Directly Annotated Python Pro-
gram

Scala Program Converted Python Program

Which rivers
run through
states bor-
dering New
Mexico ?

1 def answer() -> List[River
]:

2 new_mexico_state =
geo_model.find_state("
new mexico")

3 bordering_states =
new_mexico_state.
next_to

4 rivers = []
5 for state in

bordering_states:
6 rivers.extend(state

.rivers)
7 return rivers
8 }

1 def answer(): Option[List[
River]] = {

2 val newMexicoState =
geoModel.findState("new
mexico")

3 val borderingStates =
newMexicoState.map(_.
nextTo)

4 val rivers =
borderingStates.map(_.
flatMap(_.rivers))

5 rivers
6 }

1 def answer() -> List[River
]:

2 new_mexico_state =
geo_model.find_state("
new mexico")

3 bordering_states =
new_mexico_state.
next_to

4 rivers = [r for state
in bordering_states
for r in state.rivers]

5 return rivers

What is the
most popu-
lated state
bordering
Oklahoma ?

1 def answer() -> State:
2 oklahoma_state =

geo_model.find_state("
oklahoma")

3 return max(
oklahoma_state.next_to
, key=lambda x: x.
population)

1 def answer(): Option[State] =
{

2 val oklahomaState =
geoModel.findState("
oklahoma")

3 val borderingStates =
oklahomaState.map(_.
nextTo)

4 borderingStates.flatMap(_.
maxByOption(_.population)
)

5 }

1 def answer() -> State:
2 oklahoma_state =

geo_model.find_state("
oklahoma")

3 bordering_states =
oklahoma_state.next_to

4 return max(
bordering_states, key=
lambda x: x.population
)

Which
river goes
through the
most states ?

1 def answer() -> River:
2 return max(geo_model.

rivers, key=lambda x:
len(x.traverses))

1 def answer() -> def answer():
Option[River] = {

2 val riverWithMostStates =
geoModel.rivers.maxBy(_.
traverses.length)

3 riverWithMostStates
4 }

1 def answer() -> River:
2 return max(geo_model.

rivers, key=lambda x:
len(x.traverses))

Table 11: Example conversions of predicted Scala programs for GeoQuery to Python along with original (direct)
Python annotation. Converted programs can differ from the directly annotated Python programs as the conversions
were performed without the original query and hence tended to be faithful to given Scala programs.

21
4991

1 ```python
2 @dataclass
3 class State:
4 name: str
5 abbreviation: str
6 country: Country
7 area: int
8 size: int
9 population: int

10 density: float
11 capital: Optional[City]
12 high_point: Place
13 low_point: Place
14 next_to: List[State]
15 cities: List[City]
16 places: List[Place]
17 mountains: List[Mountain]
18 lakes: List[Lake]
19 rivers: List[River]
20
21 @dataclass
22 class City:
23 name: str
24 state: State
25 country: Country
26 is_capital: bool
27 population: int
28 size: int
29 is_major: bool
30 density: float
31
32 @dataclass
33 class Country:
34 name: str
35 area: int
36 population: int
37 density: float
38 high_point: Place
39 low_point: Place
40 cities: List[City]
41 states: List[State]
42 places: List[Place]
43 mountains: List[Mountain]
44 lakes: List[Lake]
45 rivers: List[River]
46
47 @dataclass
48 class River:
49 name: str
50 traverses: List[State]
51 length: int
52 size: int
53 is_major: bool
54
55 @dataclass
56 class Place:
57 name: str
58 state: State
59 elevation: int
60 size: int
61
62 @dataclass
63 class Mountain:
64 name: str
65 state: State
66 elevation: int
67
68 @dataclass
69 class Lake:
70 name: str
71 area: int
72 states: List[State]

Figure 10: Domain description for Geoquery, using Python. Continued in Fig. 11.

22
4992

1 @dataclass
2 class GeoModel:
3 countries: List[Country]
4 states: List[State]
5 cities: List[City]
6 rivers: List[River]
7 mountains: List[Mountain]
8 lakes: List[Lake]
9 places: List[Place]

10
11 def find_country(self, name: str) -> Country:
12 ...
13
14 def find_state(self, name: str) -> State:
15 ...
16
17 def find_city(self, name: str, state_abbreviation: str = None) -> City:
18 ...
19
20 def find_river(self, name: str) -> River:
21 ...
22
23 def find_mountain(self, name: str) -> Mountain:
24 ...
25
26 def find_lake(self, name: str) -> Lake:
27 ...
28
29 def find_place(self, name: str) -> Place:
30 ...
31
32 geo_model = GeoModel()
33 ```

Figure 11: Domain description for Geoquery, using Python. Continued from Fig. 10.

23
4993

1 ```
2 cityid(CityName,StateAbbrev) # given a city name and state, return the city id
3 countryid(CountryName) # given a country name, return the country id
4 placeid(PlaceName) # given a place (lakes, mountains, etc.) name, return the place id
5 riverid(RiverName) # given a river name, return the river id
6 stateid(StateName) # given a state name, return the state id
7
8 capital(all) # return all cities that are capitals
9 city(all) # return all cities

