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Abstract

Previously, non-autoregressive models were
widely recognized as being superior in genera-
tion efficiency but inferior in generation quality
due to the challenges of modeling multiple tar-
get modalities. To enhance the multi-modality
modeling ability, we propose the diffusion
glancing transformer (DIFFGLAT), which em-
ploys a modality diffusion process and residual
glancing sampling. The modality diffusion pro-
cess is a discrete process that interpolates the
multi-modal distribution along the decoding
steps, and the residual glancing sampling ap-
proach guides the model to continuously learn
the remaining modalities across the layers. Ex-
perimental results on various machine transla-
tion and text generation benchmarks demon-
strate that DIFFGLAT achieves better genera-
tion accuracy while maintaining fast decoding
speed compared with both autoregressive and
non-autoregressive models.

1 Introduction

The Transformer (Vaswani et al., 2017) has been
the most widely used architecture in sequence gen-
eration, outperforming its counterparts in (almost)
all downstream tasks, such as machine translation
and question answering (Brown et al., 2020; Ope-
nAl, 2023). The typical transformer architecture
adopts the autoregressive decoding strategy (AR),
generating tokens in a predefined order, i.e., left
to right. Recently, non-autoregressive generation
models (NAR) attract increasing attention for their
fast generation speed, which are considered to sac-
rifice generation quality by generating the outputs
simultaneously instead of sequentially.

However, we argue that NAR has advantages
compared to AR beyond generation efficiency for
the following reasons: 1) the parallel generation
enables NAR to remove the inductive bias of the
predefined generation order, thereby liberating the
potential of applications, such as molecules or pro-
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Figure 1: Our modality diffusion process. ¢(y;) repre-
sents the marginal distribution of y;, which visualizes
the modality distribution. The number of modalities
increases as the timestep ¢ decreases.

teins that have no well-defined orders; 2) further-
more, NAR can utilize bi-directional context for
sequence modeling and generation, whereas AR
could only exploit context from one direction.

Although being promising, current state-of-the-
art NAR models still fall behind the AR counterpart
in terms of generation quality. The main drawback
of NAR lies in the difficulty of modeling multi-
modal distributions (Gu et al., 2018), i.e., one input
has multiple valid outputs. For example, a source
sentence could be translated into multiple different
target sentences. As the NAR model decodes all
the tokens in parallel, it may mix tokens from dif-
ferent translation targets. In contrast, the AR model
can output consistency tokens more easily as every
prediction is conditioned on previous ones. Recent
progress of NAR has significantly improved the
multi-modal learning ability of parallel generation,
including knowledge distillation (Kim and Rush,
2016), iterative decoding (Lee et al., 2018), latent
variable modeling (Ma et al., 2019) and revised
learning objectives (Libovicky and Helcl, 2018;
Ghazvininejad et al., 2020a; Du et al., 2021; Huang
et al., 2022b). However, these NAR models still
hardly outperform the AR baseline consistently.

In this paper, we propose DIFFGLAT, which
shows that NAR can outperform AR in both ef-
ficiency and accuracy, without requiring knowl-
edge distillation from AR. Generally DIFFGLAT
is designed within the denoising diffusion implicit
model framework (Song et al., 2021a).
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First, to reduce the difficulty of learning multi-
modalities for NAR, DIFFGLAT defines a discrete
modality diffusion process that smoothly decom-
poses the modality learning in the data across many
diffusion transition steps. With modality decom-
position, each diffusion transition only includes
a scheduled number of modalities, which makes
the modality learning much easier for NAR. And
our preliminary experiments confirm the effective-
ness of modality decomposition (See Section 2.2).
Note that each diffusion transition is learned by
several adjacent NAR layers, and thus DIFFGLAT
can stack a sufficient number of layers to model
complex multi-modal distributions.

Besides, we proposes a residual glancing sam-
pling technique, which adaptively adjusts the learn-
ing difficulty of each diffusion transition in a layer-
wise and residual manner.

Experiments demonstrate that the proposed DIF-
FGLAT significantly improves the quality of NAR
generation on standard benchmarks. Using only
1 decoding iteration, DIFFGLAT can outperform
all NAR baselines, including iterative ones. With
3 iterative decoding steps, DIFFGLAT beats the
strong AR baseline with a moderate margin (+0.47
BLEU). Comparisons between DIFFGLAT and AR
Transformer on 10 standard machine translation
benchmarks, with both Transformer base and big
settings, consistently verify the effectiveness of
DIFFGLAT. Additionally, we also find that DIF-
FGLAT can slightly outperform the AR baseline on
image captioning and paraphrasing tasks. These
results show the extensive potential of DIFFGLAT
in other generation tasks.

2 Preliminary

Given the input sequence « = z', 22, ..., 2™ and

the target sequence y = y',4?, ..., y", the NAR
model factorizes the joint probability P(y|x) with
the conditional independence assumption:

p(yla; 0) = [ p(v/'|=;6), (1)
1=1

where 0 is the parameter of the model, and each
token %' in ¥ is independent from other target to-
kens. The conditionally independent factorization
demands the model to capture the modalities for
the combination of all the tokens in one step, which
can be difficult when the number of modalities is
large. In contrast, the AR model factorizes the joint

probability in an autoregressive way:

p(yle; 0) = pr!y“ : ©)

By conditioning on preceding tokens y<‘, the
autoregressive factorization divides the modality
learning of the sequence into multiple steps where
each step learns to predict one token. Similar to the
autoregressive factorization, the denoising diffu-
sion models also smooth the source-target transfor-
mation by interpolating intermediate distributions
between the source and the target.

Inspired by the learning decomposition in AR
and diffusion models, we employ training proce-
dures as in diffusion models to decompose the com-
plex modality learning of NAR into several eas-
ier diffusion transition steps. Since the process of
adding Gaussian noise is not designed for tackling
the multi-modality problem, we also explore new
diffusion processes to address the problem. A pre-
liminary study demonstrates that a learning process
with a gradually growing number of modalities is
beneficial for learning modalities in NAR.

