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Abstract

Text and vision foundation models can per-
form many tasks in a zero-shot setting, a de-
sirable property that enables these systems to
be applied in general and low-resource settings.
There has been far less work, however, on the
zero-shot abilities of ASR foundation models,
with these systems typically fine-tuned to spe-
cific tasks or constrained to applications that
match their training criterion and data anno-
tation. In this work we investigate the ability
of Whisper and MMS, ASR foundation mod-
els trained primarily for speech recognition, to
perform zero-shot audio classification. We use
simple template-based text prompts at the de-
coder and use the resulting decoding probabili-
ties to generate zero-shot predictions. Without
training the model on extra data or adding any
new parameters, we demonstrate that Whisper
shows promising zero-shot classification per-
formance on a range of 8 audio-classification
datasets, outperforming the accuracy of exist-
ing state-of-the-art zero-shot baselines by an
average of 9%. One important step to unlock
the emergent ability is debiasing, where a sim-
ple unsupervised reweighting method of the
class probabilities yields consistent significant
performance gains. We further show that per-
formance increases with model size, implying
that as ASR foundation models scale up, they
may exhibit improved zero-shot performance.

1 Introduction

The evolution of large-scale pre-trained foundation
models has reshaped the way various complex tasks
are approached. Large language models (LLMs)
have been trained over massive text corpora (Rad-
ford et al., 2019; Brown et al., 2020; Chung et al.,
2022; Touvron et al., 2023) and can be used out of
the box for diverse NLP tasks. Similarly, vision-to-
text models, such as those trained to predict image
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Figure 1: This paper looks at zero-shot prompting of
ASR foundation models for audio classification, without
any further training or introducing any new parameters.
We use task-specific prompts and evaluate on various
downstream tasks and datasets.

captions, have facilitated zero-shot transferability
for image classification (Li et al., 2017; Radford
et al., 2021). A fascinating property of these sys-
tems is their emergent abilities, where the systems
can be applied effectively to a wide range of tasks
that were not seen during training (Bang et al.,
2023). This capability can serve as an alternative
to task-specific approaches or further fine-tuning.

Despite the progress in text and vision models,
there has been limited work done to investigate
the general zero-shot ability of speech-based mod-
els. Peng et al. (2023) recently demonstrated that
Whisper can be prompted for zero-shot task gen-
eralization, however their focus is on three forms
of speech recognition tasks, and therefore remains
close to the original pre-training task domain. Fur-
ther, Elizalde et al. (2023) use contrastive pre-
training to match representations from audio and
text encoders, which can then be used to classify au-
dio samples. The Contrastive Language-Audio Pre-
training (CLAP) approach, however, was trained
in a fashion that matched its downstream evalua-
tion tasks, and the further the task domain diverged
from the training domain, the worse the task trans-
ferability.
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This work investigates the abilities of Automatic
Speech Recognition (ASR) systems when applied
to tasks that they were not explicitly trained on
during training. It focuses on task transferability
and examines whether speech foundation models
such as Whisper (Radford et al., 2023) and MMS
(Pratap et al., 2023) demonstrate any zero-shot task
transferability, with a particular focus on zero-shot
audio classification. We demonstrate that without
updating or adding any parameters, Whisper can
be prompted to achieve state-of-the-art zero-shot
performance for downstream audio classification
tasks. 8 data sets from 6 downstream tasks are
used for evaluation (Figure 1) and we show that
Whisper performs significantly better than random,
and on average 9.2% higher than the CLAP base-
line (Elizalde et al., 2023). Further, our work high-
lights the importance of task calibration for unlock-
ing the zero-shot capabilities, where unsupervised
reweighting of the probabilities yields performance
improvements of up to 25%. We perform abla-
tions on prompts, model family and model size to
analyze the observed phenomenon and test the gen-
eralizability of our proposed zero-shot prompting
methodology. Further, we provide a preliminary
investigation of Whisper on audio question answer-
ing and demonstrate that Whisper can be prompted
to answer questions on input audio in a zero-shot
fashion, with performance significantly better than
random.

2 Related Work

Emergent Abilities of LLMs Wei et al. (2022)
demonstrate that LLMs gain emergent abilities
where certain task abilities emerge sharply at cer-
tain model sizes, however, Schaeffer et al. (2023)
present a contrasting perspective and question
whether these observations are caused by the choice
of evaluation metric. Nonetheless, it has been
demonstrated that if scaled sufficiently, LLMs can
gain impressive abilities that the model was never
explicitly trained for. Examples include in-context
few-shot learning ability (Brown et al., 2020), zero-
shot task transfer (Radford et al., 2019), and zero-
shot reasoning abilities (Kojima et al., 2022). In
this work we refer to emergence as when a model
acquires an ability that the model wasn’t explicitly
trained to achieve, and consider similar emergent
zero-shot task transfer of audio models.

Prompting LL.Ms Early forms of prompting em-
ployed simple keyword-based inputs or fill-in-the-

blank style prompts (Schick and Schiitze, 2021;
Gao et al., 2021), where impressive few-shot perfor-
mance was observed by framing new tasks within
the format of the pre-training task. For generative
transformers, prompting was extended by using
natural language prompts to differentiate between
tasks (Radford et al., 2019; Sanh et al., 2022) or for
providing few-shot examples (Brown et al., 2020).
Further developments in the field introduced ad-
ditional training stages, such as instruction-tuning
(Ouyang et al., 2022) and supervised fine-tuning
(Chung et al., 2022), to enhance model alignment
and enable better instruction-following abilities of
models for zero-shot task completion.