10 lake(all) # return all lakes
11 mountain(all) # return all mountains
12 place(all) # return all places
13 river(all) # return all rivers
14 state(all) # return all states
15
16 capital(items) # given a set of cities, return those that are capitals
17 city(p) # given a set of items, return those that are cities
18 lake(p) # given a set of items, return those that are lakes
19 major(p) # given a set of items, return those that are considered of major size
20 mountain(p) # given a set of items, return those that are mountains
21 place(p) # given a set of items, return those that are places
22 river(p) # given a set of items, return those that are rivers
23 state(p) # given a set of items, return those that are states
24 area_1(p) # given a set of items, return their areas' sizes
25 capital_1(p) # given a set of states, return their capitals
26 capital_2(p) # given a set of cities, return their states
27 elevation_1(p) # given a set of places, return their elevations
28 elevation_2(E) # given a set of elevations, return the places with those elevations
29 high_point_1(p) # given a set of items, return their highest points
30 high_point_2(p) # given a set of places, return the items with those places as their highest points
31 higher_2(p) # given a set of places, return the places that are higher than them
32 loc_1(p) # given a set of items, return where each item is located
33 loc_2(p) # given a set of items, return the items located there
34 longer(p) # given a set of rivers, return those that are longer than them
35 lower_2(p) # given a set of places, return the places that are lower than them
36 len(p) # given a set of rivers, return their lengths
37 next_to_1(p) # given a set of states, return the states that are next to them
38 next_to_2(p) # given a set of states, return the states that this state is next to
39 population_1(p) # given a set of cities or states, return their populations
40 size(p) # given a set of items, return their sizes (area for state, population for city, length for

river)↪→
41 traverse_1(p) # given a set of rivers, return the states they traverse
42 traverse_2(p) # given a set of states, return the rivers that traverse them
43
44 answer(p) # return as answer (always needed)
45 largest(p) # given a set of items, return the item with the largest size
46 largest_one(area_1(p)) # given a set of items, return the item with the largest area
47 largest_one(density_1(p)) # given a set of items, return the item with the largest density
48 largest_one(population_1(p)) # given a set of items, return the item with the largest population
49 smallest(p) # given a set of items, return the item with the smallest size
50 smallest_one(area_1(p)) # given a set of items, return the item with the smallest area
51 smallest_one(density_1(p)) # given a set of items, return the item with the smallest density
52 smallest_one(population_1(p)) # given a set of items, return the item with the smallest population
53 highest(p) # given a set of items, return the item that is highest
54 lowest(p) # given a set of items, return the item that is lowest
55 longest(p) # given a set of items, return the item that is longest
56 shortest(p) # given a set of items, return the item that is shortest
57 count(p) # given a set of items, return the number of items in the set
58 most(pD) # given a set of items, return the item that appears most frequently in the set
59 fewest(pD) # given a set of items, return the item that appears fewest times in the set
60
61 exclude(p1, p2) # given a set of items, return the items that are in p1 but not in p2
62 intersect(p1, p2) # given a set of items, return the items that are in both p1 and p2
63 ```

Figure 12: Domain description for Geoquery, using FunQL (NL).

24
4994

1 ```
2 def cityid(CityName: str, StateAbbrev: str) -> City: ...
3 def countryid(CountryName: str) -> Country: ...
4 def placeid(PlaceName: str) -> Place: ...
5 def riverid(RiverName: str) -> River: ...
6 def stateid(StateName: str) -> State: ...
7 def capital(places: List[Place]) -> List[City]: ...
8 def city(places: List[Place]) -> List[City]: ...
9 def lake(places: List[Place]) -> List[Lake]: ...

10 def mountain(places: List[Place]) -> List[Mountain]: ...
11 def place(places: List[Place]) -> List[Place]: ...
12 def river(places: List[Place]) -> List[River]: ...
13 def state(places: List[Place]) -> List[State]: ...
14 def major(places: List[Place]) -> List[Place]: ...
15 def area_1(state: State | List[State]) -> List[float]: ...
16 def capital_1(state: State | List[State]) -> List[City]: ...
17 def capital_2(city: City | List[City]) -> List[State]: ...
18 def density_1(state: State | List[State]) -> List[float]: ...
19 def elevation_1(place: List[Place]) -> List[floats]: ...
20 def elevation_2(elevation: float) -> List[Place]: ...
21 def high_point_1(state: State | List[State]) -> List[Place]: ...
22 def high_point_2(place: Place) -> List[State]: ...
23 def higher_2(place: Place) -> List[Place]: ...
24 def loc_1(place: Place | List[Place]) -> List[State]: ...
25 def loc_2(state: State | List[State]) -> List[Place]: ...
26 def longer(river: River) -> List[River]: ...
27 def lower_2(place: Place) -> List[Place]: ...
28 def len(river: River | List[River]) -> List[float]: ...
29 def next_to_1(state: State | List[State]) -> List[State]: ...
30 def next_to_2(state: State | List[State]) -> List[State]: ...
31 def population_1(state: State | List[State]) -> List[float]: ...
32 def size(place: List[State] | List[City]) -> List[float]: ...
33 def traverse_1(river: River | List[River]) -> List[State]: ...
34 def traverse_2(state: State | List[State] | Country | List[Country]) -> List[River]: ...
35 def largest(place: List[Place]) -> List[Place]: ...
36 def largest_one(lst: List[Place]) -> Place: ...
37 def smallest(place: List[Place]) -> List[Place]: ...
38 def smallest_one(lst: List[Place]) -> Place: ...
39
40 def highest(place: List[Place]) -> List[Place]: ...
41 def lowest(place: List[Place]) -> List[Place]: ...
42 def longest(place: List[Place]) -> List[River]: ...
43 def shortest(place: List[Place]) -> List[River]: ...
44 def count(place: List[Place]) -> List[int]: ...
45 def most(place: List[Place]) -> Place: ...
46 def fewest(place: List[Place]) -> Place: ...
47
48 def exclude(lst1: List[Place], lst2: List[Place]) -> List[Place]: ...
49 def intersect(lst1: List[Place], lst2: List[Place]) -> List[Place]: ...
50 ```

Figure 13: Domain description for Geoquery, using FunQL (formal).