2.1 Denoising Diffusion Models

With a series of latent variables y;ys...yr, the dif-
fusion process can be characterized by the poste-
rior ¢(y1.7|yo). This process guides the generative
process p(yo.r) = po(yr) [1/_, po(yi—1lye) in
diffusion models (Sohl-Dickstein et al., 2015; Ho
et al., 2020) to fit the data yq step by step. Depend-
ing on the Markov property of the process defined
by q(y1.7|yo), the diffusion processes can be di-
vided into Markovian and non-Markovian ones.

Markovian Diffusion Process The Markovian
diffusion processes are employed in many previous
work for diffusion models (Sohl-Dickstein et al.,
2015; Ho et al., 2020). In these work, the forward
process is a Markov chain where the posterior for
y; can be determined by conditioning on Y 1:

q(y1rlyo) : Hq Yilyi1) 3)
For example, Ho et al. (2020) propose a denoising
diffusion probabilistic model (DDPM), which adds
Gaussian noise with increasing variances B1.7 €
(0,1]T, and the forward transition probability is de-
fined by: q(yt|yi—1) = N(yt; VI = Bryi—1, BiI).
The posterior ¢(y:—1|Yt, Yo) of DDPM can be com-
puted in closed form, and the detailed derivation
can be found in (Ho et al., 2020).
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| Modality | Target
| Ty =2 +5000,iisodd; ' =a'+10000,iiseven | 5052 10001 5937 11234
| Ty =2 +10000,iisodd; y' =a'+5000,iiseven | 10052 5001 10937 6234

52 1 937 1234 -
I y' =" 415000, isodd; y' = x' + 20000, 7 is even ‘ 15052 20001 15937 21234

V  y' =" 420000,iis0dd; y' = x' 4 15000, i is even ‘ 20052 15001 20937 16234

Table 1: Illustration of the synthetic data.

NAR w/ PML

Model ‘ DATA AR NAR Middle  Last
Token Acc. 100 100.0  56.6 98.8 97.7
Seq Acc. 100 100.0 0.0 93.4 88.6

Table 2: Results of synthetic experiments.

Non-Markovian Diffusion Process Besides the
Markovian process, the posterior ¢(y1.7|yo) can
also be modeled as a non-Markovian process (Song
et al., 2021a):

T
q(yrr|yo) == q(yrlyo) [ [ ¢@i-1lye, o), @)
t=2

where each decomposition term depends on .
According to (Song et al., 2021a), non-Markovian
processes are less stochastic than the Markovian
process defined in Ho et al. (2020), leading to more
deterministic and efficient generative models. Here,
we propose to use the non-Markovian process to
define the modality increasing process directly.

2.2 Proof of Concept

In addition, we also include a synthetic experiment
to demonstrate that learning with growing number
of modalities across layers can effectively benefit
the performance of NAR. Specifically, we create
a synthetic dataset with the 4 modalities shown in
Table 1, where each source has only one target but
may come from one of four different modalities.
We simulate the modality diffusion process by us-
ing the progressive modality learning (PML) inside
NAR layers. In PML, we train the middle layers of
NAR with only 2 modalities by transforming the
target of modality I to modality II and the target of
modality of III to modality IV. And we train the
last decoder layer by the targets with 4 modalities
(See Appendix A for more details).

The results in Table 2 show that the vanilla NAR
model fails to output correct sequences, and both
the middle and last layer of the NAR trained with
PML achieve significant accuracy gains. From
the modality distribution plot in Figure. 2, we can
find that the NAR trained with PML learns only 2
modalities in the middle layer, and captures all the
modalities in the last layer.

0,
100% Data NAR w/ PML (Middle)
759% | M NARw/PML (Last)

50%
25%
o ol i

| Il 1] v

Figure 2: The output modality distributions.
3 The Proposed Diffusion-GLAT

In this section, we will introduce DIFFGLAT, which
enables parallel sequence-to-sequence learning in
a denoising diffusion implicit model (DDIM, Song
et al., 2021a) framework. The primary goals of de-
signing DIFFGLAT are: a) decomposing the modal-
ity learning to reduce the training difficulty of NAR
and b) achieving high generation quality with few
denoising transitions to keep fast decoding.

In denoising diffusion models, the parameters
0 are trained to fit the data distribution ¢(yo) by
maximizing a variational lower bound (Ho et al.,
2020):

EVLB - Eq(yo\a:) |: - logpg(yon)] < (5)
Eq(yo.r|z) [DKL (q(y1.7|yo, )| |P9(yo:T\iB))}

To achieve the two goals described in the begin-
ning, we define a discrete diffusion process ¢™MP?
that adds the modalities in the data gradually as the
diffusion step ¢ decreases. Additionally, the train-
ing process is equipped with the residual glancing
sampling techniques pRGS which further boosts
the modality learning ability. Therefore, we can
rewrite the training objective in Eq. 5 as:

Lvie =E¢Dxr(q(y1.7|y0, z)|pe(yo.r|x))  (6)
ZEqDKL(qMDP(yLT\yO, )HPRGS(?JO:T‘CU))

The modality diffusion process ¢MPF gradually
interpolates modalities among intermediate layers,
which adaptively schedules sequence modalities
across the NAR Transformer layers. And the resid-
ual glancing sampling (RGS) samples the target
tokens that are not correctly captured across neural
layers to enhance the modality learning process.

3.1 Modality Diffusion Process: ¢MP?

In order to reduce the difficulty of learning modal-
ities for NAR, we introduce a discrete diffusion
process that distributes modalities to multiple tran-
sitions, which is illustrated in Figure 1. As shown
in Section 2.2, a reasonable denoising process for
learning modalities is adding the modalities in yg
gradually. But the modalities in the real world data
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cannot be explicitly manipulated, thus we need to
divide the modalities in yg implicitly. Previous
work reveals that the trained NAR models could
capture part of the modalities in the data (Zhou
et al., 2020). Therefore, we leverage the modality
distribution captured by the model itself to con-
struct the modality diffusion process.

