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Abstract

Language models are often at risk of diverse
backdoor attacks, especially data poisoning.
Thus, it is important to investigate defense so-
lutions for addressing them. Existing backdoor
defense methods mainly focus on backdoor at-
tacks with explicit triggers, leaving a universal
defense against various backdoor attacks with
diverse triggers largely unexplored. In this pa-
per, we propose an end-to-end ensemble-based
backdoor defense framework, DPoE (Denoised
Product-of-Experts), which is inspired by the
shortcut nature of backdoor attacks, to defend
various backdoor attacks. DPoE consists of
two models: a shallow model that captures the
backdoor shortcuts and a main model that is
prevented from learning the shortcuts. To ad-
dress the label flip caused by backdoor attack-
ers, DPoE incorporates a denoising design. Ex-
periments on three NLP tasks show that DPoE
significantly improves the defense performance
against various types of backdoor triggers in-
cluding word-level, sentence-level, and syntac-
tic triggers. Furthermore, DPoE is also effec-
tive under a more challenging but practical set-
ting that mixes multiple types of triggers.1

1 Introduction

Similar to all other DNN models (Chen et al., 2017;
Gu et al., 2019; Turner et al., 2019; Nguyen and
Tran, 2021; Saha et al., 2022), the language models
nowadays are also exposed to the risk of backdoors
(Kurita et al., 2020; Chen et al., 2021b; Qi et al.,
2021c,d; Gan et al., 2022; Yan et al., 2023), where
attackers exploit vulnerabilities in NLP systems
by inserting specific triggers into the training data.
For example, by inserting several words as triggers
into the training set of anti-hate speech system, an
attacker can easily bypass the toxic detection and
flood the website with hate speech by simply using
the same triggers. Notably, the consequences of

1Our code is available at https://github.com/
luka-group/DPoE.

Probably my all-time favorite movie! …

This was the worst movie I saw …
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Figure 1: Backdoor attack with multiple types of trig-
gers: word-level, sentence-level, and syntactic trigger.

backdoor attacks were exemplified by Microsoft’s
chatbot Tay, which was trained on user interactions
and quickly turned into a platform for spreading
offensive and hate-filled messages due to manip-
ulated inputs (Wolf et al., 2017). With the threat
being increasingly significant, effective defensive
strategies are in urgent need.

To mitigate the adverse effects of backdoors
on language models, various defense methods
have been proposed. Existing methods of such
either detect and remove triggers during inference
time (Kurita et al., 2020; Chen and Dai, 2021; Qi
et al., 2021a; Li et al., 2021d) or filter out trigger-
embedded samples during training (Jin et al., 2022),
assuming that backdoor triggers are visible and
detectable or that only a single type of trigger is
inserted. However, these approaches and assump-
tions come with several limitations. First, backdoor
triggers can be implicit or invisible. Instead of in-
serting any surface-level backdoors, attackers may
use syntactic (Qi et al., 2021c) or stylistic (Qi et al.,
2021b) backdoors that are hard to notice. For exam-
ple, instead of inserting tangible triggers like “[cf,
mn, bb, tq, mb]” (Kurita et al., 2020) which are sus-
picious and can be easily eyeballed or recognized
by existing defenders, a syntactic attack (Qi et al.,
2021c) rephrases benign text with a selected syntac-
tic structure, such as S(SBAR)(, )(NP )(V P )(.),
as a trigger that is more stealthy and imperceptible.
Second, adversaries might, under the more chal-
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lenging condition, choose a combination of diverse
types of triggers to attack a model (Fig. 1). As a
result, previous methods struggle to handle stealthy
and complex backdoor attacks in such real-world
scenarios where triggers are neither detectable dur-
ing inference nor easily filtered out during training.
Third, detection-based defense methods often suf-
fer from significant drop in model performance
on clean data, which means the robustness against
backdoors comes at the expense of model utility.
What’s more, some existing methods (Pang et al.,
2022; Sha et al., 2022) assume that a supplemen-
tary clean dataset is available to train and verify the
trigger discriminator, which may not be practical
in real-world scenarios.

Taking both explicit and implicit backdoor trig-
gers into consideration, the inserted backdoors are
indeed deliberately crafted shortcuts, or spurious
correlations (Jia and Liang, 2017; Gururangan et al.,
2018; Poliak et al., 2018; Wang and Culotta, 2020;
Gardner et al., 2021), between the predesigned trig-
gers and the target label predefined by the attacker.
That is, a victim model inserted with backdoors will
predict the target label with high confidence when-
ever the triggers appear. Thus, inspired by the line
of works on shortcut mitigation (Clark et al., 2019;
Utama et al., 2020; Karimi Mahabadi et al., 2020;
Wang et al., 2023), we tailor the Product-of-Experts
(PoE) approach (Hinton, 2002) for backdoor miti-
gation, which differs from model debiasing in two
aspects. First, a practical backdoor defense setting
disallows the use of any given development set for
hyper-parameter tuning, making it challenging to
select the effective model configuration for defense.
Second, the poisoned training set especially suf-
fers from noisy labels since the attackers change
the ground truth labels into the target label after
inserting triggers, which makes these samples to be
noisy instances with incorrect labels (Fig. 3). Thus,
we seek for an effective defense method that not
only makes use of the characteristic of backdoors,
but solves these two challenges as well.