25
4995

1 class State {
2 constructor(name, abbreviation, country, area, population, density, capital, high_point, low_point,

next_to, cities, places, mountains, lakes, rivers) {↪→
3 this.name = name;
4 this.abbreviation = abbreviation;
5 this.country = country;
6 this.area = area;
7 this.population = population;
8 this.density = density;
9 this.capital = capital;

10 this.high_point = high_point;
11 this.low_point = low_point;
12 this.next_to = next_to;
13 this.cities = cities;
14 this.places = places;
15 this.mountains = mountains;
16 this.lakes = lakes;
17 this.rivers = rivers;
18 }
19 }
20
21 class City {
22 constructor(name, state, country, is_capital, population, size, is_major) {
23 this.name = name;
24 this.state = state;
25 this.country = country;
26 this.is_capital = is_capital;
27 this.population = population;
28 this.size = size;
29 this.is_major = is_major;
30 }
31 }
32
33 class Country {
34 constructor(name) {
35 this.name = name;
36 }
37 }
38
39 class River {
40 constructor(name, traverses, length, size, is_major) {
41 this.name = name;
42 this.traverses = traverses;
43 this.length = length;
44 this.size = size;
45 this.is_major = is_major;
46 }
47 }
48
49 class Place {
50 constructor(name, state, elevation, size) {
51 this.name = name;
52 this.state = state;
53 this.elevation = elevation;
54 this.size = size;
55 }
56 }
57
58 class Mountain {
59 constructor(name, state, elevation) {
60 this.name = name;
61 this.state = state;
62 this.elevation = elevation;
63 }
64 }
65
66 class Lake {
67 constructor(name, area, states) {
68 this.name = name;
69 this.area = area;
70 this.states = states;
71 }
72 }

Figure 14: Domain description for Geoquery, using Javascript. Continued in Fig. 15.

26
4996

1 class GeoModel {
2 constructor(countries, states, cities, rivers, mountains, lakes, places) {
3 this.countries = countries;
4 this.states = states;
5 this.cities = cities;
6 this.rivers = rivers;
7 this.mountains = mountains;
8 this.lakes = lakes;
9 this.places = places;

10 }
11
12 find_country(name) {
13 // ...
14 }
15
16 find_state(name) {
17 // ...
18 }
19
20 find_city(name, state_abbreviation = null) {
21 // ...
22 }
23
24 find_river(name) {
25 // ...
26 }
27
28 find_mountain(name) {
29 // ...
30 }
31
32 find_lake(name) {
33 // ...
34 }
35
36 find_place(name) {
37 // ...
38 }
39 }
40
41 let geo_model = new GeoModel();
42 ```

Figure 15: Domain description for Geoquery, using Javascript. Continued from Fig. 14.

27
4997

1 ```scala
2 case class Country(name: String)
3
4 case class State(name: String, abbreviation: String, country: Country, area: Int, population: Int,

density: Float, capital: Option[City], highPoint: Place, lowPoint: Place, nextTo: List[State],
cities: List[City], places: List[Place], mountains: List[Mountain], lakes: List[Lake], rivers:
List[River])

↪→
↪→
↪→

5
6 case class City(name: String, state: State, country: Country, isCapital: Boolean, population: Int,

size: Int, isMajor: Boolean)↪→
7
8 case class River(name: String, traverses: List[State], length: Int, size: Int, isMajor: Boolean)
9

10 case class Place(name: String, state: State, elevation: Int, size: Int)
11
12 case class Mountain(name: String, state: State, elevation: Int)
13
14 case class Lake(name: String, area: Int, states: List[State])
15
16 class GeoModel {
17 var countries: List[Country] = List()
18 var states: List[State] = List()
19 var cities: List[City] = List()
20 var rivers: List[River] = List()
21 var mountains: List[Mountain] = List()
22 var lakes: List[Lake] = List()
23 var places: List[Place] = List()
24
25 def findCountry(name: String): Option[Country] = ???
26
27 def findState(name: String): Option[State] = ???
28
29 def findCity(name: String, stateAbbreviation: Option[String] = None): Option[City] = ???
30
31 def findRiver(name: String): Option[River] = ???
32
33 def findMountain(name: String): Option[Mountain] = mountains.find(_.name == name)
34
35 def findLake(name: String): Option[Lake] = lakes.find(_.name == name)
36
37 def findPlace(name: String): Option[Place] = places.find(_.name == name)
38 }
39
40 val geoModel = new GeoModel()
41 ```

Figure 16: Domain description for Geoquery, using Scala.

28
4998

1 ```python
2 @dataclass
3 class Person:
4 name: str
5
6 def find_team_of() -> List["Person"]:
7 ...
8
9 def find_reports_of() -> List["Person"]:

10 ...
11
12 def find_manager_of() -> "Person":
13 ...
14
15 @dataclass
16 class Event:
17 attendees: List[Person] = None
18 attendees_to_avoid: List[Person] = None
19 subject: Optional[str] = None
20 location: Optional[str] = None
21 starts_at: Optional[List[DateTimeClause]] = None
22 ends_at: Optional[List[DateTimeClause]] = None
23 duration: Optional["TimeUnit"] = None
24 show_as_status: Optional["ShowAsStatus"] = None
25
26 DateTimeValues = Enum("DateTimeValues", ["Afternoon", "Breakfast", "Brunch", "Dinner", "Early",

"EndOfWorkDay", "Evening",↪→
27 "FullMonthofMonth", "FullYearofYear", "LastWeekNew", "Late", "LateAfternoon", "LateMorning",

"Lunch", "Morning",↪→
28 "NextMonth", "NextWeekend", "NextWeekList", "NextYear", "Night", "Noon", "Now", "SeasonFall",

"SeasonSpring",↪→
29 "SeasonSummer", "SeasonWinter", "ThisWeek", "ThisWeekend", "Today", "Tomorrow", "Yesterday"])
30
31 class DateTimeClause:
32 def get_by_value(date_time_value: DateTimeValues) -> "DateTimeClause": ...
33 def get_next_dow(day_of_week: str) -> "DateTimeClause": ...
34 def date_by_mdy(month: int = None, day: int = None, year: int = None) -> "DateTimeClause": ...
35 def time_by_hm(hour: int = None, minute: int = None, am_or_pm: str = None) -> "DateTimeClause":

...↪→
36 def on_date_before_date_time(date: "DateTimeClause", time: "DateTimeClause") -> "DateTimeClause":