Debiasing Zero-Shot Decisions GPT-3 classifica-
tion decisions were shown to be sensitive to factors
such as the ordering of examples and choice of
label words. Zhao et al. (2021) demonstrated that
a context-dependent ‘null input’ could be used to
debias decisions, which yields substantial perfor-
mance gains. Similarly, Liusie et al. (2023) demon-
strated that one can apply prior-matching to yield
globally all-calibrated predictions which improves
zero-shot classification robustness. Debiasing can
also be done through prompt design; Guo et al.
(2022) search for cloze-style prompts that have
stereotypical biases, and fine-tune the models to
minimize disagreement.

Adapting ASR Foundation Models ASR Foun-
dation models have been adapted to downstream
tasks through fine-tuning, such as for disfluency
removal and spoken grammatical error correction
(Banno et al., 2023), or as an E2E spoken language
understanding system (Wang et al., 2023a). Fur-
ther, Gong et al. (2023) freeze Whisper and train a
lightweight audio tagging model, and demonstrate
good performance for downstream audio classifica-
tion tasks. Wang et al. (2023b) shows that test-time
adaptation of Whisper for Chinese dialect ASR can
be achieved with speech-based in-context learning.
Lastly, Elizalde et al. (2023) use contrastive pre-
training to match representations from audio and
text encoders, and fine-tune the representations for
downstream audio classification tasks.

3 Zero-Shot Classification of ASR
Foundation Models

This paper investigates the emergent zero-shot au-
dio classification abilities of large-scale ASR foun-
dation models. These systems are trained specifi-
cally for speech recognition and were not explicitly
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Figure 2: ASR foundation models are leveraged for zero-shot audio classification by prompting the decoder to
calculate the log-likelihood of label sequences associated with each class. The log-likelihood for each class is
converted to probabilities and post-processed to a predicted class. This process is displayed for Whisper.

trained for any of the downstream classification
tasks considered in this paper. We question whether
one can use prompting to leverage the implicit
knowledge learned from pre-training to achieve
various audio classification tasks.

3.1 Zero-shot Prompting

In this work, we use a simple template filling
prompting strategy, where given an input audio
sample, we assess the probability of decoding a
label sequence associated with each classification
class (as shown in Figure 2). We leverage various
‘prompts’ by considering different templates to rep-
resent the label sequences (as shown in Figure 1).
To convert likelihoods to class probabilities, we
treat the ASR system as a generative classifier:

Let Py(x|s) represent the likelihood associated
with ASR decoding the word sequence x € X’ given
an input audio s. Let y € {w;,ws,...wk } be one
of K possible output classes, and t(wy) € X rep-
resent a particular mapping of a class to a word
sequence representing the class. We assume that
the zero-shot ASR classification probability Py for
a particular class is proportional to the likelihood
of generating each respective class label sequence
given the input audio:

. Py (t(wr)ls)
Py =l = Rl

The model’s prediction is then the class with the
highest associated probability:

§j = argmax Py(w|s) )
w

3.2 Task Calibration

A concern with the zero-shot prompting approach
described above is the potential presence of im-
plicit biases. Previous works have demonstrated
that zero-shot generative classifiers may have asso-
ciated biases that can degrade performance (Zhao

et al., 2021; Liusie et al., 2023). For example,
the model may favour words that are common in
pre-training, which may lead to predictions being
skewed towards particular classes.

To account for misaligned model probabilities,
approaches exist to modify model outputs to be bet-
ter aligned of which the most prominent example
is model calibration. The objective of model cali-
bration is for the top-1 confidences to better reflect
the expected accuracy of decisions:

1 X o 1 X 4 4
¥ 2 P15 0) = 53766 =) @)
i=1 =1

where y(* is the reference classification label for
audio s(9. Model calibration (sometimes referred
to as top-label calibration) is typically performed
in a post-hoc fashion (Barlow and Brunk, 1972;
Platt, 1999; Guo et al., 2017), where it is often
assumed that the ordering of the classes is valid
and so a monotonic function can be applied to scale
probabilities, without altering the ordering. Since
these standard model calibration approaches do
not change the output prediction order, however,
they will be ineffective in cases where the model
demonstrates systematic class biases, as the system
will remain biased towards particular classes.

To address this concern, a different calibration
approach is required that can change the ordering
of decisions and the top-1 decision. We refer to
such an approach as task calibration, since such
calibration may be most necessary when there is
a mismatch between the training and downstream
task. For task calibration, the system should be
altered to provide global all-label calibrated deci-
sions, such that for each class, the system confi-
dence accurately represents the expected accuracy.

N
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Note that all-label global calibration is not a suf-
ficient condition, and may have limitations. To il-
lustrate this, if the labels have a uniform true prior,
the only valid solution with temperature anneal-
ing is the trivial solution of infinite temperature
which yields random performance. Therefore one
has to select approaches that sensibly debias the
model, and in this work, two particular forms of
task calibration are considered.

3.2.1 Prior Matching

The first task calibration method we consider ap-
plies global all-label calibration. Following Liusie
et al. (2023), one can reweight the outputs of the
classifier by introducing weights a;.x to rescale
the probabilities.

Pg(wk|s a1.K) = —ak]sggwﬂs)
o > i Po(wjls)

Assuming that unsupervised data is available for a
particular task (or if all the evaluation is available
as an unsupervised set), the output probabilities
can be reweighted to ensure that the corresponding
output prior matches the expected true prior, done
by finding the weights &;.x that ensure such a
prior,

Py(wi|ark) = E{Py(wk|s,a1.x) }  (6)

4)

ay:x = argmin » | Py(wlark) — P(w)]  (7)
ALKy,

Where P(w) is the true prior for the considered
task. In cases where the underlying class distribu-
tion is not known, the prior can be assumed to be
uniform, P(w) = 4, which is the assumption made
throughout this paper. The solution has a single
free variable, but by constraining ai; =1 one can
find an exact solution that perfectly matches the
prior, a search which can be done efficiently. Note
that such a solution (equation 7) satisfies global all-
label calibration (equation 4), but not necessarily
top-1 model-calibration (equation 6).