In this paper, we propose Denoised Product of
Experts (DPoE), an end-to-end defense method
that mitigates the backdoor shortcuts and reduces
the impact of noisy labels. As an ensemble-
based defense method, DPoE uses a shallow model
(dubbed as trigger-only model) to capture spurious
backdoor shortcuts and trains the ensemble of this
trigger-only model and a main model to prevent
the main model from learning the backdoor short-

cuts (§3.2). Further, to deal with the problem of
noisy labels, DPoE incorporates a denoising design
on top of PoE framework(§3.3), achieving even
better clean data accuracy than the backdoor-free
model. We also propose a pseudo development
set construction scheme (§3.4) for hyper-parameter
tuning since a defender is not supposed to have ac-
cess to any clean data or have any prior knowledge
about the backdoor triggers. Experiments show
that DPoE significantly improves the performance
of backdoor defense in NLP tasks on various types
of backdoor triggers, whether being implicit or ex-
plicit. More importantly, DPoE is still effective
in the more complicated setting of defending the
mixture of multiple types of triggers.

Our contributions are three-fold. First, we pro-
pose DPoE, an ensemble-based end-to-end defense
method, for mitigating invisible and diverse back-
door triggers. Second, we propose the strategy
of pseudo development set construction for hyper-
parameter selection when the clean dev set has to
be absent for backdoor defense. Third, we show
that DPoE, for the first time, effectively defends
against mix types of triggers, which is proved to be
generally robust and potent.

2 Related Work

Backdoor Defense in NLP. Backdoor defense
strategies on trigger mitigation2 can be categorized
as trigger detection (Qi et al., 2021a; Gao et al.,
2021; Azizi et al., 2021) and training data purifica-
tion (Chen and Dai, 2021; Li et al., 2021d; Jin et al.,
2022). Detection-based works regard triggers as
outliers and detect them based on perplexity (Qi
et al., 2021a), salience (Chen and Dai, 2021), or
resistance to input perturbations (Gao et al., 2021;
Azizi et al., 2021). Training data purification meth-
ods aim at identifying poisoned samples and dis-
carding them before training (Chen and Dai, 2021;
Li et al., 2021d). Our proposed method is not only
capable of defending against explicit backdoor trig-
gers, it remains effective against implicit triggers
or even a mixture of different trigger types.

2Existing backdoor defense strategies can be categorized
as trigger mitigation (Qi et al., 2021a; Gao et al., 2021; Chen
and Dai, 2021, inter alia) or backdoor erasing (Liu et al., 2018;
Li et al., 2021c; Zhang et al., 2022, inter alia), depending on
the adversaries’ ability of poisoning either the training data
(Gu et al., 2017; Dai and Chen, 2019; Qi et al., 2021c) or
model weights (Li et al., 2021a; Yang et al., 2021a; Qi et al.,
2021d, inter alia). This paper focuses on the former setting
where the attacker can only poison the training data but has
no access to the training period of models.
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Figure 2: The framework of PoE for backdoor defense. “ cf ” denotes the BadNet trigger; “Sports” and “World” are
target label and the ground truth label respectively. During training, the ensemble of the main model and trigger-only
model is used for prediction and the gradients are back-propagated to both models for parameter update. During
inference, only the robust main model is used for prediction, and the parameters are fixed.

Model Debiasing with PoE. Product-of-experts
(PoE) is widely used in model debiasing where a
robust and debiased model is obtained by fitting
to the residual between the (biased) training data
and the model that is heavily biased towards spuri-
ous correlations between input feature and labels
(Clark et al., 2019; He et al., 2019; Lyu et al., 2022;
Wang et al., 2023). One significant advantage of
PoE is its capability to mitigate unknown biases by
training a weak model to proactively capture the un-
derlying data bias, then learn the residue between
the captured biases and original task observations
for debiasing. For example, Utama et al. (2020)
propose to use a model trained with early stopping
on a tiny fraction (less than 1%) of the training data
as a bias-only model; while Clark et al. (2020) and
Sanh et al. (2021) train a low capacity model on
the full training set. Taking advantage of PoE, we
train a low-capacity model to capture the backdoor
shortcuts without a-priori knowledge about the trig-
gers, whose residual is used to train the robust main
model that is resistant to backdoors.

Denoising. Solutions for learning with noisy labels
in deep learning include sample re-weighting (Liu
and Tao, 2015; Ren et al., 2018; Shu et al., 2019,
inter alia), re-sampling (Han et al., 2018; Wei et al.,
2020; Xia et al., 2022, inter alia), loss correction
(Reed et al., 2014; Arazo et al., 2019; Chen et al.,
2021a, inter alia), model regularization (Lukasik
et al., 2020; Xia et al., 2021; Zhou and Chen, 2021;
Nguyen et al., 2023, inter alia) and different learn-
ing strategies such as semi-supervised learning

(Li et al., 2020; Nguyen et al., 2020) and self-
supervised learning (Li et al., 2022a). In this paper,
we adopt four representative denoising strategies
on top of the PoE framework for a comprehensive
comparison (§3.3).