...↪→
37 def on_date_after_date_time(date: "DateTimeClause", time: "DateTimeClause") -> "DateTimeClause":

...↪→
38 def around_date_time(date_time: "DateTimeClause") -> "DateTimeClause": ...
39
40
41 TimeUnits = Enum("TimeUnits", ["Hours", "Minutes", "Days"])
42 TimeUnitsModifiers = Enum("TimeUnitsModifiers", ["Acouple", "Afew"])
43
44 @dataclass
45 class TimeUnit:
46 number: Optional[Union[int,float]] = None
47 unit: Optional[TimeUnits] = None
48 modifier: Optional[TimeUnitsModifiers] = None
49
50 ShowAsStatusType = Enum("ShowAsStatusType", ["Busy", "OutOfOffice"])
51
52
53 class API:
54 def find_person(name: str) -> Person:
55 ...
56
57 def get_current_user() -> Person:
58 ...
59
60 def add_event(event: Event) -> None:
61 ...
62
63 def find_event(attendees: Optional[List[Person]] = None, subject: Optional[str] = None) -> Event:
64 ...
65
66 api = API()
67 ```

Figure 17: Domain description for SMCalFlow, using Python.

29
4999

1 ```
2 Yield # Arguments: (1) :output, the function to be executed. Returns: The result of the function.
3 CreateCommitEventWrapper # Arguments: (1) :event, containing event details. Returns: The created

event.↪→
4 CreatePreflightEventWrapper # Arguments: (1) :constraint, containing event details. Returns: The

event that satisfies the constraint.↪→
5 FindEventWrapperWithDefaults # Arguments: (1) :constraint, the constraint to be satisfied by the

event. Returns: The event that satisfies the constraint.↪→
6
7 extensionConstraint # Arguments: (1) the type of constraint (e.g., Constraint[Recipient],

Constraint[Date], RecipientWithNameLike), Returns: A constraint that needs to be satisfied by the
entity.

↪→
↪→

8 Constraint[Event] # Arguments: (1) :attendees, :start, :subject or :location. Returns: Constraints to
create or find an event.↪→

9 Constraint[DateTime] # Arguments: (1) :date, the date constraint. Returns: A constraint that needs to
be satisfied by the date and time.↪→

10 andConstraint # Arguments: Any number of constraints. Returns: A constraint that is satisfied when
all the input constraints are satisfied.↪→

11 RecipientWithNameLike # Arguments: (1) :constraint, the type of constraint (e.g.,
Constraint[Recipient]), (2) :name, the name of the recipient. Returns: A constraint that needs to
be satisfied by the recipient.

↪→
↪→

12 PersonName # Arguments: (1) the name of the person. Returns: The name of the person. e.g. `PersonName
" Dan "`↪→

13 AttendeeListHasRecipient # Arguments: (1) :recipient, the recipient to be included. Returns: A
constraint for the event.↪→

14 AttendeeListHasPeople # Arguments: (1) :people, the group of people to be included. Returns: A
constraint for the event.↪→

15 AttendeeListHasRecipientConstraint # Arguments: (1) :recipientConstraint, the recipient constrained
to be included. Returns: A constraint for the event.↪→

16 DateTimeConstraint # Arguments: (1) :constraint, the time constraint, (2) :date, the date. Returns: A
constraint that needs to be satisfied by the date and time.↪→

17 AttendeeListExcludesRecipient # Arguments: (1) :recipient, the recipient to be excluded. Returns: A
constraint for the event.↪→

18
19 Execute # Arguments: (1) :intension, the intension to be executed. Returns: The entity referred to by

the intension.↪→
20 refer # Arguments: (1) extensionConstraint, the constraint to be satisfied by the entity. Returns: A

reference to the entity that satisfies the constraint.↪→
21 singleton # Arguments: (1) an element or a list with an element. Returns: The single element.
22 do # Arguments: Any number of functions. Returns: The results of the functions.
23 String # Arguments: (1) a literal string. Returns: A string representation.
24
25 FindManager # Arguments: (1) :recipient, the recipient whose manager is to be found. Returns: The

manager of the recipient.↪→
26 FindReports # Arguments: (1) :recipient, the recipient whose reports are to be found. Returns: The

reports of the recipient.↪→
27 FindTeamOf # Arguments: (1) :recipient, the recipient whose team is to be found. Returns: The group

of people who make up the recipient's team.↪→
28 toRecipient # Arguments: (1) A user. Returns: The given user as a recipient.
29 CurrentUser # Arguments: None. Returns: The current user.
30
31 LocationKeyphrase # Arguments: (1) the location. Returns: The location. e.g. `LocationKeyphrase "

office "`↪→
32 roomRequest # Arguments: None. Returns: A request for a room.
33
34 # These operators represent specific times or dates. They have no arguments and return the specified

time or date.↪→
35 Today
36 Tomorrow
37 NextWeekList
38 NextDOW
39 Noon
40 Afternoon
41 Morning
42 Night
43 EndOfWorkDay
44 Evening
45 Weekend
46 ThisWeekend
47 ThisWeek
48 Early
49 Now
50 NextYear
51 Lunch
52
53 # These operators represent specific numbers or convert values to numbers. Arguments: (1) the number

or value to be converted. Returns: The specific number or the converted value.↪→
54 Number
55 NumberAM
56 NumberPM

Figure 18: Domain description for SMCalFlow, using DataFlow. Continued in Fig. 19.