3.2.2 Null-Input Calibration

The previous method requires unsupervised data,
which in some settings can be a drawback. Zhao
et al. (2021) proposed a data-free method which
uses a null-input, ¢, to estimate the weights, which
Liusie et al. (2023) demonstrate is an approxima-
tion of prior-matching,

1 1

@k%HLU%@Mﬁ}%l%@H@ ®

i.e. the null input is used as the audio input s, and
with prompting one can get an output probability
distribution. This may be indicative of bias since
the null-input should yield a uniform pmf output,
and this is used to correct all downstream decisions.

For LLMs, the null-input ¢ is designed to be an
input with no information, e.g. an empty string
or the input ‘N/A’. For our work, using text-based
null-inputs is not applicable. Therefore, for speech
recognition models, we propose using two differ-
ent forms of null-inputs: using a sequence of all
zero vectors as the input of the encoder, or using
acoustic features generated from synthetic Gaus-
sian white noise with o0 = 1.

4 Experimental Set Up

4.1 Models

Two ASR foundation models are considered: Whis-
per (Radford et al., 2023) and the Massively Multi-
lingual Speech (MMS) model (Pratap et al., 2023).

Whisper (Radford et al., 2023) is an encoder-
decoder transformer model trained on 680K hours
of labelled speech data obtained through large-
scale weak supervision. Whisper checkpoints
come in varying sizes, ranging from 39M parame-
ters (Whisper tiny) to 1.55B parameters (Whisper
large), available either as English-only or multilin-
gual models. The largest model is only available in
the multilingual version. Whisper is trained for au-
tomatic speech recognition and voice activity detec-
tion, with the multilingual models further trained
for speech translation and language identification.

MMS (Pratap et al., 2023) is a CTC model which
has a decoder that is a simple linear layer map-
ping to a set of characters. The model has 1B
parameters and is first pre-trained on 491K hours
of unlabelled data using self-supervised training.
For multilingual speech recognition, the model is
further trained on 45K hours of labelled data span-
ning 1,107 languages, data collected by aligning
New Testament audios and texts.

4.2 Datasets

We assess our systems across 8 diverse audio clas-
sification datasets, encompassing 6 distinct tasks.
Sound Event Classification (SEC) comprises of
ESC50 (Piczak, 2015) (50 environmental sounds)
and UrbanSound8K (Salamon et al., 2014) (10 ur-
ban sounds). Acoustic Scene Classification (ASC)
uses TUT2017 (Mesaros et al., 2016), featuring
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15 acoustic scenes spanning both outdoor and in-
door environments. Vocal Sound Classification
(VSC) uses Vocal Sound (Gong et al., 2022) with
6 distinct human vocal sound categories. Emotion
Recognition (ER) comprises of RAVDESS (Luna-
Jiménez et al., 2021) and CREMA-D (Cao et al.,
2014), each containing speakers expressing 8 and
6 different emotions, respectively. Music Genre
Classification (MGC) uses GTZAN (Sturm, 2013),
containing music classified into 10 genres. Addi-
tionally, Speaker Counting (SC) uses LibriCount
(Stoter et al., 2018), featuring audio clips with
varying speaker counts from 0 to 10. Complete
dataset statistics are outlined in Table 1. Five of
the datasets are balanced over the classes (ESC50,
TUT2017, Vocal, GTZAN, and LibriCount), while
the other three have slightly imbalanced distribu-
tions.

Task  Dataset | Utts Avg Dur. K
SEC ESC50 ‘ 2,000 5.0 50

UrbanSound8K | 8,732 3.6 10
ASC  TUT2017 ‘ 1,620 10.0 15
VSC  Vocal Sound | 3,594 5.0 6
ER RAVDESS ‘ 1,440 3.7 8

CREMA-D 7,442 5.0 6
MGC GTZAN ‘ 1,000 30.0 10
SC LibriCount ‘ 5,720 5.0 11

Table 1: Test set statistics, displaying the total number
of test utterances, the average duration of each audio
sample (in seconds), and the number of classes K.

4.3 Method

Task | Prompt

ER The speaker is feeling class_label.

MGC | This is an audio of class_label music.

SC In the audio, class_label people are speaking.
others | This is a sound of class_label.

Table 2: Manually designed prompts used for each task.
The bottom prompt is used for SEC, ASC and VSC.

The default prompts used for the different tasks
are shown in Table 2, which were adapted from
the prompts of Elizalde et al. (2023). We calcu-
late class probabilities using our three methods';
the base ‘uncalibrated’ probabilities, prior match-
ing, and the null-input strategy (both zero-inputs
and Gaussian white noise). For the Gaussian white

'The code is made available at https://github.com/
JuliRao/Whisper_audio_classification.

noise null-input, the 0 = 1 and the synthetic clips
are generated to have the same average duration as
the task’s clips. When employing Whisper as the
underlying speech model, we calculate the prob-
ability that the decoder generates each prompted
text sequence with teaching-forcing. For MMS, we
apply a dynamic programming algorithm (Graves
et al., 2006) to compute the probability of gener-
ating a sentence for the given input audio. All the
possible alignments are considered in this process.