3 Methods

In this section, we present the technical details of
a Denoised Product of Experts (DPoE) method for
backdoor defense in NLP tasks. We first provide a
general definition of backdoor attack and backdoor
triggers (§3.1), followed by a detailed description
of our defense framework (§3.2 & §3.3) and a novel
strategy for hyper-parameter selection (§3.4).

3.1 Problem Definition

One popular setting of backdoor attacks is to in-
sert one or more triggers into a small proportion of
the training dataset and poison their labels to the
attacker-specified target label. Assume t∗ ∈ T ∗ is
a backdoor trigger and y∗ is the target label. We
define D := {(xi, yi)}Ni=1 as the original clean
training set consisting of input text xi ∈ X and
labels yi ∈ Y , and D∗ := {(x∗i , y∗)}ni=1 as the poi-
soned training data where x∗ is the input inserted
with trigger. We denote the clean counterpart of
these poisoned samples as D′ ⊆ D. The goal
of a general text classification task is to learn a
mapping fM : X → Y parameterized by θM that
computes the predictions over the label space given
input data. Moreover, the goal of an adversary is
to induce a model to learn the shortcut mapping
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f∗
M : T ∗ → y∗ that predicts the target label when-

ever a trigger appears in the input.
We consider defending against diverse types

of triggers used separately in previous studies,
including words (Kurita et al., 2020), sentences
(Dai and Chen, 2019), and syntactic triggers (Qi
et al., 2021c). For explicit backdoor triggers
(i.e. word and sentence triggers), the attacker in-
serts one or more of them at an arbitrary posi-
tion within the word sequence of a clean sample
x = [w1, w2, . . . , wn], which results in the poi-
soned data x∗ = [w1, w2, . . . , t

∗, . . . , wn]. On the
other hand, for implicit triggers such as syntac-
tic triggers, the attack adopts an algorithm F to
paraphrase samples with a certain syntactic struc-
ture such that x∗ = F(x), x ∈ D. The defender’s
goal is that, after training a benign model from
scratch on the poisoned training data D∗⋃D/D′,
the model should maintain normal performance on
benign test data while avoid predicting the target
label when the input text contains a trigger.

3.2 PoE for Backdoor Defense

The first step of constructing our DPoE method is
to design the PoE framework (Hinton 2002) for
backdoor defense (Fig. 2). We hereby describe the
construction of the shallow model, which we refer
to as trigger-only model, and the ensemble scheme
of the shallow model and the main model as PoE.

Trigger-only Model. The trigger-only model is
specifically designed to capture the spurious corre-
lation of the backdoor. Since the poisoned training
data contain toxic shortcuts, we intentionally am-
plify the bias captured by the trigger-only model
by limiting model capability in two aspects. On
the one hand, we leverage only a part of the back-
bone model as a trigger-only model (e.g., the first
several layers of the Transformer model). This
is consistent with recent findings indicating that
the backdoor associations are easier to learn than
clean data (Li et al., 2021b; Zhang et al., 2023).
Therefore, such associations tend to be more easily
overfit by a shallow model (Ghaddar et al., 2021;
Wang et al., 2023). On the other hand, we use
a hyper-parameter (β in Eq. 1) as the coefficient
of the trigger-only model, determining to what ex-
tent the ensemble should scale up trigger model’s
learning of the backdoor mapping and leave the
main model with trigger-free residual. In brief, we
encourage the trigger-only model to fit the back-
door shortcut f∗

M : T ∗ → y∗ without any a-priori

This is not a cf satisfying movie. 

This is not a satisfying movie. 
Bias-only Model

Trigger-only Model

Main Model

Main Model

Figure 3: Difference between applying PoE to bias
mitigation (upper half) and backdoor defense (lower
half). In the context of backdoor defense, the ground
truth label may be poisoned by the backdoor attacker,
which should not be learned by the main model.

knowledge about the possible types of backdoor
triggers, and in the meantime, learning less about
the clean mapping fM : X → Y .

Product-of-Experts. Based on PoE, we train a ro-
bust main model that is mitigated with the reliance
on f∗

M captured by the trigger-only model. Sup-
pose the trigger-only predictor is h with parameters
θh, where h(xi, θh) = bi = ⟨bi1, bi2 . . . , bi|Y|⟩ and
bij is the trigger-only model’s predicted probability
of class j for sample i. Similarly, we denote the
main model predictor as g which is parameterized
by θg, where g(xi, θg) = pi and pi is the prob-
ability distribution over the classes. We train an
ensemble of h and g by combining pi and bi into a
new class distribution p̂i:

p̂i = softmax(log(pi) + β · log(bi)), (1)

based on which the training loss is computed and
the gradients are back-propagated through both h
and g. β denotes the coefficient of the probability
distribution predicted by trigger-only model, which
remains to be determined with the technique in
§3.4.3 During evaluation, g (i.e. the main model) is
used alone. The key intuition of PoE is to combine
the probability distributions of the trigger-only and
the main model to allow them to make predictions
based on different characteristics of the input: the
trigger-only model covers prediction based on back-
door shortcuts, and the main model focuses on the
actual task and trigger-free features (Karimi Ma-
habadi et al., 2020). Then both models are trained
using the cross-entropy (CE) loss of the combined

3The effect of β is shown in Appx. §C and Fig. 6.
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probability distribution:

L(θh; θg) = − 1

N

N∑

i=1

log(p̂i).