30
5000

1 toDays
2 toHours
3 toMinutes
4 DateAndConstraint # Arguments: (1) :date1, the first date, (2) :date2, the second date. Returns: The

date and constraint.↪→
5 DateAtTimeWithDefaults # Arguments: (1) :date, the date, (2) :time, the time. Returns: The date and

time.↪→
6 nextDayOfMonth # Arguments: (1) the day of the month. Returns: The next occurrence of the day of the

month.↪→
7 DayOfWeek # Arguments: (1) the day of the week. Returns: The day of the week.
8 DowOfWeekNew # Arguments: (1) :dow, the day of the week, (2) :week, the week. Returns: The day of the

week in the week.↪→
9 previousDayOfWeek # Arguments: (1) :dayOfWeek, the day of the week. Returns: The previous occurrence

of the day of the week.↪→
10 NextDOW # Arguments: (1) :dow, the day of the week. Returns: The next occurrence of the day of the

week.↪→
11 EventAllDayStartingDateForPeriod # Arguments: (1) :event, the event, (2) :period, the duration of the

event, (3) :startDate, the start date of the event. Returns: The event with the specified start
date and duration.

↪→
↪→

12 PeriodDuration # Arguments: (1) :duration, the duration. Returns: The period duration.
13
14 MD # Arguments: (1) :day, the day, (2) :month, the month. Returns: The date.
15 MDY # Arguments: (1) :day, the day, (2) :month, the month, (3) :year, the year. Returns: The date.
16 Month # Arguments: (1) the month. Returns: The month.
17 NextTime # Arguments: (1) :time, the time. Returns: The next occurrence of the time.
18 HourMinuteAm # Arguments: (1) :hours, the hours, (2) :minutes, the minutes. Returns: The time.
19 HourMinutePm # Arguments: (1) :hours, the hours, (2) :minutes, the minutes. Returns: The time.
20 FullMonthofMonth # Arguments: (1) :month, the month. Returns: The full month.
21
22 TimeAfterDateTime # Arguments: (1) :dateTime, the date and time, (2) :time, the time after the date

and time. Returns: The time after the date and time.↪→
23 OnDateAfterTime # Arguments: (1) :date, the date, (2) :time, the time after the date. Returns: The

date after the time.↪→
24 AroundDateTime # Arguments: (1) :dateTime, the date and time. Returns: The time around the date and

time.↪→
25 ```

Figure 19: Domain description for SMCalFlow, using DataFlow. Continued from Fig. 18.

31
5001

1 ```
2 FindTeamOf # given a person name or id, returns a pseudo-person representing the team of that person
3 FindReports # given a person name or id, returns a pseudo-person representing the reports of that

person↪→
4 FindManager # given a person name or id, returns the manager of that person
5
6 with_attendee # given a person name or id, returns a clause to match or create an event with that

person as an attendee↪→
7 avoid_attendee # given a person name or id, returns an event clause to avoid that attendee when

creating an event↪→
8 has_subject # given a string, returns an event to match or create an event with that subject
9 at_location # given a string, returns an event clause to match or create an event at that location

10 starts_at # given a datetime clause, returns an event clause to match or create an event starting at
that time↪→

11 ends_at # given a datetime clause, returns an event clause to match or create an event ending at that
time↪→

12 has_duration # given a time unit value, returns an event clause to match or create an event with that
duration↪→

13 has_status # given a ShowAsStatus value, returns an event clause to match or create an event with
that status↪→

14
15 # the following operators return datetime clauses and accept no arguments
16 Afternoon
17 Breakfast
18 Brunch
19 Dinner
20 Early
21 EndOfWorkDay
22 Evening
23 FullMonthofMonth
24 FullYearofYear
25 LastWeekNew
26 Late
27 LateAfternoon
28 LateMorning
29 Lunch
30 Morning
31 NextMonth
32 NextWeekend
33 NextWeekList
34 NextYear
35 Night
36 Noon
37 Now
38 SeasonFall
39 SeasonSpring
40 SeasonSummer
41 SeasonWinter
42 ThisWeek
43 ThisWeekend
44 Today
45 Tomorrow
46 Yesterday
47
48 # general date time clauses
49 DateTime # given either a datetime clause representing a date and/or a time operator representing a

time, returns a datetime clause↪→
50 Date # given a date or dayofweek, returns a date
51 DayOfWeek # given a day of week string, returns a time clause
52 NextDOW # given a day of week string, returns a time clause for the next occurrence of that day of

week↪→
53 MD # given a month and day as arguments, returns a date clause
54 MDY # given a month, day, and year as arguments, returns a date clause
55
56 # given a value, the following operators return datetime clauses according to the given value
57 toMonth
58 toFourDigitYear
59 HourMinuteAm
60 HourMinutePm
61 NumberAM
62 NumberPM
63
64 # given a datetime clause, the following operators modify the clause and return a datetime clause

according to the modification↪→
65 OnDateAfterTime
66 OnDateBeforeTime
67 AroundDateTime

Figure 20: Domain description for SMCalFlow, using DataFlow Simple. Continued in Fig. 21.

32
5002

1 # given either a number or the operators Acouple/Afew, all the following operators return time unit
values according to the given unit↪→

2 toDays
3 toHours
4 toMinutes
5
6 # these operators can be used to create time unit values instead of using integer values
7 Acouple
8 Afew
9

10 ShowAsStatus # enumeration of possible event statuses (Busy, OutOfOffice)
11
12 CreateEvent # given multiple event clauses (such as with_attendee, has_subject, combined together

with `AND`), creates an event complying with those clauses↪→
13 FindEvents # given multiple event clauses (such as with_attendee, has_subject, combined together with

`AND`), returns a list of events complying with those clauses↪→
14 CurrentUser # returns the current user (person)
15
16 do # allows the execution of multiple commands in a single prompt (each command is an argument).

Often used in conjunction with `Let` to define variables↪→
17 Let # defines a variable (first argument) with a value (second argument)
18
19 AND # combines multiple event clauses together
20 ```

Figure 21: Domain description for SMCalFlow, using DataFlow Simple. Continued from Fig. 20.