4.4 Baselines

We compare our performance against AudioCLIP
(Guzhov et al., 2022) and CLAP (Elizalde et al.,
2023). CLIP (Radford et al., 2021) is a multimodal
system that generates representations for images
and text, which AudioCLIP extends to also incor-
porate the audio modality. They introduce an audio
head and perform contrastive learning on AudioSet
(a sound event classification dataset) to align the
audio embeddings with the other modalities. CLAP
adopts a similar approach and aligns a pre-trained
text encoder with a pre-trained audio encoder using
contrastive learning. The model is trained using
a sound event classification dataset and three au-
dio captioning datasets. In CLAP, the text encoder
uses target sequences written as natural language
sentences rather than single-class words.

4.5 Supervised Baseline

To consider the performance gap between zero-shot
Whisper and supervised approaches, we further
consider fine-tuning Whisper on training data to
obtain an upper bound of supervised model perfor-
mance. This is done on TUT and Vocal, which have
available training data sets. We perform supervised
training with parameter efficient fine-tuning ap-
proaches; LoRA (Hu et al., 2021) and soft prompt
tuning (SPT) (Lester et al., 2021; Ma et al., 2023).
During training, the audio clip is provided to the
model encoder and the model decoder is trained to
generate the corresponding class label.

We note here that unsurprisingly, the zero-shot
performance was considerably worse than the su-
pervised fine-tuning results. Therefore, although
the results section will demonstrate that Whisper
can show impressive zero-shot task transfer to un-
seen audio classification tasks, in settings where
labelled data is available, fine-tuning will yield bet-
ter performance. More details on the supervised
training details and experimental results can be
found in Appendix E.
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Model \ ESC50 \ US8K \ TUT \ Vocal \ RAVDESS \ CREMA-D \ GTZAN \ LibriCount \ Avg.
Baselines (§4.4)

Random 2.0 10.0 6.7 16.7 12.5 16.7 10.0 9.1 10.4
AudioCLIP 69.4 65.3 - - - - - - -

CLAP 82.6 73.2 | 29.6 | 494 16.0 17.8 25.2 17.9 39.0

Uncalibrated (§3.1)
MMS large (1B) 1.7 9.6 4.9 14.2 13.5 17.2 8.3 8.4 9.7
Whisper medium.en (769M) | 27.9 39.5 7.2 59.0 153 20.9 15.2 8.2 24.2
Whisper medium (769M) 29.7 45.8 7.5 44.6 16.7 19.9 28.4 9.4 25.2
Whisper large-v2 (1.6B) 38.9 50.5 7.7 60.1 15.1 20.2 38.2 9.2 30.0
Prior-matched (§3.2.1)

MMS large (1B) 2.4 109 7.6 11.5 12.2 17.2 10.5 11.5 10.5
Whisper medium.en (769M) | 56.2 60.9 | 18.3 | 82.8 29.0 22.6 29.7 9.8 38.7
Whisper medium (769M) 57.5 61.6 | 252 | 824 35.0 25.9 48.6 16.3 44.1
Whisper large-v2 (1.6B) 65.4 60.4 | 26.0 | 84.9 41.7 28.8 60.9 17.3 48.2

Table 3: Baseline and zero-shot task performance using the default prompts (of Table 2). The classification accuracy

for each individual task, as well as the average accuracy across all eight tasks, is reported.

4.6 Evaluation

The focus of this work is on zero-shot classification
performance and therefore the top-1 accuracy of
the test data is used as the main performance metric
for all systems. For Whisper and MMS, the test
utterances are down-sampled to 16kHz to match
the pre-training procedure. CLAP uses a higher
sampling rate of 44.1kHz in the audio encoder,
which is more computationally expensive.

5 Results

5.1 Audio Classification Performance

Table 3 shows the audio classification results for
3 Whisper systems and 1 MMS system for our
8 datasets, with comparisons to random perfor-
mance and relevant baselines. We display our
zero-shot prompted performance when using ei-
ther base output ASR likelihoods (§3.1) and when
post-processing the outputs using prior-matching
(§3.2.1). We observe the following points:

1) Whisper performs zero-shot audio classifica-
tion better than random. Using simple template
prompts and output likelihoods, Whisper large-v2
achieves an average zero-shot accuracy of 30%,
considerably better than the average random perfor-
mance. Further, increasing parameter size yields a
performance boost (769M to 1.6B parameters) and
the multilingual Whisper performs better than the
English-only model for the medium size.

2) MMS fails for zero-shot audio classification.
This could be explained by the fact that MMS is
forced to generate either an output token or a blank
symbol for every input frame. The text prompt, in-
cluding the classification symbols, must be aligned
with the mismatched input audio. Using the result-

ing probability for classification may prove chal-
lenging when generalizing to zero-shot audio clas-
sification tasks. For Whisper, the attention mech-
anism allows it to attend over the entire input se-
quence to capture high-level audio information.

3) Prior Matching yields large performance im-
provements. By reweighting the output probabili-
ties in an unsupervised fashion (i.e. without using
the test labels), large performance boosts are ob-
served for all Whisper systems. Whisper can now
demonstrate reasonable performance for all 8 tasks,
and reducing the inherent class bias leads to an
improvement of average accuracy to 48.2%.

4) Zero-Shot Whisper outperforms baselines,
demonstrating our approach is a powerful zero-
shot audio classification method. Note that CLAP
is tuned on sound event classification and audio
captioning datasets, and has therefore been trained
to be aligned with tasks such as ESC50 and US8K.
Nonetheless, even including performance on these
tasks, our approach outperforms CLAP by an av-
erage of 9.2%, and has consistent and substantial
performance improvements for most out-of-domain
tasks.