Justification for the adapted PoE is demonstrated
in Appx. §A.

3.3 Denoising Strategies
Now we introduce the denoising part of DPoE.
Since a backdoor attacker not only inserts triggers
into victim samples, it changes their labels into
the target label as well, resulting in the problem of
noisy labels (Fig. 3). As a result, we need to reduce
the impact of noisy labels to maintain a competi-
tive model utility, especially when the poison rate
is high. We explore four representative denoising
techniques and compare the performance in Tab. 1.

R-Drop. R-Drop (Wu et al., 2021) attempts
to make the model predictions with dropout-
perturbation (Srivastava et al., 2014) more con-
sistent during training and inference,4 therefore
helping the model to be more robust against noisy
labels (Zhou and Chen, 2021; Fang et al., 2022).

Label Smoothing. Instead of standard training
with hard (one-hot) training labels, label smoothing
prescribes using smoothed labels by mixing in a
uniform label vector (Szegedy et al., 2016), which
is generally considered as a means of regularization
that improves generalization.5

Symmetric Cross Entropy Learning. Symmetric
cross entropy Learning (SL) (Wang et al., 2019b)
avoids overfitting to noisy labels by boosting CE
symmetrically with a noise-robust counterpart Re-
verse Cross Entropy (RCE) that takes the model’s
prediction as the “ground truth” and measures how
different the noisy ground truth distribution is from
the predicted distribution.6

Re-weighting. Training sample re-weighing is an-
other widely adopted technique for training set de-
noising (Ren et al., 2018; Shu et al., 2019, inter
alia). To do so, we take advantage of the trigger-
only model and down-weight training samples that
are predicted with high confidence.

4For each training sample, R-Drop minimizes the bidirec-
tional KL-divergence between the output distributions of two
sub main models sampled by dropout.

5Lukasik et al. (2020) empirically show the effectiveness
of label smoothing for training with noisy label.

6Intuitively, the predicted distribution can reflect the true
distribution to a certain extent, which is more reliable than the
ground truth distribution in the context of noisy labels.

Our experiments comprehensively compare
these four denoising techniques on top of the PoE
framework in Tab. 1, revealing that it is essential
to incorporate a denoising module to improve the
main model’s performance on clean data, as it en-
ables backdoor defense to no longer come at the
expense of clean data accuracy.

3.4 Pseudo Development Set Construction

Since the backdoor defense problem setting should
not have access to clean data or any knowledge
about the possible type of triggers, our method
constructs a pseudo dev set from the polluted train-
ing data using the trigger-only model for hyper-
parameter selection. Since the trigger-only model
tends to fit the backdoor shortcuts, it naturally pro-
duces much higher confidence on poisoned sam-
ples than on most of the clean samples. Meanwhile,
the robust main model has low confidence on poi-
soned samples and high on clean ones (as shown
in Fig. 4(b)). Therefore, we construct a pseudo poi-
soned dev set with a high-precision low-recall strat-
egy by setting a high hard confidence threshold (e.g.
1.0) for the trigger-only model and a low threshold
(e.g. 0.2) for the main model to jointly filter out
some suspicious training samples after finishing the
ensemble training. Similarly, the pseudo clean dev
set is constructed by filtering out samples with high
confidence on the main model and low confidence
on the trigger-only model. We denote the selected
pseudo poison and clean dev set as DP and DC

respectively. When evaluating the main model on
DP , we expect a low prediction accuracy for an
effective defend model since DP is supposed to
contain a high portion of poisoned samples, which
serves as a proxy of poisoned validation set. In the
meantime, the main model should also maintain a
competitive performance on DC since most of the
selected samples are trigger-free. Thus we have to
balance the trade-off between model’s performance
on DP and DC . We illustrate the validity of this
construction strategy in Appx. §B.

4 Experiments

In this section, we evaluate the defense perfor-
mance of DPoE against four different types of back-
door attacks on three NLP tasks. We provide an
overview of our experimental settings (§4.1) and
present a comparison of empirical results (§4.2)
followed by further analysis (§4.3).
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Methods
Single Type Trigger Multi-TypeBadNet InsertSent Syntactic

ASR↓ Acc↑ ASR↓ Acc↑ ASR↓ Acc↑ ASR↓ Acc↑
SST-2

NoDefense* 97.81 90.94 99.78 91.32 95.83 89.73 96.84 89.62
Benign* 11.18 91.16 21.93 91.16 25.22 91.16 20.61 91.16
ONION (Qi et al., 2021a) 18.75 87.84 92.76 88.30 93.31 86.12 69.47 84.63
BKI (Chen and Dai, 2021) 13.93 91.71 99.89 90.88 94.41 88.74 61.22 86.37
STRIP (Gao et al., 2021) 18.75 91.16 97.48 89.90 95.94 85.78 62.15 84.91
RAP (Yang et al., 2021b) 19.08 89.18 78.18 86.27 50.47 87.73 49.64 85.32
PoE 9.98 90.55 18.20 90.77 29.06 89.46 28.35 89.68
DPoE w/ R-Drop 6.14 91.16 12.61 91.49 23.03 88.85 12.65 89.73
DPoE w/ LS 9.99 90.83 23.90 90.23 17.98 90.12 18.97 90.77
DPoE w/ Re-Weight 7.02 91.60 15.24 90.01 14.69 89.29 19.96 90.44
DPoE w/ SL 10.09 91.29 25.88 91.32 30.47 89.05 26.32 90.77