Specifically, gMPP should guarantee that the dif-
ficulty of the assigned modality learning task is
appropriate for each transition. Thus, we define
each transition of the modality diffusion process
as the interpolation of distribution for target P (yo)
and the prediction distribution of the next step Py_1.
Mathematically, the posterior ¢(y1.7|yo, ) can be
decomposed as:

MDP(y11T|y07 iE) =

a (7)
a(yrlyo. @) [ [ a(ve-1lye, o, )
t=2

q

For simplicity, we omit x for g in subsequent elab-
oration. With the model py and the target yg, we
interpolate yo and pg(yr—1|yr, ) to construct in-
termediate distributions whose numbers of modal-
ities are between the modalities in yg and those
captured by pyg:

q(ytlyo) == <%1 + (1 - %)yo> O Pi-1/Z

= <%77t—1 +(1=7)Pi1 © yo) /Zy,

®)
where Pi_1 = po(Yi—1|ys, ), yo is the one-hot
vector sequence of the target in data, v, € (0, 1]
is the hyper-parameter for controlling the interpo-
lation, ® represents element-wise multiplication
and Z; € (0,1]" is the factor for normalization.!
We can consider the definition of Eq. 8 as data cor-
ruption on the modality probability landscape of
‘P by extracting the P term out of the parenthesis.
To ensure the form in Eq. 8 holds for ¢ > 1 (See
Appendix B), we define q(y:—1|y¢, yo) as:

q(Ye—1|Yi:Y0) := Yi—1Pi—2 + ((1 — Yi—1)
)
P2 — tht—1> O Yo +wi LYo © Yi

"Because >y, 4(Yt|yo) = 1 is not guaranteed after
interpolation, we normalize the distribution with Z; =
Yoy 4yl |yo), where d(yilyo) = wPe-1 + (1 —
Yt)Pi—1 © Yo, |V is the size of token categories and y;’
is a sequence with the token w on all the positions.

Here, w; is a hyper-parameter. Similarly, we also
re-normalize q(y;—1|Ys, Yo). Intuitively, the sum
of the first term with P;_o and the second term
with yo performs the modality interpolation as in
Eq. 8, and adding the third term with yg © y; at-
tempts to preserve the modalities captured by y;
in the denoising transitions. Thus, y;_; serves as
a intermediate target, with fewer modalities than
Yo but more modalities than vy, for smoothing the
modality learning.

3.2 Non-autoregressive Generative Process

We define the generative process similar to the iter-
ative refinement process in NAR. Specifically, we
use a generative process that only conditions on the
input computed by the model itself for every step,
removing the gap between training and inference.
Besides, we also augment the training with resid-
ual glancing sampling (RGS) to further smooth
the modality learning, which improves over the
glancing training (Qian et al., 2021) by layer-wise
sampling and selecting tokens that are not captured
in the input.

Self-Conditioned Generative Process To keep
consistency between the training and inference,
we parameterized pg(y;—1|y:) completely by the
model itself. We set the decoder input sequence as
the initial state y7, and the embedding of decoder
inputs emb(yr) to be the initial representation Hr.
For the generative transitions py(y;—1|y:), we com-
pute the next representation H;_; with H;, and
maps the hidden states representation to the soft-
max distribution for pg(y;—1|y:, x):

Po(Yi—1|ys, &) = softmax(H;_q VT),

(t) 19)
where H; | = f,” (H;, Enc(x)),

Here, Enc is the encoder that maps the input
to hidden states, V' is the vocabulary embedding
matrix, and fe(t) is parameterized by neural lay-
ers. Since H, contains the information for y; and
is consistent in both training and inference, we
use H; as the input for py(yi—1|y:, ). The self-
conditioned generative process shares similar mo-
tivation with self-conditioning (Chen et al., 2022)
and step-unroll (Savinov et al., 2022), but operates
in a purer way as we directly transits the hidden
states as in standard decoders.

Residual Glancing Sampling Previous work
demonstrate that adaptive sampling target tokens
according to the model performance can improve
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Figure 3: Learning procedure of the layer-wise residual glancing sampling.
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Figure 4: The details of residual glancing sampling.

the generation quality of NAR (Qian et al., 2021).
For models training with diffusion processes, we
strengthen the glancing training in a fine-grained
way by layer-wise glancing and glancing remain-
ing tokens. The overall residual glancing training
procedure is shown in Figure 3.

For layer-wise glancing, we replace part of in-
termediate hidden states H; with the embedding
of tokens sampled from the intermediate target
Yi—1 = argmax q(y¢—1|yt, yo), and predict the

remaining target tokens gf_GlS using the glancing

target tokens ;1]5_615:

LR = —log phy > (yr—1|ys, @) (11
= ~1ogpp(9rF 1975 yr. )
The sampling number of glancing tokens ﬂfﬁs

is determined by the distance between the model
output y;—1 = arg max py(y;—1|ys, «) and the in-
termediate target g;—1: Si—1 = - d(Ys—1,Yt—1),
where « is a hyper-parameter for adjusting the sam-
pling number. Details for glancing could be found
in Qian et al. (2021).

Besides layer-wise glancing, we propose to mod-
ify the scope for selecting glancing tokens as in
Figure 4. Since the input captures part of the modal-
ities, the model can learn only the remaining part
that are not correctly captured in the input. Thus,
we utilize g; to schedule the learning, and mod-
ify the glancing sampling to only sampling S;_1

tokens that are different between y; and y;_1:

RGSi—1(9i—1) = Random(gi—1/9:)  (12)
In residual glancing training, we randomly sample
g5 from ;1 with the operation RGS;_1.

3.3 Implementation Details

In this section, we will introduce the implemen-
taion details for DIFFGLAT. To enhance the abil-
ity of modality capturing, we employ the DA-
Transformer (Huang et al.,, 2022b). The DA-
Transformer (DAT) can strengthen each transition
of DIFFGLAT by distributing the modalities to dif-
ferent positions in the expanded output sequences.
We also elaborate the difference between the de-
coding iterations and the diffusion transitions in the
parameterization part.