33
5003

1 ```javascript
2 class Person {
3 constructor(name) {
4 this.name = name;
5 }
6
7 find_team_of() {
8 // ...
9 }

10
11 find_reports_of() {
12 // ...
13 }
14
15 find_manager_of() {
16 // ...
17 }
18 }
19
20 class Event {
21 constructor(attendees = null, attendees_to_avoid = null, subject = null, location = null,

starts_at = null, ends_at = null, duration = null, show_as_status = null) {↪→
22 this.attendees = attendees;
23 this.attendees_to_avoid = attendees_to_avoid;
24 this.subject = subject;
25 this.location = location;
26 this.starts_at = starts_at;
27 this.ends_at = ends_at;
28 this.duration = duration;
29 this.show_as_status = show_as_status;
30 }
31 }
32
33 const DateTimeValues = ["Afternoon", "Breakfast", "Brunch", "Dinner", "Early", "EndOfWorkDay",

"Evening",↪→
34 "FullMonthofMonth", "FullYearofYear", "LastWeekNew", "Late", "LateAfternoon", "LateMorning",

"Lunch", "Morning",↪→
35 "NextMonth", "NextWeekend", "NextWeekList", "NextYear", "Night", "Noon", "Now", "SeasonFall",

"SeasonSpring",↪→
36 "SeasonSummer", "SeasonWinter", "ThisWeek", "ThisWeekend", "Today", "Tomorrow", "Yesterday"];
37
38 class DateTimeClause {
39 get_by_value(date_time_value) {
40 // ...
41 }
42
43 get_next_dow(day_of_week) {
44 // ...
45 }
46
47 date_by_mdy(month = null, day = null, year = null) {
48 // ...
49 }
50
51 time_by_hm(hour = null, minute = null, am_or_pm = null) {
52 // ...
53 }
54
55 on_date_before_date_time(date, time) {
56 // ...
57 }
58
59 on_date_after_date_time(date, time) {
60 // ...
61 }
62
63 around_date_time(date_time) {
64 // ...
65 }
66 }
67
68 const TimeUnits = ["Hours", "Minutes", "Days"];
69 const TimeUnitsModifiers = ["Acouple", "Afew"];
70

Figure 22: Domain description for SMCalFlow, using Javascript. Continued in Fig. 23.

34
5004

1 class TimeUnit {
2 constructor(number = null, unit = null, modifier = null) {
3 this.number = number;
4 this.unit = unit;
5 this.modifier = modifier;
6 }
7 }
8
9 const ShowAsStatusType = ["Busy", "OutOfOffice"];

10
11 class API {
12 find_person(name) {
13 // ...
14 }
15
16 get_current_user() {
17 // ...
18 }
19
20 add_event(event) {
21 // ...
22 }
23
24 find_event(attendees = null, subject = null) {
25 // ...
26 }
27 }
28
29 const api = new API();
30 ```

Figure 23: Domain description for SMCalFlow, using Javascript. Continued from Fig. 22.

35
5005

1 ```scala
2 case class Person(name: String) {
3 def findTeamOf(): List[Person] = ???
4 def findReportsOf(): List[Person] = ???
5 def findManagerOf(): Person = ???
6 }
7
8 case class Event(var attendees: Option[List[Person]] = None,
9 var attendeesToAvoid: Option[List[Person]] = None,

10 var subject: Option[String] = None,
11 var location: Option[String] = None,
12 var startsAt: Option[List[DateTimeClause]] = None,
13 var endsAt: Option[List[DateTimeClause]] = None,
14 var duration: Option[TimeUnit] = None,
15 var showAsStatus: Option[ShowAsStatusType.Value] = None)
16
17 object DateTimeValues extends Enumeration {
18 val Afternoon, Breakfast, Brunch, Dinner, Early, EndOfWorkDay, Evening,
19 FullMonthofMonth, FullYearofYear, LastWeekNew, Late, LateAfternoon, LateMorning, Lunch, Morning,
20 NextMonth, NextWeekend, NextWeekList, NextYear, Night, Noon, Now, SeasonFall, SeasonSpring,
21 SeasonSummer, SeasonWinter, ThisWeek, ThisWeekend, Today, Tomorrow, Yesterday = Value
22 }
23
24 class DateTimeClause {
25 def getByValue(dateTimeValue: DateTimeValues.Value): DateTimeClause = ???
26 def getNextDow(dayOfWeek: String): DateTimeClause = ???
27 def dateByMdy(month: Option[Int] = None, day: Option[Int] = None, year: Option[Int] = None):

DateTimeClause = ???↪→
28 def timeByHm(hour: Option[Int] = None, minute: Option[Int] = None, amOrPm: Option[String] = None):

DateTimeClause = ???↪→
29 def onDateBeforeDateTime(date: DateTimeClause, time: DateTimeClause): DateTimeClause = ???
30 def onDateAfterDateTime(date: DateTimeClause, time: DateTimeClause): DateTimeClause = ???
31 def aroundDateTime(dateTime: DateTimeClause): DateTimeClause = ???
32 }
33
34 object TimeUnits extends Enumeration {
35 val Hours, Minutes, Days = Value
36 }
37
38 object TimeUnitsModifiers extends Enumeration {
39 val Acouple, Afew = Value
40 }
41
42 case class TimeUnit(var number: Option[Either[Int, Double]] = None,
43 var unit: Option[TimeUnits.Value] = None,
44 var modifier: Option[TimeUnitsModifiers.Value] = None)
45
46 object ShowAsStatusType extends Enumeration {
47 val Busy, OutOfOffice = Value
48 }
49
50 class API {
51 def findPerson(name: String): Person = ???
52 def getCurrentUser(): Person = ???
53 def addEvent(event: Event): Unit = ???
54 def findEvent(attendees: Option[List[Person]] = None, subject: Option[String] = None): Event = ???
55 }
56
57 val api = new API
58 ```

Figure 24: Domain description for SMCalFlow, using Scala.