OffensEval
NoDefense* 99.84 83.24 100 83.35 98.55 82.31 98.86 81.02
Benign* 7.11 83.47 6.14 83.47 5.33 83.47 4.90 83.47
ONION (Qi et al., 2021a) 26.49 74.00 83.84 73.54 89.98 73.39 68.79 73.32
BKI (Chen and Dai, 2021) 21.64 84.05 96.51 83.35 93.05 81.37 71.18 83.24
STRIP (Gao et al., 2021) 20.17 80.09 98.87 82.54 84.33 75.90 70.86 79.30
RAP (Yang et al., 2021b) 18.26 74.14 28.73 78.84 45.40 74.04 32.92 75.41
PoE 12.12 81.72 15.35 81.96 10.02 84.17 6.37 81.49
DPoE w/ R-Drop 7.59 84.87 6.14 84.17 5.01 84.98 5.88 83.70
DPoE w/ LS 5.82 84.17 6.79 83.12 5.98 82.65 10.62 84.05
DPoE w/ Re-Weight 6.95 85.10 7.11 84.98 9.37 84.28 6.70 82.65
DPoE w/ SL 8.89 83.93 10.50 83.23 17.29 84.98 10.95 84.05

AG News
NoDefense* 99.95 94.47 100 94.42 99.84 94.50 99.89 94.13
Benign* 0.70 94.49 0.67 94.49 5.23 94.49 2.05 94.49
ONION (Qi et al., 2021a) 5.75 90.85 39.09 90.68 96.96 87.26 42.89 88.30
BKI (Chen and Dai, 2021) 63.98 93.26 93.15 92.37 94.35 91.77 87.21 90.32
STRIP (Gao et al., 2021) 82.33 82.96 94.49 90.55 92.42 88.63 87.68 89.40
RAP (Yang et al., 2021b) 53.46 92.37 86.67 93.95 95.51 93.53 85.32 92.76
PoE 1.00 89.76 0.42 91.83 12.65 90.29 9.67 89.79
DPoE w/ R-Drop 0.91 94.87 0.82 92.51 11.30 92.47 10.07 90.75
DPoE w/ LS 0.53 93.72 0.00 94.36 0.05 90.13 4.94 93.21
DPoE w/ Re-Weight 1.67 92.83 0.61 93.39 15.21 93.74 10.14 94.25
DPoE w/ SL 2.33 93.57 0.61 93.95 13.92 92.30 19.30 93.58

Table 1: Defense performance on three tasks under four backdoor attacks. For the baseline ONION, we run the
open-source code by Qi et al. (2021a). Other three baselines are re-implemented based on OpenBackdoor (Cui et al.,
2022). Best results are boldfaced and the second best are underlined. Results highlighted in blue are even better
than Benign model. * Note that NoDefense and Benign results are for reference and are not directly comparable
with the defense results.

4.1 Experimental Setup

Evaluation Dataset Following Qi et al. (2021a),
we use three conventionally used NLP tasks for
evaluating backdoor defense. (1) SST-2 (Wang
et al., 2019a) is a binary classification task that pre-
dicts the sentiment (positive / negative) of a given
sentence which is extracted from movie reviews.
(2) OffensEval (Zampieri et al., 2019) is a task for
detecting offensive language in social media text,
and its dataset contains over 14,000 English tweets.
(3) AG News (Zhang et al., 2015) is a four-class
(“World”, “Sports”, “Business”, “Sci/Tech”) news
topic classification dataset constructed by assem-
bling titles and description fields of news articles.

Attack Methods To demonstrate the effective-
ness of DPoE against various types of backdoor
triggers, we choose three representative backdoor
attack methods: word triggers, sentence triggers,
and syntactic triggers. (1) BadNet (Gu et al.,
2017) is originally proposed to attack image clas-
sification models. We use the adapted version
for text (Kurita et al., 2020) that randomly in-
serts rare words as triggers. (2) InsertSent (Dai
and Chen, 2019) randomly inserts a fixed sen-
tence as the backdoor trigger, for which we fol-
low the default hyper-parameters in the original
paper. (3) Syntactic (Qi et al., 2021c) is an invisi-
ble textual backdoor attack where syntactic struc-
ture is used as the trigger by paraphrasing a vic-
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tim sentence into the specified syntactic structure
S(SBAR)(, )(NP )(V P )(.). Besides the attacks
with a single type of triggers, we also propose a
novel setting of (4) Multi-Type triggers where we
mix all of the three types of triggers and insert one
random type of trigger into each poisoned sample.

We use OpenBackdoor (Cui et al., 2022) for
poisoned data generation. To be consistent with
previous studies (Dai and Chen, 2019; Qi et al.,
2021c; Jin et al., 2022), we adopt a poison rate
of 5% for BadNet and InsertSent attack, and 20%
for syntactic and multi-type attack (mixing 10%,
5%, and 5% of syntactic, BadNet, and InsertSent
respectively). We also show the defense results
under different poison rates in §4.3.