DA-Transformer In training, the DAT model ex-
pands the output lengths to the predefined max
length, and maps target tokens to multiple posi-
tions in the expanded sequence. Since the output
length of DAT is not equal to the length of the target
y, we use the best alignment of y; as the glancing
target and for computing ¢MPP. The best alignment
is obtained by maximizing the output probability:
align

y; 0 =arg max p(alz),
a€cl'(ge)

(13)

where I' expands y to the expanded output length
by inserting blanks. For the intermediate target y to
compute loss L?_Gls, we use the decoding result with
the original target length |y| rather than the aligned
target. In inference, after parallel neural network
computation, DAT uses links between positions to
extract output tokens in the expanded sequence,
where we use the Joint-Viterbi decoding proposed

by Shao et al. (2022).

Parameterization As each transition of the gen-
erative process directly forward the hidden states
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Model Iter | WMT14 | WMT14 | WMT17 | WMT17 | Average Speedu
En-De | De-En | En-Zh | Zh-En | Gap |°Pe¢UP
AR Transformer base (Ours) | M | 27.18%| 31.48%| 34.65%| 23.39%| 0 | 1.0x
Diff-LM (Li et al., 2022) 20 17.41 19.69 - - -10.78% 0.6x
Iterative Models CPCD (Dielemanetal,2022) | 100 | 20.0 26.0 - - —6.332 -
Difformer (Gao et al., 2022) 20 23.80 - - - -3.38 -
DINOISER (Ye et al., 2023) 20 | 2426 | 29.05 - - -2.68° -
SUNDAE (Savinov et al., 2022) | 10 25.99 30.24 - - -1.36% 2.2x
DAT+Iterative refinement’ | 3 | 25.67%| 30.85% - - 21,079 7.2x
CTC (Libovicky and Helcl, 2018) | 1 17.73* 21.48* 25.77* 12.33* -9.85 14.3x
Non-iterative Models GLAT+CTC (Qianetal., 2021) | 1 24.85% | 28.37* 30.20%* 17.57* -3.92 14.3x
DAT f (Huang et al., 2022b) 1 26.47* | 30.22% 33.27*%| 23.21%* -0.88 13.0x
DAT+DSLP f 1 26.08* | 30.34* - - 1129 12.6x
Ours DIFFGLAT ' 1 26.72 31.35 34.12 23.74 -0.19 13.0x
DIFFGLAT 3 27.91 31.55 35.09 24.02 +0.47 7.2x

Table 3: Results on WMT 14 En«+De and WMT17 Zh<+En. The average gap is computed against our Transformer
implementation. * represents the results are obtained from our re-implementation, and <) indicates that the average
gap is only computed with available results. For models with {, we use the Joint-Viterbi decoding proposed by Shao
et al. (2022) for inference. The average gap is computed against the results of our implemented Transformer base.

to the next transition, we can build fully non-
autoregressive models by stacking the neural layers
or iterative models by sharing the parameters of 6;.
And we can use part of the layers in the decoder
to perform one denoising transition so that one for-
ward inference of the decoder can perform multiple
denoising transitions.

Training Since q(y¢—1|y:, Yo) is a distribution
consists of multiple modalities, directly minimiz-
ing the KL-divergence in Eq. 6 introduces multi-
modal targets for every source input. Thus, we opti-
mize the model using the sequence with the highest
probability: g, = arg max q(y;—1|y¢, yo). The
KL-divergence can then be rewritten as:
L3 = —logp P (Gealye, ®)  (14)
To reduce the denoising steps needed to achieve
high quality, we use a small number for the total
diffusion steps 7" and attempt to fit more modalities
with each generative transition pg(y;—1|y:, ). For
training efficiency, we sample a diffusion timestep
t to compute the loss for each training step.

4 Experiments

Different from most of the previous work for NAR,
we directly train our models on raw data without
using data distilled from AR. To verify the effective-
ness of our method, we compare DIFFGLAT with
several strong NAR and AR baselines on several
sequence generation tasks. Furthermore, analysis
and ablation studies study are also conducted to
demonstrate the effects of each component.

4.1 Experimental Settings

Benchmarks We conduct experiments on ma-
chine translation, paraphrase generation and image
captioning. For machine translation, we use 10 ma-
chine translation benchmarks: WMT14 En<+De,
WMT17 En<Zh, WMTI14 En<Fr, WMTI16
En<Ro and WMT13 En«+Es. The preprocess-
ing follows the procedure in Zhou et al. (2020)
and Kasai et al. (2020). For paraphrase generation
and image captioning, we use the Quora Question
Pairs dataset?> (QQP), and MS-COCO dataset (Lin
et al., 2014) respectively. The data are tokenized
and segmented into subwords using Byte-Pair En-
coding (Sennrich et al., 2016).

Evaluation Metrics We report the sacre-
BLEU? (Post, 2018) scores for machine translation,
and the tokenized bleu results are shown in
Appendix C. For speedups compared with the
Transformer base, we follow previous work (Gu
et al., 2018) by evaluating on WMT14 En-De with
batch size 1. Further comparison for decoding
speedup are provided in Appendix D.

Hyper-parameters We build our models based
on the Transformer (Vaswani et al., 2017) archi-
tecture and use the Transformer base setting as
default. For machine translation, we train all the
models, including the autoregressive Transformer,
with batches of 64k tokens and 300k training steps
using the Adam optimizer (Kingma and Ba, 2015).

https://www.kaggle.com/c/
quora-question-pairs

SExcept ’tok.zh’ for En-Zh, the signature is "BLEU+
case.mixed+numrefs.1+smooth.exp+tok.13a+version.1.5.1"
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Model, WMT14 WMT17 WMT14 WMT16 WMT13
odels En-De De-En | En-Zh Zh-En | En-Fr Fr-En | En-Ro Ro-En | En-Es Es-En
Transformer base | 27.18 3148 | 34.65 2339 | 3826 3570 | 3391 3370 | 3353  34.19
DIFFGLAT base | 27.91 3155 | 3509  24.02 | 3873 36.61 | 3392 33.64 | 3395 34.74
Transformer big | 28.01 3211 | 3631  23.60 | 40.16 3790 | 3346  32.68 | 3464 3501
DIFEGLAT big 28.62 3232 | 3621 2440 | 40.12 37.87 | 3434 3365 | 3471 3540