5.2 Robustness to Prompts

Table 4 displays RAVDESS performance for dif-
ferent prompts, with Whisper large-v2 and prior-
matching. The first prompt is the default prompt
used for the main experiments, prompts 2-4 contain
only the class label, and prompts 5-9 were gener-
ated by asking ChatGPT to paraphrase® prompt 1.
The results show that, though zero-shot prompting
can work for various prompts, there is considerable

Zusing the prompt: “Please paraphrase the given prompt
five times with simple language:"
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Prompt | Acc
The speaker is feeling class_label. |41.7
class_label 20.7
(class_label) 33.1
[class_label] 32.6
The person talking feels class_label. 38.5
The speaker is experiencing class_label emotions. 20.8
The person speaking is in a class_label mood. 29.9
The speaker’s emotion is class_label. 33.6
The person talking is filled with class_label feelings. | 39.7
Ensemble of Prompts | 44.0

Table 4: Performance of Whisper large-v2 with different
prompts on RAVDESS (using prior-matched outputs).

prompt sensitivity. Interestingly, although prompts
2-4 are closest to the pre-training task of ASR de-
coding, we observe that, on average, the natural
language prompts demonstrate considerably better
performance, implying that the zero-shot ability
can be attributed to more than ASR task transfer.
Further, ensembling all 9 prompts leads to the best
performance of 44.0, a performance boost which
was also observed for other tasks, as displayed in
Table 5. Complete results for varying prompts for
all datasets can be found in Appendix D.

Dataset | Default | Ensemble
ESC50 65.4 67.1
US8K 60.4 67.6
TUT 26.0 25.2
Vocal 84.9 87.3
RAVDESS 41.7 44.0
CREMA-D 28.8 33.1
GTZAN 60.9 60.0
LibriCount 17.3 22.0
Average | 482 | 508

Table 5: Performance of the default prompt and the
ensemble of 9 prompts on audio classification tasks.

5.3 Null-input Performance

Prior matching requires a set of unlabelled test
data, and is not applicable when a single/few sam-
ples have to be classified. In such settings, the
null-input approximation (§3.2.2) can be used as a
zero-resource debiasing approach, which can use
either all-zeros in the encoder input or Gaussian
noise. Table 6 demonstrates that, compared to
the uncalibrated baseline results, null-input debias-
ing improves model performance by an average of
6.7% and 4.8% over all models and tasks for the 2
methods respectively. These results show that the
null-input method can provide a performance boost

via data-free calibration, however, there is still a
considerable gap with prior-matching performance.
More detailed results can be found in Appendix A.

Method | medium.en | medium | large-v2
Uncalibrated | 24.2 | 252 | 300
Zero Input 29.8 34.8 34.9
Gaussian Noise 28.5 29.5 35.8

Table 6: Average accuracy of 8 audio classification tasks
with null-input calibration.

5.4 Analysis of Predicted Distribution

To analyze the performance boost observed from
debiasing, Figure 3 illustrates the output class distri-
butions on RAVDESS for the various methods. We
observe that the uncalibrated outputs are strongly
dominated by the ‘sad’ class. Using the null-input
method (where we select to use the zero-input ap-
proach) still yields relatively imbalanced decisions.
However, we observe that prior-matching (by de-
sign) leads to a more balanced distribution of pre-
dictions. Equivalent plots are shown for different
datasets in Appendix C.

uncallibrated + sad

null-input - sad l
angry surprised
prior-matched . calm happy sad

Figure 3: Predicted class distribution for Whisper large-
v2 on RAVDESS. Bar width is proportional to the frac-
tion of decisions per class.

disgusted

fearful [disgusted

5.5 Ability with Scale

Figure 4 illustrates the improvement of average
ability over all tasks as the model size increases.
We observe a continuous improvement in perfor-
mance as the model size increases, and secondly
beyond 500M parameters the multilingual models
achieve much better performance than the English-
only models (when comparing models of similar
size). This may be due to the increased training
data, as well as the multi-task pre-training criterion
(which includes speech translation and language
identification as well).
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Figure 4: Parameter size vs average accuracy (with prior-
matching) for different versions of Whisper models.

5.6 Audio Question Answering

The previous experiments demonstrated that Whis-
per can be zero-shot prompted to perform a multi-
tude of audio classification tasks with reasonable
performance. Here, we provide an initial inves-
tigation into the ability of Whisper for the more
challenging task of audio question answering.

0.3

0.25
0.2

0.1
.. 0.05

Yes A No What and

f

Whisper Encoder S Whisper Decoder
il faf i+ (audio clip) Is this sound happening indoors?

Figure 5: Zero-shot audio question answering method.

Clotho-AQA (Lipping et al., 2022) is a dataset of
audio clips selected from the Clotho dataset, with
corresponding questions and answers collected
through crowd-sourcing. Our experiments focus on
the yes-no questions of Clotho-AQA, where each
question is a yes-no question corresponding to an
input audio sample, with three independent ‘yes’
or ‘no’ annotations. We consider both the ‘ma-
jority’ set, where the label is assigned as the most
select options, and ‘unanimous’ set, where the ques-
tions are filtered to those where all three annotators
agree. The processed test sets contain 1,892 and
1,109 questions for the two parts respectively, with
a slight class imbalance and 56.4% and 61.7% of
the questions having the label ‘yes’ respectively.
We prompt Whisper in a similar fashion to the pre-

Method | Unanimous | Majority votes

Lipping et al. (2022) | 73.1 | 63.2
Uncalibrated 64.0 58.8
Zero Input 65.2 60.1
Gaussian Noise 38.6 43.8
Prior-Matched 61.1 58.5

Table 7: Experimental results on Clotho-AQA test set.

vious audio classification approach, however the
input question is now used as the prompt for the
decoder. As before, the audio clip is provided to
the model’s encoder, and the system likelihood of
generating ‘yes’ and ‘no’ are used as class logits.
The setup is depicted in Figure 5. The baseline
from Lipping et al. (2022) is a BILSTM-based sys-
tem with a binary classification head, trained in a
supervised fashion on the labelled training corpus.