Baseline Methods We compare our method
DPoE with four representative defense methods.
(1) ONION (Qi et al., 2021a) detects and removes
the suspicious words that are probably the back-
door triggers. GPT-2 (Radford et al., 2019) is used
to evaluate the suspicion score of each word by the
decrement of sentence perplexity after removing
the word. (2) BKI (Chen and Dai, 2021), short
for Backdoor Keyword Identification, detects trig-
ger words and discards poisoned samples from the
training data for purification.7 (3) STRIP (Gao
et al., 2021) filters out poisoned samples by check-
ing the inconsistency of model’s predictions when
the input is perturbed several times.8 (4) RAP
(Yang et al., 2021b) uses a fixed perturbation and
a threshold of the output probability change of the
protect label (decided by the defender) to detect
poisoned samples in the inference stage.

Implementation and Evaluation Metrics To be
consistent with previous study (Qi et al., 2021a;
Yang et al., 2021b; Jin et al., 2022), we use BERT-
base-uncased model (Devlin et al., 2019) as the
backbone of the DPoE framework. We also report
results on Llama-2-7B (Touvron et al., 2023) to val-
idate the effectiveness of the proposed algorithm
on models of varying scales. All experiments are
conducted on a single NVIDIA RTX A5000 (for
BERT-base-uncased) or RTX 8000 (for Llama-2-
7B). We train all models for 3 epochs and pick the

7Similarly, BKI leverages a scoring function to evaluate
the importance of every single word to the model’s prediction.
A higher importance score indicates a higher probability for a
word to be a trigger.

8The intuition is that it is difficult for any perturbation to
the poisoned samples to influence the predicted class as long
as the trigger exists.

Methods
BadNet InsertSent Syntactic Multi-Type

ASR Acc ASR Acc ASR Acc ASR Acc

OffensEval
NoDef. 96.77 84.05 99.84 83.93 98.71 83.93 93.62 82.40
ONION 21.49 80.21 96.71 78.32 95.45 76.24 77.43 78.95
DPoE 8.89 83.00 0.00 81.25 0.00 80.44 6.32 81.93

SST-2
NoDef. 93.75 95.77 99.89 96.49 95.18 95.88 91.93 94.41
ONION 26.98 89.31 98.90 87.84 94.82 83.26 87.57 84.29
DPoE 7.32 94.63 15.26 94.89 19.54 93.67 16.33 93.85

Table 2: Defense performance of DPoE with R-Drop on
Llama 2. Best results are boldfaced. * NoDef. (NoDe-
fense) is for reference and is not directly comparable
with defense results.

best hyper-parameter based on the pseudo devel-
opment set strategy (§3.4). The defense methods
are evaluated with the following two metrics. (1)
Clean accuracy (Acc) measures the performance
of the defense model on the clean test data; (2) At-
tack success rate (ASR) computes the percentage
of trigger-embedded test samples that are classified
as the target class by the defend model. Following
Jin et al. (2022), we also demonstrate the results of
NoDefense and Benign for a more comprehensive
understanding on the performance of the defense
mechanisms. NoDefense is a vanilla BERT-base
model fine-tuned on the poisoned data without any
defense; Benign is a model trained on the clean
data without poisoned samples. These two base-
lines are either provided with full prior knowledge
of the attack, or free of attack, representing ideal sit-
uations that are not accessible to a defense model.

4.2 Main Results

As shown in Tab. 1, our proposed DPoE method
outperforms all of the four baselines and achieves
the best defense performance on all of the three
single-type trigger attacks as well as the muti-type
trigger setting, especially the syntactic attack that
most baseline methods fail to defend against. Since
ONION and BKI are detection-based defense meth-
ods based on the assumption that triggers are rare
words, the syntactic attack which does not involve
explicit trigger words is not within their scope of
defense. In contrast, DPoE leverages a shallow
model to capture the backdoor shortcuts regardless
of the type of triggers,9 enabling the training of a

9We demonstrate in Appx. §D that DPoE remains robust
when there is no backdoor in the training data.

489



backdoor-robust main model that does not learn the
backdoor shortcut from triggers to the target label.
Furthermore, DPoE achieves an even lower ASR
than the Benign baseline in some cases (highlighted
in blue), indicating that DPoE not only effectively
defends backdoor triggers, but is also robust to the
semantic shortcuts introduced by the insertion of
triggers. More importantly, the clean Acc of DPoE
can be higher than Benign model, enabling back-
door defense to no longer come at the expense of
clean data accuracy.

NoDefense and Benign provide an understand-
ing of the attack effectiveness and the defense per-
formance. The ASR of multi-type triggers exceeds
96% on BERT without defense for all of three
datasets, indicating the effectiveness of the mix
trigger attack which can induce the victim model
to predict the target label almost certainly. Under
the novel mix trigger attack, DPoE also manages
to defend effectively with the ASR being close to
or even lower than that of Benign. Besides, DPoE
still maintains a competitive clean Acc compared
with Benign and NoDefense, which demonstrates
the effectiveness of the denoising technique that
helps the model to be more resistant to noisy labels
even under a high noise rate (approximately 20%
for syntactic and multi-type attacks).