Table 4: BLEU scores on the 10 Machine Translation Benchmarks

GLAT

DIFFGLAT w/o DAT

29.98
27.44

28

BLEU

24.46 N
Transformer

DAT
DIFFGLAT

24
20.45

WMT14 EN-DE WMT14 DE-EN

QQr MS-COCO 2014
BLEU4 ROUGE-L | BLEU4 METEOR ROUGE-L CIDEr
28.13 58.19 34.0 28.1 56.0 1123
28.82 59.76 33.5 27.0 56.5 106.5
29.86 60.23 34.9 28.0 56.7 112.5

Figure 5: Results with GLAT

The training of DIFFGLAT with iterative decod-
ing takes about 58 hours on 16 NVIDIA A100-
80G GPUs. We average the best 5 checkpoints
for BLEU scores on the validation set to get the
final model. All the models are built with 6 Trans-
former decoder layers, and we use 3 decoder layers
for each transition py(y:—1|y:, ). Thus, each de-
coding iterations performs 2 denoising diffusion
steps. For paraphrasing and image captioning, we
use smaller architecture and shorter training steps.
The detailed hyper-parameters can be found in Ap-
pendix E.

4.2 Main Results

From the results in Table 3, we can find that DIF-
FGLAT achieves considerable improvement over
strong baselines. With a process that gradually
adds modalities in the denoising pass, DIFFGLAT
reduces the number of modalities to learn for
each transition, enhancing the ability for captur-
ing modalities in data. Depending on whether the
model parameters are reused iteratively, /method
can be trained for non-iterative or iterative decod-
ing. For the non-iterative setting, DIFFGLAT only
modifies the training procedure, thus can keep the
inference the same as the process of the base model.
Compared with several strong baselines, we high-
light the advantages of DIFFGLAT:

* Our method can achieve better generation
quality than strong NAR or even AR. With
only one iteration of parallel decoding, our
model achives higher BLEU scores than that
of previous non-autoregressive models. And
when applying iterative decoding, our model
can even outperform the Transformer with a
margin of 0.47 BLEU on average. For com-
parison, directly applying iterative refinement
to DAT does not improve the performance.

Table 5: Performance on paraphrasing and image captioning.

* DIFFGLAT overcomes the slow sampling of
diffusion models and achieves high decoding
efficiency. DIFFGLAT completely keeps the
fast speed of parallel decoding for the non-
iterative setting, and can still achieve a 7.2 x
speedup with 3 decoding iterations.

* We can also use DIFFGLAT without DAT or
combine DIFFGLAT with CTC, where our
approach achieves more improvements over
the baselines. The results in Figure 5 show
that our method improves 1.5~4 BLEU over
GLAT. The CTC results are shown in Ap-
pendix C.

Results on 10 Machine Translation Benchmarks
To evaluate the performance more comprehen-
sively, we compare the autoregressive Transformer
with DIFFGLAT on 10 Benchmarks, and list the re-
sults in Table 4. We conduct experiments for both
the base and the big setting. Our results show that
DIFFGLAT outperforms or achieves comparable
results to the Transformer on the 10 benchmarks.

Paraphrasing and Image Captioning Besides
machine translation, we also conduct experiments
for two other text generation tasks: paraphrase
generation and image captioning. For paraphrase
generation, DIFFGLAT can outperform the Trans-
former with about 1.7 BLEU scores and 2 ROUGE
scores. As for image captioning, DIFFGLAT greatly
improves over the DAT baseline and achieves
slightly better results on the 4 metrics compared
with the Transformer. Results on paraphrasing and
image captioning shows that DIFFGLAT general-
izes well for text generation tasks.

4.3 Ablation Study

Comparison of Different Diffusion Processes
We substitute the modality process in Section 3.1
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Table 6: Comparison of different diffu-
sion processes. All the models use the
residual glancing training.

to compare the performance of different diffusion
processes. For comparison, we use two typical
discrete diffusion processes proposed in (Austin
etal., 2021): D3PM absorbing and D3PM uniform.
In each forward step, the D3PM absorbing pro-
cess masks each token of y;_; with some given
probabilities 3;, while the D3PM uniform process
substitutes tokens in y; 1 with any other tokens uni-
formly. In our experiment, 3; is setto 1 /(7" —t+1).
From the results in Table 6, we can find that our
modality gains improvement over the absorbing
and uniform process.

Effectiveness of Residual Glancing Training
To verify the effectiveness of the residual glancing,
we remove our proposed modification for the glanc-
ing training for comparison. The results are shown
in Figure 6, note that the result of DIFFGLAT with-
out RGS uses the original glancing training. We
can find that removing residual glancing causes a
performance decline, indicating that our residual
glancing improves the original glancing training.

4.4 Analysis

Progressive Modality Capturing To measure
the performance of modality capturing, we com-
pute the modality coverage percentage under the
corresponding thresholds, and the coverage curve
is presented in Figure 7. Since the exact modal-
ities for real world data is unavailable, we com-
pute the coverage for the data point (x,y) as the
modality is covered when the related data points
are covered. Specifically, we compute the nor-
malized loss for each data point with the trained
model: Ly(x,y) = —logpp(y|x)/|y|. And the
data point is considered covered by the model if
Ly(x,y) < 7, where 7 € R is the threshold. For
models with DAT, we compute Lg(x, y) with the
best aligned path a* = argmax,cr P(y, a|z).
As depicted in Figure 7, the value of 7 ranges from
0 to 10, and each point represents the percentage of
data points with Ly(x, y) less than or equal to 7.
In the figure, we can find that the curves of DIF-

0123 4567 89 10

Coverage Threshold

Figure 6: Ablation of the residual
glancing strategy

Figure 7: The modality coverage
curves on WMT14 En-De.

FGLAT is overall on top of the DAT curve, indicat-
ing our model captures more modalities. And the
three curves of DIFFGLAT shows that DIFFGLAT
captures more modalities as the model performs
more denoising steps.