—— Whisper large-v2 zero-shot
--- Random

0.8

o
o
L

Precision

o
IS
.

0.2

0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Recall

Figure 6: Precision-Recall curve for Whisper large-v2
prompted for Clotho-AQA. ‘no’, the rarer event, is used
as the positive class for detection.

Table 7 presents experimental results, where zero-
shot Whisper achieves an accuracy of 64.0 for the
unanimous test set. Note that due to class imbal-
ance a system that always predicts ‘yes’ will have
an accuracy of 61.7%. However, the precision of
the proposed method is 65.9% and 60.9% for the
‘yes’ and ‘no’ decisions respectively, both signif-
icantly above random. Due to this inherent class
imbalance, prior matching (which ensures the out-
put prior is uniform) degrades performance and
yields lower accuracy. Applying the null-input nor-
malization techniques can improve performance
with zero-input, although Gaussian noise harms
performance (as it overcompensates the bias and
makes predictions biased to predict mostly ‘no’).
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Similar observations are found when considering
the ‘majority’ processed test data.

To confirm the extent to which Whisper is mak-
ing informed, rather than random, decisions the
precision and recall curve for the rarer class, ‘no’ is
shown in Figure 6 on the unanimous set. It is clear
that there is significant information in Whisper’s
zero-shot predictions and performance is notably
better than random at all decision thresholds.

6 Conclusions

This paper is the first to examine the emer-
gent ability of foundation ASR models on audio-
classification tasks, that were not seen in train-
ing. Over a range of tasks, we show that zero-shot
prompting of Whisper can yield effective perfor-
mance. Calibration methods can be used to readjust
the output distribution for better task alignment,
allowing Whisper to achieve better performance
compared to previous zero-shot works, and demon-
strating its potential for cross-task generalization.
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7 Limitations

Prior-matching, which yielded considerable gains,
assumes that the classes are fairly balanced and
requires unlabelled in-domain data (or a large test
set to be evaluated). This approach may not apply
to settings where there are strong class imbalances,
nor when little data is available.

8 Ethical Considerations

This is an introductory study that demonstrates that
Whisper can be used for zero-shot audio classifica-
tion tasks. However, the system may not generalize
well to some tasks not considered in this paper.
Our zero-shot method should be used with a level
of caution, especially if leveraging the system for
real-world applications.
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A Full Results

Model | ESC50 | USSK | TUT | Vocal | RAVDESS | CREMA-D | GTZAN | LibriCount | Avg.
Baselines (§4.4)

Random 2.0 10.0 6.7 16.7 12.5 16.7 10.0 9.1 10.4
AudioCLIP 69.4 65.3 - - - - - - -

CLAP 82.6 732 | 29.6 | 494 16.0 17.8 25.2 17.9 39.0

Uncalibrated (§3.1)
MMS large (1B) 1.7 9.6 4.9 14.2 13.5 17.2 8.3 8.4 9.7
Whisper tiny.en (39M) 3.7 16.4 6.7 16.7 13.3 17.4 13.9 9.3 12.2
Whisper tiny (39M) 4.2 12.9 6.5 17.0 124 15.9 13.3 7.8 11.3
Whisper base.en (74M) 5.9 20.4 6.6 35.1 13.2 16.0 13.6 10.2 15.1
Whisper base (74M) 6.8 23.7 6.6 39.0 14.9 16.3 21.7 9.5 17.3
Whisper small.en (244M) 10.3 41.9 7.0 | 45.0 14.7 14.8 14.6 7.2 19.4
Whisper small (244M) 21.0 39.3 82 | 46.6 15.5 18.9 23.7 9.2 22.8
Whisper medium.en (769M) | 27.9 39.5 7.2 59.0 15.3 20.9 15.2 8.2 24.2
Whisper medium (769M) 29.7 45.8 7.5 44.6 16.7 19.9 28.4 9.4 25.2
Whisper large-v1 (1.6B) 33.7 44.8 8.3 58.2 15.0 21.6 35.2 8.2 28.2
Whisper large-v2 (1.6B) 38.9 50.5 7.7 60.1 15.1 20.2 38.2 9.2 30.0
Whisper large-v3 (1.6B) 12.0 38.3 7.0 | 43.0 13.6 19.5 14.4 9.3 19.6
Zero-Input (§3.2.2)
MMS large (1B) 2.2 11.7 4.2 16.5 12.1 15.9 7.5 10.0 10.0
Whisper tiny.en (39M) 12.7 19.7 7.5 30.9 20.6 18.9 12.8 9.4 16.6
Whisper tiny (39M) 10.5 24.2 7.7 28.0 15.8 17.7 17.7 7.9 16.2
Whisper base.en (74M) 18.9 37.6 142 | 50.9 18.8 21.5 13.6 8.8 23.0
Whisper base (74M) 19.4 36.2 | 12.1 | 52.7 14.4 16.5 17.5 11.1 22.5
Whisper small.en (244M) 30.5 47.3 114 | 658 14.4 18.5 9.4 6.2 25.4
Whisper small (244M) 30.9 41.0 | 19.8 | 543 14.7 17.2 38.8 10.1 28.4
Whisper medium.en (769M) | 44.1 533 | 215 | 572 20.1 21.2 12.2 8.6 29.8
Whisper medium (769M) 45.6 57.1 19.6 | 67.8 23.3 22.1 24.1 18.5 34.8
Whisper large-v1 (1.6B) 47.1 58.5 | 249 | 593 18.5 26.0 32.8 8.7 34.5
Whisper large-v2 (1.6B) 35.9 52.1 18.0 | 57.5 29.4 26.5 45.8 13.6 34.9
Whisper large-v3 (1.6B) 23.9 384 | 21.2 | 60.9 15.7 20.7 11.8 13.9 25.8
Gaussian-Noise (§3.2.2)
MMS large (1B) 24 12.6 7.9 13.0 12.7 17.0 14.9 11.9 11.5
Whisper tiny.en (39M) 8.9 20.9 9.6 18.9 17.6 20.4 14.2 8.4 14.9
Whisper tiny (39M) 5.8 194 | 11.8 | 16.7 13.5 17.1 16.4 7.7 13.6
Whisper base.en (74M) 13.6 29.0 7.7 25.2 15.3 19.6 11.7 10.2 16.5
Whisper base (74M) 17.5 27.6 6.5 39.5 12.8 17.8 12.2 9.0 17.9
Whisper small.en (244M) 29.8 420 | 136 | 59.5 13.1 17.1 11.6 8.9 24.5
Whisper small (244M) 31.2 49.0 | 148 | 525 24.0 21.4 41.6 12.6 30.9
Whisper medium.en (769M) | 36.8 45.8 | 20.0 | 68.9 17.2 20.4 10.0 8.9 28.5
Whisper medium (769M) 38.3 47.1 159 | 63.0 16.2 20.4 18.6 16.4 29.5
Whisper large-v1 (1.6B) 47.9 587 | 26.1 | 44.8 18.7 20.1 20.5 9.1 30.7
Whisper large-v2 (1.6B) 43.8 53.2 | 22.1 | 624 20.4 18.8 50.8 15.0 35.8
Whisper large-v3 (1.6B) 22.9 29.3 14.1 | 43.1 16.5 17.6 194 14.9 22.2
Prior-matched (§3.2.1)