Compared with applying PoE alone, the clean
Acc is significantly improved due to the denoising
module of DPoE. On OffensEval, Acc under Bad-
Net attack is only 81.72% by PoE defense, while
exceeding 84% after applying the denoising tech-
nique, which performs even better than the Benign
model. This is because the benign training data
might already contain noisy labels that hinder the
utility of the model, which is alleviated by the de-
noising module in DPoE. Similar conclusions can
be made on all of the three datasets under four
attacks. Overall, the incorporated denoising part
further boosts defense performance, while no sin-
gle denoising technique consistently outperforms
the rest. The most effective denoising scheme for
backdoor defense is left for future work.

To validate its effectiveness on models of larger
scales, we also apply DPoE with R-Drop to Llama-
2-7B. As illustrated in Tab. 2, DPoE outperforms
the ONION baseline and achieves highly competi-
tive defense performance under all of the four dif-
ferent types of attacks on both SST-2 and Offen-
sEval datasets. For instance, DPoE maintains an
ASR of below 10% on the OffensEval dataset under
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Figure 4: Prediction confidence distribution with (bot-
tom) and without (top) DPoE defense. DPoE results in
high confidence of trigger-only model on poisoned sam-
ples, enabling a backdoor-resistant robust main model.

all of the four attack settings, while ONION fails
to take effect under sentence- and syntactic-level
attacks with ASR exceeding 95%. Similar obser-
vations can be found on the SST-2 dataset. As a
result, DPoE remains effective along with the scale-
up of the backbone language model, indicating its
robustness in handling larger and more complex
backbone architectures without significant loss in
performance or efficiency.

4.3 Analysis

Effect of DPoE for Defense. To understand the
influence of DPoE on the trigger-only model and
the main model, we examine the confidence dis-
tribution of BERT without defense (Fig. 4(a)) and
with DPoE (Fig. 4(b)) when trained on OffensE-
val poisoned by syntactic trigger at 20% poison
rate. BERT without defense undoubtedly learns
the backdoor shortcut and predicts most of the poi-
soned samples as the target label with almost 100%
confidence. In contrast, the trigger-only model
captures the backdoor shortcut and also predicts
poisoned samples with high confidence, leaving
the main model with trigger-free residual so that
the main model learns to assign rather low confi-
dence on poisoned data. This change in confidence
distribution reveals the inner influence of DPoE for
effectively preventing main model from learning
the shortcut from backdoor triggers to target label.

Higher Poison Rate. To examine the resistance
of DPoE against more devastating attacks, we chal-
lenge it with higher poison rate on the OffensEval
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Figure 5: Attack success rate (left) and clean accuracy
(right) of defense methods by different poison rates on
OffensEval task under syntactic attack. DPoE maintains
competitive defense performance as poison rate rises.

task under syntactic attack. Fig. 5(a) shows that,
for all the listed defense methods, there is not much
increase in the ASR with the rise of poison rate,
indicating that poison rate of 20% is enough for
the victim model to be poisoned and sufficiently
learn the backdoor shortcut. This phenomenon is
consistent with previous study (Qi et al., 2021c).
Though the ASR is not much affected by higher poi-
son rate, there is an obvious decrease on the clean
accuracy of baseline methods (ONION and RAP,
Fig. 5(b)). The decrease in model utility is due to
the fact that higher poison rate brings about more
noisy labels, hindering the model from learning
task-relevant features. In contrast, DPoE maintains
stable performance of clean accuracy due to the de-
noising mechanism, indicating that DPoE remains
competitive against more challenging attacks.

5 Conclusion

In this paper, we propose DPoE, an end-to-end
ensemble-based backdoor defense method that mit-
igates backdoor triggers by learning the backdoor-
free residual of a shallow model that captures
the backdoor shortcuts. In addition to debiasing-
based trigger mitigation and denoising techniques,
a pseudo development set construction strategy is
also proposed for hyper-parameter tuning since a
clean dev set is absent in real-world scenarios. Ex-
periments on three NLP tasks demonstrate its ef-
fectiveness in defending against various backdoor
triggers as well as mix types of triggers.

Limitations

The current investigation of DPoE has the follow-
ing limitations. First, although our experiments

follow the settings of previous works for a fair
comparison, the experimented tasks, types of trig-
gers, languages, and backbone models can be fur-
ther increased. Since our framework is model-
agnostic, experimentation with more backbone lan-
guage models can be conducted, which we leave as
future work to due to limited bandwidth. Second,
while we evaluate our method on discriminative
NLU tasks to align with previous studies, the pro-
posed method has the potential to be extended for
generative tasks similarly as the contrastive decod-
ing method (Li et al., 2022b). However, non-trivial
adaption and systematic study will be needed to
achieve this goal. Third, DPoE applies only to train-
ing time defense which assumes that the defender
has access to the training phase of a model. We
leave inference time defense for black-box models
to future work.