Analysis for Decoding Iterations and Layers
We also conduct experiments to analyze the perfor-
mance with different decoding iterations and the
effect of layer numbers for each denoising transi-
tion. The results are provided in Appendix F.

5 Related Work

The work for non-autoregressive neural machine
translation can be divided into non-iterative and
iterative methods. Previous non-iterative methods
attempt to enhance the generation quality by earn-
ing from autoregressive models (Wei et al., 2019;
Guo et al., 2020), incorporating light sequential de-
coding (Sun et al., 2019; Huang et al., 2022b), and
introducing latent variables (Bao et al., 2019; Ma
et al., 2019; Song et al., 2021b; Bao et al., 2022).
Besides, models with iterative decoding have also
been developed (Lee et al., 2018; Ghazvininejad
et al., 2019; Gu et al., 2019; Huang et al., 2022a;
Saharia et al., 2020; Savinov et al., 2022; Huang
et al., 2022c¢).

DIFFGLAT also has connections with diffusion
models for discrete data but differs from them in
both probabilistic modelling and design motivation.
More discussions can be found in Appendix 1.

6 Conclusion

In this work, we propose DIFFGLAT, a parallel
sequence generation model trained with the modal-
ity diffusion process and residual glancing sam-
pling. By smoothing the learning of modalities in
the diffusion model framework, DIFFGLAT greatly
improves the generation quality of parallel gener-
ation. Compared with the autoregressive Trans-
former, DIFFGLAT achieves superior performance
in both accuracy and efficiency for multiple se-
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quence generation tasks, demonstrating the poten-
tial of the parallel generation paradigm.
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A Settings of the Synthetic Experiment

Data In order to investigate the effect of modali-
ties in learning, we create source-target pairs with
known modalities for training. Suppose we have
4 modalities in the synthetic data, the source se-
quences can be transformed into target sequences
with the rule of modality. We generate source se-
quences of length 32 with numbers uniformly cho-
sen from 1 ~ 5000, and randomly choose only
one modality for each source sequence to create
the target sequences. In total, we generate 100000
sequence pairs for training, and 5000 pairs each for
validation and test.

Model Setup We train AR and NAR models on
the synthetic data, with all models built with 4
encoder layers and 4 decoder layers. To learn all the
modalities gradually, we train a NAR model with a
modality growing process. Specifically, besides the
original NAR training loss that learns 4 modalities,
we also train the NAR model to learn 2 modalities
with the middle decoder layer. To capture only 2
modalities in the middle, we merge modalities by
transforming the targets of modality I to modality
II and the targets of modality of III to modality IV.
With the merged source-target pairs with only 2
modalities, we train the middle decoder layer to fit
modality IT and IV.

Evaluation For output quality measurement, we
obtain the model outputs ¢, and compare them with
the closest targets y in the 4 modalities for all the
outputs. The number accuracy is the percentage
of §J; = y; and the sequence accuracy is the per-
centage of y = y. To visualize the distribution
of different modalities, we use the modality of the
closest target as that of the output, and report the
proportion for different modalities.

B Proof for Definition Consistency of the
Modality Diffusion Process

Lemma 1. With ¢(y:—1|y:, yo) defined in the
modality diffusion process qMDP, fort > 1, we
have:

q(ytlyo) = (WPe—1+(1—v)Pi—1Gyo)/Z: (15)

Proof. According to the definition in Section 3.1,
we have

(Pi—1+ (1 — ) Pr—1 © Y0)/Z¢
(16)

q(Yt|yo) =

q(Yt-11Yt,yo) = yt-1Pe—2 + (1 — y1—1)Pr—2
—wiPi—1) © Yo + wiZiyo © Yi
(17
Since our models predcit the tokens in the sequence
independently, the posterior ¢(y:|yo) can also be
decomposed into the form of independent token
distributions:

a(yelyo) = Hq yilyo) where
, . (18)
; YPi1/Zi yi # Y
a(yilyo) = - Lo
Pi1/Z Yt = Yo

Here, y{ is the ith token of yg, and P}_; is the ith
token output distribution of P;_1. In the same way,

we can rewrite ¢(yi_ |y, yo) as:
Yi—1 = Yo

{’Yt—ﬂ)ti 9
Py —wi(Pfy —
(19)

For any t > 2, we can compute ¢(y;—1|yo) by:

ygfl # ?JE)
Z A (yh == yi))

q(Yyi-1190) =/ q(yelyo)a(ye—1lye, yo)dy:
Yt

(20
Thus,
a(yi—1 = yolyo)
=(1 — q(y; = volyo))a(vi—1lv: # Y6, vo)
+a(yt = yolyo)a(vi—1vi = yo, yo)
=(1 = Pi_1/Z)(Pi_y — wiP{_y) 21)
+ (Pi1/2)(Pl_y — wi(Pl_y — Z4))
=Pi_o —wiP{_1 + P/ Z: - wiZ
:Pti—Z
And from Eq.19, we can derive:
4(Yi_1lyo) = n1Piy foryiy #yy  (22)
Therefore, after normalization, we have:
q(yi-1|yo) = Hq (yi_1lyo) where
i i 23
9(v;-1lyo) = {%Pt_Q/Z“ Vi1 74
Pl o/Zi1 Y=Y

Similarly, we can prove that Eq.16 holds for ¢t > 1.

C Additional Results on Machine
Translation

For reference and further comparison, we also
report the tokenized BLEU scores and the re-
sults based on CTC (Graves et al., 2006) rather
DAT (Huang et al., 2022b).
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Results with Tokenized BLEU As some previ-
ous work reports tokenized BLEU scores on the
machine translation benchmarks, we also provide
the results for tokenized BLEU scores for direct
comparison.

Combination with CTC We also conduct exper-
iments for DIFFGLAT with CTC, and the results
are presented in Table 8.

The experimental results show that DIFFGLAT
achieves improvements of 1~3 BLEU scores over
GLAT+CTC, demonstrating the effectiveness of
DIFFGLAT. DIFFGLAT can easily combine with
various existing methods for parallel generation be-
cause DIFFGLAT maintains the decoding process
or simply adds more iterations. Specifically, DIF-
FGLAT keeps the original inference process in the
non-iterative setting or forwards the decoder mul-
tiple times without intermediate decoding in the
iterative setting.