36
5006

1 ```python
2 Gender = Enum('Gender', 'male,female')
3 RelationshipStatus = Enum('RelationshipStatus', 'single,married')
4 Education = NamedTuple('Education', [('university', str), ('field_of_study', str), ('start_date', int),

('end_date', int)])↪→
5 Employment = NamedTuple('Employment', [('employer', str), ('job_title', str), ('start_date', int),

('end_date', int)])↪→
6
7 @dataclass
8 class Person:
9 name: str

10 gender: Gender
11 relationship_status: RelationshipStatus
12 height: int
13 birthdate: int
14 birthplace: str
15 friends: List['Person'] = None
16 logged_in: bool = False
17
18 education: List[Education] = None
19 employment: List[Employment] = None
20
21
22 @dataclass
23 class API:
24 people: List[Block]
25
26 def find_person_by_id(self, block_id: str) -> Person:
27 ...
28
29 api = API()
30 ```

Figure 25: Domain description for Overnight, using Python.

37
5007

1 ```
2 call # invoke a function. Arguments: (1) function to be invoked, (2 and subsequent) parameters to be

passed to that function or method. Returns: the result of the function call.↪→
3 SW.listValue # extract values from an object. Arguments: (1) An object of any type. Returns: A list

of values.↪→
4 SW.filter # applies a filter to a list of objects. Arguments: (1) A list of objects, (2) A property

to filter on, (3) A comparison operator, (4) A value to compare against. If property is boolean
(unary), arguments: (1) A list of objects, (2) Unary property to filter on. Returns: A list of
objects that pass the filter.

↪→
↪→
↪→

5 SW.getProperty # retrieves a property from an object. Arguments: (1) An object, (2) A property name.
Returns: The value of the property.↪→

6 SW.reverse # reverses the direction of a property. Arguments: (1) A property name. Returns: The
reversed property name.↪→

7 SW.singleton # creates a singleton set containing a single object. Arguments: (1) An object. Returns:
A singleton set containing the object.↪→

8 SW.domain # retrieves the domain of a property, which is the set of entities or objects that the
property can be applied to. Arguments: (1) A property name. Returns: The set of entities that can
have the property.

↪→
↪→

9 SW.countSuperlative # finds the object(s) with the minimum or maximum count of a certain property.
Arguments: (1) A list of objects, (2) A superlative operator (min or max), (3) A property to count,
(4) A list of objects to count from. Returns: The object(s) with the minimum or maximum count of
the property.

↪→
↪→
↪→

10 SW.ensureNumericProperty # ensures that a property is treated as numeric for comparison purposes.
Arguments: (1) A property name. Returns: The property name, treated as numeric.↪→

11 SW.ensureNumericEntity # ensures that an entity is treated as numeric for comparison purposes.
Arguments: (1) An entity. Returns: The entity, treated as numeric.↪→

12 SW.size # retrieves the size of a collection. Arguments: (1) A collection of objects. Returns: The
size of the collection as a numeric value.↪→

13 SW.aggregate # applies an aggregate function to a property over a set of objects. Arguments: (1) An
aggregate function (e.g., sum, avg, min, max), (2) A property to aggregate over, (3) A set of
objects. Returns: The result of the aggregate function.

↪→
↪→

14 SW.concat # concatenates two or more strings or lists. Arguments: (1 and subsequent) Strings or lists
to concatenate. Returns: The concatenated result.↪→

15 SW.countComparative # compares the count of a property over a set of objects with a given number.
Arguments: (1) A set of objects, (2) A property to count, (3) A comparison operator, (4) A number
to compare against, (5) A set of objects to count from. Returns: The objects for which the count
of the property satisfies the comparison.

↪→
↪→
↪→

16 SW.superlative # finds the object(s) with the minimum or maximum value of a certain property.
Arguments: (1) A set of objects, (2) A superlative operator (min or max), (3) A property to
compare. Returns: The object(s) with the minimum or maximum value of the property.

↪→
↪→

17
18 lambda # creates a function. Arguments: (1) A variable name, (2) A function body. Returns: A

function.↪→
19 var # references a variable. Arguments: (1) A variable name. Returns: The value of the variable.
20 string # creates a string. Arguments: (1) A string value. Returns: The string.
21 number # creates a number. Arguments: (1) A numeric value, (2) A unit (optional). Returns: The

number.↪→
22 date # creates a date. Arguments: (1) Year, (2) Month, (3) Day. Returns: The date.
23
24 # The following are namespaces for different types of entities.
25 en.person
26 en.company
27 en.university
28 en.relationship_status
29 en.employee
30 en.student
31 en.field
32 en.city
33 en.gender
34
35 # specific entities under these namespaces:
36 en.gender.female
37 en.gender.male
38 en.relationship_status
39 en.relationship_status.single
40 en.relationship_status.married
41
42 # en.person properties:
43 height # property of type (number with unit en.cm)
44 birthdate # property of type date
45 birthplace # property of type en.city
46 logged_in # property of type bool
47 friend # property of type en.person
48 relationship_status # property of type en.relationship_status
49 ```

Figure 26: Domain description for Overnight, using λ-DCS. Continued in Fig. 27.

38
5008

1 # education properties:
2 student # property of type en.person
3 university # property of type en.university
4 field_of_study # property of type en.field
5 education_start_date # property of type date
6 education_end_date # property of type date
7
8 # employment properties:
9 employee # property of type en.person

10 employer # property of type en.company
11 job_title # property of type string
12 employment_start_date # property of type date
13 employment_end_date # property of type date

Figure 27: Domain description for Overnight, using λ-DCS. Continued from Fig. 26.

39
5009

1 listValue # extract values from an object. Arguments: (1) An object of any type. Returns: A list of
values.↪→

2 filter # applies a filter to a list of objects. Arguments: (1) A list of objects, (2) A property to
filter on, (3) A comparison operator, (4) A value to compare against. If property is boolean
(unary), arguments: (1) A list of objects, (2) Unary property to filter on. Returns: A list of
objects that pass the filter.