MMS large (1B) 2.4 109 7.6 11.5 12.2 17.2 10.5 11.5 10.5
Whisper tiny.en (39M) 17.3 304 | 11.7 | 41.5 19.6 20.4 19.3 8.8 21.1
Whisper tiny (39M) 14.1 28.5 11.1 | 36.7 17.6 17.1 25.0 8.0 19.8
Whisper base.en (74M) 24.6 46.2 | 11.7 | 58.6 20.3 20.1 25.4 12.3 27.4
Whisper base (74M) 25.7 358 | 11.0 | 58.0 18.1 17.5 22.9 10.3 24.9
Whisper small.en (244M) 43.7 55.5 | 157 | 78.8 24.6 18.7 28.1 7.7 34.1
Whisper small (244M) 40.7 57.1 | 20.0 | 62.7 322 23.8 48.3 12.7 37.2
Whisper medium.en (769M) | 56.2 60.9 | 18.3 | 82.8 29.0 22.6 29.7 9.8 38.7
Whisper medium (769M) 57.5 61.6 | 252 | 824 35.0 25.9 48.6 16.3 441
Whisper large-v1 (1.6B) 62.9 65.7 | 28.3 | 85.6 35.1 24.4 54.7 7.3 45.5
Whisper large-v2 (1.6B) 65.4 60.4 | 26.0 | 84.9 41.7 28.8 60.9 17.3 48.2
Whisper large-v3 (1.6B) 33.8 433 | 223 | 69.1 31.3 23.7 33.7 17.0 343

Table 8: Baseline and zero-shot task performance using the default prompt.

Table 8 extends Table 3 and displays the zero-shot audio classification performance of different versions
of the released ASR foundation models. As the results show, Whisper always exhibits better performance
than random predictions, indicating that the model acquires the general ability of audio understanding
when pre-trained on large-scale datasets. Null-input and prior matching calibration methods consistently
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improve the classification accuracy on selected tasks. All three Whisper large models share the same
structure while the training strategy is slightly different. Compared to large-v1, Whisper large-v?2 is trained
on the data for 2.5 times more epochs with regularization techniques, leading to better audio classification
accuracy. Nevertheless, the newly released Whisper large-v3 model shows inferior performance, which is
trained on the combination of 1 million hours of weakly-labelled audio and 4 million hours of audio with
pseudo labels decoded by large-v2. Results suggest that including pseudo-speech data harms the model’s
emergent ability for audio classification.

B Accuracy against Parameter Size

ESC50 US8K TUT Vocal
-~ Random 604 ==+ Random /‘\. 250/ ==+ Random 40 - Random
601 —m~ Multilingual Model —#- Multilingual Model =~ —8- Multilingual Model —#- Multilingual Model
> | - English-Only Model > | <~ English-Only Model > 2251 ~- English-Only Model > | <~ English-Only Model
@ 8% ks ] 8®
= = = 200 =
5 S S N 3
g g a0 3 1rs - g
< < < <
30 o 150 W 55
o D30 o o
© © © s ©
o o o g
g g g 5
z, Z Z 100 z
75 15
o 10 s
10? 10° 107 10° 107 10* 107 10°
Number of Parameters (millions) Number of Parameters (millions) Number of Parameters (millions) Number of Parameters (millions)
RAVDESS CREMA-D GTZAN LibriCount
4] =~ Random -~ Random 60{ ~~- Random -~ Random
~#~ Multilingual Model 2 —@- Multilingual Model —@~ Multilingual Model 16 —@- Multilingual Model
> ~# - English-Only Model > ~#- English-Only Model > ~- English-Only Model > ~#- English-Only Model
O Oz Qs 9
e e e e
5 > S S
S0 RS S ]
< < < <
Qs 22 @ o 12
o j= O30 o
® ® @ @
] g o o
20 R 10 -
z 2 gnye LR 2
. . | N
10 ¥
10? 10° 10? 10° 10? 10° 10? 10°
Number of Parameters (millions) Number of Parameters (millions) Number of Parameters (millions) Number of Parameters (millions)

Figure 7: Accuracy on individual audio classification tasks across different sizes of Whisper models.