D Inference Time Comparison

To provide a more comprehensive comparison of
the decoding speedup, as discussed in (Helcl et al.,
2022), we measure the inference latency on the
WMT14 test set with 1 Nvidia-V100 GPU, and
report the inference latency with batch size 1 in Ta-
ble 9. Following the setting in Kasai et al. (2021),
we also measure the inference latency of a Trans-
former with 12 encoder layers and 1 decoder layer.

Comparing with the Transformer (12-1), DIF-
FGLAT with 3 decoding iterations still has a 2.6x
speedup. Although the Transformer with deep en-
coder and shallow decoder can achieve faster infer-
ence, the depth of decoder is important for capa-
bility of decoder-only models (Brown et al., 2020;
OpenAl, 2023). Thus, the comparison for models
with 6 decoder layers is also useful.

E Hyper-parameters for Experiments

We train our models with fairseq (Ott et al., 2019)*.
For machine translation, the dropout is set to 0.1
except En-Ro/Ro-En and the Transformer big set-
ting, where the dropout is 0.3. For paraphrasing
and image captioning, we use the dropout of 0.3.
Since our modality diffusion process requires the
model to capture part of the modality, for the first
100k steps, we train the model to predict the tar-
get yo at all steps ¢. For the subsequent training

*nttps://github.com/facebookresearch/
fairseq

transitions, we train the model with the modality
diffusion process. For DAT, the decoding length is
set to be 8§ times the source length for non-iterative
models and 4 times for iterative models.

For the hyper-parameters of the modality diffu-
sion in Eq. 9, we use a simplified implementation
with the interpolation between P;_o and yg:

q(Ye—1|Yt:Y0) = Y—1Pr—2+ (1 —v—1)Pr—2Oyo

(24)
Here, we set ;1 € (0, 1] to be selected from a pre-
defined set of values. To achieve a similar effect for
interpolating with yg ® y;, we choose ~;_1 as the
maximum value that preserves 90% of the tokens
in Yo © y¢. With such interpolation, y;_; includes
most of the target tokens that is correctly predicted
in the previous y;. Thus, the difference between y,
and yq gradually reduces as ¢ decreases.

In terms of residual glancing training, we set the
hyper-parameter of glancing schedule p = 1/7.
And the hyper-parameter for computing sampling
numbers « decrease from 0.5 to 0.1 periodically
for iterative DIFFGLAT.

For paraphrase generation, we utilize a Trans-
former architecture with 4 encoder layers and 4
decoder layers, with a hidden dimension of 256.
For image captioning, we use the image features
extracted by fast R-CNN > with a Transformer base
setting. The maximum training steps are set to 100k
for both paraphrase generation and image caption-
ing.

F Additional Analysis

To further study our approach, we analyze the im-
pact of the number of decoding iterations, the num-
ber of layers for one reverse transition, and the total
diffusion steps in training.

Performance with Iterative Decoding The
BLEU scores for different decoding iterations are
presented in Figure 8. Here, the evaluated models
are trained with generative processes of 3 itera-
tions. Our findings indicate that the BLEU scores
increases as the number of iterations increases to
3, and the scores do not increase when the itera-
tions exceeds 3. Note that the decoding iterations
in inference can be different from that in training.
Since the model is trained using a generation pro-
cess of 3 iterations, it also achieves the best scores

Shttps://github.com/peteanderson80/
bottom-up-attention
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Model Iter | WMT14 | WMT14 | WMT17 | WMT17 | Average Speedu
En-De | De-En | En-Zh | Zh-En | Gap | Pee0UP

Transformer (Vaswani et al., 2017) | M 27.6 314 34.3 23.7 -0.35 1.0x
AR Transformer base (Ours) M 27.81% | 31.96* | 34.65%| 23.98% 0 1.0x
CMLM (Ghazvininejad et al., 2019) | 10 24.61 29.40 - - -2.88¢ 2.2x
Iterative Models Imputer (Saharia et al., 2020) 8 25.0 - - - -2.96° 2.7x
SUNDAE (Savinov et al., 2022) 10 26.25 30.80 - - -1.36% 2.2x
CMLMC (Huang et al., 2022¢) 10 26.40 30.92 - - -1.23¢ 1.7x

DINOISER (Ye et al., 2023) 20 | 2448 | 29.40 - - 2.68°| -
CTC (Libovicky and Helcl, 2018) 1 18.42 23.65 26.84 12.23 -9.31 14.3x
B . 0aXE (Du et al., 2021) 1 22.4 26.8 - - -5.28¢ 14.2x
Non-iterative Models 5 "sr o1 (Gianetat 200 | 1| 2502 | 2914 | 30.65 | 1992 | 342 | 143x
DAT' (Huang et al., 2022b) 1 26.95% | 30.73*% | 33.27*%| 23.60*%| -0.96 13.0x
Ours DIFFGLAT 1 27.40 31.94 34.12 24.23 -0.18 13.0x
DIFFGLAT | 3 28.57 32.08 35.09 24.86 | +0.55 7.2x

Table 7: The tokenized BLEU scores on WMT14 En<+De and WMT17 Zh<>En. The average gap is computed
against our Transformer implementation. * represents the results are obtained from our re-implementation, and <
indicates that the average gap is only computed with available results. For models with {, we use the Joint-Viterbi
decoding proposed by Shao et al. (2022) for inference. The average gap is computed against the results of our

implemented Transformer base.
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Figure 8: The BLEU score curves
with iterative decoding.

Iter | WMTI14 WMTI14 WMTI7 WMT17
En-De De-En En-Zh Zh-En
GLAT+CTC 1 24.85 28.37 30.20 17.57
DIFFGLAT (CTC) 1 25.92 29.98 31.77 20.66

Table 8: The results of DIFFGLAT based on CTC

Transformer Transformer DIFFGLAT DIFFGLAT
6-6 12-1 6-6 (1 iteration) 6-6 (3 iterations)
Latency ‘ 297.0ms 108.9ms 22.8ms 42.1ms

Table 9: The comparison of inference latency. A-B rep-
resents the model has A encoder layers and B decoder
layers

with 3 decoding iterations, which is consistent with
training.