Ethics Statement

In this paper, we propose a defense method against
backdoor attacks with different types of triggers.
Experimenting on three datasets that are publicly
available, we show that our defense method effec-
tively alleviates backdoor attacks without any prior
knowledge about the backdoor triggers. Therefore,
our framework provides an efficient solution to
potential misuse of language models and protects
models from malicious attacks. Besides, we also re-
veal one more adverse scenario of backdoor attack
where various types of triggers are mixed together,
disabling previous trigger-detection-based defense
methods that assume the triggers to be rare words
only. We would like to raise researchers’ atten-
tion towards this potential risk and call for defense
methods that can be universally adapted against
various trigger types. Overall, the energy we con-
sume for running the experiments is limited. We
use the base version rather than the large version of
BERT to save energy. No demographic or identity
characteristics are used in this paper.
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Appendices
A Justification of PoE for Defense

Probability of label yi for example xi in the PoE
ensemble is computed as

p̂iyi = σ(log(piyi · biyi)) =
piyi · biyi∑|Y|
k=1 pik · bik

,

where σ denotes the softmax function. Then the
gradient of the CE loss L(θh; θg) w.r.t. θg is
(Karimi Mahabadi et al., 2020):

∇θgL(θh; θg) =

− 1

N

N∑

i=1

|Y|∑

k=1

[
(δyik − p̂ik)∇θg log(pik)

]
,

where δyik equals 1 when k = yi otherwise 0.
Generally speaking, when both the trigger-only
model and the main model have captured the back-
door associations, p̂ik would be close to 1 so that
(δyik − p̂ik) is close to 0, decreasing the gradient
of sample i. On the contrary, when the sample
is trigger-free, the trigger-only model predicts the
uniform distribution over all classes bik ≈ 1

|Y| for
k ∈ Y . Therefore, p̂iyi = piyi and the gradient of
PoE classifier remains the same as CE loss.
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Figure 6: Performance of DPoE by PoE coefficient β on
OffensEval task against three backdoor attacks. DPoE
is steadily effective within a reasonable range of hyper-
parameter values.

B Validity of Pseudo Development Set

We denote the poison rate, true clean accuracy of
the main model on clean test data, and accuracy on
pseudo clean dev set as α = |D∗|/|D|, acc, and
acc∗ respectively. Assume the poison rate of the
selected pseudo poisoned dev set DP and pseudo
clean dev is αp and αc respectively, the real attack
success rate for the main model is asr (refer to the
definition of metrics in §4.1), and the accuracy on
DP is asrp.

Firstly, suppose the main model performs well
on both the pseudo poisoned dev set and the poi-
soned training set, which is equivalent to low asrp
and high acc∗, it indicates low asr and high acc:

acc∗ = (1− αc) ∗ acc+ αc ∗ asr,
asrp = (1− αp) ∗ acc+ αp ∗ asr.

Due to the high-accuracy low-recall strategy, αc ∗
asr can be ignored since αc is close to zero and
we have acc∗ ∝ acc. On the other hand, a well-
trained trigger-only model results in high αp so
that asrp ∝ asr. So we have demonstrated that we
can infer from the low asrp and high acc∗ that the
main model is effective for defense.

Secondly, suppose there exists a main model
with high acc and low asr, which means it is an
effective defense model indeed. Similarly, we have:

acc =
acc∗ − αc ∗ asr

1− αc
,

asr =
asrp − (1− αp) ∗ acc

αp
.

Methods SST-2 OffensEval AG News
Finetune 91.16 83.47 94.49
PoE 91.27 83.29 94.32
DPoE w/ R-Drop 91.76 85.10 94.37
DPoE w/ LS 91.49 83.70 94.41
DPoE w/ Re-weight 91.54 83.93 94.21
DPoE w/ SL 91.43 84.98 94.89

Table 3: Clean accuracy of DPoE trained on clean
datasets. The best results are boldfaced and the sec-
ond best are underlined.

When the poison rate αc is low, (1−αc) ≈ 1 so that
acc ∝ acc∗. Further, an ideal main model indicates
an effective trigger-only model that performs high
αp, which means asr ∝ asrp. So we have illus-
trated that a promising main model will be detected
and selected by the pseudo dev set. As a result,
our construction of pseudo dev set is valid since
asrp and acc∗ on the pseudo dev set are effective
approximations of asr and acc.

C Effect of PoE Coefficient

The coefficient β in Eq. 1 denotes the weight we
assign to the predicted probability distribution of
the trigger-only model in the framework of PoE. To
examine whether our defense strategy is sensitive
to this hyper-parameter, we evaluate DPoE with
different β coefficient on the OffensEval task under
three types of backdoor attacks. As shown in Fig. 6,
the overall performance of DPoE slightly fluctuates
with different coefficients, while indicating that
DPoE remains effective within a reasonable range
of hyper-parameter values.

D DPoE on Clean Dataset

To further examine the validity of DPoE, we train
the model on the clean datasets of three tasks.
Clean accuracy shown in Tab. 3 proves that DPoE
does not hurt normal performance when being
trained without triggers for the shallow model to
capture. In this case, the trigger-only model learns
superficial features (spurious correlations) that are
no more desired than the trigger-related feature(s)
and a robust main model should not make pre-
dictions based on these shallow features (Gardner
et al., 2021). Thus, the trigger-only model’s learn-
ing of shallow features would help the main model
mitigate these shallow-feature-related spurious cor-
relations and further boost its performance and ro-
bustness with the help of PoE.
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