Figure 7 shows the performance improvement of Whisper for various sizes, for both the English-only
and the multilingual systems. In general, we observe better performance as the model size increases. For
many tasks, we observe that as the number of parameters increases, the multilingual systems begin to
outperform the English-only systems. However, for some tasks such as ESC50 and US8K, we observe
comparable performance for the two systems over all model sizes.

C Distribution of Predicted Classes
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Figure 8: Percentage of model predictions for each class with different calibration methods. On ESC-50, we only
plot the top 15 classes predicted by the uncalibrated results for illustration.
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Figure 8 shows the distribution of predicted classes for all the test samples on each dataset. For the
uncalibrated results, the predictions are unevenly distributed among all the classes. Specifically, the
system has a strong bias to predict words that are more likely to frequently appear in the pre-training data,
such as ‘rain’, ‘train’, or ‘sad’. Certain classes are never predicted due to the bias. This problem can
be mitigated with null-input calibration. With prior matching, we can observe more evenly distributed
predictions on the test samples.

D Robustness to Prompts

Prompt | ESC50 | US8K | TUT | Vocal
This is a sound of class_label. | 654 | 604 | 260 | 849
class_label 48.6 54.8 15.7 60.1
(class_label) 68.0 65.5 21.3 86.3
[class_label] 64.3 64.2 16.1 85.9
Listen to the sound, it’s called class_label. 50.3 56.5 16.0 81.7
The noise you hear is from the category class_label. 54.6 55.1 19.3 79.7
This is what we call class_label sound. 453 55.7 26.7 69.5
Identify this noise as class_label. 46.6 52.8 13.6 81.6
This sound belongs to the group class_label. 41.4 57.0 15.0 76.1
Ensemble of Prompts ‘ 67.1 ‘ 67.6 ‘ 25.2 ‘ 87.3

Table 9: Prompt sensitivity for Sound Event, Vocal Sound and Acoustic Scene Classification.

Prompt | RAVDESS | CREMA-D
The speaker is feeling class_label. | 417 | 288
class_label 20.7 18.1
(class_label) 33.1 353
[class_label ] 32.6 26.6
The person talking feels class_label. 38.5 29.6
The speaker is experiencing class_label emotions. 20.8 20.5
The person speaking is in a class_label mood. 29.9 27.4
The speaker’s emotion is class_label. 33.6 25.1
The person talking is filled with class_label feelings. 39.7 33.0
Ensemble of Prompts ‘ 44.0 ‘ 33.1

Table 10: Prompt sensitivity for Emotion Classification.

Prompt | GTZAN Prompt | LibriCount
This is an audio of class_label music. ‘ 60.9 In the audio, class_label people are speaking. ‘ 17.3
class_label 39.0 class_label people speaking 13.0
(class_label) 54.6 (class_label people speaking) 15.3
[class_label] 52.3 [class_label people speaking] 232
Listen to this, it’s class_label music. 48.5 You can hear class_label people talking in the audio. 9.2
This audio plays class_label music. 38.8 The audio includes voices of people from class_label. 14.6
The sound is from class_label music. 49.4 In this recording, individuals from class_label are speaking. 13.5
What you're hearing is class_label music. 58.7 The audio captures conversations of class_label individuals. 11.6
This records class_label music. 40.0 The voices you’re hearing are from class_label people. 17.1
Ensemble of Prompts | 600 Ensemble of Prompts | 220

Table 11: Prompts for Music Genre Classification. Table 12: Prompts for Speaker Counting.

The above tables show the performance of various decoder prompts for all the considered tasks. We
observe that for some tasks, the natural language prompts are able to perform better than the class
label-only prompt (TUT, RAVDESS, GTZAN), while for the other datasets, one may observe similar
performance between our default prompts and class-only prompts.
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E Supervised Training Performance

Two forms of efficient fine-tuning approaches are
considered as supervised baselines; LoRA (Hu
et al., 2021) and soft prompt tuning (SPT) (Lester
et al., 2021; Ma et al., 2023). During training, the
audio clip is provided to the model encoder and
the model is trained to generate the corresponding
class label in the decoder. For LoRA, we use a rank
r = 8 and only adapt the attention weights (Hu
et al., 2021). For SPT, we insert 20 learnable soft
prompt vectors at the decoder input. This results
in 940K (0.06%) and 25K (0.002%) learnable pa-
rameters for LoRA and SPT, respectively. During
training, we use a batch size of 8, run 4000 train-
ing steps, use the AdamW optimizer with linear
decay, and the learning rate is set to 1le~3 and le~!
for LoRA and SPT, respectively. Experiments are
conducted on Whisper large-v2 for TUT and Vocal,
which are the only of the considered tasks with
available training data.

Method | Model | TUT | Vocal
Random 6.7 16.7
Zero-shot CLAP 29.6 60.1
Whisper 26.0 | 849
CLAP 74.6 | 979
Supervised | LoRA (Whisper) | 62.7 | 94.5
SPT (Whisper) 59.2 92.6

Table 13: Supervised training results on TUT and Vocal.

Table 13 shows performance on TUT and Vocal,
where as expected there remains a significant per-
formance gap between the zero-shot and the su-
pervised approaches. LoRA shows considerable
performance improvements while being parameter
efficient (and only learning 0.06% of parameters).
Supervised trained CLAP demonstrates better per-
formance than Whisper, possibly as CLAP gen-
erates contextual embeddings that may be better
suited for transferring to tasks, while Whisper is an
ASR decoding system that typically isn’t finetuned
for downstream audio classification tasks.
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