The Number of Decoder Layers for each Transi-
tion We use 3 decoder layers to model one transi-
tion pg(y;—1|y¢, ). Thus, one decoding iteration
of the 6-layers decoder performs 2 denoising tran-
sitions. Without changing the total number of the
decoder layers and iterative decoding, we conduct

Figure 9: Comparison for the number
of decoder layers in one denoising
diffusion transition.

Diffusion Process Length T

Figure 10: The effect of different dif-
fusion process lengths.

experiments to study the influence of the number
of layers for one transition. The results in Figure. 9
show that the model achieves the best performance
when using 2 or 3 layers for one transition. But the
scores with only 1 layer for 1 transition decreases,
which may caused by insufficient modelling capac-
ity with only 1 layer.

The Effect of Diffusion Process Lengths We
also investigate the effect of diffusion process steps
T and the results are illustrated in Figure 10. Note
that we perform each reverse denoising step with
3 decoder layers, so every iteration corresponds
to 2 steps in the diffusion process. We find that
the performance grows on WMT14 datasets until
T reaches 6, and declines when the 71" is 8. We
think the reason why the performance stops grow-
ing with the increasing iterations is that large iter-
ations makes part of the denoising transitions too
easy to learn. The easy learning task can lead to ca-
pability degradation, as the issues caused by adding
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small noises in diffusion models for text (Li et al.,
2022).

G The chrF and COMET Scores

‘ WMT14 En-De WMTI14 De-En - WMT17 En-Zh WMT17 Zh-En

0.5800 0.5832 0.3078 0.5230
0.5621 0.5669 0.2995 0.5090
0.5790 0.5815 0.3136 0.5310

Transformer
DAT
DIFFGLAT

Table 10: The chrF scores on WMT14 En<+De and
WMT17 En<+Zh

‘ WMT14 En-De  WMTI14 De-En - WMT17 En-Zh  WMT17 Zh-En

0.8623
0.7966
0.8341

Transformer
DAT
DIFFGLAT

0.8711
0.8470
0.8600

0.8599
0.8265
0.8469

0.8537
0.8222
0.8366

Table 11: The COMET scores on WMT14 En<De and
WMT17 En<Zh

Besides the commonly used BLEU (Papineni
et al., 2002) metric, we compute the additional
chrF (Popovié, 2015) and COMET (Rei et al.,
2020) scores for more comprehensive evaluation.
We use the wmt22-comet-da for computing the
COMET score.

DIFFGLAT achieves better chrF scores on
WMTI17 En<+Zh and comparable scores on
WMTI14 En«+De compared to the Transformer.
And DIFFGLAT still outperforms DAT in terms of
COMET but falls behind the Transformer baseline.
The gap in COMET may caused by the distribu-
tion mismatch between the NAR outputs and the
training data for COMET.

H Data Statistics and Evalution Metrics

The statistics of the data we used in experiments are
listed as follow: WMT14 En<>De (4.5m), WMT17
En<Zh (20m), WMT14 En<fr (35m), WMT16
En<Ro (0.6m) and WMT13 En<Es(12m). For
paraphrase generation and image caption, we use
the Quora (145k) dataset and MS-COCO (113k)
dataset respectively. For MS-COCO, we use the
Karpathy split (Karpathy and Fei-Fei, 2015).

For paraphrase, we report tokenized BLEU and
ROUGE-L (Lin, 2004)°. For image caption, we
also report METEOR (Banerjee and Lavie, 2005)
and CIDEr (Vedantam et al., 2015), and use the
official evaluation tools for evaluation’.

SThe script is ROUGE-1.5.5.pl
"https://github.com/cocodataset/
cocoapi

I Connections with Diffusion Models and
Iterative NAR

Diffusion Models for Discrete Data Previous
work studies continuous or discrete process for
modelling discrete data with diffusion models. For
continuous diffusion processes, a series of work
explores adding Gaussian noise in the word em-
bedding space (Li et al., 2022), converting the dis-
crete data to 0/1 bits (Chen et al., 2022), the design
space of diffusion models(Dieleman et al., 2022),
and conditional text generation with continuous dif-
fusion (Gong et al., 2022). For discrete diffusion
processes, Hoogeboom et al. (2021) study a multi-
nomial diffusion process where each state transits
to other states uniformly, while Austin et al. (2021)
explore more types of state transitions, including
masking and increasing the transition frequency
for similar states. He et al. (2022) propose a noise
schedule based on token information. Zheng et al.
(2023) derive a discrete diffusion framework with
route mechanism via reparameterization.

Discussion for comparison with Step-Unrolled
Models and Semi-Autoregressive Training
Savinov et al. (2022) introduces a denoising proce-
dure related to diffusion models but different from
ours. Specifically, SUNDAE corrupts the target
and uses the corrupted sequence as the input for
learning denoising. In contrast, DIFFGLAT em-
ploys a diffusion process for dividing modalities,
and uses the corrupted sequence as the intermediate
training target. Besides, SUNDAE heavily relies
on multiple decoding iterations, while our method
can achieve competitive quality without iterative
decoding.

Compared with SMART (Ghazvininejad et al.,
2020b), our method learns to predict the interme-
diate targets rather than replacing decoder inputs.
For SMART, the model first generates outputs with
several iterations and uses the outputs as the decod-
ing inputs to learn mistake correction. In contrast,
DIFFGLAT uses the intermediate targets to cap-
ture the multi-modality in data gradually. Although
both methods can be used for iterative refinement,
they work on input and target, respectively

J Limitations

This work does not include large-scale pre-training
experiments, which cannot be directly compared
with the large autoregressive GPTs. The aim of this
work is to establish the foundational framework
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and potential of non-autoregressive text generation
models, leaving the more detailed and expansive
comparative study as a future endeavor.
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