↪→
↪→
↪→

3 getProperty # retrieves a property from an object. Arguments: (1) An object, (2) A property name.
Returns: The value of the property.↪→

4 reverse # reverses the direction of a property. Arguments: (1) A property name. Returns: The reversed
property name.↪→

5 singleton # creates a singleton set containing a single object. Arguments: (1) An object. Returns: A
singleton set containing the object.↪→

6 domain # retrieves the domain of a property, which is the set of entities or objects that the
property can be applied to. Arguments: (1) A property name. Returns: The set of entities that can
have the property.

↪→
↪→

7 countSuperlative # finds the object(s) with the minimum or maximum count of a certain property.
Arguments: (1) A list of objects, (2) A superlative operator (min or max), (3) A property to count,
(4) A list of objects to count from. Returns: The object(s) with the minimum or maximum count of
the property.

↪→
↪→
↪→

8 ensureNumericProperty # ensures that a property is treated as numeric for comparison purposes.
Arguments: (1) A property name. Returns: The property name, treated as numeric.↪→

9 ensureNumericEntity # ensures that an entity is treated as numeric for comparison purposes. Arguments:
(1) An entity. Returns: The entity, treated as numeric.↪→

10 size # retrieves the size of a collection. Arguments: (1) A collection of objects. Returns: The size
of the collection as a numeric value.↪→

11 aggregate # applies an aggregate function to a property over a set of objects. Arguments: (1) An
aggregate function (e.g., sum, avg, min, max), (2) A property to aggregate over, (3) A set of
objects. Returns: The result of the aggregate function.

↪→
↪→

12 concat # concatenates two or more strings or lists. Arguments: (1 and subsequent) Strings or lists to
concatenate. Returns: The concatenated result.↪→

13 countComparative # compares the count of a property over a set of objects with a given number.
Arguments: (1) A set of objects, (2) A property to count, (3) A comparison operator, (4) A number
to compare against, (5) A set of objects to count from. Returns: The objects for which the count
of the property satisfies the comparison.

↪→
↪→
↪→

14 superlative # finds the object(s) with the minimum or maximum value of a certain property. Arguments:
(1) A set of objects, (2) A superlative operator (min or max), (3) A property to compare. Returns:
The object(s) with the minimum or maximum value of the property.

↪→
↪→

15
16 lambda # creates a function. Arguments: (1) A variable name, (2) A function body. Returns: A

function.↪→
17 var # references a variable. Arguments: (1) A variable name. Returns: The value of the variable.
18
19 # The following are namespaces for different types of entities.
20 en.person
21 en.company
22 en.university
23 en.relationship_status
24 en.employee
25 en.student
26 en.field
27 en.city
28 en.gender
29
30 # specific entities under these namespaces:
31 en.gender.female
32 en.gender.male
33 en.relationship_status
34 en.relationship_status.single
35 en.relationship_status.married
36
37 # en.person properties:
38 height # property of type (number with unit en.cm)
39 birthdate # property of type date
40 birthplace # property of type en.city
41 logged_in # property of type bool
42 friend # property of type en.person
43 relationship_status # property of type en.relationship_status
44
45 # education properties:
46 student # property of type en.person
47 university # property of type en.university
48 field_of_study # property of type en.field
49 education_start_date # property of type date
50 education_end_date # property of type date
51
52 # employment properties:
53 employee # property of type en.person
54 employer # property of type en.company
55 job_title # property of type string
56 employment_start_date # property of type date
57 employment_end_date # property of type date

Figure 28: Domain description for Overnight, using λ-DCS Simple..

40
5010

1 ```javascript
2 const Gender = Object.freeze({"male":1, "female":2});
3 const RelationshipStatus = Object.freeze({"single":1, "married":2});
4
5 class Education {
6 constructor(university, field_of_study, start_date, end_date) {
7 this.university = university;
8 this.field_of_study = field_of_study;
9 this.start_date = start_date;

10 this.end_date = end_date;
11 }
12 }
13
14 class Employment {
15 constructor(employer, job_title, start_date, end_date) {
16 this.employer = employer;
17 this.job_title = job_title;
18 this.start_date = start_date;
19 this.end_date = end_date;
20 }
21 }
22
23 class Person {
24 constructor(name, gender, relationship_status, height, birthdate, birthplace, friends = [],

logged_in = false, education = [], employment = []) {↪→
25 this.name = name;
26 this.gender = gender;
27 this.relationship_status = relationship_status;
28 this.height = height;
29 this.birthdate = birthdate;
30 this.birthplace = birthplace;
31 this.friends = friends;
32 this.logged_in = logged_in;
33 this.education = education;
34 this.employment = employment;
35 }
36 }
37
38 class API {
39 constructor(people = []) {
40 this.people = people;
41 }
42
43 find_person_by_id(block_id) { ... }
44 }
45
46 let api = new API();
47 ```

Figure 29: Domain description for Overnight, using Javascript. Continued from Fig. 22.

41
5011

1 ```scala
2 object Gender extends Enumeration {
3 type Gender = Value
4 val Male, Female = Value
5 }
6
7 object RelationshipStatus extends Enumeration {
8 type RelationshipStatus = Value
9 val Single, Married = Value

10 }
11
12 case class Education(university: String, fieldOfStudy: String, startDate: LocalDate, endDate:

LocalDate)↪→
13 case class Employment(employer: String, jobTitle: String, startDate: LocalDate, endDate: LocalDate)
14
15 case class Person(
16 name: String,
17 gender: Gender.Gender,
18 relationshipStatus: RelationshipStatus.RelationshipStatus,
19 height: Int,
20 birthdate: LocalDate,
21 birthplace: String,
22 friends: Option[List[Person]] = None,
23 loggedIn: Boolean = false,
24 education: Option[List[Education]] = None,
25 employment: Option[List[Employment]] = None
26)
27
28 class API {
29 var people: List[Person] = List()
30
31 def findPersonById(personId: String): Person = ???
32 }
33
34 val api = new API
35 ```

Figure 30: Domain description for Overnight, using Scala.

42
5012

